文档库 最新最全的文档下载
当前位置:文档库 › 最新船舶电喷主机故障分析资料

最新船舶电喷主机故障分析资料

最新船舶电喷主机故障分析资料
最新船舶电喷主机故障分析资料

船舶电喷主机故障分析(一)

船用电喷主机的原理及日常管理浅析

船用电喷主机的原理及日常管理浅析

摘要:随着船舶智能化的日益发展以及世界能源危机和环境污染的加重,为了节约能源、降低排放,提高柴油机燃烧工况,电控喷射技术得到了飞速的发展。而高压共轨燃油喷射系统既对满足柴油机的经济性能,又对实现低污染、低排放发挥了重要作用,电控共轨柴油机的排放已达到相当理想的状态。本文主要针对目前市场两大船用主机的船用柴油机高压共轨系统的结构及组成,就电子控制系统的控制策略进行了叙述以及介绍了高压共轨系统在船用柴油机领域的应用实例与管理。本文先就电喷船用主机的电喷共轨原理进行了浅析,并列举了船用电喷柴油主机在使用过程中电喷共轨系统可能发生的几点故障,展开了分析。

关键词:船用柴油机电喷共轨原理分析

1两大电喷主机的共轨工作原理分析【船舶电喷主机故障分析】

1.1 Wartsila RT-flex共轨柴油机

Wartsila RT-flex机型有两个公共油轨:一个输送的是200bar的滑油,它的作用是作为驱动排气阀、气缸起动阀和喷射控制装置的伺服油;另一个则是1000bar的作为柴油机燃料的重油,由曲轴通过三角凸轮带动高压共轨燃油泵把燃油加压到1000bar,然后由高压燃油管路流至高压公共供油管(如下图1中所示),再通过容积喷射控制单元(ICU),对燃油进行喷射控制,该控制单元由20Mpa的伺服油驱

船舶电喷主机故障分析(二)

电喷主机液压系统维护

电喷主机液压系统维护

1、

A、利用系统中自带的压力测量点,监视系统功能电动泵输出压力监测

电动泵正常的输出压力是175bar, 主机备车时这个压力可以在MOP上读出,也可以在主机备车时通过Pos.276检测点测出,此时能够观察建立压力时间,了解泵浦的工况。该压力可以通过310、311、312阀进行调整,但调整时316阀要打开。

B、主机自带泵输出压力监测

主机自带泵输出压力正常值等于系统压力,可以在MOP上读出,也可以通过Pos.203检测点测出,了解泵浦的工况。

C、系统压力监测,

系统压力正常值约等于设定点的系统压力,这个压力可以在MOP上读出,也可以通过Pos.340检测点测出,了解整个系统的压力情况。

2、利用系统中自带的压力测量点,监视系统泄漏情况

检查整个系统泄漏情况A、

主机停止工作,起动电动泵,系统的正常压力是175bar,通过Pos.276、Pos.340检测点测出。如果不正常,依次关闭阀420,当压力重新达到175bar时,泄漏部位就找到了。

B、检查单个HCU泄漏情况

主机停止工作,起动电动泵,关闭单缸HCU的阀420,通过Pos.455检测点测量压力,与它缸比较建立压力的时间,从而判

断泄漏情况。同时也可以用类似的方法,通过比较单缸HCU压力降时间,来判断泄漏情况。

3、利用系统中自带的压力测量点进行双壁管查漏

观察MOP上的双壁管压力,如果压力明显上升,表明双壁管有泄漏。如何确定具体的泄漏位置呢?主机停止工作,起动电动泵,关闭1缸和7缸的430阀,打开1~7缸的431阀。通过Pos.332检测点测量压力双壁管中的压力,待压力泄放光,关闭1~7缸的431阀,开启1缸和7缸的430阀,通过Pos.332检测点测量压力双壁管中的压力,如果压力持续上升,表明漏的部位在1~7缸之间,然后用排除法,最终确定具体的泄漏位置。同理,也可查出6~12缸双壁管的泄漏部位。

4、更换FIVA阀【船舶电喷主机故障分析】

主机停止工作,停主滑油泵、电动泵放手动

关闭420阀,打开421阀

通过Pos.425检测点测量系统压力

待压力泄放完,就可拆装FIVA阀【船舶电喷主机故障分析】

更换工作完成后,复位各阀,但开启420阀必须慢慢A、B、C、D、E、

进行

5、上述工作基本上都要求主机停车、停泵进行,这主要是出于安全考虑。虽然说明书上讲,在主机正常运行时,也可以进行FIVA更换、系统检漏等工作,但服务工程师要求最好是在主机停止运转时进行。

6、日常巡回检查时,ME主机液压系统主要是观察其振动和泄漏情况,定期收紧HCU的固紧螺丝;加强主机滑油的分离,认真分析动力油自动清洗滤器的工况是否良好。

船舶电喷主机故障分析(三)

船用电喷主机的原理及日常管理浅析

摘要:随着船舶智能化的日益发展以及世界能源危机和环境污染的加重,为了节约能源、降低排放,提高柴油机燃烧工况,电控喷射技术得到了飞速的发展。而高压共轨燃油喷射系统既对满足柴油机的经济性能,又对实现低污染、低排放发挥了重要作用,电控共轨柴油机的排放已达到相当理想的状态。本文主要针对目前市场两大船用主机的船用柴油机高压共轨系统的结构及组成,就电子控制系统的控制策略进行了叙述以及介绍了高压共轨系统在船用柴油机领域的应用实例与管理。本文先就电喷船用主机的电喷共轨原理进行了浅析,并列举了船用电喷柴油主机在使用过程中电喷共轨系统可能发生的几点故障,展开了分析。

关键词:船用柴油机电喷共轨原理分析

中图分类号:U664 文献标识码:A 文章编号:1672-3791(2014)04(c)-0111-03

1 两大电喷主机的共轨工作原理分析

1.1 Wartsila RT-flex共轨柴油机

Wartsila RT-flex机型有两个公共油轨:一个输送的是200bar的滑油,它的作用是作为驱动排气阀、气缸起动阀和喷射控制装置的伺服油;另一个则是1000bar的作为柴油机燃料的重油,由曲轴通过三角凸轮带动高压共轨燃油泵把燃油加压到1000bar,然后由高压燃油管路流至高压公共供油管(如下图1中所示),再通过容积喷射控制单元(ICU),对燃油进行喷射控制,该控制单元由20 MPa的伺服油驱动,伺服油的触发信号来自于

WECS-9520的气缸控制单元,气缸控制单元通过曲轴角度传感器,测出曲轴的位置和负荷,再进行判断和计算以选择最佳的时刻进行燃油喷射。轮机员还能够通过主机的反馈信息,同时利用WECS的辅助单元,对FQS和VIT进行重新设定。WECS-9520也可以按照预先设定的曲线,对不同负荷下的燃油喷射量以及喷射时间进行自动控制,RT-flex机型每个气缸有3个喷油阀,当柴油机在低负荷运行时,WECS-9520控制系统可以关闭其中的1或2

个喷油器来减少喷油量,进而达到节省燃油和减少排放的目的,同时还能保持良好的低负荷运行特性。

排气阀液压驱动系统的工作原理,与燃油共轨工作原理大体相近,只是驱动方式由轴带三角凸轮变为无需换向操作的丹尼克斯变量泵控制(既伺服油泵)。(如图2所示)。该系统的工作原理是高压伺服油泵将液压油压入液压总管内,然后WECS-9520发出信号,控制共轨阀(Rail vavle)通过液压执行器来驱动排气阀。

图2中的瓦锡兰FLEX柴油机的电控液压排气装置相对于机械(凸轮轴式)的优点是:(1)各个气缸的排气阀都能够独立打开和关闭,所以当当主机在部分负荷时,WECS-9520能自动依次关闭柴油机的部分气缸,这样可以很大程度上的降低能耗;(2)由于该系统是由软件控制的,各缸喷油量由共轨阀得电时间长短控制,这样一来,每缸燃烧工况会交以往凸轮轴式柴油机改善很多,气阀磨损均匀细腻,在降低排放上有很大的意义。

1.2 MAN-B&W共轨柴油机

相对于瓦锡兰FLEX电喷柴油机,MAN-B&W柴油机燃油电喷系统泵的控制如下图3

所示。该控制系统在缸头平台每缸燃油侧均设置了新型的高压油泵,油泵的柱塞不再由凸轮轴驱动,而是清洁度较高经过增压的的主滑油驱动,它通过顶动高压油泵内部活塞来带动柱塞上下运动。主滑油来自于柴油机的滑油系统,区别于MAN B&W MC机型的是,主滑油除了润滑运动部件和冷却高温部件外,即去往主轴承十字头轴承曲柄销轴承的润滑的和活塞头的冷却;还需经过主机自带的自清功能的细滤器,经过过滤后,在柴油机自带的增压泵增压下,将这路主滑油加压到20 MPa,再到各缸高压油泵的两个大的储存器内,高压滑油系统通常需要保持恒压,保证压力波动较小,所以各高压油泵均配置了2个充氮蓄能器。各缸高压油泵的燃油喷射,是通过电控阀NC快速控制高压滑油的进出来驱动活塞快速上下运动,带动高压油泵柱塞瞬间增压,让油压升至产生高压(75~120 MPa),最后经过喷油器喷射雾化。电控电磁阀NC是由微处理器控制程序系统ECSP,根据柴油机状况分析系统ECA和控制操作系统OMCP的综合信息发出指令而动作,其燃油共轨是指驱动各缸高压油泵的动力滑油来自共轨管中(即下图3中的蓄压器),而Wartsila RT-flex的燃油共轨则是通过燃油喷射控制单元ICU和排气阀控制单元VCU的共轨阀Rail Vavle来进行控制的。

MAN-B&W柴油机排气阀共轨系统的基本原理基本如图4中所示,其结构形式与该机型燃油共轨大同小异,电控电磁阀NC控制动力滑油,其启闭是根据气缸燃烧状况由微处理器控制程序系统ECSP发出信号,分别控制各缸排气阀的开启和关闭。这种采用电子控制排气阀启闭的方式,同样不仅能够使排气阀以相当于均匀速度的敲击排气阀阀座,减少了气阀关闭时的摩擦声与噪音,而且也可以有效地降低排放,控制主机排烟温度。

2 船用电控共轨柴油机常见故障

相对于传统的凸轮轴式柴油机,电喷柴油机在使用方面有诸如上述的几种优点。但是,船用电喷主机的高度自动化以及智能化的特点也是一把双刃剑,它对船舶使用者管理能力也相应的提高了要求。船用电控共轨柴油机集成化的燃油以及滑油高压共轨和控制柴油机燃油喷射,汽缸油注入以及排气阀启闭的电子系统,由于柴油机的高温高压工作环境,因此常见故障也是较老式机型多,同时也需要使用人员有较高的自动化故障分析能力。

2.1 高压管件以及共轨管发生漏泄

一般在主机以常规负荷正常运行时时,燃油共轨单元系统油压通常是维持在1000bar 左右,伺服油共轨单元因为他的控制特性,所以也基本保持在200bar,较高的共轨管压力导致主机在长时间的使用后,由于燃油的高温高压特性,会产生泄漏。根据使用经验,我们会发现,经常容易出现漏泄的地方如下。(1)伺服油泵的轴封;伺服油泵需要向主机提供较高的伺服油压,保证燃油燃油正常喷射及排气阀按正时启闭,伺服油泵内径向压力较大,在长时间运行磨损后,轴封处会产生泄漏,发生泄漏时,需轮机管理人员及时更换轴封,保证主机正常伺服油压。

(2)高压油管,管路合拢处,焊缝以及弯头薄弱处;高压管路在合拢处极易发生泄漏。由于油管内均为高压流体,长时间冲刷会导致焊接处和弯头薄弱处产生砂眼和裂缝,导致管路内流体大量泄漏。主机运行时,振动现象一直都有,在管路合拢处如果密封面出现未完全贴合的状况(一般由于密封面安装不好或主机振动导致),也会产生大量的泄漏。

(3)阀件的密封处,包括活动部件阀杆密封等。电喷主机的NC阀或RAIL VAVLE,由于长时间高频率的快速被触发,阀块密封处O型圈极易损坏,这时轮机管理人员需经常检查各阀块,一旦发生泄漏,马上更换密封圈。

2.2 电子控制系统故障

共轨的油压、高压燃油喷射、排气阀启闭正时、气缸油注入、启动和换向等操作均由原始的凸轮轴或VIT控制改变为现在的电子控制系统控制。而电子控制系统由控制单元模块、信息采集传感器以及电磁阀等构成。

(1)信息采集传感器故障:主机振动会引起各种传感器的接线或者插头松动;探头脏污,会引起传感器检测精度,造成控制系统误动作。在电喷柴油机中,曲轴转角传感器相当于人类大脑的神经元,整个柴油机燃油喷射,汽缸油喷油,排气阀启闭等等各项动作,均由曲轴角度传感器将角度信号发送给控制单元,一般安装在主机自由端,一般每机会配2个各为主备,一旦发生故障,主机将会:“死机”;燃油油量传感器,常见的故障一般包括测量柱塞运动受阻或咬死,主要原因是燃油杂质多、粘度大,测量油缸的内外温差大,油温过高导致积碳而污染传感器等。在发生故障时可拆出清洁。为避免此类事故,可将燃油分油机长时间溢流运行,保证燃油清洁度。

(2)电磁阀故障(燃油电磁阀和排气电磁阀)。

故障表现为动作频率高、过电流(可能烧毁电磁阀)等。原因可能有:工作环境振动剧烈,导致电磁阀接头松动、复位弹簧断裂等,烧坏线圈;燃油杂质多,加剧电磁阀磨损,甚至卡死阀芯。

(3)气缸喷油控制单元的燃油油量传感器故障。

由于燃油含渣质较多,或含水量过大,燃油油量传感器极易发生柱塞咬死现象;控制元件若发生故障则会造成测量柱塞无法正常运动,无法采集油量信号;同样的,如果燃油油量传感器复位弹簧失效也会引起测量柱塞不返回,导致控制单元没有油量信号反馈。

(4)排气阀位置传感器故障。

各个气缸排气阀处均有两个排气阀位置传感器,检测排气阀动作时间和位置,监测排气阀启闭状态。受主机振动影响,排气阀位置传感器极易发生插头松动的现象,导致控制单元无法接收排气阀状态信号,影响主机正常运行。

(5)气缸油电子单元模板故障。

各个气缸均有气缸油控制电子模板CCM,也同样安装在各缸共轨箱下的铁箱中。同样在恶劣的振动、高温且无通风的环境下工作,损坏机率高,导致气缸油供给异常。

3 船用电控共轨柴油机的管理要点

由于电喷主机的高度自动化和智能化特点,因此在使用过程中,必须加强轮机员的业务能力,并经常巡查各传感器工作状况,便于维护,如下。

(1)保证燃油及伺服油密封。共轨油压系统的压力较高,在运行中一定要注意密封性是否良好。特别是进入喷油器之前的那段管路,既要保证密封性,同时也要求膨胀不能太大,以免对喷射雾化造成不良的影响。在维护方面,容易老化的密封件,均需定期更换。另外,应保持柴油机燃油系统外围的清洁,以便及时发现任何漏泄征兆。

(2)共轨油压系统的电子控制元件(含电磁阀和传感器)的任何异常,都可能导致柴油机主要参数异常。在巡回检查时,要特别注意柴油机的排烟温度、压缩压力、爆炸压力、增压压力等参数,发现异常时要分析控制单元、电磁阀和传感器等的影响并及时排除。在维护方面,要定期拆卸、清洁、检查。

(3)电喷柴油主机在正常运行时,也会产生一定的振动,以及柴油机运动部件的磨损、松动而加剧的振动,都影响着电控柴油机喷油控制单元、排气阀控制单元、气缸电子单元、电磁阀、传感器等及其连接点的松动。因此,需要尽量降低机舱的振动源。

(4)合适的环境温度,也是保证电子控制设备正常工作的重要条件。所以应当根据机舱温度情况,及时调节机舱的通风条件。

(5)燃油的温度、粘度、清洁度等,影响着电磁阀和传感器的工作,因此务必保持燃油的质量,选择粘度和杂质含量适合本船的燃油,包括适合本船的预处理能力。燃油(尤其是劣质燃油)必须经过沉淀、加温、过滤和离心式分离等预处理,分油机分离要掌握好时间、温度、分离量和放残次数。巡回检查时,要关注并及时调整燃油温度。

(6)伺服滑油作为动力油,其温度、粘度、洁净度等应符合高压工作的质量要求。同

时与燃油一样,伺服滑油的质量也极大地影响着共轨阀和传感器的工作,因此其质量必须有所保证。要根据说明书正确选用伺服滑油的规格和牌号。在油柜中沉淀和放残,循环中加温和过滤,以及分油机离心分离等操作要按操作规程进行。在巡回检查时,要高度关注并按要求调整滑油温度,同时还要关注滑油滤器尤其是进入共轨系统前的细滤器的工作状态并按要求及时清洗。

4 结语

柴油机的高压共轨系统和电喷技术是世界船用柴油机发展的一个新的方向,由于该系统采用了高度自动化智能化的控制单元,使得电喷主机具高度灵活的控制功能,它可以实现很高的喷射压力,达到极佳的燃油雾化效果,并实现理想喷油过程中的压力可调;同时它可以实现满足各种工况下最低排放要求的多种喷射规律控制以及灵活精确的喷油定时控制,这样就加大了柴油机控制的自由度,使之具有了未来柴油机满足更严格的排放法规要求所必需的发展潜力,为进一步提升柴油机的性能提供了更广阔的空间。在运行中,多点喷射技术让电喷柴油主机的振动降低到了一个新的低点,柴油机的各项指标也有了新的标准。相信随着世界科技的日新月异,未来不断技术革新的船用主机会为全世界的发展进步提供更加绿色,环保,高效,的动力保证。

参考文献

[1] 张英华.电控共轨柴油机RT-flex及其改进措施探讨[J].机电产品开发与创新,2008(5):53-64.

[2] 谢荣.船用柴油机电控共轨喷油技术开发的关键技术[J].船舶工程,2009(5):17-19.

[3] 安士杰,欧阳光耀.船用柴油机高压共轨系统结构特性[J].柴油机,2002(6):13-16.

[4] 牛金章.新型ME系列智能柴油机[J].造船技术,2007(3):27-31.

船舶电喷主机故障分析(四)

B&W电喷主机燃油喷射系统常见故障与管理要点

摘要:本文通过实船收集电喷主机燃油喷射系统故障,在分析故障产生原因的基础上,总结电喷主机燃油喷射系统日常管理要点。

关键词:电喷柴油机蓄压器MPC单元动力提供单元(HPS)液压控制单元(HCU)电喷柴油机具有动力性好,低污染、低油耗的优点,船东在主机选型方面也越多采用电喷柴油机,但是现阶段对于大多数轮机管理人员来说确是一种全新的机型,在管理过程中面临着不小的挑战和考验,电喷主机最大的改变就是主机的燃油系统。去年下半年我司连续新接多条电喷主机新船,主机型号:MAN B&W 5S60ME-C7,额定功率8833KW,额定转速105rpm,常用功率7950KW,常用转速101.4rpm,我有幸借调到公司工作,在这其间对出厂投入营运的船舶电喷主机的使用情况进行了详细的跟踪,设备总体情况还比较稳定,但是在燃油喷射系统方面还是发生了一些故障,这里面虽有油品质量问题的原因,但更多的是由于管理经验不足对燃油系统设备维护保养不到位和控制燃油喷射软件参数设定值不是最佳值问题。所有故障经MAN保修工程师指导和来船调整有关软件参数,以及主机厂家来船保修,更换部分备件之后设备恢复正常。现在把发生的故障做一个归纳总结,与同行共勉,有不对之处敬请指正。

与sulzer共轨电喷机相比,B&W ME-C机型主机仍保留高压油泵和液压驱动排气阀,与MC-C机的区别在于用高压动力滑油替代凸轮轴传动机构提供喷射燃油和开启排气阀的动力;动力提供单元(Hydraulic Power Supply,缩写HPS),系用油泵将主机系统滑油升压至200 bar左右,称为动力油,动力油驱动燃油升压器液压活塞,燃油柱塞使燃油产生喷

射高压,喷射定时和供油量由FIVA阀控制,燃油升压器只起到升压作用,没有出油阀和安全阀,结构简单。电喷主机故障封缸运行的方法也很简单,操作方法是:在主机操作面板MOP上,进入engine>chief limiters.将故障缸的负荷降为0,关闭该缸燃油进油阀就可以了,操作方便快捷。

燃油系统发生的主要故障有:燃油喷射动力油稳压蓄压器的压力不合适,造成动力油压力波动过大或波动频繁,导致主机运转不正常,甚至损坏阀件;由于MPC板温度过高导致主机敲缸;由于个别主机油头质量不能适应电喷机使用导致油头燃油针阀杆断裂、止回阀弹簧座旁通油孔附近断裂,油头壳体密封锥面裂纹、雾化喷嘴孔裂纹等。下面从分析故障产生的原因入手,探讨管理要点。

X轮在出厂运行半年左右,在一次航行途中发现主机NO2缸排温不稳,有时高时低的现象,用手摸高压油管感觉脉冲不稳,检查动力油的油压正常,抵港后对该缸的蓄压器的压力进行检查发现燃油喷射蓄压器的压力只有125bar,当时机舱的温度30℃左右,查阅压力与温度修正表(表1),发现蓄压器的压力明显低于正常压力,经调整充N2后装复使用,该缸工况恢复正常。

Y轮在出厂第二航次装完货离开码头定速期间,发现主机NO5缸有敲缸现象,检查燃油压力和动力油压力正常,检查FIVA阀动作正常,最后检查控制系统发现MPC板温度偏高,因为在航行中采取临时处理措施:打开箱门,拿一台轴流风机对着他吹,结果敲缸消除,怀疑是MPC板故障,抵港后保修工程师来船保修,检查发现板上端口的接线处靠近电阻的一端均有烤糊的现象,系电阻松动引起接触电阻所致,更换电阻重新接线后故障消除。

在出厂的船舶燃油系统的故障中,喷油器损坏故障出现最多,对航行安全的影响最大,故障的主要现象就是:主机某缸排气温度低,排气平均温差迅速升高超过60℃,主机安保装置自动发出报警并降速,主机从海速101.4rpm降为45rpm;还有就是主机燃油供油单元发生除气筒低油位报警,检查自动放气阀,拆开阀后放气接头有气放出,说明自动放气阀工作正常,但自动放气阀来不及放气,需要采取临时措施人工加大放气量,大约每四小时放气一次,次日放气更为频繁,开始认为是压缩空气或燃气进入燃油系统。先从简单的入手,检查燃油自清滤器的气动活塞是否漏气进入燃油系统,于是转用燃油旁通滤器,故障依旧。因此可以确定是气缸内的燃气通过有故障的油头经回油管路至供油单元除气筒。具体的主要故障有:油头壳体密封锥面裂纹;阀杆断裂,止回阀止推阀座断裂;雾化喷嘴孔裂纹。

上面的故障中喷油器故障虽然有质量问题的原因,但是也由日常管理分不开;其他故障更多的是由于维护保养管理不到位造成的,怎样才能减少燃油系统故障,保证船舶航行安全呢?那必须严格按照说明书的要求做好维护保养;在维护保养过程中一些细节方面的问题还要特别注意,尽量避免由于维护保养操作失当造成损坏或加剧损坏,在对燃油系统的维护保养和油头的更换要特别注意以下几点。

要定期检查蓄压器的压力,蓄压器中氮气压力等于HPS和HCU系统油压,蓄压器中氮气过多可能导致膜片中心的圆盘撞击蓄压器底部的钢质壳体,过少可能导致撞击蓄压器顶部的钢质壳体,可能导致膜片中心圆盘破裂,蓄压器功能失效。蓄压器中的氮气不可避免会轻微泄漏,经验表明正常情况下每月压降2~5bar,这样就必须适时(一般三个月)测量蓄压器中氮气压力,根据温度修正压力,必要时填充,以免燃油系统产生强烈脉冲,影响柴油机输出的稳定性。

要定期对蓄压器做紧固检查,确保紧固正常预紧力相同。C轮投入运营不久就出现一只蓄压器两只紧固螺栓松动而断裂,导致蓄压器松脱滑出,造成主机失压停车,大量滑油漏入机舱,直到取出断裂螺丝,重新装复后才恢复正常。

为了避免MPC控制箱里的电路板出现异常高温,日常管理注意事项是:①控制箱内部定期清洁,保证通风小风机运行良好、滤网清洁以及模块各散热孔无灰尘,日常用手感各模

块温度及温升情况,发现异常及时检查处理,避免模块损坏;②定期测量电源输出电压,如发现偏差,按要求调整各输出电压符合上述各模块电压要求;③定期测量电源绝缘,使用万用表电阻200K档测得绝缘不能低于100K;④利用锚泊或靠港期间,断电对系统进行彻底清洁检查,对于部分接触电阻增大或有松动的冷压接头进行换新或处理,使其处于良好状态;防止出现由于接触电阻的增大造成的参数漂移,影响系统稳定;⑤检查接地线及屏蔽线是否良好可靠。

更换喷油器需要注意的有:①更换时认真检查清洁油头座:彻底清洁气缸盖上的油头孔,检查孔座有否伤痕。如果有则必须修复。油头拉出后若发现壳体外表发黑并有结碳,说明孔座漏气,孔座表面有麻点或裂纹,必须修复。孔座锥角120°,油头锥面118°,油头与孔座为线接触,座面不能有麻点或裂纹,以免漏气过热造成油头壳体密封锥面裂纹。②要注意检查压紧油头的蝶形弹簧总成:蝶形弹簧总成由弹簧座、压紧块、蝶形弹簧片和定位/标记销等组成。Y轮出厂后就发现在随机备件中有一个新的蝶形弹簧总成,其压紧块与壳体齐平,不能使用。解体检查发现只有11块弹簧片,且厚薄不一。我们就此问题咨询了厂家。厂家专业技术人员是这样回复的:弹簧片12块分为4组排列,每组三块弹簧片为同一朝向,上面一组与压块为外接触,正确的装配才能保证油头有合适的预紧力。③安装油头时:油头由蝶形弹簧总成和螺母固定在气缸盖油头孔,上紧螺母直到压块顶面与弹簧座顶面齐平。这一操作必须十分仔细地进行,因为蝶形弹簧的弹力决定了喷油器与气缸盖间的正确压紧以及喷油器的正确压紧。如果油头未被弹簧座正确压紧,可能引起油头失效并可能引起喷油嘴及高压油管产生裂纹。

总之,MAN B&W5S60MEC主机的燃油系统和以前非电喷主机的燃油系统有诸多的不同,这需要我们管理者认真研读设备说明书,对系统的维护保养要力求全面和仔细,设备的可靠性和稳定性将会大大提高,船舶的安全才有保障。

参考文献:

[1]HHM-MAN B&W5S60ME-C7 INSTRUCTION BOOK.

[2]HHM-MAN B&W5S60ME-C7.MAINTENANCE MANUAL.

[3]MAN B&W.ACCUMULATOR CHARGE PRSSURE OVERHAUL ANDMAINTENANCE..

[4]ME ENGINES.SERVICE LETTERS FOR ME ENGINES:SL501-554.

最新船舶电喷主机故障分析资料

船舶电喷主机故障分析(一) 船用电喷主机的原理及日常管理浅析 船用电喷主机的原理及日常管理浅析 摘要:随着船舶智能化的日益发展以及世界能源危机和环境污染的加重,为了节约能源、降低排放,提高柴油机燃烧工况,电控喷射技术得到了飞速的发展。而高压共轨燃油喷射系统既对满足柴油机的经济性能,又对实现低污染、低排放发挥了重要作用,电控共轨柴油机的排放已达到相当理想的状态。本文主要针对目前市场两大船用主机的船用柴油机高压共轨系统的结构及组成,就电子控制系统的控制策略进行了叙述以及介绍了高压共轨系统在船用柴油机领域的应用实例与管理。本文先就电喷船用主机的电喷共轨原理进行了浅析,并列举了船用电喷柴油主机在使用过程中电喷共轨系统可能发生的几点故障,展开了分析。 关键词:船用柴油机电喷共轨原理分析 1两大电喷主机的共轨工作原理分析【船舶电喷主机故障分析】 1.1 Wartsila RT-flex共轨柴油机 Wartsila RT-flex机型有两个公共油轨:一个输送的是200bar的滑油,它的作用是作为驱动排气阀、气缸起动阀和喷射控制装置的伺服油;另一个则是1000bar的作为柴油机燃料的重油,由曲轴通过三角凸轮带动高压共轨燃油泵把燃油加压到1000bar,然后由高压燃油管路流至高压公共供油管(如下图1中所示),再通过容积喷射控制单元(ICU),对燃油进行喷射控制,该控制单元由20Mpa的伺服油驱 船舶电喷主机故障分析(二) 电喷主机液压系统维护 电喷主机液压系统维护 1、 A、利用系统中自带的压力测量点,监视系统功能电动泵输出压力监测 电动泵正常的输出压力是175bar, 主机备车时这个压力可以在MOP上读出,也可以在主机备车时通过Pos.276检测点测出,此时能够观察建立压力时间,了解泵浦的工况。该压力可以通过310、311、312阀进行调整,但调整时316阀要打开。 B、主机自带泵输出压力监测 主机自带泵输出压力正常值等于系统压力,可以在MOP上读出,也可以通过Pos.203检测点测出,了解泵浦的工况。 C、系统压力监测,

液压系统常见故障分析及处理

液压系统常见故障分析及处理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。文中概括介绍了液压系统在日常使用中常见故障分析以及处理方法。 一.工作原理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。 二.液压系统的组成 液压传动系统通常由以下五部分组成。 1.动力装置部分。其作用是将电动机(或其它原动机)提供的机械能转换为液体的压力能。简单地说,就是向系统提供压力油的装置。如各类液压泵。 2.控制调节装置部分。包括压力、流量、方向控制阀,是用以控制和调节液压系统中液流的压力、流量和流动方向,以满足工作部件所需力(或力矩)、速度(或转速)和运动方向(或运动循环)的要求。 3.执行机构部分。其作用是将液体的压力能转化为机械能以带动工作部件运动。包括液压缸和液压马达。 4.自动控制部分。主要是指电气控制装置。 5.辅助装置部分。除上述四大部分以外的油箱、油管、集成块、滤油器、蓄能器、压力表、加热器、冷却器等等。它们对于保证液压系统工作的可靠性和稳定性是不可缺少的,具有重要的作用。 三.液压缸 液压缸是把液压能转换为机械能的执行元件。液压缸常见故障有:液压缸爬行、液压外泄漏、液压缸机械别劲、液压缸进气、液压缸冲击等。 1.液压缸爬行故障分析及处理 (1)缸或管道内存有空气,处理方法:设置排气装置;若无排气装置,可开动液压系统以最大行程往复数次,强迫排除空气;对系统及管道进行密封。 (2)缸某处形成负压,处理方法:找出液压缸形成负压处加以密封;并排气。 (3)密封圈压得太紧,处理方法:调整密封圈,使其不松不紧,保证活塞杆能来回用手拉动。 (4)活塞与活塞杆不同轴,处理方法:两者装在一起,放在V形块上校正,使同度误差在0.04mm以内;换新活塞。 (5)活塞杆不直(有弯曲),处理方法:单个或连同活塞放在V形块上,用压力机控直和用千分表校正调直。

船舶辅锅炉及造水装置

第七章船舶辅锅炉及造水装置 锅炉是船舶动力装置的重要组成部分,其通过燃料(一般为燃油)的燃烧把化学能转化为热能,使炉的水变成蒸汽(或热水)。在以蒸汽轮机为主机的船上,锅炉产生的过热蒸汽用于驱动船舶,故称其为主锅炉,这种形式在普通商船上已经很少采用;而在柴油机为主机的船上,锅炉产生的饱和蒸汽仅用于加热燃油、滑油以及满足生活使用,故称其为辅锅炉,“育鲲”轮便是如此。 商船一般设置1台饱和蒸汽压力为0.5~1.0MPa、蒸发量为0.4~2.5t/h的辅锅炉。而油轮则因为需要加热货油、驱动货油泵、清洗油舱等,需要大量蒸汽,故一般应设置两台辅锅炉。在大型客船上,因旅客人数较多,一般也设置两台辅锅炉,万一有一台损坏也不至于影响旅客和船员的日常生活。 船舶在航行过程中,主机的排气量很大,温度也很高。大型低速二冲程船舶柴油机的排气温度一般在300℃以上,四冲程中速柴油机的排气温度可达400℃左右。而水蒸气在压力为0.5 MPa时,其饱和蒸汽温度为165℃;压力为1.3MPa时,饱和蒸汽的温度也仅为194℃。所以,可以利用船舶主柴油机的排气余热来产生蒸汽。在船舶主柴油机的排气管上,一般都装设有废气锅炉。废气锅炉不但可以节约燃油,还可以降低柴油机排气噪音,起到节能减排之功效。 锅炉的主要性能指标有:蒸发量、饱和蒸汽压力、效率、受热面积、蒸发率、炉膛容积热负荷等。 “育鲲”轮在机舱顶部装有燃油锅炉和废气锅炉各一台。停泊时,由燃油锅炉提供蒸汽;航行时,主要由废气锅炉提供蒸汽,必要时燃油锅炉可同时使用。 第一节燃油锅炉 一、燃油锅炉的结构 燃油锅炉利用燃油燃烧时发出的热量来产生蒸汽。燃油锅炉本体一般包括炉膛、蒸发受热面、水腔和蒸汽空间等。锅炉本体上还应有一系列的附件,如水位计、安全阀、主蒸汽阀、炉水取样阀、上/下排污阀等。 传统的燃油锅炉主要有两种类型,即烟管锅炉和水管锅炉。若燃油燃烧产生的烟气在受热面管流动,管外是水,则该锅炉为烟管锅炉。若锅炉受热面管流动的是水或汽水混合物,而烟气在管外流动,则该锅炉为水管锅炉。近些年,一种新型的针形管锅炉在船上取得了广泛应用,“育鲲”轮燃油辅锅炉便是这种类型。 “育鲲”轮针形管式燃油锅炉为德国生产的SAACKE KLN/VM-2.5/7型,其结构如图7-1所示。该锅炉的圆筒形锅壳(汽水空间)10部为水腔B,上部是蒸汽空间A,下部设有圆筒形的炉膛3。炉膛底板11焊接在炉膛本体上,上面覆盖有耐火层12。 在炉膛顶部和汽水空间有一系列的垂直烟管4,有针形管5,每一个烟管及其部的针形管构成一个单元。流经各烟管的烟气最终汇聚到烟箱1,然后经顶部的烟囱7排至大气

液压系统常见的故障系统处理

1 常见故障的诊断方法 5。液压设备是由机械、液压、电气等装置组合而成的,故出现的故障也是多种多样的。某一种故障现象可能由许多因素影响后造成的,因此分析液压故障必须能看懂液压系统原理图,对原理图中各个元件的作用有一个大体的了解,然后根据故障现象进行分析、判断,针对许多因素引起的故障原因需逐一分析,抓住主要矛盾,才能较好的解决和排除。液压系统中工作液在元件和管路中的流动情况,外界是很难了解到的,所以给分析、诊断带来了较多的困难,因此要求人们具备较强分析判断故障的能力。在机械、液压、电气诸多复杂的关系中找出故障原因和部位并及时、准确加以排除。 5.1.1 简易故障诊断法 简易故障诊断法是目前采用最普遍的方法,它是靠维修人员凭个人的经验,利用简单仪表根据液压系统出现的故障,客观的采用问、看、听、摸、闻等方法了解系统工作情况,进行分析、诊断、确定产生故障的原因和部位,具体做法如下: 1)询问设备操作者,了解设备运行状况。其中包括:液压系统工作是否正常;液压泵有无异常现象;液压油检测清洁度的时间及结果;滤芯清洗和更换情况;发生故障前是否对液压元件进行了调节;是否更换过密封元件;故障前后液压系统出现过哪些不正常现象;过去该系统出现过什么故障,是如何排除的等,需逐一进行了解。 2)看液压系统工作的实际状况,观察系统压力、速度、油液、泄漏、振动等是否存在问题。

3)听液压系统的声音,如:冲击声;泵的噪声及异常声;判断液压系统工作是否正常。 4)摸温升、振动、爬行及联接处的松紧程度判定运动部件工作状态是否正常。 总之,简易诊断法只是一个简易的定性分析,对快速判断和排除故障,具有较广泛的实用性。 5.1.2 液压系统原理图分析法 根据液压系统原理图分析液压传动系统出现的故障,找出故障产生的部位及原因,并提出排除故障的方法。液压系统图分析法是目前工程技术人员应用最为普遍的方法,它要求人们对液压知识具有一定基础并能看懂液压系统图掌握各图形符号所代表元件的名称、功能、对元件的原理、结构及性能也应有一定的了解,有这样的基础,结合动作循环表对照分析、判断故障就很容易了。所以认真学习液压基础知识掌握液压原理图是故障诊断与排除最有力的助手,也是其它故障分析法的基础。必须认真掌握。 5.1.3 其它分析法 液压系统发生故障时,往往不能立即找出故障发生的部位和根源,为了避免盲目性,人们必须根据液压系统原理进行逻辑分析或采用因果分析等方法逐一排除,最后找出发生故障的部位,这就是用逻辑分析的方法查找出故障。为了便于应用,故障诊断专家设计了逻辑流程图或其它图表对故障进行逻辑判断,为故障诊断提供了方便。

船舶修理合同(标准版)

(合同范本) 姓名:____________________ 单位:____________________ 日期:____________________ 编号:YW-HT-012889 船舶修理合同(标准版) Ship repair contract

船舶修理合同(标准版) 船舶修理合同(样式一) 合同编号:委托方: 承修方:签订地点: 签订时间:年月日委托方委托承修方承担船修理工程,经双方协商一致,签订本合同,共同信守。 第一条工程范围 承修方根据委托方提出的《船舶修理工程单》,经双方勘验核对签字后作为本船修理工程范围的依据。 第二条加减帐工程 1.加帐工程应由委托方代表在开工后四分之一的工程期限内,以书面形式向承修方提出并经双方确认。若该加帐工程费用不超过本船总修理费的___%,且其单项工程不影响工程期限时,则承修方可按常规修理项目修理。若该加帐工程费用超过本船总修理费的___%,或委托方在开工四分之一工程期限后提出的加帐工程,且其单项工程将影响工程期限时,则按照具体情况,双方可对修理价格和工程期限另行协商确定,并签定补充协议。 2.减帐工程应由委托方代表以书面形式向承修方提出并经双方确认。若承修方对委托方的减帐工程项目已发生了成本费用,则该费用仍应由委托方承担。

第三条工程价款 本船修理费(不含加减帐工程)预定为人民币___百___拾___万___千___百___拾___元,其最终总价按本船完工出厂的实际修理项目结算。 第四条工程期限 本船定于___年___月___日进厂,___年___月___日开工,___年___月___日完工,工程期限共计___天,其中在船坞(船排和船台)时间为___天。 第五条工程验收 1.本船修理需提交船检局检验的项目应由委托方申请。单项工程修理完工或检验合格,由委托方指派代表签字验收。全部修理工程完工(或码头试验结束)后,由双方代表签署船舶修理完工《总验收书》作为交船的依据。 2.本船修理工程的技术要求和验收标准,按双方签订的《技术协议》执行。在试验和试航中,船检局及委托方提出的属承修方修理工程中的缺陷和遗漏项目,承修方应及时修复和完成。若不属承修方修理工程的范围而又需要承修方修理时,则可按加帐工程处理。 3.本船的码头试验、试航及其他有关试验,经报验合格后,承修方应在___天内向委托方提供有关证明文件资料。 第六条质量保证 1.本船修理完工验收后,经承修方修复的固定部件保修期为六个月,运动部件保修期为三个月。在保修期内,如属承修方的修理质量问题而引起的故障或缺陷,承修方应及时予以免费修复。 2.若因委托方提供的配件、备件和器材的质量问题或操作不当而引起的故障、缺陷和损失,则应由委托方负责。

船舶起货机的液压管路故障分析

渤海船舶职业学院 毕业设计(论文) 题目:船舶起货机的液压管路故障分析 系:动力工程系专业:轮机工程技术(船舶管系)姓名:xxx 指导教师:xxx 班级:xx 评阅教师:xxx 学号:xx 完成日期:xxxxxx

毕业设计说明书(论文)中文摘要 题目:船舶起货机的液压管路故障分析 摘要:船舶液压起货机液压系统的故障诊断和维修一直是船舶维修工作的难点之一。对该液压系统进行状态监测和故障诊断是一门综合技术。它可用于掌握系统各液压设备的实际运行情况, 判断系统质量的优劣, 预测故障的发展趋势及危害程度, 查找故障的原因、部位及异常程度, 实现设备的预防维修和正常维修, 从而提高系统各液压设备的可靠性。液压起货机液压系统常见的故障有以下几种系统没有压力或压力不足, 工作部件运行时爬行, 系统有噪声和振动, 工作机构的运行速度不够, 系统泄漏严重, 非正常发热和动作不能实现等。本文用了功率流的故障诊断方法,它与逻辑分析相结合, 能大大提高液压系统故障诊断的快速性和准确性, 可广泛利用于船舶液压系统的故障诊断方面。通过对液压起货机的故障分析得出除个别故障属设计缺陷所造成之外,绝大部分故障与液压油的污染或日常维护管理不善有关。所以,提高液压系统中油液的清洁度,建立必要的维护管理体系,提高维护管理人员的专业知识,是降低液压起货机故障发生率最为有效的途径。 关键词:液压起货机;故障;诊断

Abstract:Hydraulic Crane ship's hydraulic system fault diagnosis and maintenance of the ship repair work has been a difficult one. The hydraulic system condition monitoring and fault diagnosis is a comprehensive technology. It can be used for hydraulic control system of the actual operation of equipment, determine the merits of quality systems, forecast the development trend of failures and extent of harm, failure to find the reasons, location and extent of anomalies, and preventive maintenance of equipment and normal maintenance, improve the system of hydraulic equipment reliability. Hydraulic Crane hydraulic system failures are common following pressure or pressure system is not lack of working parts running reptiles, the system noise and vibration, the work of running speed is not sufficient, system leakage serious, non-normal fever and action Can not be achieved, and so on. In this paper, the power flow of fault diagnosis method, it is the logic of the combination, can greatly increase the hydraulic system failure and rapid diagnosis of accuracy and be widely used in the ship's hydraulic system fault diagnosis. Crane through the hydraulic machine that in addition to the failure of individual failure is caused by design flaws, failures and most of the hydraulic oil pollution or poor management of the daily maintenance. Therefore, the increase of oil in the hydraulic system of cleanliness, the establishment of the necessary maintenance, improve the maintenance and management expertise, hydraulic Crane is to reduce the incidence of failure of the most effective way. Key words:Hydraulic Crane Machine;Fault ;Diagnosis

船舶辅锅炉的故障分析

- -. 天津海运职业学院 毕业设计(论文) 题目船舶辅锅炉的故障分析 系名: 专业: 班级: 学号: 姓名:

指导教师:完成日期:

目录 目录 (3) 摘要 (4) 第一章船舶辅锅炉的概况 (6) 1.1 船舶锅炉的简介 (6) 1.2 船舶锅炉的基本构造 (7) 1.3 船舶锅炉的应用 (8) 1.4 船舶锅炉的工作过程 (9) 第二章船舶辅锅炉的常见故障 (12) 2.1 水系统故障及分析 (12) 2.1.1缺水 (12) 2.1.2超压 (12) 2.1.3满水 (12) 2.1.4 锅炉失水 (12) 2.1.5 炉水异常减少 (13) 2.2 燃烧方面故障机处理 (13) 2.2.1烟面着火 (13) 2.2.2不能点火 (14)

2.2.3.汽水共腾 (14) 2.2.4锅炉喘振 (15) 2.2.5炉内燃气爆炸 (15) 2.2.6 运行中突然熄火 (16) 2.2.7燃烧不稳定 (16) 2.3 燃烧器的相关故障 (16) 第三章结论 (19) 致谢 (21) 摘要 随着现代科学技术的不断应用,船舶辅助锅炉的自动化程度已经发生了质的变化。从当初的完全手工式锅炉发展到手工机械式、半自动式,一直到全自动锅炉,从火筒发展到火管再发展到水管,一直到现在广泛采用的针型管等。船舶辅助锅炉在管理安全、能源节约、环境保护、自动化程度、使用的可靠性,以及对燃料的适应性等方面有了更高的要求。本文在对使用船只其中应用较多的锅炉,在结构、维护保养和典型故障分析等方面做探讨和研究。 论文主要包含了以下的内容:船舶锅炉的主要蒸汽原理以及锅炉的主要构造,锅炉的种类和分类,锅炉的常见故障的分析和解决办法。 摘要:辅助锅炉;故障分析;船舶;原理

船舶修理单(中文)

序号项目编号工程内容报价 一般服务 1 G-001 船舶进/出坞次, 2 G-002 船舶在坞费,头二天, G-003 船舶在坞费,共天, G-004 船舶进/出坞附加费 - 坞外正常工作时间天, - 周末和/或 - 公共假日天, G-005 船舶载货进坞时的附加费 - 共带吨货, - 添加/移动支撑边墩个, - 添加/移动龙骨撑墩个, G-006 拖轮费(进/出坞/厂内移动) 为船舶进/出坞(厂)提供拖轮,需条拖轮, G-007 引水费 船舶进/出坞(厂)所需引水费 G-008 带缆费 提供船舶进坞带缆、舷梯/出坞解缆、移走舷梯服务, G-009 码头费 G-010 移船

序号项目编号工程内容报价 船舶“死船”从坞内移到修理码头需条拖轮、引水和解带缆,G-011 供岸电:440V,60Hz 接/解电缆费, G-012 供岸电 修理期间电费, G-013 供应淡水 接/解水管费, G-014 供应淡水 修理期间供应淡水M3, G-015 供应海水(压载水) 接/解水管费, G-016 供应海水(压载水) 供应海水M3, G-017 供应冰机冷却水(海水) 接/解水管费, G-018 供应冰机冷却水(海水) 供应海水M3, G-019 消防水龙 接/解水管费, G-020 消防水龙

序号项目编号工程内容报价 看护费, G-021 需要时,厂方派人临时看火, (注:具体修理工程中的看火,已包括在修理项目报价中)G-022 垃圾 清除废料及厨房垃圾, G-023 租借坞吊 供船舶内部使用, G-024 提供、接装电话供船使用 G-025 清退废油(油渣) 清退废油(油渣),到合法接受装置, G-026 移动式吊臂车 提供移动式吊臂车进行大舱内总体检查, 坞修工程 注: 平底面积:M2 轻重载水线间面积:M2 干舷面积:M2 具体施工面积由船舶机务监督、大副及施工方现场决定.

船用锅炉故障分析诊断

锅炉故障分析及处理一.水系统故障及分析 1.)缺水 a、锅炉自动给水时,如给水柜缺水或其它原因引起锅炉水位降至极限低水位时,锅炉自动报警,切断燃烧、锁定,只有在检查故障原因并排除后,锅炉才能重新投入运行。 b、当突然发现水位低水位,而自动控制系统又不报警,但此时在水位表中还可以看到水位时,则应立即手动补充给水和停炉检查自动控制系统的故障原因并予以排除。 c、当突然发现水位表已经看不到水位时,应立即停炉检查,不可进行手动补充给水,以免由于温度低的水位接触过热的锅炉受热面而引起材料或结构损坏。 2 .)超压 当在外部负荷不变的情况下,锅炉汽压超过允许使用压力而直至安全阀启跳时,应立即停炉检查原因。 若锅炉处于自动运行状态,则检查自动控制系统及有关控制器,找出原因予以排除。当锅炉处于手动运行状态,则立即纠正操作疏忽。 3. )满水 高过最高工作水位蒸汽大量携水,水击、腐蚀管路停止送汽,上排污,管路上泄水

4. )受热面管子破裂、结垢严重、水循环不良等导致管壁过热或腐蚀严重受热面温度降低前继续给水 堵管或换管,其他如给水系统进油,进海水,排污阀漏等 5.)锅炉失水 原因: 由于生冷却效果不好,回水温度过高,造成泵集聚了气体、给水泵气蚀严重或其他原因不能打水;锅炉给水阀不能止回,蒸汽反蹿进入泵体,造成不能打水;差压变送器故障,不能正确显示水位;锅炉水管严重漏泻;等等 处理方法: 1、发现锅炉失水应立即停炉.关闭水位计上通汽阀,如果“叫水”进入水位计则表明水位仍在水位计通水接管之上,可以迅速加大给水 2、如果关闭水位计上通汽阀“叫水“不来,千万不能向炉补水,待自然冷却后进一步检查受热面的损坏程度,并查明和排除失水的原因 6.)炉水异常减少 在正常条件下,产生异常低的水位,原因是水位计通水阀和通气阀开关有误;吹灰器、安全阀及锅炉受热面管泄露;给水泵、阀及自动给水装置发生故障。 7.)水位计玻璃破损

液压系统故障原因分析

液压系统故障原因分析 一、液压系统好长时间没有用,这次开机后,震动、噪音大。 可能是长时间放置,蓄能器氮气泄露,没起到减少脉动的作用。检查氮气的压力,补压或者更换皮囊。噪音是由于振动太大而产生的,没有了震动,就会消除。 二、油缸工作不正常,只能出不能回。 检查油缸的另一端是否出油,电磁阀是否换向,油缸内泄是不是特别严重。回油管路是否被异物堵死。 三、油缸启动压力高。 油缸启动压力高和油缸的制造质量(如活塞杆弯曲、缸筒弯曲等)、密封的形式和安装等因素有关。对于伺服油缸,启动压力高会影响其的动态特性。 对于普通油缸,启动压力的要求没有伺服油缸那样严格,但是也不能太高。一旦发现启动压力高,需要认真对油缸的零件进行尺寸复测,并检查密封的安装质量。 1、内部阻力过大。 2、外部执行部分有机械故障。 油缸的启动压力与油缸的设计结构有关,油口与活塞接触的受力面积,如油口的大小即活塞初始启动的受力面积,启动压力就高,油口与活塞接触间加工受力面积腔(启动压力腔)启动压力就很小。 四、液压系统油缸要求同步。 在支管路上加单向节流阀,价格比较便宜。要求比较高就加个分流节流阀,造价高,但效果较好。 五、液压系统维修率特别高。 主要原因是环境恶劣,液压系统是比较精密的设备,平常要多注意保养,油质要好,加油时要过滤,系统密封要好。各类检测设备要完善,需要有专业的人员对系统的工作情况进

行记录和维护。 六、液压缸动作不规则。 1、电磁阀换向不规则,需要检查电炉部分 2、电液伺服、比例阀的放大器失灵或调整不当。 3、也有就是油缸磨损严重,需修理或者更换。 4、可能是液压管路混杂有空气,需要找出混入空气的部位,然后清洗检查,重新安装和更换元辅件。

船舶修理管理规定

船舶修理管理规定 为规范公司船舶修理工作,明确修理管理工作程序,有效控制船舶修理成本,保证船舶高效营运,制定本规定。 船舶坞修及小修修理规定 1.对船舶修理级别的划分及工作内容 1.1坞修 1.1.1船舶船体(包括护舷材)除锈油漆换锌板、锌块、描水尺、水字、打水线。 1.1.2检查修理轴(尾轴)螺旋桨、导流管、舵,测量间隙留记录,必要时换新。 1.1.3检查全船水堵及测深仪传感头,船体外板测厚,绘草图留记录。 1.1.4检查修理海底门、通海阀、海底箅子除锈油漆换锌块。 1.1.5锚链出舱除锈油水罗松,检查锚链连接卸扣(或连接链环)、锚卸扣、转环,测量锚链直径,留记录,必要时倒头使用锚链。 1.1.6锚链舱除锈油漆。 1.1.7排除解决运行中对船体水下设施所造成的缺陷故障。 1.1.8解决排除非进坞不能施工的船体及船舱等部位所存在的问题。 1.1.9全船做全面的除锈油漆处理,其中除锈见白的等级要求

水线以下外100%,水线以上甲板以下为30%。 1.2小修 1.2.1主机部分 -取机油样及拆卸各种仪表报送公司机务管理人员。 -主机全部解体拆检、清洁、修理或更换,刚套冷却水密封情况检查,有问题抽缸套。 -测量调整各部数据并留记录,个别零部件可以作少量的更换(必须有数字依据并报审批),作更换记录。 -研磨进排气阀调整进排气阀间隙清理积碳。 -检查测量气缸与活塞,活塞与活塞环、刮油环,连杆大小端以及主轴承、推力轴承等的磨损使用情况,调整间隙留记录。 -检查凸轮、凸轮轴承、挺杆、导管各部间隙。 -检查、清洁调试油嘴、油泵启动阀、安全阀、注油器,必要时可以部分更换零部件。 -检查清洁供油、冷却、润滑,进排气,其系统的密封及工作情况。 -检查清洁、修理主机带动泵、调速器、空气分配器等附件。 -打开齿轮箱检查齿轮磨合、紧锁固定止退情况,检查调整定时。 -视情况交厂测试活塞肖及连杆螺栓的机械性能并留取检查测试报告。

船用液压维修之船用液压泵的故障分析和解决办法

同兴液压总汇:贴心方案星级服务 船用液压维修之船用液压泵的故障分析和解决办法? (同兴液压总汇) 船用液压维修之一:转速下降原因 马达内部柱塞与缸的配合不良或配流器间隙不当;主轴、轴承等零件损坏;液压泵故障方法液压辅件故障或失调。 排除方法 修理更换马达,并严格清洗液压油;更换零件维修、液压泵维修或调整液压辅件。 船用液压维修之二:输出转矩变小原因 马达内部柱塞与缸的配合不良或配流器间隙不当;主轴、轴承等零件损坏;液压泵故障、液压辅件故障或失调。 排除方法 修理更换马达,并严格清洗液压油;更换零件维修、液压泵维修或调整液压辅件。 船用液压维修之三:低速稳定性下降原因 液压油污染使马达内零部件磨损;液压泵等不正常,使供油等出现异常;液压系统内混入空气,使压力出现波动或液压油存在空穴现象。 排除方法 修理更换马达,并严格清洗液压油,检查有关元件、附件,恢复正常供油条件;排除系统的气体。 船用液压维修之四:噪声增大原因 系统压力流量变化超过额定值,马达内部零件;轴承、定子、主轴等损坏;液压油污染使运动部件摩擦力增大;运动部件出现松动、偏心;系统的液压冲击和油液空穴。 排除方法 查找排除压力增大原因,修理更换马达,清洗液压油,校准配合或更换部件;排除系统的气体。 船用液压维修之五:泄漏增加原因 机械振动(国际振动技术的领军企业挺进中国)引起紧固螺丝松动;密封件损坏;液压油污染磨损零部件。 排除方法 拧紧螺丝,更换密封件,更换修理相应的部件,清洗液压油。 事实上,液压系统中各种故障的产生,往往是有多种原因的。液压系统各种元件和附件工作状况的相互制约和影响,甚至管路的长短、粗细、走向、分布都与此有着密切的关系。以油量供应不足引起海水泵液压马达输出转矩下降为例,除了上述有关叙述外,还可能与电磁阀等元件的电控线路故障等有关。因此,以上所述的海水泵液压马达各类常见故障仅包括出现频率较高的一些原因。

船舶辅锅炉操作与运行

船舶辅锅炉操作与运行 一、辅锅炉点火前的准备工作 1.本体及汽水系统的准备 (1)检查锅炉本体,并使其处于工作状态 (2)检查给水系统,并使其处于工作状态 (3)检查蒸汽系统并使其处于工作状态 (4)检查凝水系统,并使其处于工作状态 (5)检查排污系统,并使其处于工作状态 (6)给水泵试运转正常 2.燃油供风报警系统检查 (1)检查燃油系统及燃油设备,并使其处于工作状态 (2)油泵试运转正常 (3)检查供风系统,开启风机试运转正常 (4)检查自动调节报警系统无缺陷 3.安全阀空气阀水位表检查 (1)检查并实验安全阀强开装置 (2)检查水位表,并关闭冲洗阀,开启通汽和通水阀 (3)开启压力表旋塞,压力表泄放阀,空气阀,待产生蒸汽后,关闭泄放阀和空气阀4.上水与关闭主停汽阀操作 (1)启动给水泵给水,并使水位达到水管锅炉水位计低水位处(火管锅炉水位至水位计高水位处) (2)关紧主停汽阀后,再开启1/4周 二、辅锅炉点火升汽 1.辅锅炉点火操作 (1)准备工作完成后,启动风机进行预扫风 (2)关小风门,点火,高火燃烧。(每燃烧0.5-1分钟,按下停止按钮,停烧10-15分钟,然后再起炉) (3)当放汽阀有汽,投入正常升汽燃烧 2.供汽前的准备与暖管送气操作 (1)空气阀有蒸汽出来后应关闭 (2)当汽压达到0.3-0.4Mpa时,停炉检查,曾拆国的人孔和手孔螺栓在拧紧一次 (3)在升汽的过程中应多次冲洗水位计 (4)当压力达到额定工作压力后应进行上排污一次,冲洗水位计 (5)稍开主停汽阀,开蒸汽系统泄水阀,当有大量蒸汽冲出时关闭之,全开主停汽阀,对外供汽 三、辅锅炉运行管理 1.本体.系统.仪表读数检查 (1)经常检查锅炉本体是否有参漏 (2)经常检查附属装置是否有参漏 (3)经常检查个系统及附件工作是否正常 (4)经常检查和观察个仪表所指示的参数是否正常 2.水位冲洗计操作 (1)开冲洗阀关通水阀冲洗汽连通管后关闭通气阀 (2)开通水阀,冲洗水连通管后关闭

液压系统故障诊断

第十一章液压系统故障诊断 第一节概述 液压系统的故障诊断是指在不拆卸液压设备的情况下,凭观察和仪表测试判断液压设备的故障所在和原因。液压设备的故障是指液压设备的各项技术指标偏离了它的正常状态,如管路和某些元件损坏、漏油、发热、致使设备的工作能力丧失,功率下降,产生振动和噪声增大等。 在使用液压设备时,液压系统可能出现的故障是多种多样的。即使是同一个故障现象,产生故障的原因也不一样,它是许多因素综合影响的结果。特别是新装置的液压设备,在试车时产生的故障现象,其原因更是多方面的。液压系统是一个密闭的系统,各元件的工作状态是看不见,摸不着的。因此,在进行故障诊断时,必须对引起故障的因素逐一分析,注意到其内在联系,找出主要矛盾,这样才能比较容易地排除故障。 液压系统的故障主要是由构成回路的液压元件本身产生的动作不良、系统回路的相 少液压设备出现故障的有力措施。 当然,液压系统的故障除由元件本身和工作油液的污染引起的以外,还因安装、调试和设计不当等原因引起的也较多。 液压系统的故障诊断,过去一般凭经验,随着液压测试技术的发展,国内外正研制和应用专用的测试仪和设备。如手提式测试器、液压故障诊断器和液压故障检修车等。应用这些专用仪器和设备能在现场很快查出液压元件及系统的故障,并进行排除。 近年来,在液压系统故障诊断与状态监测技术方面取得了较大进展。如利用振动信

号、油液光谱分析、油液铁谱分析、超声波泄漏指示器、红外线测试仪等来进行检测的技术,利用微机进行分析处理信号和预报故障的技术等的应用已有不少报道。而在港口工程机械液压系统中,普遍使用这些技术来进行故障诊断及状态监测,则还需经过有关各方面的努力才可能逐步实现。 第二节液压系统的故障预兆 液压系统产生故障以前,通常都有预兆。如压力失调、噪声过大、振动过大、温升过高,泄漏过大等等。如果这些现象能及时发现,并加以适当控制或排除,系统的故障就可以减少或避免发生。 一、液压系统的工作压力失调 压力失调常表现为压力不稳定、压力调不上去或调不下来、压力转换滞后、卸荷压力较高等。产生压力失调的原因主要有以下几个方面: 1.液压泵引起的压力失调 1)液压泵的轴向、径向间隙由于磨损而增大; 2)泵的“困油”未得到圆满解决; 3)泵内零件加工及装配精度较差; 4)泵内个别零件损坏等。 2. 液压控制阀引起的压力失调 1)在压力控制阀中: ①先导阀的锥阀与阀座配合不良; ②调压弹簧太软或损坏; ③主阀芯的阻尼孔被堵塞,滑阀失去控制作用; ④主阀芯被污物卡住在开口位置或闭口位置; ⑤溢流阀作远程控制用时,其远程连接通道过小或泄漏; ⑥溢流阀作卸荷阀用时,其控制卸荷的换向阀失灵等。 2)在方向控制阀中: ①油路切换过快而产生液压冲击; ②电磁换向阀换向推杆过长或过短等。 3.辅助元件引起的压力失调 1)油滤器堵塞; 2)液流通道过小,回油不畅; 3)油液粘度太稠或太稀等。 4.其他 1)机械部分未调整好,摩擦阻力过大; 2)空气进入系统; 3)油液污染; 4)电机功率不足或转速过低;

液压系统常见故障的成因及其预防与排除

在 在液压传动系统中,都是一些比较精密的零件。人们对机械的液压传动虽然觉得省力方便,但同时又感到它易于损坏。究其原因,主要是不太清楚其工作原理和构造特性,从而也不大了解其预防保养的方法。 液压系统有3个基本的“致病”因素: 污染、过热和进入空气。这3个不利因素有着密切的内在联系,出现其中任何一个问题,就会连带产生另外一个或多个问题。由实践证明,液压系统75%“致病”的原因,均是这三者造成的。 如果液压系统的制造质量没有问题,则造成故障的原因大多是预防保养不当,操作不当的因素一般较少。之所以如此,主要是由于对它的工作条件认识不足。如果懂得一些基本原理,弄明白导致故障的上述3个有害因素,就能长期地保证系统处于良好的工作状况。 1、工作油液因进入污物而变质 进入油液中的污物(如灰、砂、土等)的来源有: (1)系统外部不清洁。不清洁物在加油或检查油量时被带入系统,或通过损坏的油封或密封环而进入系统; (2)内部清洗不彻底。在油箱或部件内仍留有微量的污物残渣; (3)加油容器或用具不洁; (4)制造时因热弯油管而在管内产生锈皮; (5)油液储存不当,在加入系统前就不洁或已变质; (6)已逐渐变质的油会腐蚀零件。被腐蚀金属可能成为游离分子悬浮在油中。

污物会造成零件的磨损与腐蚀,尤其是对于精加工的零件,它们会擦伤胶皮管的内壁、油封环和填料,而这些东西损伤后又会导致更多的污物进入系统中,这样就形成恶性循环的损坏。 2、过热 造成系统过热可能由以下一种或多种原因造成: (1)油中进入空气或水分,当液压泵把油液转变为压力油时,空气和水分就会助长热的增加而引起过热; (2)容器内的油平面过高,油液被强烈搅动,从而引起过热; (3)质量差的油可能变稀,使外来物质悬浮着,或与水有亲合力,这也会引起生热; (4)工作时超过了额定工作能力,因而产生热; (5)回油阀调整不当,或未及时更换已损零件,有时也会产生热。 过热将使油液迅速氧化,氧化又会释放出难溶的树脂、污泥与酸类等,而这些物质聚积油中造成零件的加速磨损和腐蚀,且它们粘附在精加工零件表面上还会使零件失去原有功能。油液因过热变稀还会使传动工作变迟缓。 上述过热的结果,常反映在操纵时传动动作迟缓和回油阀被卡死。 3、进入空气 油液中进入空气的原因有下列几种: (1)加油时不适当地向下倾倒,致使有气泡混入油内而带入管路中; (2)接头松了或油封损坏了,空气被吸入; (3)吸油管路被磨穿、擦破或腐蚀,因而空气进入。 空气进入油中除引起过热外,也会有相当数量空气在压力下被溶于油内。如果被压缩的体积大约有10%是属于被溶的空气,则压力下降时便会形成泡

船舶修理单(英文)

GENERAL SERVICE 1 G-001 Vessel docking/undocking time(s) 2 G-002 Charge for the first two days in dry-dock, G-003 Charge for the rest days in dry-dock, G-004 Surcharge for docking/undocking - outside normal working hours, - weekend and/or - public holidays, days, G-005 Surcharge for docking vessel in a partly loaded condition - carrying ton(s) of cargo, - fitting/removal of additional piece(s) of side blocks, - fitting/removal of additional piece(s) of keel blocks, G-006 Towage (dock yard moves) Provide for vessel arrival and sailing, Required tugs , G-007 Pilotage Provide for vessel arrival and sailing G-008 Riggers Provide to handle mooring lines and gangway on arrival, shifting and sailing. G-009 Wharfage G-010 Shifting Vessel to be shifted from dry-dock to repair quay without ―Engine‖ with assistance of tugs, pilots and line handlers. G-011 Electric shore power supply, 440V, 60Hz, Temporary connection/disconnection, G-012 Electric shore power supply, 440V, 60Hz, during repair period, G-013 Fresh water from shore, temporary connection/disconnection G-014 Fresh water supply from shore, G-015 Seawater (ballast) from shore, temporary connection/disconnection, G-016 Seawater ballast supply from shore, G-017 Cooling-water (seawater) from shore for refrigeration systems. Temporary connection / disconnection, G-018 Cooling water (seawater) supply, G-019 Fire line Temporary connection/disconnection, G-020 Fire line Maintenance and hire,

船舶电喷主机故障分析

船舶电喷主机故障分析

船舶电喷主机故障分析(一) 船用电喷主机的原理及日常管理浅析 船用电喷主机的原理及日常管理浅析 摘要:随着船舶智能化的日益发展以及世界能源危机和环境污染的加重,为了节约能源、降低排放,提高柴油机燃烧工况,电控喷射技术得到了飞速的发展。而高压共轨燃油喷射系统既对满足柴油机的经济性能,又对实现低污染、低排放发挥了重要作用,电控共轨柴油机的排放已达到相当理想的状态。本文主要针对目前市场两大船用主机的船用柴油机高压共轨系统的结构及组成,就电子控制系统的控制策略进行了叙述以及介绍了高压共轨系统在船用柴油机领域的应用实例与管理。本文先就电喷船用主机的电喷共轨原理进行了浅析,并列举了船用电喷柴油主机在使用过程中电喷共轨系统可能发生的几点故障,展开了分析。 关键词:船用柴油机电喷共轨原理分析 1两大电喷主机的共轨工作原理分析【船舶电喷主机故障分析】 1.1 Wartsila RT-flex共轨柴油机

观察MOP上的双壁管压力,如果压力明显上升,表明双壁管有泄漏。如何确定具体的泄漏位置呢?主机停止工作,起动电动泵,关闭1缸和7缸的430阀,打开1~7缸的431阀。通过Pos.332检测点测量压力双壁管中的压力,待压力泄放光,关闭1~7缸的431阀,开启1缸和7缸的430阀,通过Pos.332检测点测量压力双壁管中的压力,如果压力持续上升,表明漏的部位在 1~7缸之间,然后用排除法,最终确定具体的泄漏位置。同理,也可查出6~12缸双壁管的泄漏部位。 4、更换FIVA阀【船舶电喷主机故障分析】 主机停止工作,停主滑油泵、电动泵放手动 关闭420阀,打开421阀 通过Pos.425检测点测量系统压力 待压力泄放完,就可拆装FIVA阀【船舶电喷主机故障分析】 更换工作完成后,复位各阀,但开启420阀必须慢慢A、B、C、D、E、 进行 5、上述工作基本上都要求主机停车、停泵进行,这主要是出于安全考虑。虽然说明书上讲,在主

液压舵机的故障分析.

液压舵机的故障分析 [摘要]众所周知,船舵的作用是用来改变船舶方向和保持航向的,它的好坏直接影响着整个船舶的航行,所以对船舶舵机的安全检查是轮机人员的经常性进行的最重要的工作之一。本文希望通过对船舶舵机技术规范的介绍以及船舶舵机容易出现的故障分析和对船舶舵机进行安全检查的重点的论述,以及对一些典型案例的介绍分析,使大家对舵机的故障分析和检修提供一些借鉴的经验,使轮机人员在进行舵机安检工作时能够有目标,有针对性的检查。这样既可以节省检查的时间,又可以全面的对舵机进行检查,提高工作效率。这样可以有效的减少甚至避免海事事故的发生,船舶故障大部分原因是认为造成的,只有提高轮机人员的技术水平,才能有效的避免因船舶故障引起的海事事故。 [关键词] 船舶;液压舵机;故障分析

Trouble Shooting of Hydraulic Steering Gear [Abstract]As we all know, steering gear is used to change direction and maintain the course, it will have a direct impact on the entire ship's voyage, the ship's steering gear is a safety inspection of the turbines for the regular staff of the most important work . This article hope that the steering gear through the technical specifications of the ship and the ship's steering gear easy on the failure of the ship steering gear and carry out safety inspection of the focus of the exposition, and some typical cases on the analysis so that everyone on the steering gear failure analysis Maintenance and provide some useful experience and make turbines security personnel working in the steering gear to have goals, targeted inspections. This can save time for inspections, but also a comprehensive inspection of the steering gear, raise work efficiency. This can effectively reduce or even avoid the occurrence of maritime accidents, ship most of the reasons for failure is that the only improve the technological level of turbines, can effectively prevent the failure of the ship caused by maritime accidents. [Key words] Ship;Hydraulic steering;Failure analysis

相关文档