文档库 最新最全的文档下载
当前位置:文档库 › Superexchange coupling and spin susceptibility spectral weight in undoped monolayer cuprate

Superexchange coupling and spin susceptibility spectral weight in undoped monolayer cuprate

Superexchange coupling and spin susceptibility spectral weight in undoped monolayer cuprate
Superexchange coupling and spin susceptibility spectral weight in undoped monolayer cuprate

a r

X i

v

:c o

n

d

-

m

a t

/

9

7

8

6

v

1

[

c o

n

d

-

m a

t

.

s

t

r

-

e

l

]

7

A u

g

1

9

9

7

Superexchange coupling and spin susceptibility spectral weight in undoped monolayer cuprates P.Bourges (1),H.Casalta (1,2),A.S.Ivanov (2,3)and D.Petitgrand (1)1-Laboratoire L′e on Brillouin,CEA-CNRS,CE Saclay,91191Gif sur Yvette,France 2-Institut Laue-Langevin,156X,38042Grenoble Cedex 9,France 3-Kurchatov Institute of Atomic Energy,123182Moscow,Russia Abstract A systematic inelastic neutron scattering study of the superexchange in-teraction in three di?erent undoped monolayer cuprates (La 2CuO 4,Nd 2CuO 4and Pr 2CuO 4)has been performed using conventional triple axis technique.We deduce the in-plane antiferromagnetic (AF)superexchange coupling J which actually presents no simple relation versus crystallographic parameters.The absolute spectral weight of the spin susceptibility has been obtained and it is found to be smaller than expected even when quantum corrections of the AF ground state are taken into account.PACS numbers:75.40.Gb,75.30.Et,25.40.Fq,74.72.Dn

Typeset using REVT E X

The copper spins properties of the insulating cuprates are of particular interest as they give insights into the microscopic description of the high-T C superconductors.Undoped par-ent compounds of many high-T C cuprates are usually described as Mott-Hubbard insulators. They exhibit an antiferromagnetic ordering below a N′e el temperature ranging between250K and420K.This N′e el state is well accounted for by a spin-1

2Z c Ja (where a is the square lattice constant,S=1

30%is presumably due to covalent e?ects between copper d-orbitals and oxygen p-orbitals.

High quality La2CuO4,Nd2CuO4and Pr2CuO4single crystals of similar volume of about 0.5cm3were used.Neodymium and Prasedymium-based samples exhibit a N′e el temperature around250K whereas the AF transition occurs just above room temperature,320K,in the Lanthanum-based sample[5].The samples were mounted with the reciprocal directions (110)and(001)within the scattering plane[these directions are referring to the tetragonal reciprocal lattice with Q=(h,h,q c).We used the same axis in the case of orthorhombic La2CuO4].Inelastic neutron scattering has been performed on the triple axis spectrometers 1T and4F1,installed respectively on thermal and cold source beams at the Orph′e e reactor, Saclay.The(002)re?ection of Pyrolytic Graphite was used for both monochromator and analyser.No collimation was used and a?lter(Graphite one on1T and Beryllium one on 4F1)was placed on the scattered beam to remove higher order contaminations.

A special scattering geometry[6]was used in order to align the resolution spectrometer ellipsoid along the AF line,i.e.the(001)https://www.wendangku.net/doc/186909260.html,ly,this focalisation allows us to separate counterpropagating spin-waves at relatively low energies as compared with standard geometries[7,8].We extend this technique down to15meV.For such a geometry,only one q c value is accessible for a?xed energy transfer and a?xed?nal neutron energy.To be powerful,this geometry also requires very good sample mosaicities.

We now present q-scans(constant energy transfer scan)along the(110)direction in the three di?erent monolayer cuprates:La2CuO4,Nd2CuO4and Pr2CuO4.Figure1depicts q-scans measured at an energy transfer around60meV using the same experimental setup.The double peak structure is clearly seen in La2CuO4and in Pr2CuO4whereas only a?attened peak shape is observed in Nd2CuO4.This di?erence emphasizes a larger spin velocity in Nd2CuO4.In order to improve at low energy the determination of the spin velocity,we have applied in Pr2CuO4this focalised geometry down to E=14.5meV,where a?attened peak shape is found(Fig.2).Our data in Pr2CuO4represent a clear improvement of a previous measurement[10].

Here,we focus on the low energy part of the spin wave spectrum in the limit where the

dispersion relation for AF magnons is linear(ˉhω<<2Z c J).However,at low energy,the magnon spectrum exhibits gaps which are either related to planar anisotropy or to interlayer interactions[7].The usual linear relation is thus only recovered for energies slightly larger than these gaps.Due to the large intraplane superexchange interaction in cuprates,this condition is ful?lled for energy above~12meV(see Fig.2).Above this energy,the spin-wave neutron cross section per formula unit can be written in terms of the dynamical spin susceptibility[11,12],χ(Q,ω),as

d2σ

π(gμB)21

Q2

)

Imχ(Q,ω)

c

q c is the component along the(001)direction of the scattered wavevector,Q.For an AF single layer cuprate,the imaginary part of dynamical susceptibility of the low energy spin wave excitations is given in absolute units by[12]

Imχ(Q,ω)=SπZχZ c(gμB)2√

qa

δ[ω?cq](2)

where q is the in-plane wavevector component along the(110)direction referred to the AF wavevector.The quantum corrections associated to the perpendicular susceptibility[1],Zχ, is included.The convolution product of the Gaussian resolution ellipsoid by the spin-wave cross section(1)with the spin susceptibility(2)gives i)the dispersion relation of magnons ii) the spectral weight of Imχ.The q-scans have been?tted by this convolution product with 4?tting parameters:the magnon in-plane wavector q,the amplitude of Imχand a sloping background.We note that the observed experimental q-width along the(110)direction merely corresponds to that of the resolution.

In Pr2CuO4,the in-plane magnon dispersion is reported in Fig.2over a wide energy range.As expected,a linear dispersion typical of AF excitations is found with a slope which is the spin wave velocity,c=0.80eV.?https://www.wendangku.net/doc/186909260.html,parison of the di?erent q-scans(?g.1)gives 0.85eV.?A for La2CuO4in agreement with a previous determination by high energy neutron experiments[8]and c=1.02eV.?A for Nd2CuO4(see Table(I)).The magnon wavevector,

and so the spin velocity and the AF intraplane superexchange,are then found larger for Nd2CuO4by about20%as compared with the two other systems.

The spin susceptibility in absolute units has been experimentally estimated by a stan-dard calibration[4]using acoustic phonons,whose dynamical structure factor is known by lattice dynamics.The magnetic part has been measured from high energy scans(Fig.

1)as well as non-resolved low energy q-scans.In order to compare the observed spin susceptibility in absolute units with its theoretical predictions[1],we calculate the aver-age of(2)over the two dimensional(2D)q-space perpendicular to the(001)direction,

?χ2D= d q

2D

Imχ(Q,ω)/

d q

2D

.In our experimental energy range,?χ2D is almost indepen-

dent of energy:?χ2D?S(gμB)2Zχ/2J.Values for?χ2D are listed in Table(I).In La2CuO4,it compares well with two previous measurements[2,3].On the one hand,Itoh et al.[2]have reported an e?ective value of S=0.17which is reduced from the spin number,S=1/2.That agrees with our observed spin susceptibility,2.7μ2B/eV(see Table(I)),which is reduced by the same factor from the classical spin susceptibility(without quantum corrections),?χclass

2D?S(gμB)2/2J=7.5μ2B/eV.On the other hand,Hayden et al.[3]have obtained ?χ2D=2.5μ2B/eV which agrees in errors with our value[14].

The perpendicular susceptibility,χ⊥,deduced from our INS measurements is then ob-tained by applying the relationχ⊥=?χ2D/4S(gμB)2[1]and listed in Table(I).χ⊥can be independently deduced from the spin sti?ness,ρs,applying standard hydrodynamics rela-tion in the Heisenberg model(see Table(I)).Let us recall that the spin-sti?ness constant has been obtained in the Heisenberg model from the two-dimensional correlation lengthξ2D above the N′e el temperature as,ξ2D∝exp(2πρs

perature ordered magnetization value[7].Consequently,the spectral weight of Imχdoes not solely determine the quantum corrections for the spin susceptibility.

We now deduce J as well as the quantum corrections.Since there are more unknown parameters that the measured ones,we need to use theoretical estimation for one parameter. Among the measured magnetic parameters,the spin wave dispersion curve is presumably the less altered by frustration e?ect and disorder[20].The quantum correction to the spin wave velocity Z c estimated from di?erent theoretical approaches[1,20]likely converges to a best value of Z c=1.18[16].J is then con?dently deduced from the spin wave velocity using this value(see Table(I)).Two other parameters are related to J.On the one hand, the spin-sti?ness constant is usually modelled asρs=Zρs JS2[20](where Zρs accounts for quantum e?ects).On the other hand,a high frequency broad peak is observed in Ra-man scattering which is likely interpreted as two-magnons processes with opposite momenta [21,22].By means of series expansions technique[23],the moments of the Raman intensity (the frequency of the spectrum maxima M1as well as lineshapes)have been related to J,for instance M1/J=3.58.The quantum corrections for the spin sti?ness Zρs,the perpendicular susceptibility Zχ,and the ratio between the?rst Raman scattering moment and J have been obtained and also listed in Table(I).

Surprisingly,only the quantum corrections found in La2CuO4are in agreement with the theoretical predictions[1]either based on series expansions[20,23]or based on1/S expansion linear spin-wave theory[16]:Zρs=0.72and Zχ=0.51andωR/J=3.58.The two other systems display larger quantum corrections forρs andχ⊥may be related to their di?erent low energy spin excitations[9].An even larger discrepancy is observed for the spin pair Raman scattering measurements.Consequently,the neutron measurements which determineρs as well as the light scattering experiments only give a rough estimation of J.

We now relate the copper spin intraplane superexchange determined by INS with the crystallographic distances between copper atoms(Figure3).Clearly,J does not exhibit a monotonous dependence versus the bonding Cu-O-Cu length in contrast to what could be expected.This outlines that the classical superexchange theory being only related to the

Cu-O-Cu bonding is a too simple description.Moreover,it has been recently stressed that the large enhancement of J is actually caused by another structural unit,namely the Cu-O-O triangle[24].Empirically,one can distinguish distorted tetragonal lattice and perfect square one.Indeed,J appears to decrease sharply with the distances between copper atoms in Nd2CuO4and in Pr2CuO4(both having the T’-phase,i.e.linear Cu-O-Cu bonding).Note that the largest J is found in Nd2CuO4where the Cu-O distance exactly corresponds to the sum of copper and oxygen ionic radius.The two other systems do not belong to the same family as the bonding Cu-O-Cu is not linear:it is distorted perpendicular to the plane in YBa2Cu3O6+x[7],or even in both directions in La2CuO4[25]due to the tilt of the CuO6 octahedra.Therefore,J turns out to be extremely sensitive function of Cu-O-Cu bonding angle.

In conclusion,by means of inelastic neutron scattering experiments using conventional triple-axis technique,we deduce J and the quantum corrections of the AF ground state in undoped monolayer cuprates.The in-plane antiferromagnetic superexchange coupling J does not exhibit a monotonous behaviour versus the bonding Cu-O-Cu length.The absolute spectral weight of the spin susceptibility is smaller than expected from quantum corrections[1],likely due to covalent e?ects.These results provide a necessary ground for the understanding of antiferromagnetism in the high-T C superconductors. Acknowledgments

We wish to thank S.Aubry.G.Collin,B.Hennion,S.V.Maleyev,and L.P.Regnault for stimulating discussions.We also acknowledge L.Pintschovius and M.Braden for their help concerning the La2CuO4sample.

REFERENCES

[1]E.Manousakis,Rev.Mod.Phys.63,1(1991),and references therein.

[2]S.Itoh,et al J.Phys.Soc.Jpn.,63,4542(1994).

[3]S.M.Hayden,et al Phys.Rev.Lett.76,1344(1996).

[4]P.Bourges,et al,cond-mat/9704073,submitted to Phys.Rev.Lett.(1997).

[5]H.Casalta,et al,Physica B,234-236,803(1997).

[6]S.Shamoto,et al,Phys.Rev.B,48,13817(1993).

[7]J.Rossat-Mignot,et al in Selected Topics in Superconductivity,265(World Scienti?c,

Singapore,1993).

[8]G.Aeppli,et al,Phys.Rev.Lett.,62,2052(1989).

[9]A.S.Ivanov,et al,Physica B,213-214,60(1995).

[10]I.W.Sumarlin,et al,Phys.Rev.B,515824(1995).

[11]S.W.Lovesey,Theory of Neutron Scattering from Condensed Matter,Vol2,(Claren-

don,Oxford,1984).The kinematic factor k F/k I has been omitted in(1)for a sake of simplicity.

[12]The spin susceptibility is associated with?uctuations of a single spin component in

concordance with ref[4]:χ(Q,ω)=χαβ=?(gμB)2i

[15]S.Chakravarty,et al,Phys.Rev.B,39,2344(1989).

[16]J.Igarashi,Phys.Rev.B46,10763(1992).

[17]B.Keimer,et al,Phys.Rev.B,46,14034(1992).

[18]T.R.Thurstson,et al,Phys.Rev.Lett.,65,263(1990).

[19]T.A.Kaplan,et al,Phys.Rev.B45,2565(1992).

[20]R.R.Singh,et al,Phys.Rev.B,40,7247(1989).

[21]P.E.Sulewski,et al,Phys.Rev.B,41,225(1990).

[22]I.Tomeno,et al,Phys.Rev.B,43,3009,(1991).

[23]R.R.Singh,et al,Phys.Rev.Lett.,62,2736(1989).

[24]H.Eskes,et al,Phys.Rev.B,48,9788(1993).

[25]M.Braden,et al,Physica C,223,396(1994).

Parameter T N c?χ2D?χ⊥(INS)2πρs?χ⊥J Zρs Zχ=Zρs/Z2cωR/J Units K meV?Aμ2B/eV eV?1meV eV?1meV

La2CuO4320850 2.70.34150a0.481330.720.52 3.5c Nd2CuO42461020 1.80.22137b0.331550.640.46 2.5c Pr2CuO4252800 2.30.29114b0.441210.60.43 3.1d TABLE I.Magnetic parameters in three undoped single layer cuprates.The value of the spin sti?ness has been deduced from previous energy-integrated neutron scattering experiments:a from [17],b from[18,10].ωR is the?rst moment of the Raman scattering data:c from[21],d from[22]. Note that T N is not simply related to J due to the2D character of the magnetic interactions in cuprates[7].

FIG.1.q-scans across the magnetic line aroundˉhω?60meV in three di?erent monolayer undoped cuprates.Typical counting time is1hour per point.Full lines correspond to the convo-lution product of the Gaussian resolution ellipsoid by the spin-wave cross section(1)with the spin susceptibility(2).

FIG.2.Left:q-scan across the magnetic line at ˉh ω=14.5meV in Pr 2CuO 4(see Fig.1for details).Right:In-plane magnon dispersion in Pr 2CuO 4.At low energy,the degeneracy between out-of-plane and in-plane spin components is removed due to planar anisotropy leading to an out-of-plane spin gap of about 8meV [9].Above ~12meV,both spin components become very rapidly indistinguishable with increasing the energy.Open circles correspond to a previous measurement [10].

)N P L A N E S U P E R E X C H A N G E * M E 6 A

FIG.3.In-plane superexchange interaction versus Cu-O-Cu bonding length in di?erent

cuprates.The value for the bilayer system YBCO is from [6].

304与443性能差异比较

304与443性能差异比较 价格对比:一、不锈钢304 和443 价格对比: 1. 材质/厚度SUS443/2B SUS304/2B 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.5 1.8 2.0 2.2 2.5 3.0 >3.0 19000 18500 17500 16800 16800 16600 16500 16500 16300 16100 16100 16000 16000 16000 16000 17000 25100 23600 22800 22500 22400 22200 22100 22100 21900 21700 21700 21700 21700 21700 21700 23200 *单位元/吨,截止至2011-9-30 最新市场价格 不锈钢(21CT)简单介绍:二、304 不锈钢和443 不锈钢(21CT)简单介绍: 304 是一种通用和常见的钢种,我们习惯叫不锈钢304(stainless steel 304),为了保持不锈钢所固有的耐腐蚀性,钢必须含有12%以上的铬和8%以上的镍,304 不锈钢板被广泛使用于生活中,例如:一些高档的不锈钢餐具,户外的栏杆等,也用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。但国际镍价的不断波动,304 的价格也受到影响,因为镍是有限资源,所以304 不锈钢的总体价格趋势都是不断上升的,这也是制约304 发展的重要因素之一。针对目前国际市场不锈钢原料波动大,竞争日益激烈,用户对降低用料成本的要求越来越迫切,终端用户对不锈钢材料要求更细致、所以迫切需要一种可以替代不锈钢304 材料的产品,我司和日本JFE、太钢合作开发的21CT(牌号:SUS443)的出现,正好解决了这个问题。21CT 于2005 年9 月研制成功,2006 年 1 月开始正式提供试样件供客户测试,2006 年11 月已经被广大消费者接受和使用。 不锈钢(21CT)的主要特点:三、443 不锈钢(21CT)的主要特点: 1、铬含量提高至21%,具有和不锈钢304 同样优异的腐蚀性能,耐点蚀性优于304;、同样优异的腐蚀性能,,; 2、因为降低了碳、氮等不纯物质,并添加了钛、铜元素,大大提高了其抗腐蚀的能力;、因为降低了碳、氮等不纯物质,并添加了钛、铜元素,大大提高了其抗腐蚀的能力; 3、21CT 属铁素体400 体系,牌号SUS443,具有铁素体不锈钢特征,机械特性较SUS430 优越;、体系,优越;,具有铁素体不锈钢特征, 4、因为不添加镍,所以价格比304 便宜30%左右,可更好地控制成本;、因为不添加镍,左右,左右可更好地控制成本; 5、21CT 的热导率比304 不锈钢高约30%,加上良好的导磁性能,在烹饪产品的应用上更显优势;、,加上良好的导磁性能,在烹饪产品的应用上更显优势; 6、由于铁素体的固有特性,深加工后的部件不会因内应力的释出而产生延迟破裂,所以一般不需要作退火处理,可以有效降低加工成本。、由于铁素体的固有特性,深加工后的部件不会因内应力的释出而产生延迟破裂,所以一般不需要作退火处理 ,可以有效降低加工成本。 佛山盟泰金属材料有限公司 443(21CT)的应用领域:四、不锈钢443(21CT)的应用领域: 2 厨具:洗碗池、烧烤炉、厨房设备、壶、灶台、餐具、抽油烟机、炉面板、烹调锅… 电器:洗碗机、电饭煲、微波炉、洗衣机、冷冻箱、搅拌机、咖啡机… 运输:冷冻集装箱、汽车排气系统零件、热交换器… 建筑:升降机、电动扶梯、屋顶、门窗配件、五金杂件、装饰管、建筑五金… 其它:ERW 管、水箱、水管、燃烧网、烧烤网、消声器… 目前我司443 材料的主要应用领域(不锈钢板居多):电梯行业、小家电行业、食品设备、餐具行业、厨房工程等。 化学成分对比:五、不锈钢304 VS 21CT 化学成分对比: 钢型21CT SUS304 铬21 18.2 镍8.1 钼钛0.3 碳0.008 0.06 氮0.01 0.04 铜0.43 -

不锈钢硬度的检测方法

不锈钢硬度的检测方法 不锈钢产品按交货形状分类可分为不锈钢板、不锈钢带、不锈钢管、不锈钢棒、不锈钢丝等。如果按照金相组织分类则可分为以下五种类型:奥氏体不锈钢、铁素体不锈钢、奥氏体-铁素体不锈钢、马氏体不锈钢和沉淀硬化型不锈钢。各种不锈钢材料都是以退火、调质、固溶、淬火或回火等各种不同的热处理状态供货的。 1 不锈钢的力学性能 不锈钢材料的力学性能十分重要,它关系到以不锈钢为原料而进行的变形、冲压、切削等加工的性能和质量。因此,几乎所有的不锈钢材料都要求进行力学性能测试。力学性能测试方法主要分两类,一类是拉伸试验,一类是硬度试验。拉伸试验是将不锈钢材料制成试样,在拉伸试验机上将试样拉至断裂,然后测定一项或几项力学性能,通常仅测定抗拉强度、屈服强度、断后伸长率和断面收缩率。拉伸试验是金属材料最基本的力学性能试验方法,几乎所有的金属材料,只要对力学性能有要求,都规定了拉伸试验。特别是那些形状不便于进行硬度试验的材料,拉伸试验成为唯一的力学性能检测手段。 硬度试验是将一个硬质压头按规定条件缓慢压入试样表面、然后测试压痕深度或尺寸,以此确定材料硬度的大小。硬度试验是材料力学性能试验中最简单、最迅速、最易于实施的方法。硬度试验是非破坏性的,材料硬度值与抗拉强度值之间有近似的换算关系。材料的硬度值可以换算成抗拉强度值,这一点具有很大的实用意义。 由于拉伸试验不便于测试,并且由硬度换算到强度很方便,因此人们越来越多地只测试材料硬度而较少测试其强度。特别是由于硬度计制造技术的不断进步和推陈出新,一些原来无法直接测试硬度的材料,如不锈钢管材、不锈钢线材、极薄的不锈钢材板和不锈钢带材等,现在都已经可以直接测试硬度了。所以,存在一个硬度试验逐渐代替拉伸试验的趋势。 在不锈钢材料的国家标准中大多数都同时规定了拉伸试验和硬度试验。小部分不便于进行硬度试验的材料,例如不锈钢管材和线材只规定了拉伸试验。在不锈钢标准中,一般都规定了布、洛、维三种硬度试验方法,测定HB、HRB(或HRC)和HV硬度值,规定三种硬度值只测其一即可。 奥氏体不锈钢和奥氏体—铁素体不锈钢通常都以固溶状态供货,铁素体不锈钢通常以退火状态供货,标准中规定了这些材料硬度的上限值。马氏体不锈钢一部分以退火状态供货,标准中规定了硬度的上限值,另一部分马氏体不锈钢以淬火及回火状态供货,标准中规定了硬度的下限值。沉淀硬化型不锈钢当以固溶状态供货时,标准中规定了硬度的上限值,以时效状态供货时,标准中规定了硬度的下限值。总之,各种牌号不锈钢材料的硬度被规定为不高于某个硬度值或不低于某个硬度值。 中国标准GB/T 4239《不锈钢和耐热钢冷轧钢带》规定了不锈钢冷轧带材的力学性能,如表一~表六所示。标准中规定:硬度检验要根据带材的尺寸和状态选择其中一种方法。

304和202不锈钢的硬度分别是多少

304和202不锈钢的硬度分别是多少 不锈钢产品按交货形状分类可分为不锈钢板、不锈钢带、不锈钢管、不锈钢棒、不锈钢丝等。如果按照金相组织分类则可分为以下五种类型:奥氏体不锈钢、铁素体不锈钢、奥氏体-铁素体不锈钢、马氏体不锈 钢和沉淀硬化型不锈钢。各种不锈钢材料都是以退火、调质、固溶、淬火或回火等各种不同的热处理状态供 货的。 在不锈钢硬度检测方面,洛氏硬度计是一个值得优先采用的仪器,它设备简单,易于操作,无需专业检验员,可以直接读出硬度值,试验效率高,十分适合工厂使用。 关于采用洛氏硬度计进行不锈硬度的检测,在不锈钢标准中一般只规定了HRC和HRB两个标尺。对于退火的不锈钢材料,一般都对应于每一个牌号的不锈钢品种规定了硬度值应不大于某一个HRB值,一般在88-96HRB范围内。而对于淬火回火的马氏体不锈钢,一般都对应于每一个牌号的不锈钢品种,规定了硬度值不小于某一个HRC值,一般在32-46HRC范围内。在不锈钢标准中只规定了采用洛氏硬度计HRB和HRC标尺。其实表面洛氏硬度计也完全可以应用于检测不锈钢。因为它的原理与洛氏硬度计完全相同,只是试验力较小而已。并且其硬度值可以很方便地换算成HRB、HRC或者布氏硬度HB、维氏硬度HV。相应的换算表在本公司的网站中可以找到,这些换算表来源于美国标准ASTM或国际标准ISO。对于薄壁细不锈钢管、薄不锈钢板、薄不锈钢带、细不锈钢丝等,采用表面洛氏硬度计会非常方便。特别是本公司最新研制的便携式表面洛氏硬度计、管材洛氏硬度计,可以对薄至0.05mm的不锈钢板、不锈钢带以及细至?4.8mm的不锈钢管进行快速、准确的硬度检测,使得过去在国内难以解决的问题迎刃而解。

不锈钢硬度换算表

不锈钢硬度换算表 作者:左岸来源:本站原创点击数:312 更新时间:2010年03月18 【字体:大中小】 布氏洛氏维氏近似强度 HB10D2HRB HRA 30-T HV σb(Mpa) 217.0 100.0 61.2 81.7 233.0 803.0 214.0 99.5 60.8 81.4 230.0 793.0 210.0 99.0 60.5 81.0 227.0 783.0 208.0 98.5 60.2 80.7 225.0 773.0 205.0 98.0 59.9 80.4 222.0 763.0 202.0 97.5 59.6 80.1 219.0 754.0 199.0 97.0 59.2 79.8 216.0 744.0 196.0 96.5 58.9 79.4 214.0 735.0 194.0 96.0 58.6 79.1 211.0 726.0 191.0 95.5 58.3 78.8 208.0 717.0 188.0 95.0 58.0 78.5 206.0 708.0 186.0 94.5 57.7 78.2 203.0 700.0 183.0 94.0 57.4 77.8 201.0 693.0 181.0 93.5 57.1 77.5 199.0 683.0 179.0 93.0 56.8 77.2 196.0 675.0 176.0 92.5 56.4 76.9 194.0 667.0 174.0 92.0 56.1 76.6 191.0 659.0 172.0 91.5 55.8 76.2 189.0 651.0 170.0 91.0 55.5 75.9 187.0 644.0 168.0 90.5 55.2 75.6 185.0 636.0 166.0 90.0 54.9 75.3 183.0 629.0 164.0 89.5 54.6 75.0 180.0 621.0 162.0 89.0 54.3 74.6 178.0 614.0 160.0 88.5 54.0 74.3 176.0 607.0 158.0 88.0 53.7 74.0 174.0 601.0 156.0 87.5 53.4 73.7 172.0 594.0 154.0 87.0 53.1 73.4 170.0 587.0 152.0 86.5 52.8 73.0 168.0 581.0 151.0 86.0 52.6 72.7 166.0 575.0 149.0 85.5 52.3 72.4 165.0 568.0 147.0 85.0 52.0 72.1 163.0 562.0 146.0 84.5 51.7 71.8 161.0 556.0 144.0 84.0 51.4 71.4 159.0 550.0 143.0 83.5 51.1 71.1 157.0 545.0 141.0 83.0 50.8 70.8 156.0 539.0 140.0 82.5 50.5 70.5 154.0 534.0 138.0 82.0 50.2 70.2 152.0 528.0 137.0 81.5 50.0 69.8 151.0 523.0

不锈钢管的洛氏硬度、布氏硬度等硬度对照表和换算方法

不锈钢管的洛氏硬度、布氏硬度等硬度对照表和换算方法 以下资料由:武进不锈钢制品销售提供 一、硬度简介: 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 1. 布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 2. 洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm 的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: ? HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 ? HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 ? HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 文案

3. 维氏硬度(HV) 以120kg以的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度HV值 (kgf/mm2)。 注:洛氏硬度中HRA、HRB、HRC等中的A、B、C为三种不同的标准,称为标尺A、标尺B、标尺C。洛氏硬度试验是现今所使用的几种普通压痕硬度试验之一,三种标尺的初始压力均为98.07N(合10kgf),最后根据压痕深度计算硬度值。标尺A使用的是球锥菱形压头,然后加压至588.4N(合60kgf);标尺B使用的是直径为1.588mm(1/16英寸)的钢球作为压头,然后加压至980.7N(合100kgf);而标尺C使用与标尺A相同的球锥菱形作为压头,但加压后的力是1471N(合150kgf)。因此标尺B适用相对较软的材料,而标尺C适用较硬的材料。实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。但各种材料的换算关系并不一致。 二、硬度对照表: 文案

不锈钢中美牌号对照表和钢硬度的检测方法

不锈中美牌号对照表钢硬度的检测方法 不锈钢产品按交货形状分类可分为不锈钢板、不锈钢带、不锈钢管、不锈钢棒、不锈钢丝等。如果按照金相组织分类则可分为以下五种类型:奥氏体不锈钢、铁素体不锈钢、奥氏体-铁素体不锈钢、马氏体不锈钢和沉淀硬化型不锈钢。各种不锈钢材料都是以退火、调质、固溶、淬火或回火等各种不同的热处理状态供货的。 1 不锈钢的力学性能 不锈钢材料的力学性能十分重要,它关系到以不锈钢为原料而进行的变形、冲压、切削等加工的性能和质量。因此,几乎所有的不锈钢材料都要求进行力学性能测试。力学性能测试方法主要分两类,一类是拉伸试验,一类是硬度试验。拉伸试验是将不锈钢材料制成试样,在拉伸试验机上将试样拉至断裂,然后测定一项或几项力学性能,通常仅测定抗拉强度、屈服强度、断后伸长率和断面收缩率。拉伸试验是金属材料最基本的力学性能试验方法,几乎所有的金属材料,只要对力学性能有要求,都规定了拉伸试验。特别是那些形状不便于进行硬度试验的材料,拉伸试验成为唯一的力学性能检测手段。 硬度试验是将一个硬质压头按规定条件缓慢压入试样表面、然后测试压痕深度或尺寸,以此确定材料硬度的大小。硬度试验是材料力学性能试验中最简单、最迅速、最易于实施的方法。硬度试验是非破坏性的,材料硬度值与抗拉强度值之间有近似的换算关系。材料的硬度值可以换算成抗拉强度值,这一点具有很大的实用意义。 由于拉伸试验不便于测试,并且由硬度换算到强度很方便,因此人们越来越多地只测试材料硬度而较少测试其强度。特别是由于硬度计制造技术的不断进步和推陈出新,一些原来无法直接测试硬度的材料,如不锈钢管材、不锈钢线材、极薄的不锈钢材板和不锈钢带材等,现在都已经可以直接测试硬度了。所以,存在一个硬度试验逐渐代替拉伸试验的趋势。 在不锈钢材料的国家标准中大多数都同时规定了拉伸试验和硬度试验。小部分不便于进行硬度试验的材料,例如不锈钢管材和线材只规定了拉伸试验。在不锈钢标准中,一般都规定了布、洛、维三种硬度试验方法,测定HB、HRB(或HRC)和HV硬度值,规定三种硬度值只测其一即可。 奥氏体不锈钢和奥氏体—铁素体不锈钢通常都以固溶状态供货,铁素体不锈钢通常以退火状态供货,标准中规定了这些材料硬度的上限值。马氏体不锈钢一部分以退火状态供货,标准中规定了硬度的上限值,另一部分马氏体不锈钢以淬火及回火状态供货,标准中规定了硬度的下限值。沉淀硬化型不锈钢当以固溶状态供货时,标准中规定了硬度的上限值,以时效状态供货时,标准中规定了硬度的下限值。总之,各种牌号不锈钢材料的硬度被规定为不高于某个硬度值或不低于某个硬度值。 中国标准GB/T 4239《不锈钢和耐热钢冷轧钢带》规定了不锈钢冷轧带材的力学性能,如表一~表六所示。标准中规定:硬度检验要根据带材的尺寸和状态选择其中一种方法。

各类不锈钢性能差异

各类不锈钢性能差异 型号301—延展性好,用于成型产品。也可通过机械加工使其迅速硬化。焊接性好。抗磨性和疲劳强度优于304不锈钢。 型号302—耐腐蚀性同304,由于含碳相对要高因而强度更好。 型号303—通过添加少量的硫、磷使其较304更易切削加工。 型号304—通用型号;即18/8不锈钢。GB牌号为0Cr18Ni9。 型号309—较之304有更好的耐温性。 型号316—继304之后,第二个得到最广泛应用的钢种,主要用于食品工业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。由于较之304其具有更好的抗氯化物腐蚀能力因而也作“船用钢”来使用。SS316则通常用于核燃料回收装置。18/10级不锈钢通常也符合这个应用级别。[1] 型号321—除了因为添加了钛元素降低了材料焊缝锈蚀的风险之外其他性能类似304。 400 系列—铁素体和马氏体不锈钢 型号408—耐热性好,弱抗腐蚀性,11%的Cr,8%的Ni。 型号409—最廉价的型号(英美),通常用作汽车排气管,属铁素体不锈钢(铬钢)。 型号410—马氏体(高强度铬钢),耐磨性好,抗腐蚀性较差。 型号416—添加了硫改善了材料的加工性能。 型号420—“刃具级”马氏体钢,类似布氏高铬钢这种最早的不锈钢。也用于外科手术刀具,可以做的非常光亮。 型号430—铁素体不锈钢,装饰用,例如用于汽车饰品。良好的成型性,但耐温性和抗腐蚀性要差。 型号440—高强度刃具钢,含碳稍高,经过适当的热处理后可以获得较高屈服强度,硬度可以达到58HRC,属于最硬的不锈钢之列。最常见的应用例子就是“剃须刀片”。常用型号有三种:440A、440B、440C,另外还有440F(易加工型)。 500 系列—耐热铬合金钢。 600 系列—马氏体沉淀硬化不锈钢。 型号630—最常用的沉淀硬化不锈钢型号,通常也叫17-4;17%Cr,4%Ni。 301不锈钢带“硬度最软、抗拉、耐腐蚀”304DDQ不锈钢带。上海宝新不锈钢材料有限公司采用国外先进生产线,生产多种规格不锈钢材。公司不锈钢品种如下: 1、不锈钢棒材; 2、不锈钢线材; 3、不锈钢板材; 4、不锈钢卷材(不锈钢带材); 5、不锈钢管材。 【1】棒材:圆棒(圆钢)、方棒(方钢)、六角棒(六角钢)、扁钢;亮面的比黑皮面的贵.大直径的棒材多为黑皮棒.其中303是棒材里特有的一种材质,属于易车(切)型材料,主要用于自动车床上切割.另:304F.303CU.316F也都属于易切型材料. 【2】线材:线、丝、螺丝线、弹簧线、全软线、光亮线、;线材主要有弹簧线和螺丝线两种,顾名思义:螺丝线主要用来做螺丝,而弹簧线用来做弹簧或者其他要求具有弹性的五金产品.

304不锈钢可以热处理加硬吗

304不锈钢可以热处理加硬吗 304不锈钢,是美国的标准叫法。SUS304则是日本的叫法。也就是我国的0Cr18Ni9,常温下为奥氏体,淬火工艺无法实现硬化,可采用渗氮处理表面强硬化,但深度是很有限的。304一类的奥氏体不锈钢,不能通过高温热处理提高硬度,一般采用固溶处理,提高耐蚀性与降低硬度。 奥氏体提高硬度有以下方法: 一、QPQ处理,硬度高,但表面呈黑色,无本色,耐蚀性较好 二、对于变形大的产品,可以采用时效处理,基本上在基体的基础上提高200(Hv)视变形程度而定 三、形变硬化 410一类的马氏体不锈钢:采用高温热处理可以提高硬度,也可采用退火工艺降低硬度 17-4一类的沉淀硬化型不锈钢:先固溶,再时效可提高硬度 316不锈钢可以热处理调质吗?要求抗拉强度大于800N/mm2。 不锈钢热处理知识 淬火 将金属或其制品加热到给定温度,并保温一定时间,然后快速冷却(常在水、油中冷却),称为淬火。一般经淬火处理后硬度大大增加,但塑性降低。 回火 将经过淬火的金属重新加热到给定温度,并保温一定时间后进行冷却的工艺叫回火。其目的是消除淬火所产生的内应力,降低硬度和脆性,获得所需要的机械性能(高温回火也叫调质)。正火 将金属加热到一定的温度,并保温一定时间,然后在空气中冷却,这种工艺叫正火。正火可以细化组织,消除内应力,改善机械性能和切削加工性能。 退火 将金属加热到一定的温度,并保温一定时间,然后缓慢冷却,这种工艺叫退火。退火可消除内应力,降低硬度和脆性,增加塑性,改善切削加工性能。 时效 金属或其制品在热处理或铸造、锻造等加工后,在室温下(自然时效)或较高温度(人工时效)下搁置较长时间的一种热处理。其作用是消除内应力,稳定组织、强化机械性能。 渗碳 将碳渗入金属件表面层,以增加其淬火后硬度的化学热处理工艺叫渗碳。经渗碳及淬火处理后,零件具有表面硬度高,心部韧性好的性能。 渗氮(氮化) 将氮渗入金属件表面层,以增加其硬度,耐磨性和抗腐蚀性的化学热处理工艺叫渗氮。一般是把已调质处理并加工好的零件放在含氮的介质中(常用氮气),在500~540℃下保持相当长的时间(几十小时),使介质分解渗入零件表面层。 固溶 将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的工艺。 热等 静压(HIP)

国内外常用不锈钢牌号对照表_硬度换算表_硬度对照表

序号中 国日 本英 国德 国法 国NO. CHINA JAPAN UK GERMANY FRANCE GB1220 JIS BS970BS1449 DIN17440DIN17224 NFA35-576-582NFA35-572NFA35ANSI 2. 1Cr17Ni7SUS301301301S21X12CrNi188Z10CN18.09 3. 1Cr18Ni9SUS302302302S25X5CrNi189Z6CN18.09 4. 0Cr18Ni9SUS304304304S15X2CrNi189 Z2CN18.095. 00Cr19Ni10SUS304L 304 304S12Z5CN18.09A26. 0Cr19Ni9N SUS304Nl 304N S30451 X2CrNiN1810Z2CN18.10N 8. 1Cr18Ni12SUS305305305S19 9. 0Cr23Ni13SUS309S 309S 10. 0Cr25Ni20SUS310S 310S X5CrNiMo1812Z6CND17.1211. 0Cr17Ni12Mo2SUS316316316S16X2CrNiMo1812Z2CND17.12 12. 00Cr17Ni14Mo2SUS316L 316L 316S12 13. 0Cr17Ni12Mo2N SUS316N 316N 14. 00Cr18Ni14Mo2Cu2 SUS316JIL 美 国USA ASTM S20200Z12CN17.07S30100S30200Z8CN18.12 1. 1Cr18Mn8Ni5N SUS202202X5CrNi1911284S16X12CrNi177S30300S30403 S31603S31651 7. 00Cr18Ni10N SUS304LN S30500S30908S31008S3160国内外常用不锈钢牌号对照表

相关文档