文档库 最新最全的文档下载
当前位置:文档库 › 蒙脱土-BR复合材料的结构和性能研究

蒙脱土-BR复合材料的结构和性能研究

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

磁电复合材料研究进展.

《复合材料学》课程论文 题目:磁电复合材料的研究进展 学生姓名:李名敏 学号: 051002109 学院:化学工程学院 专业班级:材料化学101 电子邮箱: 904721996@https://www.wendangku.net/doc/167461761.html, 2013年 6 月

磁电复合材料的研究进展 摘要:本文介绍磁电复合材料的研究现状和合成工艺,讨论了磁电复合材料性能的影响因素,最后提出了其目前存在的问题及对今后的展望。 关键词:磁电复合材料铁电相铁磁相纳米材料合成工艺性能 1 引言 材料在外加磁场作用下产生自发极化或者在外加电场作用下感生磁化强度的效应称为磁电效应,具有磁电效应的材料称为磁电材料[1]。而磁电复合材料,它由两种单相材料—铁电相与铁磁相经一定方法复合而成。磁电复合材料的磁电转换功能是通过铁电相与铁磁相的乘积效应实现的, 这种乘积效应即磁电效应。磁电复合材料不仅具有前者的压电效应和后者的磁致伸缩效应,而且还能产生出新的磁电转换效应。这种材料能够直接将磁场转换成电场,也可以把电场直接转换为磁场。这种不同能量场之间的转换一步而成,不需要额外的设备,因此转换效率高、易操作。磁电复合材料不但具有较高的尼尔和居里温度,磁电转换系数大等诸多优点,而且还可被用于微波、高压输电、宽波段磁探测,磁场感应器等领域,尤其是在微波泄露、高压输电系统中的电流测量方面有着很突出的优势。此外,磁电复合材料在智能滤波器、磁电传感器、电磁传感器等领域也潜在着巨大的的应用前景[2]。目前, 磁电复合材料作为一种非常重要的功能材料,已成为当今铁电、铁磁功能材料领域的一个新的研究热点。 2 磁电复合材料的研究现状 2.1 磁电复合材料的历史 1894年法国物理学家居里首先提出并证明了一个不对称的分子体在外加磁场的影响下有可能直接被极化,磁电材料概念就此被提出。随后,一些科学家又指出了从对称性角度来考虑,在磁有序晶体中可能存在与磁场强度成正比的电极化以及与电场强度成正比的磁极化即线性磁电效应。直到20世纪80年代,已经发现50多种具有磁电效应的化合物,以及几十种具有此性能的固溶体。虽然发现了一系列具有磁电效应的单相材料,而这类材料虽然既具有铁电性(或反铁电性),又具有铁磁性(或反铁磁性),然而这些材料的居里温度大都远远低于室温,并且只有在居里温度以下这些材料才会表现出微弱的磁电效应。当环境温度上升到居里温度以上时,磁电系数就迅速下降为零,磁电效应也就随之消失。因此,难以利用单相磁电材料开发出具有实际应用价值的器件。这些局限性使得材料科学工作者们又将目光转移到复合材料上,Van Suchtelen首先提出通过复合材料的乘积效应来获得磁电效应,为制备高性能磁电材料开辟了一条新途径。1978

编织复合材料的细观结构与力学性能

3D编织复合材料的细观结构与力学性能 摘要归纳、梳理三维编织复合材料细观结构表征方面较有代表性的单胞模型,分析、比较各结构模型的优缺点,从理论分析与试验测试两方面总结三维编织复合材料刚度和强度性能的研究成果与进展,探讨细观结构表征与力学性能预报中存在的主要问题,并展望今后的研究重点与发展方向。 关键词三维编织复合材料;细观结构;力学性能 Microstructure and Mechanical Properties of 3D Braided Composites ABSTRACT Typical unit cell models on microstructure of 3D braided composites were summarized. Advantages and disadvantages of various models were compared. Developments of research on mechanical properties of 3D braided composites were introduced from theoretical analysis and experimental test perspectives. Finally, problems in the present study were discussed and further development trend is prospected KEYWORDS 3D braided composites; Microstructure; Mechanical properties 1 引言 三维编织复合材料是20世纪80年代为满足航空航天部门对高性能材料的需求而研发出的先进结构材料,具有高度整体化的空间互锁网状结构,可有效避免传统层合复合材料的分层破坏,冲击韧性、损伤容限与抗疲劳特性优异,结构可设计性强,能够实现异形件的净尺寸整体成型,因此在结构材料领域倍受关注。 力学性能是三维编织复合材料结构设计的核心,直接关系应用安全性与可靠性,细观结构是影响力学性能的关键,正确描述细观结构是准确预测宏观力学性能的必要前提。细观结构表征与力学性能预报一直是三维编织复合材料的研究重点,具有重要的理论价值与实践意义。 2 三维编织复合材料的细观结构单胞模型 Ko[1]首次提出“纤维构造”术语,定义出图1所示的立方体单胞模型,单胞由四根不计细度的直纱线组成,纱线沿体对角线方向取向并相交于立方体中心,模型大致描述出了编织体内部的纱线分布情况。

复合材料的最新研究进展

复合材料的最新研究进展 季益萍1, 杨云辉2 1天津工业大学先进纺织复合材料天津市重点实验室 2天津工业大学计算机技术与自动化学院, (300160) thymeping@https://www.wendangku.net/doc/167461761.html, 摘要:本文主要介绍了当前复合材料的最新发展情况,主要集中在复合材料的增强纤维、加工技术、智能材料和非破坏性检测技术等方面。希望能抛砖引玉,激发研究人员更有价值的创意。 关键词:复合材料,最新进展 1. 引言 人类社会正面临着诸多的问题和需求,如矿物能源、资源的枯竭、环境问题、信息技术以及生活质量等,这推动了复合材料的发展,也促进了各种高新技术的发展。但目前人们已不仅仅局限于新材料的创造、发现和应用上,科学研究已进入一个各种材料综合使用的新阶段,即向着按预定的性能或功能设计新材料的方向发展。并且,在复合材料性能取得飞速发展的同时,其应用领域不断拓宽,性能持续优化,加工工艺不断改善,成本不断降低。 复合材料的独特之处在于其可提供单一材料难以拥有的性能,其最大的优势是赋予材料可剪切性,从而优化设计每个特定技术要求的产品,最大限度地保证产品的可靠性、减轻重量和降低成本。近年以来,复合材料在加工领域中取得了一系列重要的进展,由于计算机辅助设计工具的介入和先进加工技术的开发,使复合材料的市场竞争力有了很大的提高,应用领域不断扩大,除用于结构复合材料外,还大量的进入了功能材料市场。我们观察到,复合材料的发展趋势是[1]: (1)进一步提高结构型先进复合材料的性能; (2)深入了解和控制复合材料的界面问题; (3)建立健全复合材料的复合材料力学; (4)复合材料结构设计的智能化; (5)加强功能复合材料的研究。 近年来,复合材料在增强纤维、加工技术、智能材料和非破坏性检测技术等方面研究较多,并且不断有新的市场应用,能够代表复合材料的最新发展方向。 2. 增强纤维环保化[2] 目前,增强纤维的发展趋势主要是强度、模量和断裂伸长的提高。但随着全球环保意识的风行,复合材料产品也逐渐受到环保方面要求的压力,尤其欧洲地区已有相关规定,热固性复材产品由于无法回收再利用而不易销往欧洲。在树脂之外,复材产品中的增强纤维迄今绝大部分都是无法回收再利用的,包括玻璃纤维、碳纤维、芳纶等,全都是如此。 最近有一种新型增强纤维-玄武岩纤维(Basalt Filament),是由火山岩石所提炼而成的,堪称100% 天然且环保,预期在不久的未来,将会取代相当比例的各种纤维,而加入复合 - 1 -

复合材料结构分析总结

复合材料结构分析总结 说明:整理自Simwe论坛,复合材料版块,原创fea_stud,大家要感谢他呀 目录 1# 复合材料结构分析总结(一)——概述篇 5# 复合材料结构分析总结(二)——建模篇 10# 复合材料结构分析总结(三)——分析篇 13# 复合材料结构分析总结(四)——优化篇 做了一年多的复合材料压力容器的分析工作,也积累了一些分析经验,到了总结的时候了,回想起来,总最初采用I-deas,到MSC.Patran、Nastran,到最后选定Ansys为自己的分析工具,确实有一些东西值得和大家分享,与从事复合材料结构分析的朋友门共同探讨。 (一)概述篇 复合材料是由一种以上具有不同性质的材料构成,其主要优点是具有优异的材料性能,在工程应用中典型的一种复合材料为纤维增强复合材料,这种材料的特性表现为正交各向异性,对于这种材料的模拟,很多的程序都提供了一些处理方法,在I-Deas、Nastran、Ansys中都有相应的处理方法。笔者最初是用I-Deas下建立各项异性材料结合三维实体结构单元来模拟(由于研究对象是厚壁容器,不宜采用壳单元),分析结果还是非常好的,而且I-Deas强大的建模功能,但由于课题要求要进行压力容器的优化分析,而且必须要自己写优化程序,I-Deas的二次开发功能开放性不是很强,所以改为MSC.Patran,Patran 提供了一种非常好的二次开发编程语言PCL(以后在MSC的版中专门给大家贴出这部分内容),采用Patran结合Nastran的分析环境,建立了基于正交各项异性和各项异性两种分析模型,但最终发现,在得到的最后结果中,复合材料层之间的应力结果始终不合理,而模型是没有问题的(因为在I-Deas中,相同的模型结果是合理的),于是最后转向Ansys,刚开始接触Ansys,真有相见恨晚的感觉,丰富的单元库,开放的二次开发环境(APDL 语言),下面就重点写Ansys的内容。 在ANSYS程序中,可以通过各项异性单元(Solid 64)来模拟,另外还专门提供了一类层合单元(Layer Elements)来模拟层合结构(Shell 99, Shell 91, Shell 181, Solid 46 和Solid 191)的复合材料。 采用ANSYS程序对复合材料结构进行处理的主要问题如下: (1)选择单元类型 针对不同的结构和输出结果的要求,选用不同的单元类型。 Shell 99 ——线性结构壳单元,用于较小或中等厚度复合材料板或壳结构,一般长度方向和厚度方向的比值大于10; Shell 91 ——非线性结构壳单元,这种单元支持材料的塑性和大应变行为; Shell 181——有限应变壳单元,这种单元支持几乎所有的包括大应变在内的材料 的非线性行为; Solid 46 ——三维实体结构单元,用于厚度较大的复合材料层合壳或实体结构;

聚丙烯酰胺_蒙脱土复合材料结构研究

第21卷第4期高分子材料科学与工程Vo l.21,N o.4 2005年7月POLYM ER M ATERIALS SCIENCE AND ENGIN EERING Jul.2005聚丙烯酰胺/蒙脱土复合材料结构研究X 高德玉1,RB-海曼2,B-托马斯2,李 红3,刘宇光1, 侯 静1,郑 辉1,倪靖滨1 (1.黑龙江省科学院技术物理研究所,黑龙江哈尔滨150086; 2.德国弗莱堡矿业大学; 3.黑龙江大学,黑龙江哈尔滨150080) 摘要:用红外(F T-I R),X射线衍射(X RD),核磁共振(NM R,13C,27A l,29Si)对电子束和紫外辐照制备的纳米结构聚丙烯酰胺/蒙脱土复合材料进行了表征。结果表明,丙烯酰胺以双分子层嵌入蒙脱土层间形成复合体,使蒙脱土层距由1.25nm增大到2.09nm。在复合材料中丙烯酰胺有三种形式:嵌入蒙脱土层间,通过氢键结合在蒙脱土表面和“自由”聚合物。 关键词:蒙脱土;聚丙烯酰胺;纳米复合材料 中图分类号:T B383 文献标识码:A 文章编号:1000-7555(2005)04-0201-04 蒙脱土由于其特有的层状结构,目前被广泛用于纳米材料的制备[1~5]。关于聚丙烯酰胺和蒙脱土复合材料的制备及应用已有很多研究[6~10]。制备蒙脱土/聚合物插层复合材料通常有两种方法,一种是将聚合物直接嵌入蒙脱土;另一种是将单体先嵌入蒙脱土然后进行原位聚合。本文使用仪器分析方法对第二种方法制备的聚丙烯酰胺/蒙脱土复合材料结构进行了初步研究。 1 实验部分 1.1 试样制备 试剂:丙烯酰胺(AM),丙烯酸钠(AANa),苯乙烯磺酸钠(SSNa),乙烯磺酸钠(VSNa),以上试剂均为分析纯,Fluka Chem ie,瑞士产品;蒙脱土:分析纯,S D-CHEMIE,德国产品。 SAP/蒙脱土复合试样(SAPC)的制备:将蒙脱土(30%质量比)悬浮在蒸馏水中,与含有丙烯酰胺及添加剂的水溶液混合(30%),然后使用电子束或紫外线照射完成聚合过程[6,7]。 1.2 结构表征 红外(FT-IR)光谱分析使用Nicolet510 FT-IR分光光度计,NM R(13C,27Al和29Si)分析使用Bruker M SL300核磁共振(NM R)分光计,X光衍射(XRD)分析使用Rigaku Ru-200B 测定。 Fig.1 FT-IR spectra of A:AM/AANa(1∶1),B: AM/mont-morillonite(1∶1),C:AM/AANa/ montmorillonite(1∶3∶4),D:AM/AANa/ montmorillonite(1∶1∶2)and montmorillonite 2 结果与讨论 2.1 FT-IR分析 在Fig.1中,试样A是AM和A ANa共聚物(AM/AANa=1∶1),试样B是AM/蒙脱土 X收稿日期:2004-02-02;修订日期:2004-05-24  基金项目:德国联邦政府教育科学研究技术部(BM BF)(WT Z CHN346-97)及黑龙江省自然科学基金资助项目(E0024) 作者简介:高德玉(1954-),男,博士,研究员.

复合材料加工研究进展

复合材料加工技术的最新研究进展 摘要:本主要综述了陶瓷基、树脂基这两种主要的非金属基复合材料的加工技术。通过对传统加工和新型加工技术的比较,认为今后研究非金属基复合材料加工工艺参数的优化,工艺过程中关键步骤的改进,新技术的研究,生产设备自动化、智能化程度的提高,生产线的规模化、专业化、可控制化,是其加工技术发展的关键。 关键词:陶瓷基、树脂基、复合材料加工 复合材料是由两种或两种以上不同化学性能或不同组织结构的材料,通过不同的工艺方法组成的多相材料,主要包括两相:基体相和增强相。20世纪40年代,因航空工业需要而发展了玻璃纤维增强塑料,是最早出现的复合材料,从此以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成了格局特色的复合材料。复合材料由于其具有各方面独特的性质,广泛应用与军事工业,汽车工业、医疗卫生、航空、航海以及日常生活的各个方面。对于复合材料的加工技术的研究,将是扩大其适用范围的关键之一[1]。 1 陶瓷基复合材料的加工 由于陶瓷材料同时具有高硬度、高脆性和低断裂韧性等特点,使得其加工、特别是成形加工,至今仍非常困难。在陶瓷材料加工中,使用金刚石工具的磨削加工仍然是目前最常用的加工方法,占所有加工工艺的80%。而陶瓷材料磨削加工不仅效率低,而且在加工中很容易产生变形层、表面/亚表面微裂纹、材料粉末化、模糊表面、相变区域、残余应力等缺陷,这对于航空、航天、电子等高可靠性、高质量要求的产品是决不允许的。陶瓷精密元件的加工费用一般占总成本的30%~60%,有的甚至高达90%。因此,通过新的陶瓷加工制造技术的探索,能够很好的提高产品制造精度和降低生产成本[2]。 1.1新型加工技术 1.1.1 放电加工 放电加工(EDM)是一种无接触式精细热加工技术,当单相或陶瓷/陶瓷、陶瓷/金属复合材料的电阻小于100Ω.m时,陶瓷材料可以进行放电加工。首先将形模(刻丝)和加工元件分别作为电路的阴、阳极,液态绝缘电介质将两极分开,通过悬浮于电介质中的高能等离子体的刻蚀作用,表层材料发生熔化、蒸发或热剥离而达到加工

山大复合材料结构与性能复习题参考答案.doc

1、简述构成复合材料的元素及其作用 复合材料由两种以上组分以及他们之间的界面组成。即构成复合材料的元素包括基体相、增强相、界面相。 基体相作用:具有支撑和保护增强相的作用。在复合材料受外加载荷时,基体相一剪切变形的方式起向增强相分配和传递载荷的作用,提高塑性变 形能力。 增强和作用:能够强化基体和的材料称为增强体,增强体在复合材料中是分散相, 在复合材料承受外加载荷时增强相主要起到承载载荷的作用。 界面相作用:界面相是使基体相和增强相彼此相连的过渡层。界面相具有一定厚度,在化学成分和力学性质上与基体相和增强相有明显区别。在复 合材料受外加载荷时能够起到传递载荷的作用。 2、简述复合材料的基本特点 (1)复合材料的性能具有可设计性 材料性能的可设计性是指通过改变材料的组分、结构、工艺方法和工艺参数来调节材料的性能。显然,复合材料中包含了诸多影响最终性能、可调节的因素,赋予了复合材料的性能可设计性以极大的自由度。 ⑵ 材料与构件制造的一致性 制造复合材料与制造构件往往是同步的,即复合材料与复合材料构架同时成型,在采用某种方法把增强体掺入基体成型复合材料的同时?,通常也就形成了复合材料的构件。 (3)叠加效应 叠加效应指的是依靠增强体与基体性能的登加,使复合材料获得一?种新的、独特而又优于个单元组分的性能,以实现预期的性能指标。 (4)复合材料的不足 复合材料的增强体和基体可供选择地范围有限;制备工艺复杂,性能存在波动、离散性;复合材料制品成本较高。

3、说明增强体在结构复合材料中的作用能够强化基体的材料称为增强体。增强体在复合材料中是分散相。复合材料中的增强体,按几何形状可分为颗 粒状、纤维状、薄片状和由纤维编制的三维立体结构。喑属性可分为有机增强体 和无机增强体。复合材料中最主要的增强体是纤维状的。对于结构复合材料,纤 维的主要作用是承载,纤维承受载荷的比例远大于基体;对于多功能复合材料, 纤维的主要作用是吸波、隐身、防热、耐磨、耐腐蚀和抗震等其中一种或多种, 同时为材料提供基本的结构性能;对于结构陶瓷复合材料,纤维的主要作用是增 加韧性。 4、说明纤维增强复合材料为何有最小纤维含量和最大纤维含量 在复合材料中,纤维体积含量是一个很重要的参数。纤维强度高,基体韧性好,若加入少量纤维,不仅起不到强化作用反而弱化,因为纤维在基体内相当于裂纹。所以存在最小纤维含量,即临界纤维含量。若纤维含量小于临界纤维量,则在受外载荷作用时,纤维首先断裂,同时基体会承受载荷,产生较大变形,是否断裂取决于基体强度。纤维量增加,强度下降。当纤维量大于临界纤维量时,纤维主要承受载荷。纤维量增加强度增加。总之,含量过低,不能充分发挥复合材料中增强材料的作用;含量过高,由于纤维和基体间不能形成一定厚度的界面过渡层, 无法承担基体对纤维的力传递,也不利于复合材料抗拉强度的提高。 5、如何设才计复合材料 材料设计是指根据对?材料性能的要求而进行的材料获得方法与工程途径的规划。复合材料设计是通过改变原材料体系、比例、配置和复合工艺类型及参数,来改变复合材料的性能,特别是是器有各向异性,从而适应在不同位置、不同方位和不同环境条件下的使用要求。复合材料的可设计性赋予了结构设计者更大的自由度,从而有可能设计出能够充分发掘与应用材料潜力的优化结构。复合材料制品的设计与研制步骤可以归纳如下: 1)通过论证明确对于材料的使用性能要求,确定设计目标 2)选择材料体系(增强体、基体) 3)确定组分比例、几何形态及增强体的配置 4)确定制备工艺方法及工艺参数

复合材料研究进展讲述

铝基复合材料的制备和增强技术的研究进展 摘要本文简单介绍了铝基复合材料的一些基本的制备方法。对于纳米相和碳化硅颗粒增强的铝基复合材料,它们也有不同的制备方法。 关键词铝基复合材料纳米相碳化硅颗粒 0前言 复合材料是应现代科学发展需求而涌现出的具有强大生命力的材料,它由两种或两种以上性质不同的材料通过各种工艺手段复合而成。金属基复合材料基体主要是铝、镍、镁、钛等。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。本文主要讲述铝基复合材料的制备方法以及增强技术的发展情况。 1 铝基复合材料的制备工艺 1.1 无压浸渗法 无压浸渗法是Aghaianian 等于1989 年在直接金属氧化工艺的基础上发展而来的一种制备复合材料的新工艺[1],将基体合金放在可

控气氛的加热炉中加热到基体合金液相线以上温度,在不加压力和没有助渗剂的参与下,液态铝或其合金借自身的重力作用自动浸渗到颗粒层或预制块中,最终形成所需的复合材料。 Aghajanian 等[2]撰文指出,要使自发渗透得以进行,需具备两个必要条件:①铝合金中一定含有Mg元素;②气氛为N2环境。影响该工艺的主要因素为:浸渗温度、颗粒大小和环境气氛种类。无压渗透工艺的本质是实现自润湿作用,通过适当控制工艺条件,如合金成分、温度、保温时间和助渗剂等,可取得良好的润湿,使自发浸渗得以进行。 1.2 粉末真空包套热挤压法 采用快速凝固技术与粉末冶金技术相结合制备高硅含量铝基复合材料。由于Al 活性很高,在快速凝固制粉时不可避免地会形成一层氧化膜,导致在致密化过程中合金元素的相互扩散受到阻碍,难以形成冶金粘结。因此,采用了粉末真空包套热挤压这一特殊的致密化工艺[3]。 1.3 喷射沉积法 喷射沉积技术是一种新的金属成形工艺,由Singer 教授于1968 年提出,后经发展逐步形成了Osprey工艺、液体动态压实技术和受控喷射沉积工艺等。 喷射沉积的基本原理是:熔融金属或合金经导流管流出,被雾化

金属基复合材料的研究进展及发展趋势(DOC)

金属基复合材料界面的研究进展及发展趋 势 周奎 (佳木斯大学材料科学与工程学院佳木斯 154007)摘要本文介绍了目前金属基复合材料界面的研究现状,存在的问题及优化的有效途径。重点阐述了金属基复合材料在各个领域的应用情况。最后在综述金属基复合材料界面的研究进展与应用现状的基础上,对学者未来研究呈现的趋势进行了简述并对其发展趋势进行了展望。 关键词金属基复合材料界面特性应用发展趋势 The research progress of metal matrix composites interface and development trend ZHOU Kui (jiamusi university school of materials science and engineering jiamusi 154007) Abstract:Interface of metal matrix composites are introduced in this paper the current research status, existing problems and the effective ways to optimize. Expounds the metal matrix composites and its application in various fields. Finally in this paper the research progress and application of metal matrix composites interface status quo, on the basis of research for scholars in the future the trend of the present carried on the description and its development trend is prospected. Keywords: metal matrix composites application Interface features the development trend 1前言 金属基复合材料(MMCS)是以金属、合金或金属间化合物为基体,含有增强成分的复合材料。 研究金属基复合新材料是当代新材料技术领域中的重要内容之一。金属基复合材料的品种繁多,有碳(石墨)、硼、碳化硅、氧化铝等高性能连续纤维增强铝基、镁基、钦基等复合材料,碳化硅晶须、碳化硅、氧化铝颗粒、氧化铝短纤维增强铝基、镁基复合材料,以及牡钨丝增强超合金等高温金属基复合材料等.但它们的发展和应用并不迅速。主要原因是存在界面问题,制备方法较复杂,成本高。学者们在金属基复合材料的有效制备方法、金属基体与增强体之间的界面反应规律、控制界面反应的途径、界面结构、性能对材料性能的影响、界面结构与制备工艺过程的关系等进行了大量的研究工作,取得了许多重要成果,推动了金属基复合材料的发展和应用。但随着金属基复合材料要求的使用性能和制备技术的发展,界面问题仍然是金属基复合材料研究发展中的重要研究方向。特别是界面精细结构及性质、界面优化设计、界面反应的控制以及界面对性能的影响规律等。尚需结合材料类型、使用性能要求深入研究。

基于ANSYS的大型复合材料风力机叶片结构分析

国 防 科 技 大 学 学 报 第32卷第2期 JOURNA L OF NA TIONA L UNIVERSITY OF DEFE NSE TECHNO LOGY V ol.32N o.22010文章编号:1001-2486(2010)02-0046-05 基于ANSYS的大型复合材料风力机叶片结构分析Ξ 周鹏展1,2,3,肖加余1,曾竟成1,王 进2,杨 军2 (1.国防科技大学航天与材料工程学院,湖南长沙 410073; 2.株洲时代新材料科技股份有限公司,湖南株洲 412007; 3.长沙理工大学能源与动力工程学院,湖南长沙 410076) 摘 要:基于ANSY S软件,对某款应用于G L3A风场的1500kW大型复合材料风力机叶片进行了结构分析。分析结果表明:该叶片的振型以一阶挥舞和一阶摆振为主,其频率分别为0186H z和1159H z;在极限挥舞 载荷作用下,该叶片有限元模型计算得到的叶尖挠度为81445m,而该叶片全尺寸静力试验得到的极限挥舞载 荷作用下的叶尖挠度为8112m,计算值与试验值的误差只有318%;另外,该叶片的最大计算拉应力和压应力 分别为228MPa和201MPa,而该叶片玻纤Π环氧复合材料实测拉伸强度和实测压缩失稳强度分别为720MPa和 380MPa,其计算最大应力只有对应实测极限强度的3117%和5219%。 关键词:复合材料;风力机叶片;结构分析;极限挥舞载荷 中图分类号:TK8 文献标识码:A Structural Analysis of Large2scale Composite Wind Turbine B lade B ased on ANSYS ZH OU Peng2zhan1,2,3,XI AO Jia2yu1,ZE NGJing2cheng1,W ANGJin2,Y ANGJun2 (1.C ollege of Aerospace and M aterial Engineering,National Univ.of Defense T echnology,Changsha410073,China; 2.Zhuzhou T imes New M aterial T echnology C o.Ltd.,Zhuzhou412007,China; 3.C ollege of Energy and P ower Engineering,Changsha Univ.of Science&T echnology,Changsha410076,China) Abstract:Based on the ANSY S s oftware,the structural analysis of a kind of1500kW large2scale com posite wind turbine blade which applied in G L3A wind farm was carried out.The analysis results show that the vibration m odes of this blade are mainly presented as first flapwise m ode and first edgewise m ode,the frequencies of the vibration are respectively0.86H z and1.59H z.At the action of ultimate flapwise loads,the FE M analysis results show that the blade tip deformation is8.445m,while the blade tip deformation of the full scale blade under static test is8.12m,s o the deviation between the calculated and tested value of the blade tip deformation is only 3.8%.M oreover,the calculated maximum tensile stress and the com pressive stress are228MPa and201MPa,while the tested tensile strength and com pressive buckling strength of the glass2fiberΠepoxy com posite are720MPa and380MPa,respectively.C onsequently,the percentages of the calculated maximum stress and the tested ultimate strength are respectively31.7%and52.9%. K ey w ords:com posite;wind turbine blade;structural analysis;ultimate flapwise load 风力机叶片是风力发电机组的关键部件之一,随着世界风力发电机组向大功率方向发展,风力机叶片的长度越来越长,目前世界最长的复合材料风力机叶片是丹麦LM公司生产的,其长度已达6115m,单片重约18t,从而对叶片结构的强度、刚度、重量等的设计提出了更高的要求[1-3]。复合材料具有比强度高、比刚度高、重量轻、可设计性强、承力性能好等特点[4-5],因而在大型风力机叶片中获得了广泛应用。风力机叶片的结构分析作为风力机叶片结构设计的技术基础之一,开始在大功率风力机叶片结构的校核与优化设计中发挥着日益重要的作用。 由于大型复合材料风力机叶片的外形结构和铺层结构都非常复杂,其外形由不同翼型构建而成,属Ξ收稿日期:2009-09-22 基金项目:国家863计划资助项目(2007AA03Z563);中国博士后科学基金资助项目(20070420832);湖南省科技资助项目(2008RS4033) 作者简介:周鹏展(1973—),男,博士后。

sPS PET SsPS 蒙脱土复合材料的力学性能研究

sPS/PET/SsPS/蒙脱土复合材料的力学性能研究 王进1,2*,祝方明2,林尚安2 (1. 株洲时代橡塑股份有限公司技术中心,湖南 株洲,412007) (2. 广州中山大学高分子研究所, 广州,510275) 摘要:熔体插层法制备了新型的间规聚苯乙烯(sPS)/聚对苯二甲酸乙二醇酯(PET)/磺化间规聚苯乙烯(SsPS-H )及其锌盐(SsPS-Zn)/11-氨基酸改性蒙脱土(MTA)复合材料,该材料的综合力学性能较未填充材料显著提高。加入2份MTA 时,sPS/PET/SsPS-H/MTA (质量比为85/15/4/2)和sPS/PET/SsPS-Zn/MTA (质量比为85/15/2/2)复合材料的冲击强度达到最大值,分别为15.6 kJ/m 2和14.7 kJ/m 2,约是纯sPS 的3.5倍,是未填充材料的1.5 倍。同时,拉伸强度和弯曲强度也相应提高,与未填充材料相比,都接近提高了30MPa 。 关键词:间规聚苯乙烯,磺化间规聚苯乙烯锌盐,蒙脱土,复合材料 纳米复合材料是80年代初由Roy 等提出来的,由于其能在纳米级尺寸范围内将聚合物和无机材料的结构、物理化学特性充分结合起来,所以具有优良的热性能、力学性能、电性能和加工性能等,成为近年来在新材料和功能材料领域中研究的热点之一。 蒙脱土由厚度约为1nm 、层间距一般在0.96-2.1nm 的硅酸盐片层组成,并且片层中间吸附有可交换的K +、Na +、Ca 2+、Mg 2+等离子。但由于聚合物分子的空间结构较大,很难插入其片 层间,所以必须通过预先嵌入有机小分子,使片 层间距扩大,氨基酸和季铵盐。能、下嵌入到蒙脱土的片层间。由于蒙脱土的层间表面积较大,使得与聚合物间的接触面或相互作用点增加,因此反应热热较大,有利于聚合物的嵌入。该法不需任何溶剂,工艺简单,易于工业化应用。近年来开发的聚合物/蒙脱土纳米复合材料主要有PA6/蒙脱土、环氧树脂/蒙脱土、聚酯/蒙脱土、PS/蒙脱土、PP/蒙脱土和硅橡胶/蒙脱土[1-6] 等单一聚合物嵌入蒙脱土纳米复合材料,对 于多组分聚合物基体的蒙脱土纳米复合材料的 研究尚未见报道。 间规聚苯乙烯(sPS )是一种新型的结晶型 工程塑料,具有强度高,耐热性好,耐化学腐蚀 性优良等特点,因而进一步提高其综合力学性 能,尤其是抗冲击性,对于拓展其应用领域具有 重要意义。目前报道的sPS 复合材料多为玻纤填 充材料[8],但由于玻纤的分散性差,导致加工困 难。本文采用熔体插层方法制备了综合性能较好 的sPS/PET/SsPS/蒙脱土复合材料,并对其力学性能进行了研究。 1 实验部分 1.1 主要原料 sPS :采用新型茂钛催化剂苯乙烯的本体聚 合法合成[7],分子量为32×104,间规度超过95%,熔点约为270℃,使用前需在70℃下真空干燥; SsPS :由本实验室采用乙酰磺酸为磺化剂合成[8-10],其磺化度(n 值)经酸碱滴定法和元素SsPS 的磺化1摩尔苯乙烯结构; : 汕头海洋(集团)公司聚酯切片厂,牌号8065,水(%):0.4,黄色指数:3,特性粘度:0.65 dL ?g -1。 蒙脱土(MT):上海试剂四厂,cp ,pH(25℃):8-10.5,粒径<200目,其100g 阳离子交换容量为96mmol ;11-氨基酸:ACROS ORGANICS USA ,Mw :201.31。 1.2复合材料的制备 材料由上海轻机模具厂生产的XSS-300转矩流变仪熔融共混得到。先加入11-氨基酸插层处理的蒙脱土(MTA )和PET 及抗氧剂1010在230℃下共混5min ,控制转速32r/min ,然后迅速升温至250℃,并加入sPS 和SsPS ,共混5min 。样条由吉林大学科学仪器厂生产的WZM-1型微型注模机压制。SsPS-Zn-5.45用量固定为2份,SsPS-H-5.45用量固定为4份, sPS/PET 的质量比固定为85/15。

国内外复合材料研究现状

国内外高性能复合材料发展概况 2004-06-24 https://www.wendangku.net/doc/167461761.html,来源: 作者:佚名点击数:2406次 玻璃市场将缓慢复苏 | 2015年中国有望进入光伏平价消费时代 | 玻璃:需求渐缓,价格逐稳 由于高性能复合材料包含于整个复合材料之中,且高性能是相对而言的,因此叙述国内外发展概况宜论述整个复合材料为好。复合材料根据基体种类可分为树脂基复合材料、金属基复合材料、陶瓷基复合材料、水泥基复合材料等。 一、树脂基复合材料树脂基复合材料是最先开发和产业化推广的,因此应用面最广、产业化程度最高。根据基体的受热行为可分为热塑性复合材料和热固性复合材料。 1、热固性树脂基复合材料热固性树脂基复合材料是指以热固性树脂如不饱和聚酯树脂、环氧树脂、酚醛树脂、乙烯基酯树脂等为基体,以玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等为增强材料制成的复合材料。 树脂基复合材料自1932年在美国诞生之后,至今已有近70年的发展历史。1940~1945年期间美国首次用玻璃纤维增强聚酯树脂、以手糊工艺制造军用雷达罩和飞机油箱,为树脂基复合材料在军事工业中的应用开辟了途。1944年美国空军第一次用树脂基复合材料夹层结构制造飞机机身、机翼;1946年纤维缠绕成型在美国获得专利;1950年真空袋和压力袋成型工艺研究成功并试制成功直升飞机的螺旋桨;1949年玻璃纤维预混料研制成功,利用传统的对模法压制出表面光洁的树脂基复合材料零件;20世纪60年代美国用纤维缠绕工艺研制成功"北极星A"导弹发动机壳体。为了提高手糊成型工艺的生产率,在此期间喷射成型工艺得到了发展和应用,使生产效率提高了2-4倍。1961年德国研制成功片状模塑料(SMC),使模压成型工艺达到新水平(中压、中温、大台面制品);1963年树脂基复合材料板材开始工业化生产,美、法、日等国先后建起了高产量、大宽幅连续生产线,并研制成功透明复合材料及其夹层结构板材;1965年美国和日本用SMC压制汽车部件、浴盆、船上构件等;拉挤成型工艺始于20世纪50年代,60年代中期实现了连续化生产,除棒材外还生产细管、方形、工字形、槽形等型材,到了70年代,拉挤技术有了重大突破,目前美国生产拉挤成型机组最先进,其制品断面达76×20cm2,并设计有环向缠绕机构;进入70年代,树脂反应注射成型(RRIM)研究成功,改善了手糊工艺,使产品两面光洁,已用于生产卫生洁具、汽车零件等。70年代初热塑性复合材料得到发展,其生产工艺主要是注射成型和挤出成型,只用于生产短纤维增强塑料。1972年美国PPG公司研制成功玻璃纤维毡增强热塑性片状模塑料(GMT),1975年投入生产,其最大特点是成型周期短,废料可回收利用。80年代法国研究成功湿法生产热塑性片状模塑料(GMT)并成功地用于汽车制造工业。离心浇铸成型工艺于20世纪60年代始于瑞士,80年代得到发展,英国用此法生产10m。长复合材料电线杆,而用离心法生产大口径压力管道用于城市给水工程,技术经济效果十分显著。到目前为止,树脂基复合材料的生产工艺已有近20种之多,而且新的生产工艺还在不断的出现。

Ansys复合材料结构分析操作指导书

Ansys10.0 复合材料结构分析操作指导书

第一章概述 复合材料是两种或两种以上物理或化学性质不同的材料复合在一起而形成的一种多相固体材料,具有很高的比刚度和比强度(刚度和强度与密度的比值),因而应用相当广泛,其应用即涉及航空、航天等高科技领域,也包括游艇、风电叶片等诸多民用领域。由于复合材料结构复杂,材料性质特殊,对其结构进行分析需要借助数值模拟的方法,众多数值模拟软件中Ansys是个不错的选择。 Ansys软件由美国ANSYS公司开发,是目前世界上唯一一款通过ISO9001质量体系认证的分析设计软件,有着近40年的发展历史,经过多次升级和收购其它CAE(Computer Aided Engineering )软件,目前已经发展成集结构力学、流体力学、电磁学、声学和热学分析于一体的大型通用有限元分析软件,是一款不可多得的工程分析软件。Ansys在做复合材料结构分析方面也有不俗的表现,此书将介绍如何使用该款软件进行复合材料结构分析。在开始之前有以下几点需要说明,希望大家能对有限元法有大体的认识,以及Ansys软件有哪些改进,最后给出一些学习Ansys软件的建议。 1、有限元分析方法应用简介 有限元法(Finite Element Method,简称FEM)是建立在严格数学分析理论上的一种数值分析方法。该方法的基本思想是离散化模型,将求解目标离散成有限个单元(Element),并在每个单元上指定有限个节点(Node),单元通过节点相 连构成整个有限元模型,用该模型代替实际结构进行结构分析。在对结构离散后,要求解的基本未知量就转变为各个节点位移(Ansys中称之为DOF(Degree Of Freedom),试想一下,节点的位移包括沿x,y,z轴的平动和转动,也就是节点的自由度),节点位移通过求解一系列代数方程组得到,在求得节点位移后,利用节点位移和应力、应变之间的关系矩阵就可以求出各个节点上的应力、应变,应用线性插值便可以获得单元内任意位置的位移、应力、应变等信息。 2、Ansys软件的发展近况 Ansys软件目前已发展到Ansys V12版本,从V10开始Ansys加入了一个新的工作环境Workbench,原先的Ansys被称为Ansys (classic),虽然操作界面不同,但两者的求解器是一样的。Ansys (classic)的前处理功能相对较弱(主要是建模方面),因而往往需要借助第三方软件,如CAD软件。也许是迫于另一个有限元分析软件ABQUS的竞争压力,Ansys推出了新的Workbench工作环境,Workbench在建模、划分网格、求解和后处理上都作了改进,尤其在建模和划分

相关文档