文档库 最新最全的文档下载
当前位置:文档库 › 华中师范大学 拓扑学 名词解释

华中师范大学 拓扑学 名词解释

华中师范大学 拓扑学 名词解释
华中师范大学 拓扑学 名词解释

040数学一级学科硕士研究生培养方案12-12

数学一级学科硕士研究生培养方案(0701) 一、适用专业 基础数学、计算数学、概率论与数理统计、应用数学、运筹学与控制论。 二、培养目标 培养德智体全面发展的、适应国家与社会发展需要的数学专业教师以及研究型、应用型高层次数学专门人才。具体目标如下: 1.树立爱国主义和集体主义思想,具有良好的道德品质和强烈的事业心,能立志为祖国的建设和发展服务。善于合作与交流,有宽阔胸怀和远大理想。 2.掌握系统的数学基础理论和专门知识;了解专业研究方向的前沿学术动态;具有较强的独立学习及研究能力和不断更新知识及创造能力;掌握一门外国语;掌握计算机的基础知识和应用技能;具有较强的综合能力,为未来的数学专业方面工作、科学研究工作奠定坚实的基础。 3.具有健康的体魄和健康的心理素质,有顽强的毅力和持之以恒的精神。 三、学习年限 实行弹性学制2-4年,基础学制3年。 四、学分要求 硕士研究生培养实行学分制,总学分不少于32学分,其中学科通开课和专业基础课不少于6分,专业课不少于12分,选修课不少于4学分。 五、考核要求 1. 学科通开课与专业基础课、专业课考核方式为闭卷,成绩60分以上方可获得所规定的学分; 2. 专业选修课的考核方式为闭卷或开卷,成绩60分以上方可获得所规定的学分。 3. 补修课仅供非数学专业考生随本科生课程补修,不计学分。 4.实习在第4学期或第5学期进行。 六、学位论文要求 学位论文是对研究生进行科学研究或承担专门技术工作的全面训练,是培养研究生创新能力,综合运用所学知识发现问题、分析问题和解决问题能力的主要环节。 1. 研究生必须通过教学计划的各门课程并达到所要求的学分后,方可转入论文撰写阶段。在撰写论文之前,须认真的调研,查阅大量的文献资料,了解其主攻研究方向的前沿领域的学术动态,在此基础上确立学位论文题目。 2. 数学科学学院硕士研究生一般在第四学期(秋季)做开题报告,提交开题报告截止时间为10月30日。导师负责论文的检查与督促工作。 3. 学位论文应在导师指导下独立完成,学位论文要有新见解、有创新。 4. 硕士研究生答辩前应至少公开发表学术论文一篇或收到哈师大重点学术

点集拓扑学

点集拓扑学 注明:这篇文章是一篇读后感,绝大部分是引用别人的观点,其中有本人不同的观点,写出来是和大家共同研究与学习交流。本文灵感来源主要有这些作者或老师:张德学,张景祖,熊金城。由于篇幅比较长,本人也正在学习中,只能一部分一部分续写。 点集拓扑学是几何学的分支,研究的是更一般的几何图形,即拓扑空间中的集合,是研究拓扑不变性与不变量的学科,主要表现在图形的弹性变形后的那些不变性和不变量,比如联通性,可数性,分离性等。其中有几个代表性的例子:1,一笔画问题,2,哥尼斯堡七桥问题,3,四色问题。这种弹性变形指的是拓扑学中的同柸,相近点变相近点的连续概念。拓扑学包括点集拓扑学,代数拓扑学,几何拓扑学,微分拓扑学,其中点集拓扑学是基础,称为一般拓扑学。 集合概念的发展历程: 集合论的最早创立是由德国数学家康托尔创立的朴素集合论,运用于纯数学中,然后经过进一步的规范公理化使其理论更加严谨规范化。朴素集合论对集合没有做出严格的定义,只是表示对元素或者对象的搜集,没有形式化的理解,而公理集合论只使用明确定义的公理列表,是对集合这门学科的进一步认识在现实中得到了广泛的运用。 集合的定义: ① 公认定义:具有共同属性的对象的全体成为集合,对象又可以理解为个体或者集合中的元素。 ② 个人(本人)定义:我们把各种对象按照某种要求抽样集中起来构成一个群体称为集合,这种对象可能是独立的个体或者群体,也可能对象之间本身就有包涵关系的集合但不相同或相等,当我们把所有对象集中在一起称为全集或者幂集族。全集的一部分称为子集,幂集的一部分称为子集族。集合一般用大写字母表示,其中元素用小写。 集合的表示方式: 1枚举法 一般在大括号里罗列出集合的元素,如下: {}{}{}{}香蕉,大象,人,,3,2,1,3,2,1,,, c b a 2文字语言表述法 用文字语言来表达构成集合的要求: 某个班级的全体男生,一盒象棋,一箱牛奶等。 3图示法 4数学关系描述法或者数学语言描述法 用数学关系式来抽象表达构成集合的要求,我们平时研究的最多的也就是这种表达方法: (){}(){}x P X x x x P X x ,∈∈或者 对集合的描述必须合理,要不然会出现悖论比如:理发师只给不给自己理发的人理发,这种表述就不合理,导致理发师傅是给自己理发还是不给自己理发都是矛盾,这句话应该理解为理发师只给除自己以外不给自己理发的人理发。 又比如:

点集拓扑学教学大纲

《点集拓扑学》教学大纲 一、课程的教学目的和任务 本课程为数学系师范成人专升本选修课程,课程内容为点集拓扑学的一些基本概念、基本理论和基本方法。通过本课程的学习要求学生在掌握基本内容和基本方法的前提下,能以一般的观点总结和提高在一、二年级所学过的课程中有关的概念、理论和方法,进一步培养和提高学生的抽象思维和逻辑推理能力,同时,为进一步学习拓扑学、几何学、泛函和微分方程等课程提供所需用的最基础的知识。本课程总课时为72学时,习题课及机动课时约占总课时的四分之一。由于点集拓扑学是一门理论性强且较为抽象的课程,同时作为几何学的一个分支它的许多概念又有直观的几何背景,因此在教学中特别要注意概念的引入、具体例子和反例的选配,以便更好地阐明各个基本概念的含义从而使学生能准确把握各个基本概念,同时搞清这些例子和反例也是加深理解抽象概念的重要途径之一。带*号的内容可根据学生实际情况自由舍取。 二、课程内容及学时分配建议 第一章集合论的基本知识*12学时这部分内容是研究后续内容的一个知识平台,应该熟练掌握。如果学生对集合论内容熟悉且知识够用可采用复习方式,否则应采用讲授方式。 1.集合的基本概念及运算(包括集族的概念和运算) 2.关系、等价关系和映射 3.可数集与不可数集、基数 4.选择公理* 第二章拓扑空间和连续映射20学时这一部分重点在于建立拓扑结构,理解拓扑空间的概念,掌握拓扑空间的基本性质,为进一步学习拓扑性质打好基础。在教学中应多给一些具体的例子从具体到抽象并通过度量空间的模形来突破抽象空间建立的难点。 1. 度量空间 (1)度量空间的定义和例子 (2)连续函数的ε-δ定义与开集的刻划

答案-拓扑学基础a

东 北 大 学 秦 皇 岛 分 校 课程名称: 拓扑学基础 (答案) 试卷: A 考试形式:闭卷 授课专业:数学与应用数学 考试日期: 2013年 7月 试卷:共 3 页 一、填空题:(每空2分,共20分) 1.设{1,2,3}X =,写出5个拓扑,使得每个拓扑中的所有集合按包含关系构成一个升链 平凡拓扑 ,{,,{3},{1,3}}X ?,{,,{1}}X ?, {,,{2}}X ?,{,,{3}}X ?。 (注:答案不唯一,正确即可) 2. 汉字“东” 的连通分支的个数是 3 ,抛物线的连通分支的个数是 1 。 ( 3.字母Y 的割点个数为 无穷 。字母T 中指数为3的点个数为 1 。 4.叙述同胚映射的定义 拓扑空间之间的连续映射称为同胚映射,若它是一一对应且它的逆也是连续的 。 二、选择题:(每题2分,共8分) 1.下列说法中正确的是( B ) A 连通空间一定是道路连通空间 B 道路连通空间一定是连通空间 C 道路连通空间一定局部道路连通 D 以上说法都不对 2.下列说法正确的是( A ) A 紧空间的闭子集紧致 B 紧致空间未必局部紧致 } C 有限空间一定不紧致 D 列紧空间是紧致空间 3.下列说法错误的是( A ) A 离散空间都是1T 空间 B 2T 空间中单点集是闭集 C 赋予余有限拓扑不是2T 空间 D 第二可数空间可分 4.下列不具可乘性的是( D ) A 紧致性 B 连通性 C 道路连通性 D 商映射 三、计算题:(共16分) - 1.在上赋予余有限拓扑,记 为有理数集合,[0,1]I =。试求'和I 。 (4分) 答:'= ,I =。 2.确定欧式平面上子集22{(,)|01}A x y x y =<+≤的内部、外部、边界和闭包。(8分) 答:内部,22{(,)|01}x y x y <+<; 外部,22{(,)|1}x y x y <+ 边界,22{(,)|1}x y x y +=; 闭包 A A =。 3.在 上赋予欧式拓扑。(4分) { (1)计算道路2t α=与1t β=+的乘积αβ在1 3 处的值。 答:αβ在13处的值是4 9 。 装 订 线 装 订 线 内 不 要 答 题 学 号 姓 名 班 级

点集拓扑学练习题

练习(第二章)参考答案: 一.判断题(每小题2分) 1.集合X 的一个拓扑有不只一个基,一个基也可以生成若干个拓扑( × ) 2.拓扑空间中任两点的距离是无意义的.( √ ) 3.实数集合中的开集,只能是开区间,或若干个开区间的并.( × ) 、T 2是X 的两个拓扑,则T 1UT 2是一个拓扑.( × ) 5.平庸空间中任一个序列均收敛,且收敛于任一个点。( √ ) 6.从(X ,T 1)到(X ,T 2)的恒同映射必是连续的。( × ) 7.从离散空间到拓扑空间的任何映射都是连续映射( √ ) 8.设12, T T 是集合X 的两个拓扑,则12 T T ?不一定是集合X 的拓扑( × ) 9.从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( √ ) 10.设A 为离散拓扑空间X 的任意子集,则()d A φ= ( √ ) 11.设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( × ) 12.设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( √ ) 二.填空题:(每空格3分) 1、X=Z +,T={Z 1,Z 2,…Z n …},其中 Z n ={n,n+1,n+2,…}, 则包含3的所有开集为 321,,Z Z Z 包含3的所有闭集为 ,...,,,/ 6/5/41Z Z Z Z 包含3的所有邻域为 3321}1{,,,Z Z Z Z ? 设A={1,2,3,4,5} 则A 的导集为{1,2,3,4} ,A 的闭包为{1,2,3,4,5}

2、设X 为度量空间,x ∈X,则d ({x})=? 3、在实数空间R 中,有理数集Q 的导集是____ R ____. 4、)(A d x ∈当且仅当对于x 的每一邻域U 有 ; 答案: ({})U A x φ?-≠ 5、设A 是有限补空间X 中的一个无限子集,则()d A = ; A = ; 答案:X ;X 6、设A 是可数补空间X 中的一个不可数子集,则()d A = ; A = ; 答案:X ;X 7、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,2}A = 的内部为 ; 答案:{2} 三、单项选择题(每题2分) 1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑. ① {,,{},{,},{,,}}X a a b a c e φ=T ② {,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T ③ {,,{},{,}}X a a b φ=T ④ {,,{},{},{},{},{}}X a b c d e φ=T 答案:③ 2、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( ) ①φ ② X ③ {}b ④ {,,}b c d 答案:④ 3、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( ) ①φ ② X ③ {,}a b ④ {,,}b c d 答案:②

基础拓扑学讲义11的习题答案

习题 2、1、18 记S 就是全体无理数的集合,在实数集R 上规定子集族 {} 1\A ,A S U U τ=?是E 的开集、 (1)验证τ就是R 上的拓扑; (2)验证(),R τ满足2T 公理,但不满足3T 公理; (3)验证(),R τ就是满足1C 公理的可分空间; (4)证明τ在S 上诱导的子空间拓扑s τ就是离散拓扑,从而(),s S τ就是不可分的; (5)说明 (),R τ不满足2 C 公理。 证明:(1)○ 1,A U R R U A ττ=?=?? ??∈?∈??=?=??? 所以R 与?都含在τ中 ○ 2()U A U A λλλλλλλ∈Λ ∈Λ ∈Λ -= - ()0 000,,,x U A x U A x U x A x U x A x U A λλλ λλλλλλλλλλ λλλ∈Λ ∈Λ ∈Λ ∈Λ ∈Λ ?∈ -??∈Λ∈-?∈??∈ ? ?∈ - 使 U A λλλλτ∈Λ ∈Λ - ∈ ∴τ中任意多个成员的并集仍在τ中 ○3() ()()() 11221212\\\U A U A U U A A = () ()()() 11221122 11221212121 2\\,,,,,\x U A U A x U A x U A x U x A x U x A x U U x A A x U U A A ?∈?∈-∈-?∈?∈??∈??∈ ()()1212\U U A A τ∈ ∴τ中两个成员的交集仍在τ中 综上所述:τ就是R 上的拓扑 (2)任取一个有理数a ,则a 在(),R τ中存在一个开邻域11\U A 这样我们就可以在1 E 中找到一个与1U 不相交的开集2U ,令有理数2b U ∈

070101基础数学

070101基础数学专业(全日制或非全日制) 硕士研究生培养方案 一、培养目标 本专业培养德、智、体全面发展,具有扎实的数学理论基础和独立从事科学研究的能力,在科研部门、高等院校以及基础教育机构从事科学研究和教学工作的高级专门人才。具体要求如下: 1、具有坚定正确的政治方向,努力学习掌握马克思主义的基本原理,树立正确的世界观、人生观和价值观;遵纪守法,品行端正,作风正派,具有较高的综合素质和愿为社会主义建设艰苦奋斗的献身精神。 2、掌握本专业的基础理论、基本研究方法和技巧;具有坚实的数学理论基础和基本数学素养;具有较强的学术沟通能力和良好的团队协作精神。 3、熟练掌握一门外国语,具有阅读外文资料和使用外文写作论文的能力;具备熟练地使用计算机进行和数学软件科学计算以及借助互联网阅读专业资料的能力。 4、身心健康,德才兼备。 二、研究方向 本学科设置以下研究方向: 1、微分方程与动力系统 2、偏微分方程及其应用 三、学习年限 学习年限一般为3年,最长不超过4年。课程学习时间为一年半。硕士生应在规定的学习期限内完成培养计划要求的课程学习和论文等工作。 四、课程设置与学分 本专业课程设置包括学位课、非学位课和实践环节,应修总学分不少于34学分(具体课程设置见附表)。其中 1、学位课:不少于19学分。其中,公共学位课9学分。 2、非学位课:不少于13学分。 3、实践环节:2学分。 五、实践环节 硕士研究生应参加学术活动、教学实践、科研实践或社会实践等实践活动。学术活动为必修环节,要求硕士研究生必须取得1个学术学分,其中,必须在院及以上级别学术会议上至少做一次学术报告,每次0.5学分,参加院及以上级别学术活动至少5次,每次0.1学分。另外,还应从其它实践环节中至少选1个实践环节,考核合格后取得1学分。参加学术活动和

基础拓扑学讲义1.1的习题答案

习题 记S 是全体无理数的集合,在实数集R 上规定子集族 {} 1\A ,A S U U τ=?是E 的开集. (1)验证τ是R 上的拓扑; (2)验证(),R τ满足2T 公理,但不满足3T 公理; (3)验证(),R τ是满足1C 公理的可分空间; (4)证明τ在S 上诱导的子空间拓扑s τ是离散拓扑,从而(),s S τ是不可分的; (5)说明 (),R τ不满足2 C 公理。 证明:(1)○ 1,A U R R U A ττ=?=?? ??∈?∈??=?=??? 所以R 和?都含在τ中 ○ 2()U A U A λλλλλλλ∈Λ ∈Λ ∈Λ -= - ()0 000,,,x U A x U A x U x A x U x A x U A λλλ λλλλλλλλλλ λλλ∈Λ ∈Λ ∈Λ ∈Λ ∈Λ ?∈ -??∈Λ∈-?∈??∈ ? ?∈ - 使 U A λλλλτ∈Λ ∈Λ - ∈ ∴τ中任意多个成员的并集仍在τ中 ○3() ()()() 11221 212\\\U A U A U U A A = () ()()() 11221122 11221212121 2\\,,,,,\x U A U A x U A x U A x U x A x U x A x U U x A A x U U A A ?∈?∈-∈-?∈?∈??∈??∈ ()()1212\U U A A τ∈ ∴τ中两个成员的交集仍在τ中 综上所述:τ是R 上的拓扑 (2)任取一个有理数a ,则a 在(),R τ中存在一个开邻域11\U A 这样我们就可以在1 E 中找到一个与1U 不相交的开集2U ,令有理数2b U ∈

基础拓扑学第4章答案

《基础拓扑学讲义》部分习题解答四 ex.1(P.43)称X 满足0T 公理,如果对X 中的任意两 个不相同的点中必有一个点有一个开邻域不包含另一点。试举出满足0T 公理但不满足1T 公理的拓扑空间的例 子。 答:{,,}X a b c =,{,,{},{,},{,}}X a a b a c τ=?,则X 满足0T 公理但不满足1T 公理。 ex.6(P.43)证明X 为Hausdorff 空间当且仅当}|),{()(X x x x X ∈=?是乘积空间X X ×的闭集。 证:(必要性)要证)(X ?为闭集,只要证它的余集是 开集。C X y x ))((),(?∈?,),(y x 为内点。由 C X y x ))((),(?∈知,y x ≠,因X 为Hausdorff 空间知,存在x 的开邻域U ,y 的开邻域V ,使得Φ=V U ∩,于是C X V U y x ))((),(??×∈,所以),(y x 为内点,这就证明了)(X ?为闭集。 (充分性)对,,x y X x y ?∈≠,由()X ?的定义知,(,)()x y X ??,即(,)(())C x y X ∈?,由)(X ?为闭集知:()C X ?为开集,于是存在开集,U V 使得C X V U y x ))((),(??×∈,由(())C U V X ×??知,,U V 为,x y

的不相交的邻域,这就证明了X 为Hausdorff 空间。 ex.7(P.43)证明Hausdorff 空间的子空间也是Hausdorff 空间。 证:设X 是Hausdorff 空间,A 是X 的子空间。,x y A ?∈,则,x y X ∈。因X 是Hausdorff 空间,故x ?的邻 域U ,y ?的邻域V , 有U V =?∩。从而()()A U A V =?∩∩∩,因A U ∩是x 在A 中的邻域,A V ∩是y 在A 中的邻域,所以A 是Hausdorff 空间。 ex.16(P.44)记{[,)|}a b a b Γ=<。证明拓扑空间(,)Γ 不是2C 空间。 证:设μ是拓扑空间(,)Γ 的拓扑基,设a ∈ ,则 [,1)a a +是开集,从而在μ中存在成员a U ,有[,1)a a U a a ∈?+,并且a U 中最小的成员是a 。显然,当a b ≠时,a b U U ≠。于是μ中有不可数个成员,从而(,)Γ 中不存在可数拓扑基。故拓扑空间(,)Γ 不是2C 空间。

《点集拓扑学》第5章 §5.2 可分空间

§5.2可分空间 本节重点: 掌握可分空间的定义及可分空间与第二可数性公理空间的关系,与度量空间的关系; 掌握稠密子集的定义及性质. 定义5.2.l 设X是一个拓扑空间,D X.如果D的闭包等于整个拓扑空间X,即=X,则称D是X的一个稠密子集. 以下定理从一个侧面说明了讨论拓扑空间中的稠密子集的意义. 定理5.2.1 设X是一个拓扑空间,D是X中的一个稠密子集.又设f,g:X→Y都是连续映射.如果,则f=g(本定理说明两个映射只须在稠密子集上相等,就一定在整个空间相等) 证明设.如果f≠g,则存在x∈X使得 f(x)≠g(x).令:ε=|f(x)-g(x)|, 则ε>0.令 =(f(x)-ε/2,f(x)+ε/2) =(g(x)-ε/2,g(x)+ε/2) 则根据映射f和g的连续性可知都是x的邻域,从而U =也是x的一个邻域.由于子集D是稠密的,所以U∩D≠.对于任意一个y∈U∩D,我们有, f(y)=g(y)∈,矛盾. 我们也希望讨论有着较少“点数”稠密子集的拓扑空间,例如具有有限稠密点集的拓扑空间.但这类拓扑空间比较简单,大部分我们感兴趣的拓扑空间都不是这种情形,讨论起来意思不大.例如一个度量空间如果有一个有限的稠密子集的话,那么这个空间一定就是一个离散空间.相反,后继的讨论表明,许多重要的拓扑空间都有可数稠密子集.

定义5.2.2 设X是一个拓扑空间.如果X中有一个可数稠密子集,则称X是一个可分空间. 定理5.2.2 每一个满足第二可数性公理的空间都是可分空间. 证明设X是一个满足第二可数性公理的空间,B是它的一个可数基.在B中的每一个 非空元素B中任意取定一个点∈B.令 D={|B∈B,B≠} 这是一个可数集.由于X中的每一个非空开集都能够表示为B中若干个元素(其中当然至少会有一个不是空集)之并,因此这个非空开集一定与D有非空的交,所以可数集D是X的一个稠密子集. 包含着不可数多个点的离散空间一定不是可分的.这是因为在这样一个拓扑空间中,任何一个可数子集的闭包都等于它的自身而不可能等于整个空间. 可分性不是一个可遗传的性质,也就是说一个可分空间可能有子空间不是可分的.例子见后面的例5.2.1.然而由于满足第二可数性公理是一个可遗传的性质,因此根据定理5.2.2我们立即得到: 推论5.2.3 满足第二可数性公理的空间的每一个子空间都是可分空间. 特别,n维欧氏空间中的每一个子空间(包括它自己)都是可分空间. 例5.2.1 设(X,T)是一个拓扑空间,∞是任何一个不属于X的元素(例如我们可以取∞=X).令X*=X∪{∞}和T*={A∪{∞}|A∈T}∪{}.容易验证(请读者自己证明)(X*,T*)是一个拓扑空间. 我们依次给出以下三个论断: (1)(X*,T*)是可分空间.这是因为∞属于(X*,T*)中的每一个非空开集,所以单点集{∞}是(X*,T*)中的一个稠密子集. (2)(X*,T *)满足第二可数性公理当且仅当(X,T)满足第二可数性公理. 事实上,B是(X,T)的基当且仅当B*={B∪{∞}|B∈B}是(X*,T*)的一个基,而B 与B*有相同的基数则是显然的. (3)(X,T)是(X*,T*)的一个子空间.因为T*T.

点集拓扑学练习题及答案

点集拓扑学练习题 一、单项选择题(每题1分) 1、已知X {a,b,c,d,e},下列集族中,( )是X上的拓扑? ① T {X, ,{a},{ a,b},{ a,c,e}} ② T {X, ,{ a,b, c},{ a,b,d},{ a,b, c,e}} ③ T {X, ,{a},{a,b}} ④ T {X, ,{a},{ b},{ c},{ d},{ e}} 答案:③ 2、设X {a,b,c},下列集族中,( )是X上的拓扑? ①T {X, ,{a},{ a,b},{ c}} ②T {X, ,{a},{ a,b},{ a,c}} ③T {X, ,{a},{ b},{ a,c}} ④T {X, ,{a},{ b},{ c}} 答案:② 3 、 已知X {a,b,c,d},下列集族中,' ( )是X上的拓扑? ①T {X, ,{a},{ a, b},{ a,c,d}} ②T {X, ,{a,b,c},{ a,b, d}} ③T {X, ,{a},{ b},{ a,c,d}} ④T {X, ,{a},{b}} 答案:① 4、设X {a, b, c},下列集族中,()是X上的拓扑. ①T {X, ,{b},{ c},{ a,b}} ②T {X, ,{a},{ b},{ a,b},{ a,c}} ③T {X, ,{a},{ b},{ a,c}} ④T {X, ,{a},{ b},{ c}} 答案:② 5、已 知 汨X {a,b,c,d},下列集 :族中, (( )是X上的拓扑? ①T {X, ,{a,b},{ a,c,d}} ②T {X, ,{a,b},{ a,c, d}} ③T {X, ,{a},{ b},{ a,c,d}} ④T {X, ,{a},{ c},{ a,c}} 答案:④ 6、设X {a, b, c},下列集族 中 ,( )是X上的拓扑? ①T {X, ,{a},{ b},{ b,c}} ②T {X, ,{a,b},{ b, c}} ③T {X, ,{a},{a,c}} ④T {X, ,{a},{b},{c}} 答案:③ 7、已知X {a,b,c,d},拓扑T {X, ,{a}},贝U{b}=() ①?②X ③{b} ④{b, c, d} 答案:④

点集拓扑学(1)

点集拓扑学~非同凡响畅想系列 注明:(拓扑学的语言表达准确性很重要),这篇文章是一篇读后感,绝大部分是引用别人的观点,其中有本人不同的观点,写出来是和大家共同研究与学习交流。本文灵感来源主要有这些作者或老师:张德学,张景祖,熊金城。由于篇幅比较长,本人也正在学习中,只能一部分一部分续写。 点集拓扑学是几何学的分支,研究的是更一般的几何图形,即拓扑空间中的集合,是研究拓扑不变性与不变量的学科,主要表现在图形的弹性变形后研究的那些不变性和不变量,比如连通性,可数性,分离性等。其中有几个代表性的例子:1,一笔画问题,2,哥尼斯堡七桥问题,3,四色问题。这些都和弹性变形下的拓扑不变性有关,这种弹性变形指的是拓扑学中的同柸关系,相近点变相近点的连续概念。拓扑学包括点集拓扑学,代数拓扑学,几何拓扑学,微分拓扑学,其中点集拓扑学是基础,称为一般拓扑学。 第一节:关系与映射 集合概念的发展历程: 集合论的最早创立是由德国数学家康托尔创立的朴素集合论,运用于纯数学中,然后经过进一步的规范公理化使其理论更加严谨规范化。朴素集合论对集合没有做出严格的定义,只是表示对元素或者对象的搜集,没有形式化的理解,而公理集合论只使用明确定义的公理列表,是对集合这门学科的进一步认识和总结,在现实中得到了广泛的运用。 集合的定义: ① 公认定义:具有共同属性的对象的全体成为集合,对象又可以理解为个体或者集合中的元素。 ② 个人(本人)定义:我们把各种对象按照某种要求抽样集中起来作为一个群体来研究,这个群体称为集合,这种对象可能是独立的个体,或一个抽象的概念,或者群体,也可能对象之间本身就有包涵关系的集合但不完全相同,也可能是没有包涵关系的子集,当我们把所有对象集中在一起称为全集或者幂集族。全集的一部分称为子集,幂集的一部分称为子集族。集合一般用大写字母代表,其中元素用小写代表。 集合的表示方式: 1枚举法 一般在大括号里罗列出集合的元素,如下: {}{}{}{}香蕉,大象,人,,3,2,1,3,2,1,,,Λc b a 2文字语言表述法 用文字语言来表达构成集合的要求: 某个班级的全体男生,一盒象棋,一箱牛奶等。 3图示法 4数学关系描述法或者数学语言描述法 用数学关系式来抽象表达构成集合的要求,或者用数学表达方式来抽象的替代构成集合的要求,为了便于数学分析与研究我们一般用这种数学表达方式来抽象的描述集合,如下: (){}(){}x P X x x x P X x ,∈∈或者

点集拓扑学拓扑知识点

(点集拓扑学拓扑)知识点

————————————————————————————————作者:————————————————————————————————日期:

第4章 连通性重要知识点 本章讨论拓扑空间的几种拓扑不变性质,包括连通性,局部连通性和弧连通性,并且涉 及某些简单的应用.这些拓扑不变性质的研究也使我们能够区别一些互不同胚的空间. §4.1 连通空间 本节重点: 掌握连通与不连通的定义. 掌握如何证明一个集合的连通与否? 掌握连通性的拓扑不变性、有限可积性、可商性。 我们先通过直观的方式考察一个例子.在实数空间R 中的两个区间(0,l )和[1,2), 尽管它们互不相交,但它们的并(0,1)U [l ,2)=(0,2)却是一个“整体”;而另外两 个区间(0,1)和(1,2),它们的并(0,1)U (1,2)是明显的两个“部分”.产生上述 不同情形的原因在于,对于前一种情形,区间(0,l )有一个凝聚点1在[1,2)中;而对 于后一种情形,两个区间中的任何一个都没有凝聚点在另一个中.我们通过以下的定义,用 术语来区别这两种情形. 定义4.1.1设A 和B 是拓扑空间X 中的两个子集.如果 ?=???)()(A B B A 则称子集A 和B 是隔离的. 明显地,定义中的条件等价于?=?B A 和 ?=?A B 同时成立,也就是说,A 与B 无交并且其中的任何一个不包含另一个的任何凝聚点. 应用这一术语我们就可以说,在实数空间R 中,子集(0,1)和(1,2)是隔离的, 而子集(0,l )和[1,2) 不是隔离的. 又例如,易见,平庸空间中任何两个非空子集都不是隔离的,而在离散空间中任何两个 无交的子集都是隔离的. 定义4.1.2 设X 是一个拓扑空间.如果X 中有两个非空的隔离子集A 和B 使得X=A ∪B ,则称X 是一个不连通空间;否则,则称X 是一个连通空间. 显然,包含着多于两个点的离散空间是不连通空间,而任何平庸空间都是连通空间. 定理4.1.1设X 是一个拓扑空间.则下列条件等价: (l )X 是一个不连通空间; (2)X 中存在着两个非空的闭子集A 和B 使得A ∩B=? 和 A ∪B = X 成立; (3) X 中存在着两个非空的开子集A 和B 使得A ∩B=? 和 A ∪B = X 成立; (4)X 中存在着一个既开又闭的非空真子集. 证明(l )蕴涵(2): 设(1)成立.令A 和B 是X 中的两个非空的隔离子集使得 A ∪ B =X ,显然 A ∩B=?,并且这时我们有 B B B A B B A B X B B =???=??=?=)()()( 因此B 是X 中的一个闭子集;同理A 也是一个X 中的一个闭子集.这证明了集合A 和B 满足条件(2)中的要求. (2)蕴涵(3).如果X 的子集A 和B 满足条件(2)中的要求,所以A 、B 为闭集, 则由于这时有A =B /和B=A ',因此A 、B 也是开集,所以A 和B 也满足条件(3)中的要

北京大学数学科学学院考研参考书目汇总

北京大学数学科学学院考研参考书目汇总 考试科目编号: 01 数学分析 02 高等代数 03 解析几何 04 实变函数 05 复变函数 06 泛函分析 07 常微分方程 08 偏微分方程 09 微分几何 10 抽象代数 11 拓扑学 12 概率论 13 数理统计 14 数值分析 15 数值代数 16 信号处理 17 离散数学 18 数据结构与算法 01 数学分析( 150 分) 考试参考书: 1. 方企勤等,数学分析(一、二、三册)高教出版社。 2. 陈纪修、於崇华、金路,数学分析(上、下册),高教出版社。 02 高等代数( 100 分) 考试参考书: 1. 丘维声,高等代数(第二版) 上册、下册,高等教育出版社,2002年, 2003年。 高等代数学习指导书(上册),清华大学出版社,2005年。 高等代数学习指导书(下册),清华大学出版社,2009年。 2. 蓝以中,高等代数简明教程(上、下册),北京大学出版社,2003年(第一版第二次印刷)。 03 解析几何( 50 分) 考试参考书: 1. 丘维声,解析几何(第二版),北京大学出版社,(其中第七章不考)。 2. 吴光磊,田畴,解析几何简明教程,高等教育出版社, 2003年。 04 实变函数( 50 分) 考试参考书:

1. 周民强,实变函数论,北京大学出版社, 2001年。 05 复变函数( 50 分) 考试参考书: 1. 方企勤,复变函数教程,北京大学出版社。 06 泛函分析( 50 分) 考试参考书: 1. 张恭庆、林源渠,泛函分析讲义(上册),北京大学出版社。 07 常微分方程( 50 分) 考试参考书: 1. 丁同仁、李承治,常微分方程教程,高等教育出版社。 2. 王高雄、周之铭、朱思铭、王寿松,常微分方程(第二版),高等教育出版社。 3. 叶彦谦,常微分方程讲义(第二版)人民教育出版社。 08 偏微分方程( 50 分) 考试参考书: 1. 姜礼尚、陈亚浙,数学物理方程讲义(第二版),高等教育出版。 2. 周蜀林,偏微分方程,北京大学出版社。 09 微分几何( 50 分) 考试参考书: 1. 陈维桓,微分几何初步,北京大学出版社(考该书第1-6章)。 2. 王幼宁、刘继志,微分几何讲义,北京师范大学出版社。 10 抽象代数( 50 分) 考试参考书: 1. 丘维声 , 抽象代数基础,高等教育出版社,2003年。 2. 聂灵昭、丁石孙,代数学引论(第一、二、三、四、七章,第八章第1、2、3节),高等教育出版社,2000年第二版。

《点集拓扑学》第7章§7.1紧致空间

第7章 紧致性 §7.1 紧致空间 本节重点: 掌握紧致子集的定义及判断一个子集是紧致子集的方法.(这些方法哪些是充要条件); 掌握紧致性是否是连续映射可保留的,是否是可遗传的、有限可积的. 在§5.3中,我们用关于开覆盖和子覆盖的术语刻画了一类拓扑空间,即Lindeloff空间.现在来仿照这种做法,即将Lindeloff空间定义中的“可数子覆盖”换成“有限子覆盖”,以定义紧致空间.读者在数学分析中早已见过的Heine-Borel定理断言:实数空间R的任何一个子集为有界闭集的充分必要条件是它的每一个开覆盖都有一个有限子覆盖.(在§7.3中我们将要推广这个定理.)因此我们现在作的事也应当在意料之中. 定义7.1.1 设X是一个拓扑空间.如果X的每一个开覆盖有一个有限子覆盖,则称拓扑空间X是一个紧致空间. 明显地,每一个紧致空间都是Lindeloff空间.但反之不然,例如包含着无限但可数个点的离散空间是一个Lindeloff空间,但它不是一个紧致空间. 例7.1.1 实数空间R不是一个紧致空间.这是因为如果我们设 A={(-n,n)R|b∈Z+},则A的任何一个有限子族 { },由于它的并为 (-max{},max{}) 所以不是R的一个子覆盖.因此R的开覆盖A没有任何一个有限子覆盖. 定义7.1.2 设X是一个拓扑空间,Y是X中的一个子集,如果Y作为X的子空间是一个紧致空间,则称Y是拓扑空间X的一个紧致子集. 根据定义,拓扑空间X中的一个子集Y是X的紧致子集意味着每一个由子空间Y中的开集构成的Y的开覆盖有一个有限子覆盖,这并不明显地意味着由X中的开集构成的每一个Y的覆盖都有有限子覆盖.所以陈述以下定理是必要的. 定理7.1.1 设X是一个拓扑空间,Y是X中的一个子集.则Y是X的一个紧致子集当且仅当每一个由X中的开集构成的Y的覆盖都有有限子覆盖.(此定理表明开覆盖中的开子集可以是X的,也可以是Y的)

点集拓扑学考试题目及答案

下为点集拓扑学考试的辨析题和证明题,解答是本人自己写的,可能有错误或者不足,希望对大家的考试有帮助。 二、辨析题(每题5分,共25分,正确的说明理由,错误的给出反例) 1、拓扑空间中有限集没有聚点。 答:这个说法是错误的。 反例:{}c b a X ,,= ,规定拓扑 {}{}a X ,,φτ=,则当{}a A =时,b 和c 都是A 的聚点。因为b 和c 的领域只有X 一个,它包含a ,a 不是A 的聚点,因为{}φ=a A \。 2、欧式直线1E 是紧致空间。 答:这个说法是错误的。 反例:对1E 而言,有开覆盖(){}+∈-=Z n n n |,μ,而对于该开覆盖没有有限子覆盖。 3、如果乘积空间Y X ?道路连通,则X 和Y 都是道路连通空间。 答:这个说法是正确的。 证明:对于投射有()X Y X P =?1,()Y Y X P =?2,由投射是连续的,又知Y X ?是道路连通,从而像也是道路连通空间,所以X 和Y 都是道路连通空间。 4、单位闭区间I 与1 S 不同胚。 答:这个说法是正确的。

下面用反证法证明,反设I 与1 S 同胚,则 ????????? ??→????????????21\21\2:21\2|1f S f 也是同胚映射,??????21\I 不连通,则 ??????21\1S 不连通,故矛盾,所以单位闭区间I 与1S 不同胚。 5、紧致性具有可遗传性质。 答:这个说法是错误的。 反例 :[]1,0紧致但()1,0不紧致。 三、证明题(每题10分,共50分) 1、规定[)111,0\:E E f →为()???≥-<=110,x x x x x f ,证明f 是连 续映射,但不是同胚映射。 证明:由于f 限制在()0,∞-与()+∞,1上连续,由粘接引 理,f 连续。但1-f 不连续,如()0,∞-是[)1,0\1E 的闭集, 但()()()()()()()0,0,0,11∞-=∞-=∞---f f 不是1E 的闭集,所以f 不是同胚映射。 2、证明:Hausdorff 空间的子空间也是Hausdorff 空间。 证明:设X 是Hausdorff 空间,Y 是X 的任一子空间,需证Y 是Hausdorff 空间。Y y x ∈?,,由X 是Hausdorff 空间,所以存在y x ,在X 的开邻域U 、V 使得φ=?V U ,Y U ?是x 在Y 中开邻域,Y V ?是y 在Y 中开邻域,()()φ=??=???Y V U Y V Y U ,故Y 是Hausdorff 空间。

数学专业参考书整理推荐

数学专业参考书整理推荐 从数学分析开始讲起: 数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。当大四考研复习再看时会感觉轻松许多。数学系的数学分析讲三个学期共计15学分270学时。将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分 数学分析书: 初学从中选一本教材,一本参考书就基本够了。我强烈推荐11,推荐1,2,7,8。另外建议看一下当不了教材的16,20。 中国人自己写的: 1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒)应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。网络上可以找到课后习题的参考答案,不过建议自己做。不少经济类工科类学校也用这一本书。里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。不过仍然不失为一本好书。能广泛被使用一定有它自己的一些优势。 2《数学分析》华东师范大学数学系著 师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。课本最后讲了一些流形上的微积分。虽然是师范类的书,难度比上一本有一些降低,不过还是值得一看的。3《数学分析》陈纪修等著 以上三本是考研用的最多的三本书。 4《数学分析》李成章,黄玉民 是南开大学一个系列里的数学分析分册,这套教材里的各本都经常被用到,总体还是不错的,是为教学改革后课时数减少后的数学系各门课编写的教材。 5《数学分析讲义》刘玉链 我的数学分析老师推荐的一本书,不过我没有看,最近应该出了新版,貌似是第五?版,最初是一本函授教材,写的应该比较详细易懂。不要因为是函授教材就看不起,事实上最初的函授工作都是由最好的教授做的。细说就远了,总之可以看看。 6《数学分析》曹之江等著 内蒙古大学数理基地的教材,偏重于物理的实现,会打一个很好的基础,不会盲目的向n维扩展。适合初学者。国家精品课程的课本。 7《数学分析新讲》张筑生 公认是一本新观点的书,课后没有习题。材料的处理相当新颖。作者已经去世。8《数学分析教程》常庚哲,史济怀著 中国科学技术大学教材,课后习题极难。 9《数学分析》徐森林著 与上面一本同出一门,清华大学教材。程度好的同学可以试着看一看。书很厚,看起来很慢。 10《数学分析简明教程》邓东翱著 也是一本可以经常看到的书,作者已经去世。国家精品课程的课本。 11许绍浦《数学分析教程》南京大学出版社

《点集拓扑学》教学大纲

《点集拓扑学》教学大纲 一、课程名称: 《点集拓扑学》 二、课程性质: 数学与应用数学专业限选课 先修课程:数学分析、高等代数、实变函数等课程 三、课程的地位及教学目的 “点集拓扑学”是数学与应用数学专业的一门重要的专业提高课程,是数学学科《新三基》之一,“点集拓扑学”不仅本身在不断发展而且其理论和方法渗透到数学学科的其他分支中,对数学学科的发展起着基础性的作用。通过本门课的教学,使学生初步掌握“点集拓扑学”的基本内容、思想和方法,为进一步学习其他课程及将来从事教学、科研工作打下良好的基础。 四、课程教学原则与教学方法 本课程以精讲、自学和基本了解作为教学原则。精讲是指对“点集拓扑学”的基本理论、基本方法教师必须作深入而充分的讲授和辅导,学生必须完成足够的练习并达到明晰的理解与巩固地掌握;自学是指对“点集拓扑学”的易于理解的内容学生在教师的指导下自学,达到使学生掌握相应的内容的同时培养学生的自学能力的目的;基本了解是指对“点集拓扑学”的一些内容经过教师的明晰的介绍学生应当较好的了解,并明了其应用,但不要求熟练掌握其逻辑论证。 采取教师讲授、师生互动讨论式和问题式的教学方法,充分调动学生的学习积极性,达到教学目的。 五、总学时 68课时(含复习考试) 六、课程教学内容要点及建议学时分配 第一篇集合论初步(6课时)

一、教学目的 在本篇使学生掌握“关系”的概念及其基本性质,尤其掌握几个特殊“关系”。其次掌握“映射”与“关系”之间的联系。另了解“选择公理”有关的初步知识。要点如下: 1.集合的基本概念(自学) 2.集合的基本运算(自学) 3*.关系(2学时) 4*.等价关系(2学时) 5*.映射(2学时) 6*.集族及其运算(自学) 7.选择公理(时选学2课) 作业要求:完成4~6道基础性练习题,1~2提高性练习题。 第二篇拓扑空间与连续映射(精讲、22课时) 一、教学目的 本篇是点集拓扑学的基础理论部分,也是点集拓扑学的核心部分。使学生熟练掌握本章的基本理论、方法,对本章的数学思想要有深刻理解。要点如下:1*.度量空间与连续映射(2学时) 2*.拓扑空间与连续映射(4学时) 3*.邻域与邻域系(2学时) 4*.导集、闭集、闭包(4学时) 5*.内部、边界(2学时) 6*.基与子基(4学时)

《基础拓扑学讲义》部分习题解答

《基础拓扑学讲义》部分习题解答六 1. 设(,)X Γ是空间,是任何一个不属于1T ∞X 的元素。 令*{}X X =∞∪和*{}*X Γ=Γ∪。证明: (1)**(,X )Γ是一个拓扑空间。 (2)**(,X )Γ是一个空间但不是空间。 0T 1T 证明 (1)(略) (2)先证(,X ??)Γ是空间:由于0T X 是空间,故也是 空间,对1T 0T X ?中的任意两个不相同的点,如果这两个点都不是,则有一个点有一个开邻域不包含另一个点;如果这两个点有一个是∞,则对另一点记为∞p (p ≠∞)而 言,X 是包含点p 的一个开邻域, 并且X ∞?,所以是T 空间. (,X ??Γ))0再说明(,X ??Γ不是空间:由于1T {}X ??Γ=Γ∪ ,故包含的开邻域只有一个,就是∞{}X X ?=∪∞,因此对X 中一点p 而言,包含∞的开邻域一定包含p ,所以不是空间. (,X ??Γ)1T 2.设和Γ Γ 是集合X 上的两个拓扑,并且 Γ?Γ。证明:如果拓扑空间(,)X Γ是一个或空间,则拓扑空间0T 1T (,)X Γ 相应也是一个或空间。 0T 1T

证明 (1)若是空间,则对(,)X Γ0T X 中任意两个不同的点,存在一个点的一个开邻域不包含另外一个点, 又 Γ?Γ,故上述开邻域也是该点在拓扑空间 (,)X Γ 下的一个开邻域,它同样不包含另一个点,得到 (,)X Γ也是空间. T (2)若(,)X Γ是空间,则对1T X 中任意两个不同的点x 与,分别各自存在一个开邻域不包含另外一点,又 y Γ?Γ ,这两个开邻域也是点x 与在拓扑空间y (,)X Γ下的开邻域,它们同样不包含另一个点,得到 (,)X Γ也是空间. 1 T 3.对中的区间进行同胚分类,问总共有几个类? 答:三个。(1)[,;(2);(3)[,。 ]a b (,)a b )a b 注:如果对一维连通流形进行同胚分类则有四个,加上。 1S

相关文档
相关文档 最新文档