文档库 最新最全的文档下载
当前位置:文档库 › 高中三角函数常见题型与解法

高中三角函数常见题型与解法

高中三角函数常见题型与解法
高中三角函数常见题型与解法

三角函数的题型和方法

一、思想方法

1、三角函数恒等变形的基本策略。

(1)常值代换:特别是用“1”的代换,如1=cos 2

θ+sin 2

θ=tanx ·cotx=tan45°等。

(2)项的分拆与角的配凑。如分拆项:sin 2

x+2cos 2

x=(sin 2

x+cos 2

x)+cos 2

x=1+cos 2

x ;配凑角:α=(α+β)-β,β=

2

β

α+-

2

β

α-等。

(3)降次与升次。即倍角公式降次与半角公式升次。

(4)化弦(切)法。将三角函数利用同角三角函数基本关系化成弦(切)。

(5)引入辅助角。asin θ+bcos θ=2

2

b a +sin(θ+?),这里辅助角?所在象限由a 、b 的符号确定,?角的值由tan ?=

a

b

确定。 (6)万能代换法。巧用万能公式可将三角函数化成tan 2

θ

的有理式。 2、证明三角等式的思路和方法。

(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。 (2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。

3、证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。

4、解答三角高考题的策略。

(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。 (2)寻找联系:运用相关公式,找出差异之间的内在联系。 (3)合理转化:选择恰当的公式,促使差异的转化。

二、注意事项

对于三角函数进行恒等变形,是三角知识的综合应用,其题目类型多样,变化似乎复杂,处理这类问题,注意以下几个方面:

1、三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值。

2、三角变换的一般思维与常用方法。

注意角的关系的研究,既注意到和、差、倍、半的相对性,如

αα

ββαββαα22

1

2

2)()(?=

?

=+-=-+=.也要注意题目中所给的各角之间的关系。 注意函数关系,尽量异名化同名、异角化同角,如切割化弦,互余互化,常数代换等。

熟悉常数“1”的各种三角代换:

6

sin

24

tan

0cos 2

sin

sec cos tan sec cos sin 12222π

π

π

ααβαβα====?=-=+=等。

注意万能公式的利弊:它可将各三角函数都化为2

tan θ

的代数式,把三角式转化为代数式.但往往代数运算比较繁。

熟悉公式的各种变形及公式的范围,如 sin α = tan α · cos α ,2

cos 2cos 12

α

α=+,

2

tan sin cos 1α

αα=-等。

利用倍角公式或半角公式,可对三角式中某些项进行升降幂处理,如2

sin 2cos 12

α

α=-,

2

2cos 2sin sin 1??? ??+=+ααα,2

2cos 2sin sin 1??? ?

?-=-αα

α等.从右到左为升幂,这种变形有利用根式的化

简或通分、约分;从左到右是降幂,有利于加、减运算或积和(差)互化。

3、几个重要的三角变换:

sin α cos α可凑倍角公式; 1±cos α可用升次公式;

1±sin α 可化为??

?

??-±απ2cos 1,再用升次公式;

()?ααα++=+sin cos sin 22b a b a (其中 a

b

=

?tan )这一公式应用广泛,熟练掌握。 4、单位圆中的三角函数线是三角函数值的几何表示,四种三角函数y = sin x 、y = cos x 、y = tan

x 、y = cot x 的图像都是“平移”单位圆中的三角函数线得到的,因此应熟练掌握三角函数线并能应用它

解决一些相关问题.

5、三角函数的图像的掌握体现在:把握图像的主要特征(顶点、零点、中心、对称轴、单调性、渐近线等);应当熟练掌握用“五点法”作图的基本原理以及快速、准确地作图。

6、三角函数的奇偶性结论:

① 函数y = sin (x +φ)是奇函数π?k =?()Z ∈k 。 ② 函数y = sin (x +φ)是偶函数()Z ∈+=?k k 2

π

π?。 ③ 函数y =cos (x +φ)是奇函数()Z ∈+=?k k 2

π

π?。

④ 函数y = cos (x +φ)是偶函数()Z ∈=?k k π?。

7、三角函数的单调性

三、典型例题与方法

题型一 三角函数的概念及同角关系式

此类题主要考查三角函数诱导公式及三角函数的符号规律.解此类题注意必要的分类讨论以及三角函数值符号的正确选取。

1、三角函数的六边形法则。

2、几个常用关系式: (1)

,三式知一求二。

(2)2

1sin 1sin 2αα?

?+=+ ??

?。

(3)当0,

2x π?

?

∈ ??

?

时,有sin tan x x x <<。 3、诱导公式(奇变偶不变,符号看象限)。 4、

5、熟记关系式sin cos cos 444x x x πππ?

?

????+=-=- ? ? ??

?????;cos sin 44x x ππ????

+=- ? ?????

【例1】记cos(80)k -?=,那么tan100?=( )

A 、21k k -

B 、﹣2

1k k - C 、21k - D 、﹣21k

-

解:Θ222sin801cos 801cos (80)1k =-=--=-o o o ,

∴tan100tan80?=-o

2

sin 801.cos80k -=-

=-o o 。故选B 评注:本小题主要考查诱导公式、同角三角函数关系式,并突出了弦切互化这一转化思想的应用。同时熟

练掌握三角函数在各象限的符号。

【例2】cos300?=( )

A 、3、-12 C 、1

2

D 3解:()1

cos300cos 36060cos602

?=?-?=?=

评注:本小题主要考查诱导公式、特殊三角函数值等三角函数知识。

练习:

1、sin585°的值为( )

A 、22-

B 、22

C 、32-

D 、32 2、下列关系式中正确的是( )

A 、000sin11cos10sin168<<

B 、000sin168sin11cos10<<

C 、000sin11sin168cos10<<

D 、000sin168cos10sin11<< 3、若4sin ,tan 05

θθ=->,则cos θ= . 4、 “2()6

k k Z π

απ=

+∈”是“1

cos 22

α=

”的( ) A 、充分而不必要条件 B 、必要而不充分条件 C 、充分必要条件 D 、既不充分也不必要条件 5

、cos 2sin tan ( )ααα+==若则

A 、12

B 、2

C 、1

2

- D 、2-

题型二 化简求值

这类题主要考查三角函数的变换。解此类题应根据考题的特点灵活地正用、逆用,变形运用和、差、

倍角公式和诱导公式,进行化简、求值。

【例3】已知α为第三象限的角,3cos 25α=-

,则tan(2)4

π

α+= 。 解: Θα为第三象限的角 ∴ππ+k 2<α<ππ2

3

2+k

∴ ππ24+k <2α<ππ34+k (Z K ∈)

又Θ3cos 25

α=-<0, ∴4

sin 25α=,

∴sin 24

tan 2cos 23

ααα==-

∴tan(2)4πα+=41tan tan 2134471tan tan 2143

π

απα-

+=

=--+. 评注:本题主要考查了同角三角函数的关系和二倍角公式的灵活运用。是一道综合性较强的题目。

【例4】已知2tan =

θ,求(1)θ

θθ

θsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值。

解:(1)

2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-

+

=++θθθ

θθθ

θθθθ; (2) θ

+θθ

+θθ-θ=θ+θθ-θ2

2222

2

cos sin cos 2cos sin sin cos 2cos sin sin 3

2

4122221cos sin 2cos sin cos sin 2222-=++-=+θ

θ+θθ

-θθ=

评注:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。

练习:

1、已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=

A 、4

3

-

B 、

5

4

C 、3

4

-

D 、

45

2、函数()sin cos f x x x =最小值是( )

A 、-1

B 、12-

C 、1

2

D 、1 3、 “1sin 2α=

”是“1

cos 22

α=”的( )

A 、充分而不必要条件

B 、必要而不充分条件

C 、充要条件

D 、既不充分也不必要条件

题型三 函数 的图像及其性质

图像变换是三角函数的考察的重要内容,解决此类问题的关键是理解A 、的意义,特别是ω的判

定,以及伸缩变换对的影响。

【例5】为了得到函数sin(2)3y x π=-

的图像,只需把函数sin(2)6

y x π

=+的图像( )

A 、向左平移4π个长度单位

B 、向右平移4π

个长度单位

C 向左平移2π个长度单位

D 向右平移2

π

个长度单位

解:Θsin(2)6

y x π

=+

=sin 2()12

x π

+

sin(2)3y x π=-=sin 2()6x π

=-,

∴将sin(2)6y x π=+的图像向右平移4π个长度单位得到sin(2)3

y x π

=-的图像,

故选B.

评注:本题主要考查三角函数的图象变换中的平移变换、伸缩变换,特别是函数sin()y A x ω?=+中的ω对函数图像变化的影响是历年考生的易错点,也是考试的重点。

【例6】设ω>0,函数y=sin(ωx+3

π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值

是( )

A 、

23 B 、43 C 、3

2

D 、3 解:Θ将y=sin(ωx+3

π)+2的图像向右平移

34π

个单位后为

4sin[()]233y x ππω=-++4sin()2

33x πωπ

ω=+-+

∴43

ωπ=2k π, 即32k ω=

又Θ 0ω>, k ≥1

故32k ω=≥32

, 所以选C

评注:本题考查了三角函数图像的平移变换与三角函数的周期性,考查了同学们对三角函数图像知识灵活

掌握的程度。

【例7】函数()(1)cos f x x x =的最小正周期为( )

A 、2π

B 、

32π C 、π D 、2

π 【答案】A

【解析】由()(1)cos cos 2sin()6

f x x x x x x π

===+

可得最小正周期为2π,

【例8】函数2

2cos sin 2y x x =+的最小值是_____________________ 。

【答案】1

【解析】()cos 2sin 21)14

f x x x x π

=++=

++,所以最小值为:1

【例9】若函数()(1)cos f x x x =+,02

x π

≤<

,则()f x 的最大值为( )

A 、1

B 、2

C 1

D 2

【答案】B

【解析】因为()(1)cos f x x x =+=cos x x =2cos()3

x π

-

当3

x π

=

是,函数取得最大值为2。 故选B 。

三角函数知识点及题型归纳

三角函数高考题型分类总结 一.求值 1.若4sin ,tan 05 θθ=->,则cos θ= . 2.α是第三象限角,2 1)sin(= -πα,则αcos = )25cos(απ+= 3.若角α的终边经过点(12)P -,,则αcos = tan 2α= 4.下列各式中,值为 2 3 的是 ( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5.若02,sin 3cos απαα≤≤> ,则α的取值范围是: ( ) (A),32ππ?? ??? (B),3ππ?? ??? (C)4,33ππ?? ??? (D)3,32 ππ ?? ??? 二.最值 1.函数()sin cos f x x x =最小值是 。 2.若函数()(13tan )cos f x x x =+,02 x π ≤< ,则()f x 的最大值为 3.函数()cos 22sin f x x x =+的最小值为 最大值为 。 4.已知函数()2sin (0)f x x ωω=>在区间,34ππ?? - ??? ?上的最小值是2-,则ω的最小值等于 5.设02x π?? ∈ ??? ,,则函数22sin 1sin 2x y x +=的最小值为 . 6.将函数x x y cos 3sin -=的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正值是 A . 6π7 B .3π C .6π D .2 π 7.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1 B .2 C .3 D .2 8.函数2 ()sin 3sin cos f x x x x =+在区间,42ππ?? ? ??? 上的最大值是 ( ) A.1 B. 13 2 + C. 3 2 D.1+3 三.单调性 1.函数]),0[()26 sin(2ππ ∈-=x x y 为增函数的区间是 ( ).

三角函数经典解题方法与考点题型

三角函数经典解题方法与考点题型(教师) 1.最小正周期的确定。 例1 求函数y =s in (2co s|x |)的最小正周期。 【解】 首先,T =2π是函数的周期(事实上,因为co s(-x )=co s x ,所以cos |x |=co s x );其次,当且仅当x =k π+ 2 π 时,y =0(因为|2co s x |≤2<π), 所以若最小正周期为T 0,则T 0=m π, m ∈N +,又s in (2co s0)=s in 2≠s in (2co s π),所以T 0=2π。 过手练习 1.下列函数中,周期为 2π 的是 ( ) A .sin 2x y = B .sin 2y x = C .cos 4 x y = D .cos 4y x = 2.()cos 6f x x πω?? =- ?? ? 的最小正周期为 5 π ,其中0ω>,则ω= 3.(04全国)函数|2 sin |x y =的最小正周期是( ). 4.(1)(04北京)函数x x x f cos sin )(=的最小正周期是 . (2)(04江苏)函数)(1cos 22R x x y ∈+=的最小正周期为( ). 5.(09年广东文)函数1)4 (cos 22 -- =π x y 是 ( ) A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为 2 π的奇函数 D. 最小正周期为2π 的偶函数 6.(浙江卷2)函数的最小正周期是 . 2.三角最值问题。 例2 已知函数y =s inx +x 2cos 1+,求函数的最大值与最小值。 【解法一】 令s inx =??? ??≤≤=+ππ θθ4304 sin 2cos 1,cos 22 x , 则有y =).4 sin(2sin 2cos 2π θθθ+ =+ 因为 ππ 4304≤≤,所以ππ θπ≤+≤4 2, 所以)4 sin(0π θ+≤≤1, 所以当πθ43=,即x =2k π-2 π (k ∈Z )时,y m in =0, 当4 π θ= ,即x =2k π+ 2 π (k ∈Z )时,y m ax =2. 2 (sin cos )1y x x =++

高中三角函数典型例题(教用)

【典型例题】: 1、已知2tan =x ,求x x cos ,sin 的值. 解:因为2cos sin tan == x x x ,又1cos sin 22=+a a , 联立得???=+=,1 cos sin cos 2sin 2 2x x x x 解这个方程组得.55cos 5 52sin ,55cos 552sin ??? ????-=-=???????==x x x x 2、求) 330cos()150sin()690tan() 480sin()210cos()120tan(οοοοοο----的值。 解:原式) 30360cos()150sin()30720tan() 120360sin()30180cos()180120tan(o ο οοοοοοοοο--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=ο οοοοο 3、若 ,2cos sin cos sin =+-x x x x ,求x x cos sin 的值. 解:法一:因为 ,2cos sin cos sin =+-x x x x 所以)cos (sin 2cos sin x x x x +=- 得到x x cos 3sin -=,又1cos sin 22=+a a ,联立方程组,解得 ,,??? ??? ?=-=???????-==1010cos 10 103sin 1010cos 10103sin x x x x 所以?- =10 3 cos sin x x 法二:因为,2cos sin cos sin =+-x x x x 所以)cos (sin 2cos sin x x x x +=-, 所以2 2)cos (sin 4)cos (sin x x x x +=-,所以x x x x cos sin 84cos sin 21+=-,

高中数学三角函数经典练习题专题训练(含答案)

高中数高中数学三角函数经典练习题专题训练 姓名班级学号得分 说明: 1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分100分。考试时间90分钟。 2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。考试结束后,只收第Ⅱ卷 第Ⅰ卷(选择题) 一.单选题(每题3分,共60分) 1.已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则ω,φ的值分别为() A.2,-B.2,-C.4,-D.4, 2.下列说法正确的个数是() ①小于90°的角是锐角;

②钝角一定大于第一象限角; ③第二象限的角一定大于第一象限的角; ④始边与终边重合的角为0°. A.0B.1C.2D.3 3.若0<y<x<,且tan2x=3tan(x-y),则x+y的可能取值是()A.B.C.D. 4.已知函数y=tan(ωx)(ω>0)的最小正周期为2π,则函数y=ωcosx的值域是()A.[-2,2]B.[-1,1]C.[-,]D.[-,] 5.在△ABC中,sin2=(a、b、c分别为角A、B、C的对应边),则△ABC的形状为() A.正三角形B.直角三角形 C.等腰直角三角形D.等腰三角形 6.已知函数f(x)=cosxsin2x,下列结论中错误的是() A.f(x)既是偶函数又是周期函数 B.f(x)最大值是1 C.f(x)的图象关于点(,0)对称 D.f(x)的图象关于直线x=π对称 7.sin55°sin65°-cos55°cos65°值为() A.B.C.-D.- 8.若角α终边上一点的坐标为(1,-1),则角α为() A.2kπ+B.2kπ-C.kπ+D.kπ-,其中k∈Z

高一三角函数题型总结

1.已知角范围和其中一个角的三角函数值求任意角三角函数值 方法:①画直角三角形 ②利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2. 2. 3. 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-236π)+cos 137π·tan4π -cos 133 π= ;

1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)43 (D)4 3 - 2.已知sin αcos α=8 1,且4π<α<2π ,则cos α-sin α的值为 ( ) 33 (D)± 3 3.) 4. ) 5.) * 6.)

三角函数诱导公式 诱导公式可概括为把 απ ±?k 2 的三角函数值转化成角α的三角函数值。(k 指奇数或者偶数, α相当锐角) 口诀“奇变偶不变,符号看象限。”其中奇偶是指2 π 的奇数倍还是偶数倍,变与不变指函数名称的变化。 公式一:=+)2sin(απk =+)2c o s (απk =+)2t a n (απk

三角函数诱导公式练习题 1.若(),2,5 3 cos παππα<≤= +则()πα2sin --的值是 ( ) A . 53 B . 53- C . 54 D . 5 4 - 2.sin (-6 π 19)的值是( ) A 3 6 )= . 10.α是第四象限角,,则αsin 等于________. 13 12 cos =α

2020年高考数学三角函数专题解题技巧

三角函数专题复习 在三角函数复习过程中,认真研究考纲是必须做的重要工作。三角函数可以当成函数内容中的重要一支,要注意与其它知识的联系。 一、研究考题,探求规律 1. 从表中可以看出:三角函数题在试卷中所处的位置基本上是第一或第二题,本章高考重点考查基础知识,仍将以容易题及中档为主,题目的难度保持稳定,估计这种情况会继续保持下去 2. 特点:由于三角函数中,和差化积与积化和差公式的淡出,考查主体亦发生了变化。偏重化简求值,三角函数的图象和性质。考查运算和图形变换也成为了一个趋势。三角函数试题更加注重立足于课本,注重考查基本知识、基本公式及学生的运算能力和合理变形能力,对三角变换的要求有所降低。三角化简、求值、恒等式证明。图象。最值。 3、对三角函数的考查主要来自于:①课本是试题的基本来源,是高考命题的主要依据,大多数试题的产生是在课本题的基础上组合、加工和发展的结果。②历年高考题成为新高考题的借鉴,有先例可循。 二、典例剖析 例1:函数22()cos 2cos 2x f x x =-的一个单调增区间是 A .2(,)33ππ B .(,)62ππ C .(0,)3π D .(,)66 ππ- 【解析】函数22()cos 2cos 2 x f x x =-=2cos cos 1x x --,从复合函数的角度看,原函数看作2()1g t t t =--,cos t x =,对于2()1g t t t =--,当1[1,]2t ∈-时,()g t 为减函数,当1[,1]2 t ∈时,()g t 为增函数,当2(,)33x ππ∈时,cos t x =减函数,且11(,)22 t ∈-, ∴ 原函数此时是单调增,选A 【温馨提示】求复合函数的单调区间时,需掌握复合函数的性质,以及注意定义域、自变量系数的正负.求复合函数的单调区间一般思路是:①求定义域;②确定复合过程;③根据外层函数f(μ)的单调性,确定φ(x)的单调性;④写出满足φ(x)的单调性的含有x 的式子,并解出x 的范围;⑤得到原函数的单调区间(与定义域求交).求解时切勿盲目判断. 例2、已知tan 2θ=. (Ⅰ)求tan 4πθ??+ ??? 的值; (Ⅱ)求cos2θ的值. 【解析】 (Ⅰ)∵tan 2θ=, tan tan 4tan 41tan tan 4π θπθπθ+??∴+= ???-

高中数学基础知识典型例题4——三角函数

高中数学基础知识典型例题4——三角函数

数学基础知识与典型例题 第四章三角函数 三 角 函 数 相 关 知 识 关 系 表 角的概念1.①与α(0°≤α<360°)终边相 同的角的集合 (角α与角β的终边重 合):{}Z k k∈ + ? =, 360 |α β β ; ②终边在x轴上的角的集 合:{}Z k k∈ ? =, 180 | β β; ③终边在y轴上的角的集合: {}Z k k∈ + ? =, 90 180 | β β; ④终边在坐标轴上的角的集 合:{}Z k k∈ ? =, 90 | β β. 2. 角度与弧度的互换关系: 360°=2π180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数, 例1.已知2弧度的圆心 角所对的弦长为2,那么 这个圆心角所对的弧长 为( ) ()2 A ()sin2 B 2 () sin1 C ()2sin1 D 例 2. 已知α为第三象 限角,则 2 α 所在的象限 是( ) (A)第一或第二象限 (B)第二或第三象限 (C)第一或第三象限 (D)第二或第四象限 负角的弧度数为负数,零角的 弧度数为零,熟记特殊角的弧度制. 3.弧度制下,扇形弧长公式 1 2 r α =,扇形面积公 式2 11 || 22 S R Rα ==,其中α为弧所对圆心角的弧 度数。 三 角 函 数 的 定 义 1.三角函数定义:利用直角坐标系,可以把直角三角 形中的三角函数推广到任意角的三角数.在α终边 上任取一点(,) P x y(与原点不重合),记 22 || r OP x y ==+, 则sin y r α=,cos x r α=,tan y x α=,cot x y α=。 注: ⑴三角函数值只与角α的终边的位置有关,由 角α的大小唯一确定,∴三角函数是以角为自变量, 以比值为函数值的函数. ⑵根据三角函数定义可以推出一些三角公式: ①诱导公式:即 2 kπ αα ±→或 90 2 k αα ±→ 之间函数值关系() k Z ∈,其规律是“奇变偶不变, 符号看象限”;如sin(270) α -=cosα - ②同角三角函数关系式:平方关系,倒数关系,商 数关系. ⑶重视用定义解题. ⑷三角函数线是通过有向线段直观地表示出角的各 种三角函数值的一种图示方法.如单位圆 例 3.已知角α的终边经 过P(4,-3),求 2sinα+cosα的值. 例 4.若α是第三象限 角,且cos cos 22 θθ =-, 则 2 θ 是( ) ()A第一象限角 ()B第二象限角 () C第三象限角 () D第四象限角 例5. 若cos0, θ>sin20, θ< 且

高三数学三角函数经典练习题及答案精析

1.将函数()2sin 2x f x =的图象向右移动象如右图所示,则?的值为( ) A 2.为了得到()sin 2g x x =的图象,则只需将()f x 的图象( ) A C 3 ,则sin cos αα=( ) A 1 D -1 4 ) A 5.记cos(80),tan 80k -?=?那么= ( ). A . C .21k k -- 6 .若sin a = -a ( ) (A )(B (C (D 7,则α2tan 的值为( )

A 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是( ) A .)(x f 的周期为π B .)(x f 在 C .)(x f 的最大值为.)(x f 的图象关于直线π=x 对称 9.如图是函数y=2sin (ωx+φ),φ A.ωφ B.ωφ C.ω =2,φ D.ω=2,10的图象,只需要将函数sin 4y x =的图象( ) A B C D 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象( ) A 个单位,再向上平移1个单位 B 个单位,再向下平移1个单位 C 个单位,再向上平移1个单位 D 个单位,再向下平移1个单位 12.将函数()cos f x x =向右平移个单位,得到函数()y g x =

于() A 13.同时具有性质①最小正周期是π; 增函数的一个函数为() A C 14则tanθ=() A.-2 D.2 15) A 16.已知tan(α﹣)=,则的值为() A. B.2 C.2 D.﹣2 17) A.1 D.2 18.已知角α的终边上一点的坐标为(,则角α值为 19) A 20) A..

三角函数题型学霸总结(含答案)-

三角函数题型学霸总结(含答案) 阳光老师:祝你学业有成 一、选择题(本大题共30小题,共150.0分) 1.点在函数的图象上,则m等于 A. 0 B. 1 C. D. 2 【答案】C 【解析】 【分析】本题主要考查了正弦函数的性质,属于基础题由题意知,求得m 的值. 【解答】解:由题意知, 所以, 所以. 2.用五点法画,的图象时,下列哪个点不是关键点 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的作法,属于基础题. 熟练掌握五点法作图即可. 【解答】 解:用“五点法”画,的简图时, 横坐标分别为, 纵坐标分别为0,1,0,,0, 故选A. 3.函数y x,x的大致图象是

A. B. C. D. 【答案】B 【解析】 【分析】 本题主要考查三角函数的图像,属于基础题利用“五点法”画出函数图像即可得出答案. 【解答】 解:“五点法”作图: x0 0100 10121 故选B. 4.用“五点法”作出函数的图象,下列点中不属于五点作图中的五个关 键点的是 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的画法以及余弦函数的性质,属于基础题. 分别令,,,,得,3,4,3,2,即可得到五点,再对照选项,即可得到答案. 【解答】 解:,分别令,,,,得,3,4,3,2,

所以五个关键点为,,,,, 可知A不属于. 故选A. 5.已知函数的图象与直线 恰有四个公共点,,,,其中,则 A. B. 0 C. 1 D. 【答案】A 【解析】 【分析】 本题考查了三角函数图象的作法及利用导数求函数图象的切线方程,属于较难题. 由三角函数图象及利用导数求函数图象的切线方程可得:切点坐标为,切线方程为:,又切线过点,则,即,得解. 【解答】 解:由 得 其图象如图所示,

三角函数解题技巧和公式(已整理)

浅论关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααc o s s i n 21c o s s i n 2c o s s i n )c o s (s i n 2 22±=±+=±故知道)c o s (s i n αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3 cos sin -= -求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33( cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 4 3133]313)33[(332=?=?+= 2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用: 由于tg θ+ctg θ=θ θθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2= 12+n C .n m 2 2= D .22m n =

三角函数典型例题剖析与规律总结00

学科: 数学任课教师:黄老师授课时间:2013年3月日(星期) 1 :00-1 :00 姓名年级:教学课题三角函数典型例题剖析与规律总结 阶段 基础(√)提高()强化()课时计划共次课第次课 课前 检查作业完成情况:__________________ 建议_________________________________________________________ 教学过程一:函数的定义域问题 1.求函数1 sin 2+ =x y的定义域。 分析:要求1 sin 2+ = y的定义域,只需求满足0 1 sin 2≥ + x的x集合,即只需求出满足 2 1 sin- ≥ x的x 值集合,由于正弦函数具有周期性,只需先根据问题要求,求出在一个周期上的适合条件的区间,然后两边加上πk2()Z k∈即可。 解:由题意知需0 1 sin 2≥ + x,也即需 2 1 sin- ≥ x①在一周期? ? ? ?? ? - 2 3 , 2 π π 上符合①的角为? ? ? ?? ? - 6 7 , 6 π π ,由此 可得到函数的定义域为? ? ? ?? ? + - 6 7 2, 6 2 π π π πk k()Z k∈ 小结:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。(2)若函数是分式函数,则分母不能为零。(3)若函数是偶函数,则被开方式不能为负。(4)若函数是形如()()1 ,0 log≠ > =a a x f y a 的函数,则其定义域由()x f确定。(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。 二.函数值域及最大值,最小值 (1)求函数的值域 例。求下列函数的值域 (1)x y2 sin 2 3- =(2)2 sin 2 cos2- + =x y x 分析:利用1 cos≤ x与1 sin≤ x进行求解。 解:(1) 1 2 sin 1≤ ≤ -x∴[]5,1 5 1∈ ∴ ≤ ≤y y (2) ()[].0,4 ,1 sin 1 1 sin 1 sin 2 sin 2 sin 22 2 2 cos- ∈ ∴ ≤ ≤ - - - = - + - = - + =y x x x x x x y 评注:一般函数的值域求法有:观察法,配方法判别式法,反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。

三角函数典型例题剖析与规律总结

三角函数典型例题剖析与规律总结 一:函数的定义域问题 1. 求函数1sin 2+=x y 的定义域。 分析:要求1sin 2+= y 的定义域,只需求满足01sin 2≥+x 的x 集合,即只需求出满足 2 1 sin -≥x 的x 值集合,由于正弦函数具有周期性,只需先根据问题要求,求出在一个周 期上的适合条件的区间,然后两边加上πk 2()Z k ∈即可。 解:由题意知需01sin 2≥+x ,也即需21sin - ≥x ①在一周期?? ????-23,2ππ上符合①的角为??????-67,6ππ,由此可得到函数的定义域为????? ? +-672,62ππππk k ()Z k ∈ 小结:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。(2)若函数 是分式函数,则分母不能为零。(3)若函数是偶函数,则被开方式不能为负。(4)若函数是形如()()1,0log ≠>= a a x f y a 的函数,则其定义域由()x f 确定。 (5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。 二.函数值域及最大值,最小值 (1)求函数的值域 例。求下列函数的值域 (1)x y 2sin 23-= (2)2sin 2cos 2 -+= x y x 分析:利用1cos ≤x 与1sin ≤x 进行求解。 解:(1) 12sin 1≤≤-x ∴[]5,151∈∴≤≤y y (2) ()[]. 0,4,1sin 11sin 1sin 2sin 2sin 22 22 cos -∈∴≤≤---=-+-=-+=y x x x x x x y 评注:一般函数的值域求法有:观察法,配方法判别式法,反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。 (2)函数的最大值与最小值。 例。求下列函数的最大值与最小值 (1)x y sin 211- = (2)??? ??≤≤-??? ? ? +=6662sin 2πππx x y (3)4sin 5cos 22 -+=x x y (4)?? ?? ??∈+-=32,31cos 4cos 32 ππx x x y

高一三角函数题型总结

1.已知角围和其中一个角的三角函数值求任意角三角函数值 方法:?画直角三角形 ?利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2.一个式子如果满足关于αsin 和αcos 的?分式 ?齐次式 可以实现αtan 之间的转化 例题:1.已知sin 2cos 5,tan 3sin 5cos αα ααα-=-+那么的值为_____________. 2.已知2tan =α,则1.α αα αcos sin cos sin -+=_____________. 2. α αα α2 2cos sin cos sin -=_____________. 3.1cos sin +αα=_____________.(“1”的代换) 3.已知三角函数αsin 和αcos 的和或差的形式求αsin .αcos 方法:等式两边完全平方(注意三角函数中判断正负利用角的围进行取舍) 例题:已知πα<∠<0,αsin +αcos =2 1 ,求?αsin .αcos ?αcos -αsin 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-23 6π)+cos 137π·tan4π -cos 133 π= ;

1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)4 3 (D)4 3- 2.已知sin αcos α=8 1,且4π<α<2π ,则cos α-sin α的值为 ( ) (A)2 3 (B)4 3 (C) (D)± 2 3 3.设是第二象限角,则 sin cos αα ( ) (A) 1 (B)tan 2α (C) - tan 2α (D) 1- 4.若tan θ= 3 1,π<θ<3 2π,则sin θ·cos θ的值为 ( ) (A)±3 10 (B) 3 10 5.已知 sin cos 2sin 3cos αααα-+=5 1 ,则tan α的值是 ( ) (A)±83 (B)83 (C)83 - (D)无法确定 * 6.若α是三角形的一个角,且sin α+cos α= 3 2 ,则三角形为 ( ) (A)钝角三角形 (B)锐角三角形 (C)直角三角形 (D)等腰三角形

【高中数学经典】三角函数的诱导公式重难点题型(举一反三)

【高中数学】三角函数的诱导公式重难点题型【举一反三系列】 三角函数的诱导公式 【知识点1诱导公式】 【知识点2诱导公式的记忆】 诱导公式一: sin(α+2kπ) = Sin a , cos(α + 2kπ) = COSα, taιι(α + 2kπ) = xana ,其中 k ∈Z 诱导公式二: sin(∕r + G) = -Sin a, cos(∕r+α) =—COSα, tan(∕r+α) = tana,其中keZ 诱导公式三: sin(-a) =-Sina, cos(-a) = COSa , tan(-a) = -taιιa ,其中k ∈Z 诱导公式四: cos(∕F -a) = -cosa, taιι(^?-a) = -tana,其中k ∈Z 诱导公式五: Sin π ——a 2 COS π ——a 2 = Sina ,其中R ∈Z 诱导公式六: Sin π —+a 2 COS —+a =-sinα ,其中k ∈Z U 丿

记忆11诀“奇变偶不变,符号看象限”,意思是说角k-90 ±a(k 为常整数)的三角函数值:当k 为奇数 时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视Q 为锐角 时原函数值的符号. 【考点1利用诱导公式求值】 【方法点拨】对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化 过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完 成求值. 【例1】(2018秋?道里区校级期末)已知点P(l,l)在角Q 的终边上,求下列各式的值. T 、 COS (Λ^ + α)sin(^? - a) (I )------------------------------------- ; tan(∕r + α) + sin 2 (彳-a) sin(- + α)cos(- 一 a) (II) 、 2 、——召—— cos^ a - sm^ a + tan(;T - a) 【分析】由条件利用任意角的三角函数的定义求得smα, cosα, Sna 的值,再利用诱导公式即可求得要 求式子的值. 【答案】解:?.?角α终边上有一点P(l,l), .x = l , y = l , r =|OP I= √7, Sill CL = — = _ , COS Ct = — = — , tan Ct — -- = It r 2 r 2 X ([) cos(∕r + α)sin(%-α) 、 -、,兀 、 tan(^? + α) + sιn^ (― 一 a) ./3∕r 3π ([[)SInq-+Q )COS (T _Q ) _ (γosα)(-smα) cos 2 a - sin 2 a + tan(∕r - a) cos 2a - sin 2a 一 tan a 【点睛】本题主要考查任意角的三角函数的定义,诱导公式在三角函数化简求值中的应用,考查了转化思 想,属于基础题. 【变式1-1】 (2019春?龙潭区校级月考)己知tan(^+ ?) = -!,求下列各式的值: -COSa ?smα ton a + cos 2(x

三角函数总结经典例题

第三章 三角函数 3.1任意角三角函数 一、知识导学 1.角:角可以看成由一条射线绕着端点从一个位置旋转到另一个位置所形成的几何图形.角的三要素是:顶点、始边、终边.角可以任意大小,按旋转的方向分类有正角、负角、零角. 2.弧度制:任一已知角α的弧度数的绝对值r l = α,其中l 是以α作为圆心角时所对圆弧的长,r 为圆的半径.规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.用“弧度”做单位来度量角的制度叫做弧度制. 3.弧度与角度的换算:rad π2360=ο ;rad 1745.01801≈=π ο ;1ο ο 30.57180≈?? ? ??=πrad .用弧度为单位表示角的 大小时,弧度(rad )可以省略不写.度()ο 不可省略. 4.弧长公式、扇形面积公式:,r l α= 2||2 1 21r lr S α= =扇形,其中l 为弧长,r 为圆的半径.圆的周长、面积公式是弧长公式和扇形面积公式中当πα2=时的情形. 5.任意角的三角函数定义:设α是一个任意大小的角,角α终边上任意一点P 的坐标是()y x ,,它与原点的距离是 )0(>r r ,那么角α的正弦、余弦、正切、余切、正割、余割分别是 y r x r y x x y r x r y ====== ααααααcsc ,sec ,cot ,tan ,cos ,sin .这六个函数统称为三角函数. 三角函数 定义域 x y sin = R x y cos = R x y tan = ? ?????∈+≠Z k k x x ,2π π x y cot = {}Z k k x x ∈≠,π x y sec = ? ?????∈+≠Z k k x x ,2π π x y csc = {}Z k k x x ∈≠,π 7.三角函数值的符号:各三角函数值在第个象限的符号如图所示(各象限注明的函数为正,其余为负值) 可以简记为“一全、二正、三切、四余”为正. 二、疑难知识导析

(推荐)高一三角函数题型总结

题型总结 1.已知角范围和其中一个角的三角函数值求任意角三角函数值 方法:画直角三角形 利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2.一个式子如果满足关于αsin 和αcos 的分式 齐次式 可以实现αtan 之间的转化 例题:1.已知 sin 2cos 5,tan 3sin 5cos ααααα -=-+那么的值为_____________. 2.已知2tan =α,则1.α αα αcos sin cos sin -+=_____________. 2.α αα α22cos sin cos sin -=_____________. 3.1cos sin +αα=_____________.(“1”的代换)

3.已知三角函数αsin 和αcos 的和或差的形式求αsin .αcos 方法:等式两边完全平方(注意三角函数中判断正负利用角的范围进行取舍) 例题:已知πα<∠<0,αsin +αcos =2 1 ,求αsin .αcos αcos -αsin 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-236π)+cos 137π·tan4π -cos 13 3 π= ; 练习题 1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)43 (D)4 3 - 2.已知sin αcos α= 8 1,且4π<α< 2π ,则cos α-sin α的值为 ( ) (A) 2 3 (B)4 3 (C)3 (D)± 2 3

三角函数的易错点以及典型例题与高考真题

三角函数的易错点以及典型例题与真题 1.三角公式记住了吗两角和与差的公式________________; 二倍角公式:_________________ 万能公式 ______________正切半角公式____________________;解题时本着“三看”的基本原则来进行:“看角,看函数,看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次。 万能公式: (1) (sinα)2 +(cosα)2 =1 (2)1+(tanα)2=(secα)2 (3)1+(cotα)2=(cscα)2 (4)对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC (证明:利用A+B=π-C ) 同理可得证,当x+y+z=n π(n ∈Z)时,该关系式也成立 由tanA+tanB+tanC=tanAtanBtanC 可得出以下结论: (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA )2+(cosB )2+(cosC )2=1-2cosAcosBcosC (8)(sinA )2+(sinB )2+(sinC )2=2+2cosAcosBcosC (9)设tan(A/2)=t sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z) tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z) cosA=(1-t^2)/(1+t^2) (A≠2kπ+π,且A≠kπ+(π/2) k∈Z) 2.在解三角问题时,你注意到正切函数、余切函数的定义域了吗正切函数在整个定义域内是否为单调函数你注意到正弦函数、余弦函数的有界性了吗 3.在三角中,你知道1等于什么吗(x x x x 2222tan sec cos sin 1-=+=

高考数学三角函数典型例题

| 三角函数典型例题 1 .设锐角ABC ?的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小; (Ⅱ)求cos sin A C +的取值范围. 【解析】:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC ?为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π??+=+π- - ?6? ? cos sin 6A A π?? =++ ??? & 1cos cos 2A A A =++ 3A π? ?=+ ?? ?. 2 .在ABC ?中,角A . B .C 的对边分别为a 、b 、c,且满足(2a-c)cosB=bcos C . (Ⅰ)求角B 的大小; (Ⅱ)设()()()2411m sin A,cos A ,n k,k ,==>且m n ?的最大值是5,求k 的值. 【解析】:(I)∵(2a -c )cos B =b cos C , ∴(2sin A -sin C )cos B =sin B cos C . - 即2sin A cos B =sin B cos C +sin C cos B =sin(B +C ) ∵A +B +C =π,∴2sin A cos B =sinA . ∵0

高中三角函数常见题型与解法

三角函数的题型和方法 一、思想方法 1、三角函数恒等变形的基本策略。 (1)常值代换:特别是用“1”的代换,如1=cos 2 θ+sin 2 θ=tanx ·cotx=tan45°等。 (2)项的分拆与角的配凑。如分拆项:sin 2 x+2cos 2 x=(sin 2 x+cos 2 x)+cos 2 x=1+cos 2 x ;配凑角:α=(α+β)-β,β= 2 β α+- 2 β α-等。 (3)降次与升次。即倍角公式降次与半角公式升次。 (4)化弦(切)法。将三角函数利用同角三角函数基本关系化成弦(切)。 (5)引入辅助角。asin θ+bcos θ=2 2 b a +sin(θ+?),这里辅助角?所在象限由a 、b 的符号确定,?角的值由tan ?= a b 确定。 (6)万能代换法。巧用万能公式可将三角函数化成tan 2 θ 的有理式。 2、证明三角等式的思路和方法。 (1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。 (2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。 3、证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。 4、解答三角高考题的策略。 (1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。 (2)寻找联系:运用相关公式,找出差异之间的内在联系。 (3)合理转化:选择恰当的公式,促使差异的转化。 二、注意事项 对于三角函数进行恒等变形,是三角知识的综合应用,其题目类型多样,变化似乎复杂,处理这类问题,注意以下几个方面: 1、三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值。 2、三角变换的一般思维与常用方法。 注意角的关系的研究,既注意到和、差、倍、半的相对性,如 αα ββαββαα22 1 2 2)()(?= ? =+-=-+=.也要注意题目中所给的各角之间的关系。 注意函数关系,尽量异名化同名、异角化同角,如切割化弦,互余互化,常数代换等。

2018年高三一轮复习典型例题剖析:三角函数的恒等变换

三角函数的恒等变换 一、知识导学 1.两角和、差、倍、半公式 (1) 两角和与差的三角函数公式 βαβαβαc o s c o s s i n s i n )s i n (±=± βαβαβαs i n s i n c o s c o s )c o s ( =± β αβαβαt a n t a n 1t a n t a n )t a n ( ±=± (2) 二倍角公式 αααc o s s i n 22s i n = ααααα2222s i n 211c o s 2s i n c o s 2 c o s -=-=-= α αα2tan 1tan 22tan -= (3) 半角公式 2c o s 12s i n 2αα-= , 2c o s 12c o s 2αα+= , α ααc o s 1c o s 12t a n 2+-= αααααs i n c o s 1c o s 1s i n 2t a n -=+= 2.恒等变形主要是运用三角公式对式子进行等价变形,常见于化简求值和恒等式证明.恒等式证明就是利用公式消除等式两边的差异,有目的地化繁为简,使左右相等,常用方法为:(1)从一边开始证得它等于另一边,一般由繁到简;(2)证明左右两边都等于同一个式子(或数值). 二、疑难知识导析 1.两角和与差的三角函数公式的内涵是揭示同名不同角的三角函数的运算规律,常用于解决求值、化简和证明题. 2.倍角公式的内涵是揭示具有倍数关系的两个角的三角函数的运算规律.如 αααcos sin 22sin =成立的条件是“α是任意角,αα是2的2倍角”,精髓体现在角的“倍数”关系上. 3.公式使用过程中(1)要注意观察差异,寻找联系,实现转化,要熟悉公式的正用逆用和变形使用,也要注意公式成立的条件.例

相关文档
相关文档 最新文档