文档库 最新最全的文档下载
当前位置:文档库 › 转录因子

转录因子

转录因子
转录因子

转录因子

? 1 简介

? 2 方法

? 3 转录因子

转录因子-简介

基因转录有正调控和负调控之分。如细菌基因的负调控机制是当一种阻遏蛋白(repressor protein)结合在受调控的基因上时,基因不表达;而从靶基因上去除阻遏蛋白后,RNA聚合酶识别受调控基因的启动子,使基因得以表达,这是正调控。这种阻遏蛋白是反式作用因子。

转录因子(transcription factor)是起正调控作用的反式作用因子。转录因子是转录起始过程中RNA聚合酶所需的辅助因子。真核生物基因在无转录因子时处于不表达状态,RNA聚合酶自身无法启动基因转录,只有当转录因子(蛋白质)结合在其识别的DNA序列上后,基因才开始表达。

转录因子的结合位点(transcription factor binding site,TFBS)是转录因子调节基因表达时,与mRNA结合的区域。按照常识,转录因子(transcription factor,TF)的结合位点一般应该分布在基因的前端,但是,新的研究发现,人21和22号染色体上,只有22%的转录因子结合位点分布在蛋白编码基因的5'端。

转录因子-方法

这篇文章的试验方法是,通过高密度的寡核苷酸芯片,反映出人21和22号染色体的几乎所有的非重复序列,通过这种芯片,检测三种转录因子,Sp1、 cMyc、和p53的结合位点。结果表明,每种转录因子都有大量的TFBS与之结合。然而,只有22%的转录因子结合位点分布在蛋白编码基因的5'端, 36%的TFBS分布在蛋白编码基因的中部或3'端,并且这36%的TFBS常常和基因组中的非蛋白编码RNA分布在一起。这暗示,在人的基因组中,不仅包含蛋白编码基因,也包含数量相当的非编码基因(noncoding genes),他们都受常见的转录因子所调控。

真核生物在转录时往往需要多种蛋白质因子的协助。一种蛋白质是不是转录机构的一部分往往是通过体外系统看它是否是转录起始所必须的。一般可将这些转录所需的蛋白质分为三大类:

(1)RNA聚合酶的亚基,它们是转录必须的,但并不对某一启动子有特异性。

(2)某些转录因子能与RNA聚合酶结合形成起始复合物,但不组成游离聚合酶的

成分。这些因子可能是所有启动子起始转录所必须的。但亦可能仅是譬如说转录终止所必须的。但是,在这一类因子中,要严格区分开哪些是RNA聚合酶的亚基,哪些仅是辅助因子,是很困难的。

(3)某些转录因子仅与其靶启动子中的特异顺序结合。如果这些顺序存在于启动子中,则这些顺序因子是一般转录机构的一部分。如果这些顺序仅存在于某些种类的启动子中,则识别这些顺序的因子也只是在这些特异启动子上起始转录必须的。

黑腹果蝇的RNA聚合酶需要至少两个转录因子方能在体外起始转录。其中一个是B因子,它与含TATA盒的部位结合。人的因子TFⅡD亦和类似的部位结合。同样,CTF(CAAT结合因子)则与腺病毒的主要晚期启动子中与CAAT盒同源的部位相结合。结合在上游区的另一个转录因子是USF(亦称MLTF),则可以识别腺病毒晚期启动子中靠近-55的顺序。转录因子Sp1则能和GC盒相结合。在SC40启动子中有多个GC盒,位于-70到-110之间。它们均能和Sp1相结合。然而含有GC盒的不同的DNA顺序与Sp1的亲和力却各不相同。可见GC盒两侧的顺序对Sp1-GC盒的结合究竟如何能影响转录。有时候需要几个转录因子才能起始转录。例如胞苷激酶的启动子需要Sp1与GC盒结合和CTF与CAAT盒结合;腺病毒晚期启动子需要TFⅡD与TATA盒结合和 USF与其邻近部位相结合。以上所述的因子是一般转录都需要的,似乎并没有什么调节功能。另一些转录因子则可以调控一组特殊基因的转录。热休克基因就是一个很好的例子。真核生物的热休克基因在转录起始点的上游15bp处有一个共同顺序。HSTF因子仅在热休克细胞中有活性。它与包括热休克共同顺序在内的一段DNA相结合,所以这个因子的激活可以引起约包括20个基因的一组基因起始转录。在这里,转录因子和RNA聚合酶Ⅱ之间关系很类似细菌的σ因子与核心酶之间的关系。

转录调节位点和转录因子数据库介绍_张光亚

10生物学通报2005年第40卷第11期 2003年即Watson和Crick发表DNA双螺旋结构50周年,宣布了人类基因组计划的完成,与此同时,其他许多生物的基因组计划已完成或在进行中,在此过程中产生的大量数据库对科学研究的深远影响是以前任何人未曾预料到的。然而遗憾的是,许多生物学家、化学家和物理学家对这些数据库的使用甚至去何处寻找这些数据库都只有一个比较模糊的概念。 基因转录是遗传信息传递过程中第一个具有高度选择性的环节,近20年来对基因转录调节的研究一直是基因分子生物学的研究中心和热点,因此亦产生了大量很有价值的数据库资源,对这些数据库的了解将为进一步研究带来极大便利,本文对其中一些数据库进行简要介绍。 1DBTSS DBTSS(DataBaseofTranscriptionalStartSites)由东京大学人类基因组中心维护,网址:http://dbtss.hgc.jp。最初该数据库收集用实验方法得到的人类基因的TSS(TranscriptionalStartSites,转录起始位点)数据。对转录起始位点(TSS)的确切了解具有非常重要的意义,可更准确的预测翻译起始位点;可用于搜索决定TSS的核苷酸序列,而且可更精确地分析上游调控区域(启动子)。自2002年发布第一版以来已作了多次更新。目前包含的克隆数为190964个,含盖了11234个基因,在SNP数据库中显示了人类基因中的SNP位点,而且现在含包含了鼠等其他生物的相关数据。DBTSS最新的版本为3.0。 在该最新的版本中,还新增了人和鼠可能同源的启动子,目前可以显示3324个基因的启动子,通过本地的比对软件LALIGN可以图的形式显示相似的序列元件。另一个新的功能是可进行与已知转录因子结合位点相似的部位的定位,这些存贮在TRANSFAC(http://transfac.gbf.de/TRANSFAC/index.html)数据库中,免费用于研究,但TRANSFAC专业版是商业版本。 DBTSS对匿名登录的用户是免费的,该网站要求用户在使用前注册,用户注册后即可使用。主页分为2个区域,一个介绍网站的部分信息和用户注册,另一区域为用户操作区,该区约分为10个部分,可分别进行物种和数据库的选择、BLAST、SNP以及TF(转录因子)结合部位搜索等部分。后者的使用可以见网页中的Help部分,里面有比较详细的介绍。DBTSS还提供了丰富的与其他相关网站的链接,如上文提到的TRANSFAC数据库、真核生物启动子数据库(Eukaryot-icPromoterDatabase,http://www.epd.isb-sib.ch/)以及人类和其他生物cDNA全长数据库等。 2JASPAR JASPAR是有注释的、高质量的多细胞真核生物转录因子结合部位的开放数据库。网址http://jaspar.cgb.ki.se。所有序列均来源于通过实验方法证实能结合转录因子,而且通过严格的筛选,通过筛选后的序列再通过模体(motif)识别软件ANN-Spec进行联配。ANN-Spec利用人工神经网络和吉布斯(Gibbs)取样算法寻找特征序列模式。联配后的序列再利用生物学知识进行注释。 目前该数据库收录了111个序列模式(profiles),目前仅限于多细胞真核生物。通过主页界面,用户可进行下列操作:1)浏览转录因子(TF)结合的序列模式;2)通过标识符(identifier)和注解(annotation)搜索序列模式;3)将用户提交的序列模式与数据库中的进行比较;4)利用选定的转录因子搜索特定的核苷酸序列,用户可到ConSite服务器(http://www.phylofoot.org/consite)进行更复杂的查询。JASPAR数据库所有内容可到主页下载。 与相似领域数据库相比,JASPAR具有很明显优势:1)它是一个非冗余可靠的转录因子结合部位序列模式;2)数据的获取不受限制;3)功能强大且有相关的软件工具使用。JASPAR与TRANSFAC(一流的TF数据库)有较明显的差异,后者收录的数据更广泛,但包含不少冗余信息且序列模式的质量参差不齐,是商业数据库,只有一部分是可以免费使用。用户在使用过程中会发现二者的差异,这主要是由于二者对数据的收集是相互独立的。另外该数据库还提供了相关的链接:如MatInspector检测转录因子结合部位,网址http://transfac.gbf.de/programs/matinspector/;TESS转录元件搜索系统,网址http://www.cbil.upenn.edu/tess/。 转录调节位点和转录因子数据库介绍! 张光亚!!方柏山 (华侨大学生物工程与技术系福建泉州362021) 摘要转录水平的调控是基因表达最重要的调控水平之一,对转录调节位点和转录因子的研究具有重要意义。介绍了DBTSS、JASPAR、PRODORIC和TRRD等相关数据库及其特征、内容和使用。 关键词转录调节位点转录因子数据库生物信息学 !基金项目:国务院侨办科研基金资助项目(05QZR06) !!通讯作者

ChIP-Seq技术在转录因子结合位点分析的应用

ChIP-Seq技术在转录因子结合位点分析的应用 摘要:染色质免疫沉淀(Chromatin immunoprecipitaion, ChIP)技术是用来研究细胞 内特定基因组区域特定位点与结合蛋白相互作用的技术。将ChIP与第二代高通量测序技术相结合的染色质免疫沉淀测序(chromatin immunoprecipitation followed by sequencing,ChIP-Seq)技术能在短时间内获得大量研究数据,高效地在全基因组范围内检测与组蛋白、转录因子等相互作用的DNA区段,在细胞的基因表达调控网络研究中发挥重要作用。本文 简要介绍了ChIP-Seq技术的基本原理、实验设计和后续数据分析,以及ChIP-Seq技术在 研究转录因子结合位点中的。 关键词:ChIP-Seq;转录因子; 引言 染色质是真核生物基因组DNA主要存在形式,为了阐明真核生物基因表达调控机制,对于蛋白质与DNA在染色质环境下的相互作用的研究是基本途径。转录因子是参与基因表达调控的一类重要的细胞核蛋白质,基因的转录调控是生物基因表达调控层次中最关键的一层,转录因子通过特异性结合调控区域的DNA序列来调控基因转录过程。转录因子由基础转录因子和调控性转录因子两类组成,其中基础转录因子在转录起始位点附近的启动子区,与RNA聚合酶相互作用实现基因的转录;而调控性转录因子一般与位置多样的增强子序列结合,再通过形成增强体在组织发育、细胞分化等基因表达水平调控中发挥极其重要的作用[1]。 ChIP-Seq是近年来新兴的将ChIP与新一代测序技术相结合,在全基因s组范围内分析转录因子结合位点(transcription factor binding sites,TFBS)、组蛋白修饰(histone modification)、核小体定位(nucleosome positioning)和DNA 甲基化(DNA methylation)的高通量方法[2-4]。其中ChIP是全基因组范围内识别DNA与蛋白质体内相互作用的标准方法[5],最初用于组蛋白修饰研究[6],后来用于转录因子[7]。同时,新一代测序技术的迅猛发展也将基因组学水平的研究带入了一个新的阶段,使得许多基于全基因组的研究成为可能。相对于传统的基于芯片的ChIP-chip (chromatin immunoprecipitation combined with DNA tiling arrays),ChIP-seq 提供了一种高分辨率、低噪音、高覆盖率的研究蛋白质-DNA 相互作用的手段[8],可以应用到任何基因组序列已知的物种,可以研究任何一种DNA 相关蛋白与其靶定DNA 之间的相互作用,并能确切得到每一个片段的序列信息.随着测序成本的降低,ChIP-seq 逐步成为研究基因调控和表观遗传机制的一种常用手段。此外,为了达到更好的检测效果和更为完整的信息,近年来,将ChIP-Seq和ChIP-chip两者融合的研究具有很好的应用前景[9,10]。 转录因子在器官发生过程中起至关重要的作用,在全基因组水平将转录因子定位于靶基因DNA是认识转录调控网络的有效方法之一,了解基因转录调控的关键是识别蛋白质与DNA的相互作用。ChIP-Seq技术能够揭示转录因子的结合位点和确定直接的靶基因序列,可在体内分析特定启动子的分子调控机制,因此被广泛应用于转录调控机制的研究。本文主要就这一技术在转录因子结合位点研究中的基本原理、实验设计和数据分析等技术层面、以及实际应用层面进行讨论。 1 ChIP-seq基本原理及实验设计 1.1 ChIP技术 蛋白质与DNA相互识别是基因转录调控的关键,也是启动基因转录的前提。ChIP是在全基因组范围内检测DNA与蛋白质体内相互作用的标准方法[11],该技术由Orlando等[12]于1997年创立,最初用于组蛋白修饰的研究,后来广泛应用到转录因子作用位点的研究中[13]。ChIP的基本原理为:活细胞采用甲醛交联后裂解,染色体分离成为一定大小的片段,然后用特异性抗体免疫沉淀目标蛋白与DNA交联的复合物,对特定靶蛋白与DNA片段进行

植物WRKY转录因子的结构及功能研究进展_常李伟

科研探索知识创新与为小波 多分辨率分解尺度,即低通滤波器系数; 分别与低通滤波系数lo-d 、高通滤波系 数Hi-d 各自相乘、累加后,再分别进行下抽取得到低频序列 2淀粉酶启动子区域的W-box 序列结合,从而控制种子糊粉层细胞糖代谢途径的建立。Sun 等(2003)从大麦中分离并纯化出WRKY 型转录因子SUSIBA2,研究表明SUSIBA2是淀粉合成中一个重要的转录调节因子,WRKY 转录因子因此有可能参与碳水化合物的合成代谢。5展望植物WRKY 基因作为植物特有的响应逆境胁迫信号以及调控逆境相关基因表达的重要因子,在植物适应和抵抗逆境过程中具有重要作用。目前对于WRKY 转录因子的研究主要集中WRKY 转录因子在逆境胁迫下的表达模式,从而提高植物对抗各种逆境的能力。但是人们对WRKY 转录因子所介导的植物应答反应及基因调控体系尚不清楚,WRKY 转录因子在各种抗逆信号转导途径及激素信号途径中的信号网络也有待进一步了解。随着分子生物学各种新技术的发展,WRKY 基因在植物抗逆过程中的作用机制将得到更为深入的研究。 参考文献: [1]李蕾,谢丙炎等.WRKY 转录因子及其在植物防御反应中的 作用[J ].分子植物育种,2005,3(3):401-408. [2]仇玉萍,荆邵娟,付坚等.13个水稻WRKY 基因的克隆及其 表达谱分析[J ].科学通报,2004,49(18):1860-1869. [3]3Birnbaum K,Shasha DE,Wang JY ,et al.A gene expression map of the Arabidopsis root [J ].Science,2003,302:1956-1960. [4]4Yoda H et al.Mol Genet Genomics, 2002, 267: 154-161.

植物转录因子及转录调控数据与分析平台

植物转录因子及转录调控数据与分析平台 PlantTFDB:植物转录因子数据库 URL: https://www.wendangku.net/doc/1516280366.html, 包含资源:植物转录因子的家族分类规则、基因组转录因子全谱、丰富的注释、转录因子结合图谱(binding motifs)、转录因子预测、系统发生树等 涉及物种:包含拟南芥、水稻、杨树、大豆、玉米、小麦等165个物种。 PlantRegMap:植物转录调控数据与分析平台 URL: https://www.wendangku.net/doc/1516280366.html, 包含资源:植物转录调控元件、植物转录调控网络、转录因子结合位点预测、转录调控预测与富集分析、GO富集分析、上游调控因子富集分析等。 涉及物种:包含拟南芥、水稻、杨树、大豆、玉米、小麦等156个物种。 ATRM: 拟南芥转录调控网络及其结构和演化分析 URL: https://www.wendangku.net/doc/1516280366.html, 包含资源:基于文本挖掘和人工校验的拟南芥转录调控网络、植物转录调控网络的结构和演化特征 涉及物种:拟南芥 植物转录因子及转录调控数据与分析平台(导航页) 我们致力于为广大科研人员提供一个关于植物转录因子和转录调控、集数据和分析于一体的高质量平台,为研究和理解植物转录调控系统保驾护航。 植物转录因子数据库(PlantTFDB) 一套完整的植物转录因子分类规则 覆盖绿色植物各大分支的转录因子全谱 丰富的功能和演化注释 基因组范围的高质量转录因子结合矩阵(156个物种) 在线转录因子预测平台 植物转录调控数据与分析平台(PlantRegMap) 基于高通量实验(ChIP-seq和DNase-seq)和比较基因组方法鉴定的多种转录调控元件 基于转录因子结合矩阵和转录调控元件推测的转录调控网络 涉及165物种的GO注释 一套植物转录调控预测与分析工具,包括转录因子结合位点预测、转录调控预测与富集分析、GO富集分析及上游调控因子富集分析等 拟南芥转录调控网络及其结构和演化特征(ATRM) 基于文本挖掘和人工校验的拟南芥转录调控网络 植物转录调控网络的结构和演化特征

转录因子

转录因子 ? 1 简介 ? 2 方法 ? 3 转录因子 转录因子-简介 基因转录有正调控和负调控之分。如细菌基因的负调控机制是当一种阻遏蛋白(repressor protein)结合在受调控的基因上时,基因不表达;而从靶基因上去除阻遏蛋白后,RNA聚合酶识别受调控基因的启动子,使基因得以表达,这是正调控。这种阻遏蛋白是反式作用因子。 转录因子(transcription factor)是起正调控作用的反式作用因子。转录因子是转录起始过程中RNA聚合酶所需的辅助因子。真核生物基因在无转录因子时处于不表达状态,RNA聚合酶自身无法启动基因转录,只有当转录因子(蛋白质)结合在其识别的DNA序列上后,基因才开始表达。 转录因子的结合位点(transcription factor binding site,TFBS)是转录因子调节基因表达时,与mRNA结合的区域。按照常识,转录因子(transcription factor,TF)的结合位点一般应该分布在基因的前端,但是,新的研究发现,人21和22号染色体上,只有22%的转录因子结合位点分布在蛋白编码基因的5'端。 转录因子-方法 这篇文章的试验方法是,通过高密度的寡核苷酸芯片,反映出人21和22号染色体的几乎所有的非重复序列,通过这种芯片,检测三种转录因子,Sp1、 cMyc、和p53的结合位点。结果表明,每种转录因子都有大量的TFBS与之结合。然而,只有22%的转录因子结合位点分布在蛋白编码基因的5'端, 36%的TFBS分布在蛋白编码基因的中部或3'端,并且这36%的TFBS常常和基因组中的非蛋白编码RNA分布在一起。这暗示,在人的基因组中,不仅包含蛋白编码基因,也包含数量相当的非编码基因(noncoding genes),他们都受常见的转录因子所调控。 真核生物在转录时往往需要多种蛋白质因子的协助。一种蛋白质是不是转录机构的一部分往往是通过体外系统看它是否是转录起始所必须的。一般可将这些转录所需的蛋白质分为三大类: (1)RNA聚合酶的亚基,它们是转录必须的,但并不对某一启动子有特异性。 (2)某些转录因子能与RNA聚合酶结合形成起始复合物,但不组成游离聚合酶的

转录因子

转录因子 基因转录有正调控和负调控之分。如细菌基因的负调控机制是当一种阻遏蛋白(repressor protein)结合在受调控的基因上时,基因不表达;而从靶基因上去除阻遏蛋白后,RNA聚合酶识别受调控基因的启动子,使基因得以表达,这是正调控。这种阻遏蛋白是反式作用因子。而顺式作用因子则指的是基因上与反式作用因子结合的对基因表达起调控作用的基因序列。 转录因子(transcription factor)是起正调控作用的反式作用因子。转录因子是转录起始过程中RNA聚合酶所需的辅助因子。真核生物基因在无转录因子时处于不表达状态,RNA聚合酶自身无法启动基因转录,只有当转录因子(蛋白质)结合在其识别的DNA序列上后,基因才开始表达。 转录因子的结合位点(transcription factor binding site,TFBS)是转录因子调节基因表达时,与mRNA结合的区域。按照常识,转录因子(transcription factor,TF)的结合位点一般应该分布在基因的前端,但是,新的研究发现,人21和22号染色体上,只有22%的转录因子结合位点分布在蛋白编码基因的5'端。 真核生物在转录时往往需要多种蛋白质因子的协助。一种蛋白质是不是转录机构的一部分往往是通过体外系统看它是否是转录起始所必须的。一般可将这些转录所需的蛋白质分为三大类: (1)RNA聚合酶的亚基,它们是转录必须的,但并不对某一启动子有特异性。 (2)某些转录因子能与RNA聚合酶结合形成起始复合物,但不组成游离聚合酶的成分。这些因子可能是所有启动子起始转录所必须的。但亦可能仅是譬如说转录终止所必须的。但是,在这一类因子中,要严格区分开哪些是R NA聚合酶的亚基,哪些仅是辅助因子,是很困难的。 (3)某些转录因子仅与其靶启动子中的特异顺序结合。如果这些顺序存在于启动子中,则这些顺序因子是一般转录机构的一部分。如果这些顺序仅存在于某些种类的启动子中,则识别这些顺序的因子也只是在这些特异启动子上起始转录必须的。 黑腹果蝇的RNA聚合酶需要至少两个转录因子方能在体外起始转录。其中一个是B因子,它与含TATA盒的部位结合。人的因子TFⅡD亦和类似的部位结合。同样,CTF(CAAT结合因子)则与腺病毒的主要晚期启动子中与CAAT盒同源的部位相结合。结合在上游区的另一个转录因子是USF(亦称MLTF),则可以识别腺病毒晚期启动子中靠近-55的顺序。转录因子Sp1则能和GC盒相结合。在SC40启动子中有多个GC盒,位于-70到-110之间。它们均能和Sp1相结合。然而含有GC盒的不同的DNA顺序与Sp1的亲和力却各不相同。可见GC盒两侧的顺序对Sp1-GC盒的结合究竟如何能影响转录。有时候需要几个转录因子才能起始转录。例如胞苷激酶的启动子需要S p1与GC盒结合和CTF与CAAT盒结合;腺病毒晚期启动子需要TFⅡD与TATA盒结合和USF与其邻近部位相结合。以上所述的因子是一般转录都需要的,似乎并没有什么调节功能。另一些转录因子则可以调控一组特殊基因的转录。热休克基因就是一个很好的例子。真核生物的热休克基因在转录起始点的上游15bp处有一个共同顺序。H STF因子仅在热休克细胞中有活性。它与包括热休克共同顺序在内的一段DNA相结合,所以这个因子的激活可以引起约包括20个基因的一组基因起始转录。在这里,转录因子和RNA聚合酶Ⅱ之间关系很类似细菌的σ因子与核心酶之间的关系。 转录因子是一种具有特殊结构、行使调控基因表达功能的蛋白质分子,也称为反式作用因子。植物中的转录因子分为二种,一种是非特异性转录因子,它们非选择性地调控基因的转录表达,如大麦(Hordeum vulgare) 中的HvCBF2 (C-repeat/DRE binding factor 2) (Xue et al., 2003)。还有一种称为特异型转录因子,它们能够选择性调控某种或某些基因的转录表达。典型的转录因子含有DNA结合区(DNA-binding domain)、转录调控区(acti vation domain)、寡聚化位点(oligomerization site) 以及核定位信号(nuclear localization signal) 等功能区域。这些功能区域决定转录因子的功能和特性(Liu et al., 1999)。DNA结合区带共性的结构主要有:1)HTH 和HL H 结构:由两段α-螺旋夹一段β-折叠构成,α-螺旋与β-折叠之间通过β-转角或成环连接,即螺旋-转角-螺旋结构和螺旋-环-螺旋结构。2)锌指结构:多见于TFIII A 和类固醇激素受体中,由一段富含半胱氨酸的多肽链构成。每四个半光氨酸残基或组氨酸残基螯合一分子Zn2+ ,其余约12-13 个残基则呈指样突出,刚好能嵌入DNA 双螺旋的大沟中而与之相结合。3)亮氨酸拉链结构:多见于真核生物DNA 结合蛋白的 C 端,与癌基因表达调控有关。由两段α - 螺旋平行排列构成,其α - 螺旋中存在每隔7 个残基规律性排列的亮氨酸残基,亮氨酸侧链交替排列而呈拉链状,两条肽链呈钳状与DNA 相结合。

转录因子包括什么主要的功能结构域

转录因子包括什么主要的功能结构域?其主要的结构特点与功能是什么? 作为蛋白质的转录因子从功能上分析其结构可包含有不同区域:①DNA结合域(DNA binding domain),多由60-100个氨基酸残基组成的几个亚区组成;②转录激活域(activating domain),常由30-100氨基酸残基组成,这结构域有富含酸性氨基酸、富含谷氨酰胺、富含脯氨酸等不同种类,一酸性结构域最多见; ③连接区,即连接上两个结构域的部分。不与DNA直接结合的转录因子没有DNA 结合域,但能通过转录激活域直接或间接作用与转录复合体而影响转录效率。 与DNA结合的转录因子大多以二聚体形式起作用,与DNA结合的功能域常见有以几种: ①螺旋-转角-螺旋(helix-turn-helix,HTH)及螺旋-环-螺旋(helix-loop-helix,HLH) 这类结构至少有两个α螺旋其间由短肽段形成的转角或环连接,两个这样的motif结构以二聚体形式相连,距离正好相当于DNA一个螺距(3.4nm),两个α螺旋刚好分别嵌入DNA的深沟。 ②锌指(zinc finger)其结构如图所示,每个重复的“指”状结构约含23个氨基酸残基,锌以4个配价键与4个半胱氨酸、或2个半胱氨酸和2个组氨酸相结合。整个蛋白质分子可有2-9个这样的锌指重复单位。每一个单位可以其指部伸入DNA双螺旋的深沟,接触5个核苷酸。例如与GC盒结合的转录因子SP1 中就有连续的3个锌指重复结构。 ③碱性-亮氨酸拉链(basic leucine zipper,bZIP)这结构的特点是蛋白质分子的肽链上每隔6个氨基酸就有一个亮氨酸残基,结果就导致这些亮氨酸残基都在α螺旋的同一个方向出现。两个相同的结构的两排亮氨酸残基就能以疏水键结合成二聚体,这二聚体的另一端的肽段富含碱性氨基酸残基,借其正电荷与DNA 双螺旋链上带负电荷的磷酸基团结合。若不形成二聚体则对DNA的亲和结合力明显降低。在肝脏、小肠上皮、脂肪细胞和某些脑细胞中有称为C/EBP家族的一大类蛋白质能够与CAAT盒和病毒增强子结合,其特征就是能形成bZIP二聚体结构。

转录分析的5种方法

转录分析的5种方法 信号通路,只有一个目的:将细胞的外部信号转换成细胞的内部变化。不管是胰岛素,还是异亮氨酸,抗原还是肾上腺素,它们的终极目的总是如出一则:对转录活性的改变。 这些对于转录活性的影响来自于转录因子与基因的调控区域:如启动子、增强子、沉默子等结合达到的。经典的凝胶迁移滞后试验(the electrophoretic mobility shift assay)已经成为证明某种蛋白能与特定的短基因序列结合的有力方法手段。但是凝胶迁移滞后试验具有速度慢,通量低,不定量和具有放射性的特点。即使完了你还不知道究竟是何种蛋白或者是蛋白的何种基团负责指导体内转录的变化。 为了弄清楚蛋白与基因序列结合的精确位点,需要利用基于抗体的实验。目前已经有了一些方便快捷的分析试剂,可以有力的帮助进行转录研究分析,其中有一些适用于发现型(筛选多种因子),有一些用于证实猜想的。当然这些总是从初期的工作,进入精细进一步的研究工作。 PROTEIN ARRAYS(蛋白芯片) What they are:固定的转录因子阵列,利用标记的基因序列或者蛋白质进行探索。 What to use them for:用于发现和证实转录因子的结合位点或者蛋白-蛋白相互作用。 Pros(优点):能提供一种在广泛的因子中检测与特定序列结合的因子。 Cons(缺点):可能会错失一些同源因子和一些转录后的变化。 Things to keep in mind:蛋白分析提供了一种在DNA片段中筛选潜在的结合位点的方法。但这种方法缺乏柔韧性,因此只局限于广泛的已研究的因子。 Available kits: Panomics的 TF Protein Array I for DNA-Protein Interactions (48 proteins, Catalog No. MA3505,

转录因子SP1对肿瘤转移的调控

转录因子Sp1对肿瘤转移的调控 闫隆鑫1,刘波1*,任海军2* 摘要转录因子SP1(transcription factor Sp1,SP1)在人体细胞中普遍表达并参与调控细胞增殖、凋亡及胚胎发育等生理活动。实验证实SP1在肿瘤细胞中存在异常表达,并积极调控肺癌、胃癌、乳腺癌等肿瘤的转移、恶变,但对其参与肿瘤细胞转移的机制,尤其在不同细胞系中,SP1的表达量及蛋白修饰,对肿瘤转移各阶段的影响,还不甚明确。本文整理了近期关于SP1参与调控肿瘤转移的研究及SP1的协同调控因子,藉此探究SP1在肿瘤监测及治疗中的发展方向。 关键词:转录因子SP1; 肿瘤; 转移 0 引言 肿瘤细胞的转移意味着肿瘤恶性程度增加,大部分肿瘤患者在临床确诊时已经存在肿瘤转移,常规治疗死亡率极高;而一旦诊断为肿瘤,由于不能确定其是否转移,往往会接受过度治疗,因此有关肿瘤细胞转移活性的检测是肿瘤治疗的关键。良性肿瘤发展为转移性肿瘤至少包括四个相互关联的过程:肿瘤细胞表面黏附分子减少,肿瘤间粘附能力下降;原细胞间基质分解,并在肿瘤细胞诱导下重建适宜肿瘤生长的基质;肿瘤细胞变形并生长出伪足,通过血管、淋巴管迁移到特定的侵入点;肿瘤细胞分裂增殖,在新区域生成血管,成为肿瘤组织[1]。转录调控因子参与调控相关蛋白的表达,往往存在异常表达的情况,在肿瘤转移过程中起到至关重要的调控作用。因此对肿瘤中转录调控因子的检测,能够在早期判断肿瘤转移的情况并对肿瘤转移的活性加以抑制。 SP1是人体细胞中广泛存在的转录调控因子,属于Sp/KLF锌指家族,通常作为主要的GC盒转录激活因子参与调控目标基因的表达。SP1的羧基端含有三个锌指结构,能够特异性结合DNA启动子的GC盒;SP1蛋白中段为其活化区,参与调控目的基因表达以及与其他转录调控因子的结合[2];氨基端有一蛋白水解位点,能够引起泛素化诱导的SP1分解[3]。SP1在结合到目的基因启动子的同时,可以招募其他调控因子及SP1本身参与表达调控,因而与DNA的结合能力、转录调控区活性以及SP1在细胞内的含量对SP1参与的调控有重要的意义[4, 5]。SP1在肿瘤初期大量积累并积极调控肿瘤发展的各个阶段[6],过表达的SP1参与诱导肿瘤增殖、凋亡,但对肿瘤转移的调控,不同肿瘤细胞系对SP1过表达有着不同 基金项目:大连市卫生局医学研究课题(WSJ/KJC-01-JL-01);中央高校基本科研业务费(DUT15LK16); 作者单位:1.大连理工大学生物医学工程系,辽宁省大连市,116024;2.大连市友谊医院普外科,辽宁省大连市,116100; 通信作者:任海军,E-mail:renhaijun369@https://www.wendangku.net/doc/1516280366.html,; 刘波,E-mail: lbo@https://www.wendangku.net/doc/1516280366.html,; 作者简介:(1996-),男,本科,在读本科生,主要研究方向生物医学工程

ER对雌激素共调节因子NFAT3的转录调节

目的:NFAT (Nuclear factor of activated T-cell )家族在人体生理和病理过程中发挥着重要的作用,但是对NFAT3的转录调节因子却知之甚少。通过本室前期的实验,我们了解到NFAT3可以调节ER (Estrogen Receptors )的转录活性,因此,反过来,我们检测了ER 对NFAT3转录活性的影响。 方法:通过活性实验、点突变实验及RNA 干扰实验,验证ER 、雌激素及NFAT 激活剂PMA+ION 对NFAT3转录活性的影响,并通过免疫共沉淀(Co-immunoprecipitation ,Co-IP )实验检测ER 与NFAT3的相互作用,通过染色质免疫共沉淀(CHIP )实验确定ER α能否被募集到IL-2启动子上,并用核质分离实验,揭示ER α在细胞内对NFAT3定位的影响。 结果: 1. 在293T 及MDA-MB-453细胞中,ERs 可以抑制NFAT3的转录活性。 2. IP 实验证实,NFAT3和ERs 在体内存在相互作用,并且该作用不受NFAT 激活剂PMA+ION 的影响。 3. 敲低293T 细胞中的内源NFAT3后,ER α对NFAT-LUC 活性的抑制作用基 本消除,证实ER α对NFAT-LUC 报告基因的抑制需要NFAT3的参与。 4. 在分别敲低MCF-7细胞中的内源性ER α和ER β后,NFAT3的转录活性都大 幅增强。 5. 构建了两个ER α雌激素结合位点突变体,与野生型ER α相比,两个突变体 对NFAT3活性的抑制依然存在,而在加入雌激素后,对NFAT3的进一步抑制被消除,证实雌激素对NFAT3转录活性的抑制依赖ER 的活性。 6. AKT 和MAPK 重现了ER α磷酸化位点突变体ER α(S167A )和ER α(S118A ) 对NFAT3转录活性的影响。 7. CHIP 实验证实,加入ER α后,NFAT3与其靶基因IL-2启动子的结合增强, 而加入PMA+ION 后,能进一步促进该结合。 8. 通过核质分离实验发现ER α促使NFAT3入核,并且加入PMA+ION 后, NFAT3的表达增强。 结论:ER α是NFAT3的一个转录调控因子,ER α对NFAT3的转录调节受到雌激素和PMA+ION 的影响。对受NFAT3影响的多种免疫疾病、神经性疾病、心血管疾病和癌症的研究和治疗提供了新的线索。 关键词:ER ,NFAT3,相互作用,磷酸化,转录活性 致谢:该工作得到国家自然科学基金(30530320,30625035,30500191),973计划 P2-44 ER 对雌激素共调节因子NFAT3的转录调节 秦玺,王晓辉,杨智洪,丁丽华,徐小洁,程龙,牛畅,孙慧伟,张浩,叶棋浓 军事医学科学院生物工程研究所,北京市海淀区太平路27号院工作区北楼2121,100850 (xiba315@https://www.wendangku.net/doc/1516280366.html,)

转录因子正文

转录因子 摘要:随着众多生物基因组计划的完成及其蛋白质组学研究的不断深入,人类步入了系统生物学时代。基因组计划的完成提供了大量的DNA内在信息,解析出基因组中可能存在的全部基因的阅读框架,因此,接下来研究基因的表达调控特别是转录调控就显得非常迫切。另一方面,蛋白组学研究的突飞猛进给我们描绘出了细胞的蛋白质表达谱和网络谱,接下来研究蛋白质与蛋白质,蛋白质与DNA的相互作用将成为现在及以后相当长一段时间内的研究主题。有生物学家认为,21世纪对人类最具有挑战性的生物学主题就是“基因的全基因组调控”和”细胞的全蛋白质的生理功能”这两大难题。 然而,转录因子是可与基因调控序列结合并调控基因转录的一类核蛋白,研究转录因子就是研究转录调控的分子机制,研究一种或一类特定的蛋白质分子与DNA的结合特性,研究与DNA结合的蛋白质分子是怎样调控基因转录等问题。转录因子的研究实际上已构成上述两大生物学难题的一个交叉点,因此,对转录因子的深入研究已是一件极其迫切而且重要的课题。 DNA转录及转录因子 定义 转录:是指以DNA为模板,在RNA聚合酶的作用下合成mRNA,将遗传信息从DNA分子上转移到mRNA分子上,这一过程成为转录。真核生物DNA的转录在细胞核中进行,原核生物的转录在细胞质的核质区

内进行。 转录单元 转录单元是一段以启动子开始至终止子结束的DNA序列。 转录起始(transcription initiation):转录因子通过识别基因启动子上的特异顺式元件并募集多种蛋白质因子,形成具有RNA聚合酶活性的转录起始复合体,从转录起始位点启动转录的过程。 转录终止子(transcription terminator):基因编码区下游使RNA聚合酶终止mRNA合成的密码子,是一种位于poly(A)位点下游,长度在几百碱基以内的结构。 终止子可分为两类。一类不依赖于蛋白质辅因子就能实现终止作用。另一类则依赖蛋白辅因子才能实现终止作用。这种蛋白质辅因子称为释放因子,通常又称ρ因子 转录因子:能够结合在某基因上游特异核苷酸序列上的蛋白质,活化后从胞质转位至胞核,通过识别和结合基因启动子区的顺式作用元件,启动和调控基因表达。 转录因子是转录起始过程中RNA聚合酶所需的辅助因子。真核生物基因在无转录因子时处于不表达状态,RNA聚合酶自身无法启动基因转录,只有当转录因子(蛋白质)结合在其识别的DNA序列上后,基因才开始表达。转录因子是结合在某基因上游特异核苷酸序列上的蛋白质,这些蛋白质能调控该基因的转录。转录因子可以调控核糖核酸聚合酶(RNA聚合酶)与DNA模板的结合。转录因子不单与DNA序列上的启动子结合,也可以和其它转录因子形成-转录因子聚合体,来影

转录因子

角朊细胞 角朊细胞的增殖和分化是一个受到精细调节的过程,并伴随着一系列形态学和生化改变,最终形成角质细胞,这就必然涉及到许多结构基因的同时活化与灭活,即基因表达的调控,而转录水平的调控尤为重要。现已发现许多转录因子如AP1、AP2、Sp1、POU结构域及C/EBP等可调节角朊细胞基因的表达。 目录

转录水平、翻译水平及翻译后水平,其中最常见的调控方式就是转录调控。现已发现AP1、AP2、NFκB、C/EBP、ets、Sp1及POU结构域等转录因子可作为表皮中的调控蛋白,从而调节编码套膜蛋白(involucrin, iNV)、转谷氨酰胺酶(transglutaminase,TG)、SPRR2A、兜甲蛋白(loricrin)、角蛋白及BPAG1等蛋白的基因的表达。本文就与角朊细胞基因表达有关的转录因子作一简要综述。 编辑本段转录因子的一般特征 转录因子(transcription factor)是能与位于转录起始位点上游50~5000bp的顺式作用元件(cis-acting elements)、沉默子(silencer)或增强子(enhancer)结合并参与调节靶基因转录效率的一组蛋白,并能将来自细胞表面的信息传递至核内基因。转录因子通常有几个功能域,可分为DNA结合域、转录调控域及自身活性调控域,DNA结合域可与特定的DNA序列(一般长8~20bp)相互作用,使转录因子与靶基因结合起来,随之转录调控域就可发挥其激活或抑制作用,通常这些结构域在结构与功能上是独立分开的。不同的转录因子还可结合于紧密相邻的DNA序列而形成一种多聚体结构来调节基因表达,这种组合调控(combinatorial regulation)不论转录因子是否激活及其含量多少均可激活基于靶基因中特定转录因子结合位点的转录。除启动基础转录活性外,转录因子还能整合从细胞表面经信号转导途径传递而来的信号[2]。 编辑本段激活角朊细胞基因表达的转录因子 (一)AP1 AP1转录因子通常以jun(c-jun、junB、junD)与Fos(Fra-1、Fra-2、c-fos、fosB)家族成员组成的同源或异源二聚体表达其活性,即结合于5’-GTGAGCTCAG-3’序列。目前已知AP1位点对于编码角蛋白(K1、K5、 K6及K19)、丝聚合蛋白原(profilaggrin)基因的最适转录活性十分重要[3,7],编码角质化包膜(cornified envelope)相关蛋白-TG1、兜甲蛋白及INV的基因也含有功能性AP1 位点[8,9],如hINV基因启动子在其转录起始位点上游2.5kb内有5个AP1共有结合位点(AP1-1~5),其中2个AP1位点AP1-1和AP1-5若同时发生突变时角朊细胞的转录水平就可下降80%;佛波酯(TPA)则可使AP1与hINV启动子处AP1-1及AP1-5位点的结合能力增强10~100倍,后经点突变实验证实AP1-1和AP1-5位点可部分介导佛波酯(TPA)诱导的效应[10]。丝聚合蛋白原、K1、兜甲蛋白及K19基因中的AP1位点可活化转录[3,6,7],

调控红细胞生成的转录因子及其作用

综述 调控红细胞生成的转录因子及其作用 陈渝萍 刘德培 薛社普 哺乳类红细胞生成分为胚胎型(或称原始型)和成年型(或称定型)两个不同的发育时期,前者主要在卵黄囊的血岛中进行,产生有核红细胞;后者则集中于胚胎,骨髓及脾脏,产生无核红细胞。如果从红系分化角度出发,则可分为两个阶段:红系早期分化(由造血干细胞到红系祖细胞)和终末分化(由红系祖细胞到成熟红细胞)。在整个分化过程中,红系特异基因相继开启并呈优势表达,非红系基因则逐渐关闭,细胞最终呈现红系特有表型。调控基因特异表达的主要方式之一是由公用转录因子与红系特异转录因子共同参与的基因转录水平的调控。红系特异转录因子的分布具有组织特异性,其表达水平随红系的发育和分化的进行而变化,这种严格的谱系限制性直接导致靶基因在红系组织细胞中的特异表达。而任何影响这些转录因子控制基因表达能力的改变,均会严重干扰乃至完全破坏红系的正常发育和分化;它们自身的异常表达也会导致一系列血液疾病的发生。我们从早期造血发生开始,介绍调控红系早、晚期发育和分化的转录因子及其作用。 1 红系早期分化过程中的转录调控因子 红系早期分化始于自我更新状态的造血干细胞(Hematopoietic stem cells, HSC),经过定向谱系的造血祖细胞(Hematopietic p rogeni tor cells,HPC)阶段,进而分化产生红系祖细胞(Erythropoietic HPC,E HPC)。从小鼠基因敲除,胚胎干细胞的体外分化和嵌合体的实验结果可知,失活SCL或LMO2均可导致原始型和定向型造血完全丧失,表明二者至少参与了造血谱系和髓系定向的调控,可能还包括从腹部中胚层细胞到造血细胞的定向,并显示出维持细胞增殖和生存的功能[1],HSC自我更新和分化的行为则受到GATA2控制,增强该因子的活性将抑制细胞扩增,促进HSC往单核系和粒系发育,抑制红系分化[2]。另外,c myb也可能调控了造血定向,并促进HSC往一定方向分化,当它在ES细胞中过度表达时,可促进HSC的形成并进一步分化产生红系和髓系的混合克隆[3]。 调控HPC增殖的转录因子主要有GATA2/3,AML1和c myb等。这些基因的敲除个体虽能产生正常造血细胞,但祖细胞的数量显著降低,造成成熟血细胞的数目大为减少[4,5]。其中GATA3的作用限于胎肝的定向型造血过程。部分Id (Id1,2,3)和Hoxs(Hox9,10,Hox3 6)因子,可刺激祖细胞增殖,抑制祖细胞成熟分化。它们的过度表达将抑制HPC的进一 作者单位:100005 北京,中国医学科学院、中国协和医科大学基础医学研究所;国家医学分子生物学重点实验室;中国协和医科大学基础医学院细胞生物室步成熟[6]。 从红系多能造血细胞到红系前体细胞,E HPC的分化、增殖和分裂的调控是由某些在造血早期有重要作用的因子承担,如SCL和LMO2。它们在多能的HPC中表达水平极低,随着E HPC的产生,其表达上调,并持续高水平至红系前体细胞[7];与此同时,一些在多能HPC中高表达(如GATA2,c myb等)或非红系分化必需的转录因字(如PU.1,Fli 1等)的表达动态正好相反,它们的表达下调是HPC向红系分化的先决条件[8]。 2 红系晚期分化过程中的转录调控因子 进入红系分化晚期以后,定向祖细胞经过有限次数的分裂,逐步分化直至产生成熟红细胞。细胞在增殖、分化和凋亡之间维持着动态平衡。某些相对特异的转录因子参与了该时期红系分化的调控,敲除这些转录因子只会影响红系的成熟分化,其它谱系发育正常。其中,GATA1是红系分化至C FU E期后调控细胞存活和红系特异基因转录的中心因子,一旦该基因被敲除,多种红系特异基因不能表达,细胞阻滞于前体细胞期不能继续分化,并开始大量凋亡[9]。NF E2则确保珠蛋白基因LCR 中HS2增强子活性的发挥以维持珠蛋白高表达,并调控涉及几个合成关键酶分子的基因正常表达[10]。然而NF E2-/-个体却并不发生红系发育和分化异常,推侧可能有其它C NCs 蛋白家族成员(如Nrf1,2,3,Bach1/2)进行代偿[11]。Ets 1是另一个直接控制某些红系特异基因(如转铁蛋白受体TR,珠蛋白和PBGD等)表达的转录因子,若MafB和Ets 1结合,将导致红系分化受阻。有的转录因子调控基因不同发育时期的表达,如控制珠蛋白基因发育阶段特异性的三个转录因子:EKLF、BKLF、FKLF,其靶基因分别是 珠蛋白、其它不依赖E KLF的基因和 -、-珠蛋白基因。敲除其中一个单一基因只会使得某类蛋白(如某类珠蛋白)在特定时期不表达,在其它时期则正常表达。但个体最终因某些基因丧失正常的发育时相性而不能完成终末分化[12]。 从中、晚幼红细胞到成熟红细胞,血红蛋白进一步在细胞中积累,细胞核开始浓缩并被排放于胞外,最终产生成熟红细胞。有关核浓缩和排核发生机制的研究目前仅限于一些细胞骨架系统的报道,如微管蛋白和某些中等纤维蛋白;相应基因的表达调控机制尚不清楚。最近国内有报道,红系终末分化涉及一种具有可能的亮氨酸拉链结构和激酶活性的蛋白。该蛋白在处于终末分化时期的红系细胞中优势表达,于排核前从胞质中转移至核内,表现出和排核相关的定位改变。 3 其它和红系相关的转录因子 有的转录因子并不直接和

转录因子

转录因子 转录因子是细胞的蛋白质哨兵,它决定DNA 中众多基因中的某些特定基因在给定的时间内转录为mRNA 。细菌里面含有200~300种转录因子,而动物细胞包约含1000种。通过使DNA 和基本转录装置联系起来,转录因子决定了细胞的蛋白质结构。作为初级控制者,它们在细胞内浓度很低。其浓度很大程度上取决于具体的蛋白质、细胞类型和环境因素,根据经验法则,它的在浓度在n 摩尔(nM)浓度范围,细菌的每个细胞有1~1000个转录因子,在哺乳动物细胞中约有36 10~10个。通常,低浓度转录因子只控制少数基因,高浓度的则相反。 转录因子激活DNA 转录 拓展:在分子生物学中,转录因子(Transcription factor )是指能够结合在某基因上游特异核苷酸序列上的蛋白质,这些蛋白质能调控其基因的转录。转录因子可以调控核糖核酸聚合酶(RNA 聚合酶,或叫RNA 合成酶)与DNA 模板的结合。转录因子一般有不同的功能区域,如DNA 结合结构域与效应结构域。转录因子不单与基因上游的启动子区域结合,也可以和其它转录因子形成转录因子复合体来影响基因的转录。 转录因子的调节是一个十分复杂的过程, 因为它取决于很多因素,其中最明显的是其他的DNA 结合蛋白(包括转录因RNA 聚合酶 转因录 子

子等)以及局部的染色体结构. 早期的体外实验认为DNA序列决定转录因子的装配顺序,但愈来愈多的证据显示转录的激活取决于大量的转录因子的相互作用。目前表观遗传学似乎对转录激活也扮演重要角色。 通常每个细胞只含大约10个四聚体,大多数转录因子有相似或者更高的浓度为每nM几十个或上百个。有趣的是,DNA非特定的吸引力使90%的乳糖抑制体被吸附在DNA周围,只有少数的溶解在细胞质内。这引发了一个重要的问题:与如此少量的随机波动是如何被生物细胞控制的?例如,如果这些转录因子是完全随机的,在细胞分裂时,如此少量的的转录因子可能使某些子细胞完全不含转录因子。 更多的的努力被投向了一直以来研究最多的蛋白质,如p53 ——一种出现在近50%的癌症中的转录因子。正如其他许多蛋白质一样,它的名字起源于它的最初表征凝胶,p53蛋白的分子量为53kDa。现在我们已经知道它的质量为43.7kDa,它缓慢的移动速度是笨重的脯氨酸残基造成的,但它的名字p53还是保留了下来。这些转录因子促使细胞程序性死亡来防止其继续增殖,抑制肿瘤的生长。它有自己的特征浓度约100 nM。转录因子通过与来自受体信号相互作用,来改变它们与DNA的结合属性,从而调整转录信息。癌细胞中DNA的变异改变p53与它控制的下游基因的结合属性,从而阻止细胞死亡,导致细胞不可控增殖。 肿瘤蛋白p53——P53与DNA结合

相关文档