文档库 最新最全的文档下载
当前位置:文档库 › 药剂学研究中的热点领域和基本思路

药剂学研究中的热点领域和基本思路

药剂学研究中的热点领域和基本思路
药剂学研究中的热点领域和基本思路

药剂学研究中的热点领域和基本思路

药剂学是药学科学的重要分支学科,对我国新形势下药学科学和医药产业的发展具有重要而特殊的作用。我国药剂学研究的热点领域主要包括靶向制剂、控释制剂、透皮吸收制剂以及药物稳定性等。随着科学技术的发展,药剂学在新材料、新技术、新方法和基础研究等方面都进入了一个新阶段。现通过分析和探讨我国药剂学研究中的热点领域和基本思路,对我国药剂学的研究进行回顾和反思。

1.靶向制剂研究

靶向给药系统能将药物定向输送到靶器官,减少药物在正常组织中的分布,提高疗效,减少药物用量,减轻毒副作用[4—6]。靶向制剂包括被动靶向制剂、主动靶向制剂和物理化学靶向制剂三大类。

1.1被动靶向制剂

普通的微粒给药系统具有被动靶向的性能。微粒给药系统包括脂质体(1S)、纳米粒(NP)或纳米囊(NC)、微球(MS)或微囊(MC)、细胞和乳剂等药物载体。被动靶向的机理在于:网状内皮系统(RES)具有丰富的吞噬细胞,可将一定大小的微粒(0.1—3um)作为异物摄取于肝、脾;较大的微粒(7-30uln)不能滤过毛细血管床,被机械截留于肺部;而小于50nm的微粒可通过毛细血管末梢进入骨髓。

1.1.1用NP或IS实现肝脏靶向给药

我国肝癌死亡率较高,化疗是主要手段。使用普通抗癌药后全身分布,有较大的毒副作用。有研究者以新型抗癌药为模型,以聚氰基丙烯酸酯NP为载体,利用被动靶向的机理,研究其作为靶向治疗肝癌的可行性。

5—Fu是目前用于治疗消化道肿瘤的主要药物之一。有研究者用不同性质的天然物质作为载体,并掺人对肝亲和力强的物质,将5—Fu制成口服NP,探讨载体的化学性质和肝靶向的

相关性,为寻找肝靶向性强,释药时间长的理想载体提供依据。·

乙肝治疗比较困难,原因是药物在肝内达不到有效浓度。故设想将抗病毒药载人NP,提高药物在肝脏中的浓度,并使药物不经破坏地进入肝细胞。除此之外,还可在NP表面交联糖蛋白,由于肝细胞膜存在糖蛋白受体,可进一步提高NP对肝细胞的靶向性。

包虫病是肝脏的寄生虫病,丙硫咪唑被证明是有效的药物,但口服吸收较差,肝脏浓度低。有研究者用IS作为载体,试制了IS丙硫咪唑口服剂型和注射剂型,动物试验证实本制剂可提高综合治疗包虫病的水平。

1.1.2用NP和IS实现基因输送

采用NP(NC)或阳离子15包裹基因或转基因细胞是近年医用生物材料领域中的前沿课题。有研究者将NP或Is包裹技术和病毒转染技术相结合,用NP或阳离子IS包裹重组腺病毒颗粒,制成载基因NP或阳离子13。利用NP和IS对肝脏的高度靶向性和对肝细胞的较高通透性,使含有目的基因的重组病毒可广泛均匀的滞留于肝脏内,持续l—2月,并在包装细胞中不断大量产生,持久地对肝内及淋巴广泛转移癌灶等起治疗作用。

1.1.3用MS实现肺部靶向给药

有研究者选用对肺癌有效的抗癌药为模型,以明胶MS为载体,通过控制粒度大小,将药物导向于肺,提高疗效,减少剂量,降低副作用。结核病是我国常见病之一。有研究者用载药MS进行支气管动脉栓塞,使药物在肺部有较高的浓度,降低全身的毒副反应,对治疗大咯血的病人具有十分重要意义。

1.2主动靶向制剂

1.2.1抗体介导的主动靶向

乳腺癌是人类高发癌症之一。有研究者将蒽环类抗癌药包裹于白蛋白NP中,然后在NP表

面交联抗人乳腺癌单克隆抗体,这样NP犹如药库,当其被注射人体内后,在单抗的导向下到达癌变部位时,经物理扩散药物即可释放出来发挥疗效。

脑毛细血管内皮细胞表面有高密度的转铁蛋白受体,静注其抗体(OX—26)能优先结合到脑毛细血管内皮细胞上。研究者以一种神经营养因子(NTF)为模型,用分子生物学手段设计一种含OX—26线性单链可变区的融合蛋白,并通过基因工程方法在真核细胞内表达。这种融合蛋白可靶向CNS而无免疫原性;同NTF—OX—26藕联物相比,分子量减小,更易透过血脑屏障(BB;由于是在真核细胞内表达,不会影响与抗原的结合力;避免了合成和纯化藕联物的繁琐过程,降低了NTF失活的可能性。

1.2.2受体介导的主动靶向

大多数肿瘤细胞表面的叶酸受体数目和活性明显高于正常细胞。研究者提出以叶酸葡聚糖作为导向淋巴系统或肿瘤细胞的放射性核素的载体,同时研究将叶酸15作为靶向肿瘤细胞的抗肿瘤药物的载体。

低密度脂蛋白(LDL)是存在于哺乳类动物血浆中的脂蛋白。LDL受体活性及数量在一些癌细胞中高出正常细胞20倍以上。因而LDL可携带药物经过特异性LDL受体途径到达靶细胞。LDL是内源性脂蛋白,可避免IS、单抗等被RES迅速清除的缺陷,又可克服被动靶向制剂的不足。

人类生长激素(GH)进入肝脏后促使生长介素(SOM)产生,GH需与SOM一起才能发挥促进生长的作用。而GH的半衰期短,注射后进入肝脏的量少。利用哺乳动物肝脏所特有的无唾液酸糖蛋白受体(ASGPR)的识别能力,将GH接上半乳糖基,可将GH靶向肝脏。通过GH中连接半乳糖基的数目可控制进入肝脏的GH量。

血红细胞与15除同样具有脂质双分子层外,其表面还覆盖有糖脂、糖蛋白等。有研究者从仿红细胞膜出发,研究这些表面糖基具有的识别功能和稳定双分子膜的功能,进而对Ij进行表面糖修饰,从分子细胞水平对载药鸪进行研究。

1.2.3长循环微粒给药系统

由于RES的摄取,微粒载体迅速消除,使药物不能充分发挥疗效。另外,目前的载体材料多为合成高分子,降解慢,有蓄积,降解产物有一定的毒性。有研究者选用一类内源性的生理物质—长链的饱和脂肪酸类制备NP,生物相容性很好,毒性更低;在此基础上用立体稳定剂(PEG)制备长循环给药系统,利用PEG长链的亲水性、柔韧性和空间屏障,使微粒载体不易被RES识别和摄取,从而明显地增加所载药物体内的循环时间。

1.2.4用前体药物实现靶向给药

1.2.4.1脑靶向药质体的研究

BBB的存在,限制了很多脑部疾病的药物治疗。有研究者提出用一种具有BBB透过性的药质体(Phar—macosomes,PS)作为脑靶向给药系统的设想。通过在药物分子中引入烷烃链提高亲脂性,然后再将其制备成NC。PS中药物既为活性成分又充当药物载体。利用PS具有的柔性膜结构,可弹性变形“挤入"BBB,从而在静脉给药后达到脑靶向给药的目的。

1.2.4.2结肠靶向给药系统研究

有研究者以聚丙烯酸为骨架、酰基化的岩藻糖胺(FUCN)为支链、4,4,-dlvinylazobenzene(DVA交联的偶氮网络聚合物为结肠靶向粘附释药系统的载体,利用大肠中存在大量偶氮还原酶使载体降解而释药。这种载体不仅本身的粘附力强,降解后载体碎片也具有较强粘附性,而且用FUCN使聚丙烯酸中—COOH酰基化,防止了载体因酸度降低而引起的酶活性降低,以此达到定位和粘附的双重目标。

另有研究者以5—IU和强的松龙等为模型药物,通过优选即依赖结肠pH值又依赖胃肠道转运时间的复合辅料,用常规设备和简单工艺制备成口服结肠定位释药系统,如包衣片等,以提高这些药物治疗慢性结肠炎的疗效。

1.3物理化学靶向制剂

热敏感Ij和pH敏感15虽然可以在靶区特定的环境中释放包封的药物,但不能定向地向靶区运送药物。热敏磁性Ij具有磁性,包封的药物在体外磁场的控制下可以将药物定向地运送到靶区,同地这种15又是用热敏脂质材料制备的,在病灶区外加发热装置的作用下,Ij 脂质膜的流动性增加,定量地释放出包封的药物。

从国际发展趋势看,靶向制剂研究的新热点包括:蛋白多肽药物和基因的定向输送,生物功能载体、天然载体、长循环载体和非病毒载体的研究等;抗体介导和受体介导技术将更加成熟,一些新技术如微透析等也会有更多的应用。因此国内的有关研究应从被动靶向为主向更加精密、更加成熟的主动靶向制剂转移。

2.控释制剂研究

理想的药物输送系统(DDS)应具有定时、定量和定向给药的特征。靶向制剂可解决定向给药的问题,而定时、定量给药则需要通过控释制剂来实现[7—9]控释制剂主要可分为三种类型:1.零级恒速释放制剂,2.自调式控释给药系统,3.脉冲式释药系统。我国学者的研究覆盖了控释制剂研究的主要方面。

2.1脉冲式释药系统

脉冲式释药系统(PRDDS)能定时地快速释放药物,包括注射和口服的PRDDS。有研究者设计了一种单剂多价疫苗,即一次注射可产生多次接种的效果,基本思路是制备包衣厚度不同的微球,使其中包含的疫苗能在不同时间释放。同时,根据心血管系统疾病等往往凌晨发作的特点,通过控制片剂包衣材料的种类或包衣厚度等方法制备了口服PRDDS,如睡前服药,可在凌晨脉冲释放一个剂量,达到防病治病的效果。

2.2磁性微囊

磁性微囊可把纳米级磁粉分别或同时包到囊壁和囊芯中,在频率接近于其固有频率的交变磁场作用下,磁粉随之振动。囊芯中磁粉的振动起搅拌作用,可加速药物扩散;囊壁上磁粉的振动,对膜孔起开关或调节大小的作用;磁粉的振动还可清除膜孔被堵塞或遮盖的现象,这

些机理将有助于药物的控制释放。磁性微囊也可实现靶向给药。常用的Fe304非常稳定,在体内不易代谢,如用超细金属铁粉或磁性液体代替Fe304,不仅可使磁性增强,且易被代谢,而且还是体内必需元素。研究者正是从这些研究思路出发,探索磁性微囊在药物释放的时空控制方面的规律和方法。

2.3自调式给药系统

自调式给药系统是一种无须外界干涉、通过信息反馈机制、根据需要自动调节释药速度的一种新型控释给药系统。因为疾病的发作呈周期性变化,故要求DDS根据病情需要主动调节释药速度。有以下几种控释机制:pH敏感型聚合物;酶与底物的反应;pH敏感的药物溶解度;竞争性结合;取决于金属浓度的水解等等。有研究者用pH敏感材料制备pH敏感型脂质体小囊,利用肿瘤、炎症和感染区域pH异常酸化的现象,使所载药物特异性地释放。

2.4控制型可降解植入式给药系统

该系统是植入剂的新发展。传统的植入剂只能恒速释药,不能按病情需要改变给药量,且载体不能生物降解,手术取出增加患者痛苦。有研究者设计一种控制型可降解植入式给药系统,植入体内后,在体外超声波作用下,药物释放量增加,撤去超声波后释药速度恢复常规水平。所用超声波频率及功率均为医用理疗范围,所用载体可生物可降解,因此使用方便,安全性好。

2.5鼻腔给药系统

鼻腔给药系统是一种新的给药途径,但药物对鼻腔纤毛的毒性,阻碍了鼻腔给药研究的发展。研究表明,药物对纤毛的毒性与浓度有关。有研究者研制成一种鼻腔控释给药体系,使释药速度接近鼻腔吸收速度,从而使鼻腔粘膜中游离药物浓度减少,降低或避免药物的鼻纤毛毒性,又不影响疗效。

2.6难溶性药物的控释研究

难溶性药物溶出慢,吸收差尚无法做到控释给药,限制了相当一部分药物的开发与合理应用。有研究者选择难溶性二氢吡啶类新药为模型,从材料学和方法学两个角度寻找难溶药物的控释手段,并将药物控释制剂的控释特征、药动学、药效学联系起来,对药效间动态关系进行定量研究,建立药动学—药效学链式模型,探索规律,扩大控释制剂研究的领域。国外从90年代初开始对缓控释制剂的基础研究有所减少,原因是常规缓控释制剂的基本理论和技术已比较成熟,目前的研究主要集中在一些特殊的、新的给药技术方面,如定时给药。而国内在缓控释制剂的基础研究方面还处在上升阶段,同时也的确需要加强。

3透皮给药系统研究

透皮治疗系统(TTS)是控释制剂的一种特例。TTS可产生持久、恒定和可控的血药浓度,减轻毒副作用;避免首过效应,提高生物利用度;减轻注射用药的痛苦;用药及停药方便;减少给药次数和剂量[10—12]。促进药物透皮吸收的手段有药剂学、化学和物理学的方法。

3.1药剂学促渗作用研究

最常用的方法就是使用各种类型的透皮吸收促进剂(PE)。另外,还可用NP、15或乳剂等作为药物载体,来促进药物的吸收,或控制药物的释放。

挥发油是祖国医药学中十分重要的一类活性成分,实验研究提示挥发油可能是一类能对皮肤结构产生影响的潜在的PE。有研究者从皮肤组织结构层次和脂质双分子层结构两方面探讨外用挥发油的透皮增效机理,对其在制剂中的应用进行再认识和科学解释,分析其理化性质、皮肤及其类脂结构与药物转运三者之间的关系,提出其作为PE筛选及合理应用的理论和实践依据。

将亲水性药物包裹在类脂NC中可大大减少角质层药物的阻力,类脂膜与角质层的类脂双分子膜的融合也可促进渗透,而且类脂NC的单分子膜能弹性变形,故易被“挤入”角质层。有研究者探讨类脂NC的透过机理、类脂单分子膜的形成和优化,研究影响透过性的渗透压因素以及携药性能等,对于实现许多药物尤其是多肽及蛋白质药物的透皮给药具有重要意义。

氮酮(Azone)是八十年代研制的新型PE,能增加皮肤对许多不同类型的药物的通透性,但现在还没有阐明在正常体温时氮酮增加皮肤通透性的分子栅剂。有研究者研究了生物膜的结合水变化和脂质结构变化,在此基础上研究通透性、脂质相变、膜结合水、膜超微结构、脂质结构之间的关系,试图寻找这些作用的统一基础,对探索氮酮的作用机理具有重要的意义。

3.2化学促渗作用研究

在促进药物透皮吸收方面,最常用的化学方法就是合成前体药物,使其具有适当的水油分配系数等理化性能,从而在透皮吸收时产生较大的渗透速率。

皮肤具有丰富的酶系统,药物透皮吸收过程中必然接触到生物转化体系;手性药物是普遍存在的,皮肤屏障中手性环境决定了对映体药物可能存在立体选择性。有研究者选择具有手性中心和酪键结构的酮洛芬衍生物KPD—02为模型药物,选用幼猪耳部皮肤建立在体经皮吸收的渗透/代谢模型,探讨手性前体药物经皮吸收的立体选择性及皮肤酯酶的生物转化作用,考察经皮吸收过程中的手性特征及代谢机理。

3.3物理学促透作用研究

物理学方法包括离子导入、电穿孔以及超声、激光和放热等促渗技术等。皮肤组织等是一类生物驻极体,能长期储存电荷和/或保持极化状态。外源性驻极体可作为一种离子驱动源对皮肤长期提供静电场和微电流,调控皮肤的驻极态、电结构和离子型药物透皮的电荷动力学规律,增强药物的透皮吸收。有研究者利用外源驻极体及生物驻极体的特性,建立膜—储库型TIS,从皮肤、上皮细胞等驻极态的变化及外源性驻极体对透皮药物动力学规律的变化,从组织、细胞、分子水平以及电荷动力学、药物动力学等方面综合研讨驻极体促进药物透皮吸收的机理,探讨建立新的促进药物吸收的方法。

在脉冲直流电的导人下,离子型药物能成倍地提高药物对皮肤的渗透性;作为PE的表面活性剂,可增加润肤性,对改善角质层具有良好的作用。两种技术的加和作用可望对皮肤角质层的渗透性产生更显著的效果,以利于开发新型的TTS。有研究者将脉冲直流电离子导人与PE的应用结合起来,进行综合性研究,一方面揭示其对皮肤结构的影响,另一方面考察其

对药物皮肤渗透性的作用,这为TTS的研究提供了一种新的思路。

在高压短脉冲的电场下,细胞膜的通透性瞬时增大,并在一定时间内恢复,这是所谓的电穿孔现象。有研究者阐明电穿孔技术对促进药物透皮渗透作用的各种影响因素,使电穿孔技术可应用于日益增多且日益重要的多肽类药物的透皮给药,也可用于小分子药物的透皮给药;特别是与离子导人方法的合用还可进一步缩短药物分子导人的时间,形成一种新的给药途径。

3.4其它方面的研究

热分析是研究物质间相互作用的定性及定量的方法。研究者用经济易得的天然材料或合成材料或二者的混合物代替来源困难、重现性较差的人体皮肤角质层,在些基础上建立一种新颖、简便和实用的热分析模型,通过皮肤模型的热分析参数的解析,阐明PE增效机理和进行PE 的选择。研究者选择尚无人进行过TTS研究药物—低分子肝素来制备的新型透皮吸收制剂一透皮吸收贴膜,并探讨其作用机理,为研究类似物质的透皮吸收提供理论基础。药物经粘膜吸收有很多优点。由于缺乏深入、系统的研究,目前尚不能根据药物的理化性质(分子量、溶解度、油/水分配系数等)对药物粘膜吸收的可行性进行预测。研究者通过对一些理化性质(特别是药物的脂溶性)各异的药物进行粘膜吸收的体外研究,较系统地评价药物理化性质对粘膜吸收的影响,同时对一些鼻粘膜吸收较好的药物进行纤毛毒性研究,并研究粘膜PE 的作用机理。为从理化性质预测药物粘膜吸收的可行性提供理论依据。

目前国际上TIS的研究热点比较多的集中在物理学新方法上。特别应注意的是通过特殊技术实现生物大分子的透皮给药。国内从事TTS研究的力量相对还是比较弱,从开发到生产还有很多具体的技术问题有待解决。

通过对我国药剂学研究的热点领域和基本思路的分析与总结,希望对药剂学研究者起到一定的借鉴或启发作用,以扩展眼界,开拓思路,同时也促使药剂学界冷静地反思,对我国药剂学研究的总体水平、取得的成绩和存在的问题有比较清醒和全面的认识,从而面对新的世纪和世界医药科学研究发展的新局面,选择好我国药剂学的发展重点和方向。

药剂学综述栓剂的研究进展[1]

栓剂的研究进展 【摘要】栓剂是古老剂型之一,栓剂不仅可以起局部治疗作用,还可以起全身治疗作用。近年来栓剂广泛应用于临床各科,应用筒单方便,效果明显可靠。对近年来栓刺的特点、处方组成、制备工艺、新型栓剂等方面进行了综述。随着新制药技术和新基质的不断出现,国内外对栓剂的研究及使用也显著增加,出现了很多新型栓剂,如中空栓剂、双层栓剂、泡腾栓剂等,中药栓剂也得到了一定发展。【关键词】栓剂;研究概况;综述;新剂型; 引言:栓剂是古老的外用固体制剂。在我国,汉代时期就已有对栓剂的记载。栓剂系将药物与适宜基质制成的有一定形状供腔道给药的固体制剂。随着栓剂新基质的不断出现和栓剂生产自动化的实现,栓剂现已生产的品种和数量都显著增加,如中空栓、泡腾栓、微囊栓、海绵栓、凝胶栓等新型栓剂,尤其中药栓剂不断涌现,栓剂的研发热潮仍在进行中。 1 .栓剂概述[1] 栓剂系指将药物和适宜的基质制成的具有一定形状供腔道给药的固 体状外用制剂。栓剂在常温下为固体,塞人人体腔道后,在体温下迅速软化,熔融或溶解于分泌液,逐渐释放药物而产生局部或全身作用。栓剂因使用腔道不同而有不同的名称,如肛门栓、阴道栓、尿道栓、喉道栓、耳用栓和鼻用栓等。目前,常用的栓剂有直肠栓和阴道栓。这两种栓剂的形状和大小各不相同。肛门栓的形状有圆锥形、圆柱形、鱼雷形等;阴道栓的形状有球形、卵形、鸭嘴形等;尿道栓呈笔形,一端稍尖。 2.栓剂分类 2.1按作用

分局部作用栓剂和全身作用栓剂。 2.2按应用部位 分直肠栓、阴道栓、尿道栓、脐栓、耳栓等,其中直肠栓和阴 道栓最为常见.Kyong-Hoon Eun等【2】曾用家兔做过栓剂直肠实验。2.3按形状大小 有圆锥形、圆柱形、鱼雷形和球形、卵形、鸭嘴形等,前者多为肛门栓,塞人肛门后,由于括约肌的收缩容易压人直肠内。后者多为阴道栓,亦称阴道弹剂,因相同重量的栓剂,鸭嘴形的表面积较大,因此以鸭嘴形较好。 2.4按基质 1.脂肪性基质,包括可可豆油、半合成甘油脂肪酸酯类、乌桕油和氢化油等。 2.水溶性及亲水性基质,包括甘油明胶、聚乙二醇类、吐温一6l等。 2.5按剂型 分双层栓剂、泡腾栓剂、微囊栓剂、中空栓剂、海绵栓剂、渗透泵栓剂、不溶性栓剂、凝胶栓剂等。【3】 3.栓剂作用特点【4】 栓剂给药的作用包括两个方面:其一为栓剂在腔道内起局部作用;其二为栓剂中的药物经由腔道吸收进入血液而发挥全身作用。局部作用主要为润滑抗菌、消炎、收敛、止痒、止痛局麻等作用,例如甘油栓,紫珠草栓及苯佐卡因栓等。这类局部作用是栓剂的特色和长处之所在,因其能够将药物直接送达病所。所以疗效显著,副作用小。全

现代药剂学的发展

现代药剂学的发展 药剂学是研究药物剂型及制剂的一门综合性学科,其主要研究内容包括:剂型的基础理论、制剂的生产技术、产品的质量控制以及合理的临床应用,研究、设计和开发药物新剂型及新制剂是其核心内容。随着科学技术的飞速进步,特别是数理、生命、材料、电子和信息等科学领域的发展和创造,极大地推动了药剂学的发展,使药剂学从经验探索阶段步入了科学研究阶段。 现代药剂学的核心内容是:在现代理论指导下,应用现代技术开展药物剂型及制剂的研究,在完善和提高现有普通剂型及制剂的生产技术、质量控制的同时,药物传递系统(drug delivery system, DDS)的出现是药剂学领域中现代科学技术进步的结晶,大量新型药物剂型及制剂的问世是药剂学研究领域中取得突破性进展的重要标志性成果。 药剂学总体发展方向: ?基本理论(缓控释、透皮、靶向理论) ?新剂型、新制剂、新辅料(高分子胶束等) ?新技术、新机械和设备(粉末直接压片等) ?中药、生物技术药物制剂 剂型重要性(作用特点): 1)剂量准确、给药方便 2)改变药理作用 3)降低毒副作用(“三小”:毒、副作用、剂量小) 4)增加稳定性 5)调节给药速度(“三效”:高、速、长效) 6)提高疗效(“三定”:定量、定时、定位) 药物制剂或剂型必须具备的基本要素:安全、有效、稳定、质量可控、使用方便综合现代药剂学研究领域中取得的主要成果,概括为:快速起效、缓控释和靶向性新技术、新制剂与新剂型。本文主要综述近年来现代药剂学研究领域中取得的新进展。 1.快速起效新技术、新制剂与新剂型 根据某些需及时治疗的疾病(如心绞痛等),尽管临床首选方案是采用注射给药,但该用药方案必须在医疗机构中实施,对处理远离医疗机构的突发性病例无能为力,虽然散剂、颗粒剂、泡腾制剂的冲服固然有快速起效作用,但携带和使用极为不便,因此,研制具有快速起效、携带方便的药物制剂及剂型是其主要研究方向,口腔、鼻腔和肺部给药系统为研究热点1.1 速释型口腔给药系统药物经口腔粘膜吸收直接入血,具有快速起效,生物利用度高(避

发现毒理学的研究进展

*基金项目:国家高技术研究发展计划(863计划)基金(2002AA2Z342D 和2004A A2Z3774) 综 述 发现毒理学的研究进展 * 王全军,吴纯启,廖明阳 (军事医学科学院毒物药物研究所,国家北京药物安全评价研究中心,北京100850) [摘要] 发现毒理学又称为开发前毒理学(Predevelopmental Toxicology),是指在创新药物的研发早期,对所合成的系列新化合物实体(New Chemical Entities,NCEs)进行毒性筛选,以发现和淘汰因毒性问题而不适于继续研发的化合物,指导合成更安全的同类化合物。发现毒理学的研究既可加快药物研发进程,提高研发成功率,又减少资源消耗。笔者就发现毒理学研究的定义、必要性、研究内容、研究方法和我国当前的研究现状作一简述。 [关键词] 发现毒理学;新化合物实体(NCEs);毒性筛选 [中图分类号]R994 1;R965 1 [文献标识码]A [文章编号]1003-3734(2005)08-0958-04 Progresses of discovery toxicology research W ANG Quan jun,W U Chun qi,LI AO Ming yang (Institute o f Pharmacology and To xicology ,Academ y o f Military Medical Sciences ,National Beijing Center f o r Drug Sa fety Evaluation and Research ,Beijing 100850,China )[Abstract ] Discovery toxicology,also named predevelopmental toxicology,is to screen toxicities of new che mical entities (NCEs)in the discovery phase of ne w drug research,to discover and eliminate the compounds that are unsuitable for further development due to their toxicity as early as possible,and to optimize the next more safe compounds.Discovery toxicology research can break through the limitation and improve the efficiency of drug research.This article will present the concept of discovery toxicology,the essentiality of discovery toxicology research.The content,methods and current status of discovery toxicology in China are described too. [Key words ] discovery toxicology;new chemical entities(NCEs);toxicity screening 药物研发成功与否部分取决于在研发早期严格淘汰不适合进一步研发的化合物。在药物临床前阶段,毒性问题是研发失败的主要原因。在研发早期尽早发现候选化合物的潜在毒性是毒理学研究的重要问题。 多年来,新药研发越来越多地依赖于生命科学技术的研究进展。在新药设计方面,化学家参考药物作用靶、内源性配体和底物的化学结构特征,应用计算机辅助药物设计手段发现选择性作用于靶位的新药;在新药活性筛选方面,现代药物组合化学与体外高通量筛选的成功结合极大地提高了先导化合物的发现速度;在新药的药动学(ADME)研究方面,多种基于药物代谢酶或转运体的药动学筛选模型已开始应用于新药开发研究。这些新技术的成功运用大 大加快了药物研发早期的药物发现、药物合成、药效筛选的进程,从而产生大量的候选化合物。传统药物毒理学研究在时间、经费、样品消耗量和动物数等方面都花费巨大,在药物毒作用机制研究方面难以阐明一些临床使用药物的毒性机制和理想的应急解毒措施,因此传统药物毒理学无法满足因新的生物技术而产生的海量候选化合物的毒性筛选研究,成为限制整个药物研发的瓶颈。而发现毒理学(Discovery Toxicology)的研究将打破这个瓶颈,既可加快药物研发进程,提高研发成功率,又减少资源消耗。笔者就发现毒理学研究的含义、必要性、研究内容、研究方法和我国当前的研究现状作一简要综述。1 定义、产生背景和产生的必要性 伴随着科学技术的发展,当代毒理学的发展将 958

生物药剂学和药物动力学重点总结

1.生物药剂学(biopharmaceutics,biopharmacy)——研究药物及其剂型在体内的吸收、 分布、代谢与排泄过程,阐明药物的剂型因素,机体生物因素和药物疗效之间相互关系的科学。 2.生物药剂学的剂型因素和生物因素. 1剂型因素:化学性质、物理性质、剂型及服法、辅料、药物配伍、工艺条件等。 2生物因素 3.口服药物消化道吸收的因素、解离度、脂溶性和分子量2、溶出速率3、药物 4.影响体内药物分布的主要因素:体内循环与血管透过性的影响、药物与血浆蛋白结合的能力、药物的的理化性质与透过生物膜的能力、药物与组织的亲和力、药物相互作用对分制的影响。 5.影响药物代谢的因素给药途径对药物代谢的影响、给药剂量和剂型对药物代谢的影响、药物光学异构性对药物代谢的影响、、酶抑制和诱导对药物代谢的影响、生理因素对药物 入体循环的过程。分布(Distribution):药物进入体循环后向各组织、器官或者体液转运的过程。代谢(Motabolism):药物在吸收过程或进入体循环后,受肠道菌丛或体内酶系统的作用,结构发生转变的过程。排泄(Excretion):药物或其代谢产物排出体外的过程。转运(transport):分布和排泄过程统称为转运。处置(disposition):分布、代谢和排泄过程称为处置。消除(elimination):代谢与排泄过程药物被清除,合称为消除。 5片剂口服后的体内过程有:片剂崩解、药物的溶出、吸收、分布、代谢、排泄。 7生物膜的结构:细胞膜的组成:①膜脂:磷脂、胆固醇、糖脂②少量糖③蛋白质。 生物膜性质:膜的流动性;膜结构的不对称性;膜结构的半透性。 8膜转运途径。细胞通道转运:药物借助其脂溶性或膜内蛋白的载体作用,透过细胞而被是小分子水溶性的药物转运吸收的通道。细胞旁路通道转运:是指一些小分子物质通过细胞间连接处的微孔进入体循环的过程。是脂溶性药物及一些经主动机制吸收药物的通道。 9药物通过生物膜的几种转运机制及特点: (一)、被动转运(passive transport)是指药物的膜转运服从浓度梯度扩散原理,即从高①.单纯扩散(passive diffusion) 又称脂溶扩散,脂溶性药物可溶于脂质而通过生物膜. 绝大多数有机弱酸或有机弱碱药物在消化道内吸收.1)药物的油/水分配系数愈大,在

系统毒理学及其研究进展

系统毒理学及其研究进展 在总结国内外相关研究的基础上,综述了系统毒理学的原理、诞生背景、研究策略、研究基础及其主要应用。同时,通过介绍系统毒理学的研究实例来阐述其目前的研究进展情况。希望从分子生物学的发展中汲取足够营养并结合传统毒理学的研究成果发展壮大自己。 【Abstract】Based on the foundation of related research at home and abroad,paper summarizes the principle and research strategy,research background,basis and main application of system toxicology. At the same time,to explain its current status a case study of the system is introduced. And we hope to draw sufficient toxicological nutrition from the development of molecular biology and development itself combined with the research of traditional toxicology . 标签:背景;技术;应用;进展 1 系统毒理学及其诞生背景 系统毒理学是近10年来发展起来的一门新兴学科,代表着后基因组时代毒理学发展的新方向。所谓系统毒理学是指通过了解机体暴露后在不同剂量、不同时点的基因表达谱、蛋白质谱和代谢物谱的改变以及传统毒理学的研究参数,借助生物信息学和计算毒理学技术對其进行整合,从而系统地研究外源性化学物和环境应激等与机体相互作用的一门学科[1]。 近年来,生命科学在新理论和新技术上有了突飞猛进的发展,一系列“组学”(omics)应运而生,如基因组学(genomics)、蛋白质组学(proteomics)、细胞组学(cellomics或cytomics),等新学科不断涌现,使人们对基因和基因组的认识,对生命本质的认识和认识生命、健康的手段取得了重要的进展。 另外,传统的毒理学研究依然存在许多不足,相对于飞速发展的分子生物学技术和越来越多的外源性物质,毒理学的研究方法急待革新。 系统毒理学的发展,既有系统生物学发展的外在刺激,又有传统毒理学在发展中克服自身不足的内在需求。 2 生物学基础 2.1 基因组学 基因组学是研究基因组的结构、功能及表达产物的学科。基因组的产物不仅是蛋白质,还有许多复杂功能的RNA。将基因组学的方法与技术应用于毒理学研究领域,称之为毒物基因组学(toxicogenomics)。毒物基因组学的基本方法是通过观察生物在接触毒物后基因表达谱的变化,筛选毒性相关基因、揭示毒作用

生物药剂学重点

生物药剂学 一、生物药剂学概述: 1.生物药剂学:是研究药物及其剂型在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素、机体的生物因素与药物效应三者之间相互关系的科学。 2.药物的体内过程(ADME): (1)吸收是指药物从用药部位进入体循环的过程; (2)药物从体循环向各组织、器官或体液转运的过程称为分布; (3)药物在吸收过程或进入体循环后,受肠道菌丛或体内酶系统的作用,结构发生转变的过程称为代谢或生物转化; (4)药物及其代谢物排出体外的过程称为排泄。 ?药物的吸收、分布和排泄过程统称为转运,而分布、代谢和排泄过程称为处置,代谢与排泄过程称为消除。 3.生物药剂学研究影响剂型体内过程的因素主要是剂型因素和生物因素: (1)剂型因素: ①药物的某些化学性质 ②药物的某些物理性质 ③药物的剂型及用药方法 ④制剂处方中所用辅料的种类、性质和用量 ⑤处方中药物的配伍及相互作用 ⑥制剂的工艺过程、操作条件和贮存条件等; (2)生物因素:①种族差异②性别差异③年龄差异④生理和病理条件的差异⑥遗传因素。 4.生物药剂学的研究内容: (1)研究药物的理化性质对药物体内转运行为的影响; (2)研究剂型、制剂处方和制剂工艺对药物体内过程的影响; (3)根据机体的生理功能设计缓控释制剂; (4)研究微粒给药系统在血液循环中的命运,为靶向给药系统设计提供依据 (5)研究新的给药途经与给药方法; (6)研究中药制剂的溶出度和生物利用度; (7)研究生物药剂学的试验方法。 5.生物药剂学分类系统(BCS):根据药物的体外溶解性和肠壁通透性特征将药物分成4种类型:Ι类为高溶解性/高渗透性药物;ΙΙ类为低溶解性/高渗透性药物;ΙΙΙ类为高溶解性/低渗透性药物;ΙV类为低溶解性/低渗透性药物。 6.微透析(MD)技术:P10 二、口服药物的吸收: 1.药物的吸收:是指药物从给药部位进入体循环的过程。 2.生物膜性质: (1)膜的流动性; (2)膜结构的不对称性; (3)膜结构的半透性。 3.膜转运途径: (1)细胞通道转运:药物借助其脂溶性或膜内蛋白的载体作用,穿过细胞而被吸收的过程;

镉的毒性和毒理学研究进展

2Chin J Ind Hyg Occup Dis,Febru ary1998,Vol.16,No.1 述 评 镉的毒性和毒理学研究进展 刘杰 镉(Cadmium)是一种重金属,它与氧、氯、硫等元素形成无机化合物分布于自然界中。镉对人体健康的危害主要来源于工农业生产所造成的环境污染。镉对肾、肺、肝、睾丸、脑、骨骼及血液系统均可产生毒性,被美国毒物管理委员会(ATSDR)列为第6位危及人体健康的有毒物质。环境中的镉不能生物降解,随着工农业生产的发展,受污染环境中的镉含量也逐年上升。镉在体内的生物半衰期长达10~30年,为已知的最易在体内蓄积的毒物。镉在肾脏的一般蓄积量与中毒阈值很接近,安全系数很低。在60年代提出了镉污染与日本“痛痛病”的因果关系后,环境中的镉与健康关系的研究日益受到重视。近几年来,有关镉毒理学研究的文献每年超过600篇(Medline检索)。美国目前有大约100个关于镉与健康的研究课题,涉及各个领域。国内对镉的毒性和毒理学的研究开展得也比较广泛,其中一些在中毒机制方面作了较深入的探讨,有的学者甚至进行了长达十几年的研究。 镉的毒性和毒理学研究进展主要包括以下几个方面: 一、镉污染与人类健康 1.环境中的镉:对环境中镉污染的早期关注局限于锌、铜、铅矿的冶炼。后来注意力转为镉在工业中的应用,如电池、电镀、合金、油漆和塑料等工业。经过多年的努力,国内外对职业劳动中接触镉的卫生保护已大大加强。近年来,对环境中的镉通过食物链对一般人群的潜在危害已受到高度重视。随着含镉磷肥的施用、污水灌溉等,土壤中镉含量增加,继而被某些植物摄取而进入食物链。1997年国际地球生化学会在美国加州专门对此问题进行了讨论并出版了专著;国际环境科学委员会(SCOPE)则进一步将土壤中镉的来源、价态、食物链中的转化以及对一般人群健康的影响定为目前镉研究的一个重点方向。 2.镉的摄入及监测:职业人群镉暴露的主要途径是吸入。对作业场所空气中镉的浓度进行监测并控制在容许范围之内,是保护工人健康的一个重要手段。对一般人群来说,镉暴露主要来源于食物和吸烟。人们每日可从食物中摄镉30~50 g,但仅有1%~3%被肠胃吸收。因此,对镉的胃肠吸收、体内分布和排泄的影响因素一直是镉毒理学研究中的一个热点。其中,镉与金属硫蛋白(m etal-lothio nein,MT)的结合,及镉与锌、钙的相互作用是影响镉体内代谢动力学的重要因素。血镉的含量可用来评价近期的镉暴露,尿镉含量则在一定程度上反映了镉性肾损伤和体内的镉负荷。尿中的 2-微球蛋白和尿M T的含量已作为镉暴露的生物标志物。 二、镉的毒性研究进展 1.镉的肾毒性:肾损伤是慢性染镉对人体的主要危害。一般认为镉所致的肾损伤是不可逆的,目前尚无有效的疗法。很多学者认为:镉所致的肾损伤是由在肝脏形成的镉-金属硫蛋白(M T)复合物(CdM T)引起的。因此,一次性大量注射CdMT造成肾损伤的动物模型用来研究镉的肾毒性机制已达20年之久。最近,用删除了M T的转基因动物的实验结果表明:镉所致的肾损伤并不一定依赖于CdM T的形成,无机镉亦能直接造成肾脏损伤。一次性注射CdM T主要造成肾小管细胞的坏死,而慢性染镉造成的病理改变则波及整个肾脏,包括肾小球的损伤和肾间质的炎症。慢性染镉 作者单位:66160美国堪萨斯城,堪萨斯大学医学中心药理毒理系

药剂学复习重点归纳人卫版

第一章绪论 1.药剂学:研究药物制剂的基本理论、处方设计、制备工艺、质量控制及合理使用的综合性应用技术科学 2.剂型:为适应治疗或预防的需要而制备的不同给药形式,称为药物剂型,简称剂型(Dosage form) 3.制剂:为适应治疗或预防的需要而制备的不同给药形式的具体品种,称为药物制剂,简称 药剂学任务:是研究将药物制成适于临床应用的剂型,并能批量生产安全、有效、稳定的制剂,以满足医疗卫生的需要。 药物剂型的重要性: 改变药物作用性质,降低或消除药物的毒副作用,调节药物作用速度,靶向作用,影响药效 药剂学的分支学科工业药剂学物理药剂学药用高分子材料学生物药剂学药物动力学临床药剂学 药典作为药品生产、检验、供应和使用的依据 第二章:药物制剂的稳定性 药物制剂稳定性的概念 药物制剂的稳定性系指药物在体外的稳定性,是指药物制剂在生产、运输、贮藏、周转,直至临床应用前的一系列过程中发生质量变化的速度和程度。 药用溶剂的种类(一)水溶剂是最常用的极性溶剂。其理化性质稳定,能与身体组织在生理上相适应,吸收快,因此水溶性药物多制备成水溶液 (二)非水溶剂在水中难溶,选择适量的非水溶剂,可以增大药物的溶解度。 1.醇类如乙醇、2.二氧戊环类 3.醚类甘油。4.酰胺类二甲基乙酰胺、能与水混合,易溶于乙醇中。5.酯类油酸乙酯。6.植物油类如豆油、玉米油、芝麻油、作为油性制剂与乳剂的油相。7.亚砜类如二甲基亚砜,能与水、乙醇混溶。 介电常数(dielectric constant) 溶剂的介电常数表示在溶液中将相反电荷分开的能力,它反映溶剂分子的极性大小。 溶解度参数溶解度参数表示同种分子间的内聚能,也是表示分子极性大小的一种量度。溶解度参数越大,极 性越大。 溶解度(solubility)是指在一定温度下药物溶解在溶剂中达饱和时的浓度,是反映药物溶解性的重要指标。溶解度常用一定温度下100g溶剂中(或100g溶液,或100ml溶液)溶解溶质的最大克数来表示,亦可用质量摩尔浓度mol/kg或物质的量浓度mol/L来表示。 溶解度的测定方法1.药物的特性溶解度测定法 药物的特性溶解度是指药物不含任何杂质,在溶剂中不发生解离或缔合,也不发生相互作用时所形成饱和溶液的浓度,是药物的重要物理参数之一。 2.药物的平衡溶解度测定法具体方法:取数份药物,配制从不饱和溶液到饱和溶液的系列溶液,置恒温条件下振荡至平衡,经滤膜过滤,取滤液分析,测定药物在溶液中的浓度 影响药物溶解度的因素 1.药物溶解度与分子结构 2.药物分子的溶剂化作用与水合作用 3.药物的多晶型与粒子的大小 4.温度的影响 5.pH与同离子效应 6.混合溶剂的影响 7.填加物的影响 增加药物溶解度的方法有: 增溶,某些难溶性药物在表面活性剂的作用下,使其在溶剂中的溶解度增大,并形成澄清溶液的过程。

新药毒理学研究现状和展望——毒理学论文

新药毒理学研究现状和展望 吴远洪 随着医药科技的不断进步发展,人类开发药物的技术越来越成熟,研发新型药物的周期也越来越短,特别是加上巨大的医药市场利润的诱惑,让众多药物研发企业都在日夜不停地开发新药物。虽然研发一种新型药物仍然具有较高的门槛,但是每年上市的新药也并不少,而且很多都是针对现在重大疾病的药物(见表一),然而,“是药三分毒”,药物的上市虽然解决了很多人类疾病,但也同样带来了一系列的不安全因素,近年来,由药物导致事故的报道已是屡见不鲜,每年因为出现重大不良反应或者毒副作用而撤出市面的药物也不在少数,从80年代起,撤药事件就有17起(见表二),因此而造成的经济损失,包括企业经济和社会经济基本上都是天文数字,更重要的是其直接造成的生命和健康的代价更是无可估量。 药物不良反应(adverse drug reaction,ADR)是指合格药品在正常用法用量情况下出现的用药目的无关或意外的有害反应[6]。毒理学是研究毒物与机体交互作用的一门学科,已经为人类提供了重要的以剂量-效应关系为中心的数据资料,为化学物毒性评价和人类危险度量化评估提供了基本数据[7]。所以,毒理学是一种预测临床药物毒性,药物安全性评价的重要手段,为药物上市前做好良好的铺垫,也为以后避免造成不必要的经济浪费提供一个决策点。因此,建立准确性高、可靠的药物毒性研究机制是新药研发过程中迫切希望解决的问题。本文就为毒理学在新药研发的应用做出以下综述。 表一、2008-2009年中国上市新药分类统计

一、 毒理学在药物研发的必要性 众所周知,新药研发是一个长周期、高风险、高投入和高产出的工作和过程。其中在整个药物研发过程,临床前毒理学具有非常重要的参考价值和决策价值,其必要性不仅仅体现在经济效价上,也体现在社会价值上。 1.1 毒理学的经济效价 通常情况下,新药从发现到正式上市需要10年左右的时间,2010年一种新药从研发到进入Ⅲ期临床试验所需的费用增加到19亿[1]。所以研发一种药物是建立在庞大的资金链和漫长的研发周期基础上的,其中所付出的人力物力更是乃以计数,然而就算有多艰难研究出来的药物,因为一个不良反应也照样可以彻底毁掉这个药物,甚至是整个企业。往往一个药物的不良反应不仅仅给人们的生命健康带来强烈的冲击,就连企业本身也难脱劫难,就算是基础坚固的百年商业帝国也一样被摧毁殆尽,这在医药历史上已不是鲜为人知的事。因此,如果因为药物不良反应而撤出市场的话,其浪费的资源和付出的代价是相当惊人的。 新药研发经济学研究表明,新药临床试验成功率从20%提高到33%, 可节表二、历史上FDA 的撤药事件

生物药剂学的研究进展及展望

生物药剂学的研究进展及展望 宗文君 2008357771967 摘要 通过回顾生物药剂学研究进展的几个方面的进程,加深生物药剂学的学习,进而对生物药剂学未来的发展进行展望。 关键词 生物药剂学研究进展、生物药剂学、生物药剂学展望、药物动力学的研究进展、苷类天然药物的生物药剂学研究进展。 药剂学与生物药剂学的发展 从1847年德国药师莫尔的第一本药剂学教科书《药剂工艺学》的问世,宣告药剂学已作为一门独立的学科。药剂学成为研究药物剂型的配制理论、生产技术、质量控制与合理应用的综合性技术科学。20世纪50年代后,由于科学的发展,特别是合成化学、微生物学、实验药理学、生物化学、物理化学和化学动力学的发展和渗入,使药剂学进入了用化学和物理化学基础来设计、生产和评价剂型,并用客观体外科学指标评定质量的时代,称为物理药剂学(physical Pharmaceutics)时代。20世纪60-70年代,药品质量的评定从体外论证扩展到体内,把药剂学推进到生物药剂学(biopharmaceutics)的新时代。20世纪80年代,由于合成和半合成化学药物的大量出现和应用,结果发现不少药物有毒副作用,以及致敏性、致突变性和致癌性等,药剂学又向临床质量评定方向前进而进入临床药学时代(clinical pharmacy)。临床药学的主要任务就是阐明药物在疾病治疗中的作用与相互作用及指导合理用药。20世纪90年代以来,由于分子药理学、生物药物分析、细胞药物化学、药物分子传递学及系统工程学等科学的发展、渗入以及新技术的不断涌现,药物剂型和制剂研究已进入给药系统(drug delivery system,DDS)时代,药物制剂设计和生产,体外的溶出与释放与体内药物在吸收、分布、排泄过程中的变化和影响都要用数据和图象来阐述,还要结合患者、病因、器官组织细胞的生理特点与药物分子的关系来反映剂型的结构与有效性,逐渐解决剂型与病变细胞亲和性的问题,所以21世纪的药剂学是药物制剂向系统工程制品发展的DDS 新时代。 药物动力学的研究进展 群体药物动力学群体药物动力学是研究药物动力学群体参数的估算,药物动力学参数群体值不仅是临床用药所必需,而且有可能成为新药评价的一个必备参数。药物动力学参数群体值的估算有两种方法,一种是传统的二步法,另一种是近年来发展的一步法。后者亦名Nonmen程序法,它把药物动力学参数在患者身上的自身变异及患者间的变异全估算在内。根据变异值的大小也可预估一些生理、病理因素对药物动力学参数的影响。因而更具优越性,在个体化给药中,Nonmen常与Bayesian反馈法结合使用。 时辰药物动力学时辰药物动力学是指同一剂量在l天内不同时间给予时药物处置出现显著变异。如多数脂溶性药物的吸收,清晨比傍晚吸收更佳,另外象单硝酸异山梨酯在清晨服用时所导致的体位性低血压最为明显,同时达峰时间也较其他时间给药为短。一些疾病并非1天24小时机体均需要同等水平的药物,如心脏病患者在凌晨发病较多,若制成脉冲式给药,可产生预防作用;相反,如药物浓度始终维持在同一水平却容易带来耐药性,例如硝酸甘油和许多抗菌素类药物;再如只有当血浆中糖分较高时才需要较高的胰岛素。人们开始研究能够自动感知血糖水平,以调节胰岛素释放速率的智能给药装置。

药剂学综述 新型栓剂的研究进展

新型栓剂的研究进展 药学2班万国运 2010071202【摘要】栓剂系指药物与适宜基质制成的供腔道给药的固体状制剂,具有适宜的硬度和韧性,无刺激性,引入腔道后在体温条件下能熔融、软化或溶解,且易与分泌液混合,逐渐释放药物。栓剂既可起局部作用,也可通过吸收进入血液循环而起全身作用。栓剂用于局部治疗时,药物直接作用于病灶,并逐渐释放药物,与其他药物相比,作用时间长、作用强。用于全身治疗时,由于药物在直肠吸收,药物避免了首过效应和胃中酶的破坏,不但可减少药物的毒副作用,而且起效快,并可免去打针吃药之痛苦。由于栓剂疗效确切,且不易受其他条件影响疗效的发挥,因此人们自然而然地想把更多的药物制成栓剂。但传统的普通栓剂又不能满足这一要求,所以各国相继开发了一些新型栓剂,笔者通过查阅文献就几种常用的新型栓剂的研究进展做一概述。 【关键词】新型栓剂;中空栓剂;双层栓剂;缓释栓剂;微囊栓剂;泡腾栓剂;凝胶栓剂 栓剂亦称塞药或坐药,是一种传统剂型,在国内外都有悠久的历史。我国用栓剂治疗疾病最早可上溯至《史记》,后汉《伤寒论》中有载有蜜煎导方,就是用于通便的肛门栓,晋代《肘后备急方》载有鼻用栓剂和耳用栓剂。国外公元前1550年埃及的《伊伯氏纸 草本》中也有栓剂的记载[1] 。栓剂的发展很迅速,近年来,随着制 药新技术、新基质的出现,栓剂的研究及使用显著增加,出现了中空栓、双层栓、缓释栓、微囊栓、泡腾栓、凝胶栓等新型栓剂。 1. 中空栓剂

中空栓剂以空白或含药基质为外壳,中空部分填充液体或固体药物的一种栓剂。是1984年渡道善照等研制的新型栓剂,与普通栓相比,中空栓剂的栓壁薄,在2分钟内软化释放,起效远快,表明中空栓剂有释药速度快的优点;中空栓剂药量可以调整,在临床上预先制备中空栓剂外壳,据临床需要临时填充药物;对于治疗窗窄的药物,可根据血药浓度监测调整住院患者的用药方案,以确保疗效和减少不良反应,便于个体化用药;中空栓剂还可增加制剂稳定性[2] 。 Shegokar等[3] 在研究扑热息痛中空栓中加入辅料对药物在体内 释放的影响时得出当加入硫代琥珀酸二辛钠和微分硅胶可以延长扑热息痛释放时间,甘油酯和Capryol PGMC可作为佐剂来加快扑热息 痛的释放,增加疗效。李维等[4] 制备环丙沙星中空栓时,先配置 PVP不同浓度溶液待用,将半合成脂肪酸脂 (基质 ) 适量, 置合适容器中, 于 60 ℃水浴中融化后搅匀。采用内加辅料法将融化好的基质迅速注入涂有液体石蜡的栓模中, (栓模中心部分有一空心管) , 于室温 20 ℃静置两分钟, 形成空腔, 于空腔内定量注入 0.3 ml PVP液和环丙沙星原料药, 尾部封基质并刮平, 启模即得。外加辅料法: 融化好的基质按定量加入0.3 ml/粒 PVP液, 搅匀, 迅速注入中心有一空心管栓模中, 室温静置两分钟, 空腔内加环丙沙星,尾部封基质并刮平, 启模即得。研究结果显示该中空栓的制备对提高在胃内易受消化液影响的药物及难溶性药物的生物利用度问题具有 非常重要的临床意义。吴德敏等[5] 取半合成脂肪酸甘油酯适量于60℃ 水浴中融化,加入4%的吐温80,再加入过100 目筛的氨基葡萄糖细粉,搅拌均匀,注入事先消毒灭菌并涂抹甘油的栓模中,冷凝后

初级药师考试辅导之生物药剂学与药动学:第六节药物排泄

生物药剂学与药动学第六节药物排泄 一、A1 1、关于肾脏排泄叙述错误的是 A、细胞和蛋白质不能肾小球滤过 B、肾小球滤过以被动转运为主 C、肾小管重吸收存在主动和被动重吸收两种形式 D、水、钠、氯、钾等有用物质可被重吸收 E、肾排泄率=肾小球滤过率+肾小管分泌率+肾小管重吸收率 2、以下选项是指单位时间内从体内清除的含有药物的血浆体积的是 A、消除速率常数 B、清除率 C、半衰期 D、一级动力学消除 E、零级动力学消除 3、下列过程中哪一种过程一般不存在竞争性抑制 A、肾小球过滤 B、胆汁排泄 C、肾小管分泌 D、肾小管重吸收 E、血浆蛋白结合 4、药物排泄最主要的器官是 A、肝 B、皮肤 C、消化道 D、肾 E、肺 5、关于肠肝循环的叙述错误的是 A、肠肝循环是药物及其代谢物通过门静脉重新吸收入血的过程 B、肠肝循环发生在由胆汁排泄的药物中 C、肠肝循环的药物在体内停留时间缩短 D、肠肝循环的药物应适当减低剂量 E、地高辛、苯妥英钠等存在肠肝循环现象 6、胆汁排泄的有关叙述中错误的是 A、胆汁排泄的机制包括被动转运和主动分泌 B、肝脏中存在5个转运系统 C、药物胆汁排泄主要通过被动转运进行 D、主动分泌有饱和现象 E、主动分泌存在竞争效应 7、吸收进入体内的药物以原型或经代谢后的产物排出体外的过程是 A、吸收 B、分布 C、排泄 D、代谢 E、消除

二、B 1、A.首关效应 B.生物等效性 C.相对生物利用度 D.绝对生物利用度 E.肝肠循环 <1> 、一种药物的不同制剂在相同实验条件下,给以同剂量,其吸收速度和程度无明显差异 A、 B、 C、 D、 E、 <2> 、药物在进入体循环前部分被肝代谢,称为 A、 B、 C、 D、 E、 <3> 、药物随胆汁进入小肠后被小肠重吸收的现象为 A、 B、 C、 D、 E、 答案部分 一、A1 1、 【正确答案】E 【答案解析】肾排泄率=肾小球滤过率+肾小管分泌率-肾小管重吸收率。 【该题针对“药物的排泄”知识点进行考核】 【答疑编号100400099】 2、 【正确答案】B 【答案解析】清除率的定义为:单位时间内从体内清除的含有药物的血浆体积(表观分布容积数)。【该题针对“药物的排泄”知识点进行考核】 【答疑编号100400098】 3、 【正确答案】A 【答案解析】药物经肾小球滤过的方式称为被动转运,不需要载体和能量,因此不存在竞争性抑制。而肾小管分泌为主动转运,肾小管重吸收存在主动重吸收和被动重吸收两种形式,都可存在竞争性抑制。胆汁

现代毒理学的研究方法进展及其热点_顾祖维

文章编号:1001-0580(2005)02-0254-03中图分类号:R114文献标识码:A=继续医学教育讲座> 作者简介:顾祖维,男,1935年1月生,上海人,研究员。1954~1960年在苏联列宁格勒公共卫生医学院学习。 1979~1981年在法国进修毒理学。1987年获法国国家毒理学博士学位。1960~1992年在上海医科大学劳卫生教研组任教,曾任教研室主任。1989~1992年应邀赴美国国家职业安全与卫生研究(NI OSH)工作,兼聘为美国国家研究委员会(NR C)高级研究员。1992年10月~1998年底任上海市劳动卫生职业病防治研究所研究员。1999年1月至今任上海市疾病预防控制中心研究员。从事职业医学和遗传及分子毒理学研究。现任中国毒理学会生化与分子毒理学专业委员会委员,国家自然科学基金会同行评议专家。5卫生毒理学杂志65工业卫生与职业病65中华医疗卫生65环境与健康展望6杂志副主编;5中华劳动卫生职业病杂志65中国工业医学杂志65中国公共卫生65环境与职业医学6等杂志编委。 现代毒理学的研究方法进展及其热点 顾祖维 毒理学在20世纪下半叶有了迅猛的发展,目前已形成了诸多的毒理学分支。按研究的对象或物质可分为金属毒理学、农药毒理学等。随着生产和科学技术的发展,肯定还会不断出现新的分支112。本文对现代毒理学的研究方法进展及其热点作一介绍。 1毒理学研究方法和技术发展 毒理学研究所用的方法和技术决定于要解决的问题。毒理学随科学发展,尤其是生物学和医学的发展也随之发展。毒理学发展的历史证明,引进新的概念、新的理论、新的方法和技术,会导致新的边缘学科的形成,出现毒理学新的分支。分子毒理学的形成是一个明显的见证。在毒理学研究中只要主动引进一种新的方法或技术,就有可能开创一个新的领域,获得一批创新和领先的科研成果。例如生物芯片包括基因芯片、蛋白质芯片的应用,将取代一些耗时的DN A印迹法(Souther n blot)、蛋白质印迹法(Western blot)、R NA印迹法(No rthern blot)和点印迹法(dot blot)。毒理学研究涉及受试化学物及它们的代谢产物的定性和定量问题,需要应用分析化学的方法。色谱)质谱联用的方法已普及。 在整体动物实验中常用组织病理学检查以观察全身器官和组织病理学改变,有利于找到靶器官,对进一步的研究可提供有价值的线索。毒理病理学方法包括光镜和电镜的检查、酶组织化学及免疫组织化学,可用于揭示病变的性质和定位。近年来,也用于研究基因包括癌基因和抑癌基因的表达。经典的病理学检查往往是定性或半定量的,现今结合图像分析,可将图像的改变转化为数据,做到定量的研究。计算机体层摄影(CT)、磁共振成像(M RI)和超声检查可提供形态和功能改变的信息。 实质脏器功能主要应用血液和尿生化指标改变,多功能生化检测仪,在一次进样后可同时检测近百种指标,血液和尿液酶谱分析也常用。对脑的研究常用电生理方法,经典的有脑电图,进一步可用微电极观察特定脑区的电活动。化学物对海马回的作用揭示了大脑学习与记忆的功能,研究毒物对基底节的作用有助于了解Par kinson.s病。大脑诱发电位技术可客观地检查感觉神经系统通路的结构和功能。还常用神经递质及其代谢产物的分析12~62。我国神经行为方法在研究职业性毒物方面已广泛应用。 2当今毒理学研究的热点211一系列/组学0的形成当今毒理学面临前所未有的良好机遇和快速发展。近年来,生命科学在新理论和新技术上有了突飞猛进的发展,一系列/组学0(omics)应运而生,如基因组学(genomics)、蛋白质组学(proteomics)、细胞组学(ce-l lomics或cytomics),等新学科不断涌现,使人们对基因和基因组的认识,对生命本质的认识和认识生命、健康的手段取得了重要的进展。其中某些学科已与毒理学产生交叉融合形成了新分支。如基因组学v毒物基因组学和环境基因组学(tox-i cog enomics or environmental genomics),蛋白质组学v毒物蛋白质组学(tox icoproteomics),代谢组学(metabonomics)v毒物代谢组学(toxicometabonmics),生物信息学(bioinformatics)或芯片生物学(in silico biolog y)v芯片毒理学(in silico toxicolo-gy)等,这此交叉分支学科已成为当前毒理学中最活跃的研究领域172。 近年来,新技术、新方法不断涌现,如包括各种生物芯片转基因和基因删除(gene knockout)技术、报告基因技术、干细胞技术、基因或蛋白质差异表达检测技术、实时定量PCR(r e-a-l time and quantitative PCR)技术、蛋白质组技术平台、代谢组技术平台、发光技术、荧光/比色、干细胞培养技术等。人体和其他生物的基因组计划、环境基因组计划、细胞凋亡和细胞胀亡(o ncosis)等细胞死亡模式、细胞信号转导通路、细胞周期调控和细胞分化机制等的研究进展,为毒理学的发展提供了理论指导。由于物种间基因的同源性,鼠的基因仅比人少300条,约1%的差异,这为从基因水平上研究毒作用的种属差异提供了可能;生物芯片技术可用于筛选毒性相关基因、揭示毒作用的基因表达谱、快速筛选毒物、筛选和检测基因多态性、检测基因突变、进行安全性评价等,从而为解决化学物的联合作用、高通量的筛选化学物、研究毒作用机制等问题18~102。我国近来报道应用基因芯片技术探讨小鼠胚胎心脏发育过程中的差异基因,结果表明,在8404个靶基因中,143个基因差异表达,其中上调基因52个,下调基因91个,分别是细胞分裂、凋亡、信号传导、基因蛋白质表达调控及某些功能尚不清楚的基因1112。 21111代谢组学代谢组学(mteabonomics)是研究机体内代谢网络系统的科学,揭示机体在正常和病理状态下代谢的全貌1122。代谢组学的技术是一种检测整个机体的代谢动力学变化的方法。这种检测仅需几滴血液,利用高频无线电波检测血液中分子磁性,通过高级计算机程序分析,检测血液、血浆和尿液,标本无须特殊的前期处理。此检测也可以有效地 作者单位:上海市疾病预防控制中心,200336

分子毒理学研究的现状与展望

#述评#分子毒理学研究的现状与展望 庄志雄 近20年来,细胞与分子生物学理论与技术的飞速发展赋予毒理学工作者新的启迪和工具,从而改变了传统毒理学研究的基本格局,真正实现了从整体和器官水平向细胞和分子水平的飞跃,在阐明毒物对机体损伤作用和致癌过程的分子机制方面取得了重要的突破,形成了一些新的研究热点,建立了许多新的分子生物标志物的检测方法,成为沟通毒理学实验研究与人群流行病学调查的/共同语言0,使宏观与微观研究有机地结合起来,改变了化学物质危险度评价的模式,大大促进了环境医学和其他生物科学的发展。 一、分子毒理学研究的几个热点 1.机体对环境应激的反应和应激蛋白的形成:生物体无论是处于高温或非高温应激条件下(如缺血、缺氧、氧化应激、感染及接触某些化学物和药物等)都会产生一系列普遍而保守的应答,诱导细胞中基因表达谱的改变,合成一组保守的热休克(应激)蛋白(heat shoc k/stress proteins,HSPs),其他参与细胞正常功能的基因表达则暂时受到抑制。HSPs具有重要的生物学作用,如:保护细胞或生物渡过暂时的危险状态;再次面对应激时,其耐受性增高;在机体生长、发育、分化等生理过程中起重要作用;作为/分子伴侣0,参与蛋白质折叠、装配、降解、转移和修复;与一些重要的生物活性物质,如某些激素、干扰素、白细胞介素、癌基因等有密切联系,与肿瘤的发生有关。因此,HSPs 基因表达及其调控机制日益为人们关注,成为当今国际研究的热点。另一类重要的应激蛋白是金属硫蛋白(metallothionein,MT))))一种低分子量、富含半胱氨酸、具有热稳定性的金属结合蛋白,可被有毒金属如镉、汞、砷等所诱导。近年来发现,接触其他的化学物(如CCl4、甲萘酚)和某些人体必需的元素如铜、锌及氧化应激等,也能诱导组织产生MT。MT除结合重金属外,本身也有清除氧自由基的作用。最近,国外用转基因技术研制出MT高表达和删除MT的转基因动物,用于研究MT的功能(如抗氧化应激、对肝和肾毒性的拮抗作用等)。我国已有许多单位对MT 的诱导、生物学特性、分离鉴定及其与靶器官(肝、肾等)毒性的关系开展了广泛的研究。 作者单位:518020中国预防医学科学院深圳研究中心 2.毒物对细胞周期监控关卡机制的影响:细胞增殖是生命过程的基本特征,与机体的生长发育、创伤的愈合、组织器官分化、细胞程序性死亡都有密切联系。但是,细胞的异常增殖在肿瘤的发展过程中起重要作用。近年来对于细胞增殖与致癌的关系已逐渐深入到化学致癌物如何影响细胞周期的调控方面。细胞周期是一个程序性的、周而复始的级联过程,有赖于一种称之为细胞周期关卡(checkpoints)的监视控制机制来完成。这种关卡在接触毒物后维持细胞周期中DNA的稳定性方面起重要作用,能暂时中止或推迟细胞周期的进程,提供给细胞足够的时间在下一个周期到来之前修复DNA损害。现已明确,这个体系是由真核细胞中专门控制细胞周期的一系列基因的表达产物组成,其中,以周期素(cyclin)和周期素依赖性蛋白激酶(cyclin-dependent kina se,Cdk,又称Cdc)最为重要。当细胞接触遗传毒物时,引发出各种细胞反应来诱导Cdk的抑制蛋白,在细胞周期的不同控制点(如G1和G2期)与Cdk结合或与cyclin/Cdk复合物结合,形成不同的屏障,从而抑制cyclin/Cdk活性,发挥关卡作用。例如,P53是一种生长性抑制蛋白,当DNA受损时,刺激P53蛋白短暂地蓄积,细胞周期停止在G1期中,DNA合成复制,使之有足够时间修复损害的DNA,保证细胞基因组的稳定。目前已知的抑制蛋白质还有P15、P16、P18、P21和P27等。 3.环境毒物对细胞信息传递过程的影响:细胞信息传递是80年代以来生物学研究领域中最活跃的部分之一。细胞内信息传递系统的基本结构主要由特异性的膜受体、G蛋白、一系列第二信使[如:cAMP、cGMP、二酰基甘油(DAG)、IP3、Ca2+]及蛋白激酶、靶向功能蛋白和多种控制蛋白组成。近年来,两种气态第二信使)))NO和CO的传递系统也基本明了。此外,某些细胞外信息(如甾体激素类)可直接进入细胞内而与细胞内受体结合,然后进入细胞核,改变基因的表达。各种毒物可在细胞信息传递途径的各个环节起作用。例如,一种非常重要的环境污染物)))二口恶口英(TCDD)可结合到Ah受体使其活化,与转录因子(Ah受体转运蛋白)形成异二聚体,这种三元复合物结合到DNA的调控序列上,使某些蛋白(如:

相关文档