文档库 最新最全的文档下载
当前位置:文档库 › 大学物理 第5章 练习答案

大学物理 第5章 练习答案

大学物理  第5章 练习答案
大学物理  第5章 练习答案

第五章 气体动理论

练 习 一

一. 选择题

1. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为1p 和2p ,则两者的大小关系是( C )

(A ) 21p p >; (B ) 21p p <; (C ) 21p p =; (D ) 不确定的。

2. 一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m. 根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为( D )

(A ) 2x v =m kT 3; (B ) 2x v = (1/3)m kT 3 ; (C ) 2x v = 3kT /m ; (D ) 2x v = kT/m 。

3. 设M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,

0N 为阿伏伽德罗常数,下列各式中哪一式表示气体分子的平均平动动能( A )

(A )

pV M m ?23; (B ) pV M M

mol

?23; (C ) npV 23; (D ) 023N pV M M mol ?。 4. 关于温度的意义,有下列几种说法,错误的是( D ) (A ) 气体的温度是分子平动动能的量度;

(B ) 气体的温度是大量气体分子热运动的集体表现,具有统计意义; (C ) 温度的高低反映物质内部分子运动剧烈程度的不同; (D ) 从微观上看,气体的温度表示每个气体分子的冷热程度。 二.填空题

1. 在容积为10-2m 3

的容器中,装有质量100g 的气体,若气体分子的方均根速率为200m/s ,

则气体的压强为a

p 5103

4?。

2. 如图1所示,两个容器容积相等,分别储有相同质量的N 2和O 2气体,它们用光滑细管相连通,管子中置一小滴水银,两边的温

度差为30K ,当水银滴在正中不动时,N 2和O 2的温度为2N T = 210k ,2O T = 240k 。( N 2的摩尔质量为28×10-3

kg/mol,O 2的摩尔质量为32×10-3

kg/mol)

3.分子物理学是研究大量微观粒子的集体运动的统计表现 的学科, 它应用的方法是 统计学 方法。

4. 若理想气体的体积为V ,压强为p,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为 pV / (kT ) 。

图1

三. 计算题

1. 就质量而言,空气是由76%的N 2,23%的O 2和1%的Ar 三种气体组成,它们的分子量分别为28、32、40。空气的摩尔质量为28.9?10-3kg/ mol ,试计算1mol 空气在标准状态下的内能。

解:在1mol 空气中,

2N 质量)(101.22%76109.28331kg M --?=??=

摩尔数)(789.028

1

.22111mol M M n mol ===

2O 质量)(1065.6%23109.28332kg M --?=??=

摩尔数)(208.032

65

.6222mol M M n mol ===

r A 质量)(10289.0%1109.28333kg M --?=??=

摩尔数)(007.040

289

.0333mol M M n mol ===

)

(1068.5)(2

1

2

223332211332211J RT n i n i n i RT n i RT n i

RT n i E ?=++=

++=

2. 一瓶氢气和一瓶氧气温度相同.若氢气分子的平均平动动能为 6.21×10-21

J.试求: (1)

氧气分子的平均平动动能和方均根速率; (2) 氧气的温度。

s

m M

RT V

K T J KT O H /4.4833300 , 1021.62

3

2

2122

====?==

-εε

3. 有20个质点,其速率分布如下:2个具有速率v 0,3个具有速率2 v 0,5个具有速率3 v 0,4个具有速率4 v 0,3个具有速率5 v 0,2个具有速率6 v 0,1个具有速率7 v 0,试计算其: (1)平均速率;(2)方均根速率;(3)最概然速率。

根据v 、2

v 和v p 的定义,可得

(1)N

N

v v n

i i

i ∑==

1

20

)

(7)6(2)5(3)4(4)3(5)2(3)(20000000v v v v v v v ++++++=

065.3v =

(2)20

]

7)6(2)5(3)4(4)2(32[22222201

22

+++++=

=

∑=v N

N

v v

n

i i

i

099.3v =

(3)20个质点中出现速率为3v 0的概率最大,有5个,所以,v p =3v 0.

第五章 气体动理论

练 习 二

一. 选择题

1. 两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则( A ) (A ) 两种气体分子的平均平动动能相等; (B ) 两种气体分子的平均动能相等; (C ) 两种气体分子的平均速率相等; (D ) 两种气体的内能相等。

2. 麦克斯韦速率分布曲线如图2所示,如果图中A 、B 两部分面积相等,则该图表示( D ) (A ) 0v 为最可几速率; (B ) 0v 为平均速率; (C ) 0v 为方均根速率;

(D ) 速率大于和小于0v 的分子数各占一半。

3. 气缸内盛有一定量的氢气(可视作理想气体),当温度不变而压强增大一倍时,氢气分子

图2

的平均碰撞次数Z 和平均自由程λ的变化情况是( C ) (A ) Z 和λ都增大一倍; (B ) Z 和λ都减为原来的一半; (C ) Z 增大一倍而λ减为原来的一半; (D ) Z 减为原来的一半而λ增大一倍。 二. 填空题

1. 若某种理想气体分子的方根速率2v =450m/s,气体压强为P =7×104

Pa ,则该气体的密度为ρ=3/037.1m Kg 。

2. 对于处在平衡态下温度为T 的理想气体, (1/2)kT(k 为玻兹曼常量)的物理意义是 每个自由度均分的平均动能 。

3. 一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为

1235

N kT N kT 22

+。 4. 一容器贮有某种理想气体,其分子平均自由程为λ0,当气体的热力学温度降到原来的一半,但体积不变,分子作用球半径不变,则此时平均自由程为 λ0 。 三. 计算题

1. 当氢气和氦气的压强、体积和温度都相等时,求它们的质量比M(H 2) /M(H e ) 和内能比E(H 2)/ E(H e ) 。将氢气视为刚性双原子分子气体。

解: 由:RT M

m

PV =

, 得:2

122=

=

He

H H H m m M M e

由:RT i

M m E 2

=, 得:

3

522==

He

H H H i i E E e

2. 假定N 个粒子的速率分布函数为:?

?

?>>>=00 00 )(v v v v C v f (1)定出常数C ; (2)求粒子的平均速率。

?

=0

1)(dv v f ?=0

1v Cdv 0

1

v C =

020002

121)(0v Cv vCdv dv v vf v v ====??∞

3. 导体中自由电子的运动类似于气体分子的运动。设导体中共有N 个自由电子,电子气中电子速率v F 叫做费米速率,电子在v 和v+dv 之间的概率为

??

???>>>=)

(0

)0(42F F v v v v N Adv v πN dN

式中A 为常量。

(1)由归一化条件求A ;

(2)证明电子气中电子的平均动能F F e E v m w 5

3)21(532

==

,此处E F 叫做费米能。 解:(1)由归一化条件

14)(0

20

==

?

?

F

v N

Adv

v πdv v f

得 3

43F

v πN

A =

(2)平均动能 ?∞==

022

)(2

121dv v f v m v m w e e F F e v e E v m N Adv v πm F 5

3)21(534212

02

==?

大学物理学下册答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?= 。故正 确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] ( A )Φ增大, B 也增大 (B )Φ不变,B 也不变 ( C )Φ增大,B 不变 ( D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ==? ,通过闭合曲面S 的磁感应强度始终为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

大学物理练习册习题答案

大学物理练习册习题答案

练习一 (第一章 质点运动学) 一、1.(0586)(D )2.(0587)(C )3.(0015)(D )4.(0519)(B ) 5.(0602)(D ) 二、1.(0002)A t= 1.19 s t= 0.67 s 2.(0008)8 m 10 m 3.(0255)() []t t A t ωβωωωβ βsin 2cos e 22 +--,()ωπ/122 1+n , (n = 0, 1, 2,…) 4.(0588) 30/3 Ct +v 4 00112 x t Ct ++ v 5.(0590) 5m/s 17m/s 三、 1.(0004)解:设质点在x 处的速度为v , 2 d d d 26 d d d x a x t x t ==?=+v v ()2 d 26d x x x =+??v v v () 2 2 1 3 x x +=v 2.(0265)解:(1) /0.5 m/s x t ??==-v (2) 2 =/96dx dt t t =- v (3) 2= 6 m/s -v |(1.5)(1)||(2)(1.5)| 2.25 m S x x x x =-+-= 3.(0266)解:(1) j t r i t r j y i x r ????? sin cos ωω+=+=

(2) d sin cos d r r t i r t j t ωωωω==-+v v v v v 22 d cos sin d a r t i r t j t ωωωω==--v v v v v (3) ()r j t r i t r a ???? sin cos 22 ωωωω-=+-= 这说明 a ?与 r ? 方向相反,即a ?指向圆心. 4. 解:根据题意t=0,v=0 --------==?+?∴=?+?=====?+?=+?+?? ??? ??由于及初始件v t t r t t r dv adt m s i m s j dt v m s ti m s tj dr v t r m i dt dr vdt m s ti m s tj dt r m m s t m s t j 0 220 220 220 2222[(6)(4)] (6)(4)0,(10)[(6)(4)][10(3)][(2)] 质点运动方程的分量式: --=+?=?x m m s t y m s t 2 2 22 10(3)(2) 消去参数t ,得到运动轨迹方程 =-y x 3220 练习二(第一章 质点运动学) 一、1.(0604)(C ) 2.(5382)(D ) 3.(5627)(B ) 4.(0001)(D ) 5.(5002)(A ) 二、1.(0009) 0 bt +v 2. (0262) -c (b -ct )2/R

大学物理(下)练习册答案

大学物理(下)练习册答案 包括(波动、电磁、光的干涉、光的偏振、光的衍射、振动) 波动 选择: 1B, 2A, 3D, 4D, 5D, 6D, 7C, 8A, 9C, 10D 二,填空: 1, t x y ππ?=-20cos )2 1 cos(10 0.122 (SI) 2分 )12(+=n x m , 即 x = 1 m ,3 m ,5 m ,7 m ,9 m 2分 n x 2= m ,即 x = 0 m ,2 m ,4 m ,6 m ,8 m ,10 m 1分 2, φλ+π-/2L 1分 λk L ± ( k = 1,2,3,…) 2分 λ)12(1+±k L ( k = 0, 1,2,…) 2分 3, 答案见图 3分 4, 17 m 到1.7×10-2 m 3分 5, λ2 1 3分 一, 计算 1, 解:(1) 原点O 处质元的振动方程为 )21 21cos(10 22 π-π?=-t y , (SI) 2分 波的表达式为 )2 1)5/(21c o s (1022 π--π?=-x t y , (SI) 2分 x = 25 m 处质元的振动方程为 )32 1 cos(10 22 π-π?=-t y , (SI) 振动曲线见图 (a) 2分 (2) t = 3 s 时的波形曲线方程 )10/cos(1022 x y π-π?=-, (SI) 2分

波形曲线见图 2分 2, 解:(1) 与波动的标准表达式 )/(2cos λνx t A y -π= 对比可得: ν = 4 Hz , λ = 1.50 m , 各1分 波速 u = λν = 6.00 m/s 1分 (2) 节点位置 )21 (3/4π+π±=πn x )2 1 (3+±=n x m , n = 0,1,2,3, … 3分 (3) 波腹位置 π±=πn x 3/4 4/3n x ±= m , n = 0,1,2,3, … 2分 3, 解:(1) )1024cos(1.0x t y π-π=)20 1(4cos 1.0x t -π= (SI) 3分 (2) t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移 )80/4/(4cos 1.01λ-π=T y m 1.0)8 18/1(4cos 1.0=-π= 2分 (3) 振速 )20/(4sin 4.0x t t y -ππ-=??=v . )4/1(2 1 2== T t s ,在 x 1 = λ /4 = (10 /4) m 处质点的振速 26.1)2 1 sin(4.02-=π-ππ-=v m/s 3分 电磁 §3.1 静止电荷的电场 一, 选择题: t (s) O -2×10-2 1y (m) 234(a) 2×

大学物理试题库及答案详解【考试必备】

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)2 2d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确

大学物理第三版下册答案(供参考)

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-7 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O点的场强. 解: 如8-7图在圆上取? Rd dl= 题8-7图 ? λ λd d d R l q= =,它在O点产生场强大小为

2 0π4d d R R E ε? λ= 方向沿半径向外 则 ??ελ ?d sin π4sin d d 0R E E x = = ??ελ ?πd cos π4)cos(d d 0R E E y -= -= 积分R R E x 000 π2d sin π4ελ ??ελπ == ? 0d cos π400 =-=? ??ελ π R E y ∴ R E E x 0π2ελ = =,方向沿x 轴正向. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强. 解: 高斯定理0 d ε∑? = ?q S E s 取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E S π2d =?? 对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ r E 0π2ελ = 沿径向向外

大学物理II练习册答案3

大学物理练习三 一.选择题 1.一力学系统由两个质点组成,它们之间只有引力作用。若两质点所受外力的矢量和为零,则此系统 [ ] (A) 动量、机械能以及对一轴的角动量都守恒。 (B) 动量、机械能守恒,但角动量是否守恒不能断定。 (C) 动量守恒,但机械能和角动量守恒与否不能断定。 (D) 动量和角动量守恒,但机械能是否守恒不能断定。 解:[ C ] 按守恒条件: ∑=0i F 动量守恒, 但∑≠0i M 角动量不守恒, 机械能不能断定是否守恒。 2.如图所示,有一个小物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔往下拉。则物体 [ ] (A)动能不变,动量改变。 (B)动量不变,动能改变。 (C)角动量不变,动量不变。 (D)角动量改变,动量改变。 (E)角动量不变,动能、动量都改变。 解:[ E ] 因对 o 点,合外力矩为0,角动量守恒 3.有两个半径相同,质量相等的细圆环A 和B 。A 环的质量分布均匀,B 环的质量分布不均匀。它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则 [ ] O R

(A)A J >B J (B) A J < B J (C) A J =B J (D) 不能确定A J 、B J 哪个大。 解:[ C ] 细圆环的转动惯量与质量是否均匀分布无关 ?==220mR dmR J 4.光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其 转动惯量为3 1m L 2 ,起初杆静止。桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同的速率v 相向运动,如图所示。当两小球同时与杆的两个端点发生完全非弹性碰撞后与杆粘在一起转动,则这一系统碰撞后的转动角速度为 [ ] (A) L v 32. (B) L v 54 (C)L v 76 (D) L v 98 解:[ C ] 角动量守恒 二.填空题 1.绕定轴转动的飞轮均匀地减速,t = 0时角速度ω0 =5 rad/s ,t = 20s 时角速 度ω=ω0,则飞轮的角加速度β= ,t=0到t=100s 时间内飞轮 所转过的角度θ= 。 解:因均匀减速,可用t βωω=-0 , O v 俯视图

大学物理习题及综合练习答案详解

库仑定律 7-1 把总电荷电量为Q 的同一种电荷分成两部分,一部分均匀分布在地球上,另一部分均匀分布在月球上, 使它们之间的库仑力正好抵消万有引力,已知地球的质量M = 5.98l024 kg ,月球的质量m =7.34l022kg 。(1)求 Q 的最小值;(2)如果电荷分配与质量成正比,求Q 的值。 解:(1)设Q 分成q 1、q 2两部分,根据题意有 2 221r Mm G r q q k =,其中041πε=k 即 2221q k q GMm q q Q += +=。求极值,令0'=Q ,得 0122=-k q GMm C 1069.5132?== ∴k GMm q ,C 1069.51321?==k q GMm q ,C 1014.11421?=+=q q Q (2)21q m q M =Θ ,k GMm q q =21 k GMm m q mq Mq ==∴2122 解得C 1032.6122 2?==k Gm q , C 1015.51421?==m Mq q ,C 1021.51421?=+=∴q q Q 7-2 三个电量为 –q 的点电荷各放在边长为 l 的等边三角形的三个顶点上,电荷Q (Q >0)放在三角形 的重心上。为使每个负电荷受力为零,Q 值应为多大? 解:Q 到顶点的距离为 l r 33= ,Q 与-q 的相互吸引力为 20141r qQ F πε=, 两个-q 间的相互排斥力为 2 2 0241l q F πε= 据题意有 10 230cos 2F F =,即 2 022041300cos 41 2r qQ l q πεπε=?,解得:q Q 33= 电场强度 7-3 如图7-3所示,有一长l 的带电细杆。(1)电荷均匀分布,线密度为+,则杆上距原点x 处的线元 d x 对P 点的点电荷q 0 的电场力为何?q 0受的总电场力为何?(2)若电荷线密度=kx ,k 为正常数,求P 点的电场强度。 解:(1)线元d x 所带电量为x q d d λ=,它对q 0的电场力为 200200)(d 41 )(d 41 d x a l x q x a l q q F -+=-+= λπεπε q 0受的总电场力 )(4)(d 400020 0a l a l q x a l x q F l +=-+= ?πελπελ 00>q 时,其方向水平向右;00

大学物理下练习题答案汇总

大学物理下练习题 一、选择题(每题1分,共41分) 1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的?(B ) (A) 场强E 的大小与试验电荷q 0的大小成反比; (B) 对场中某点,试验电荷受力F 与q 0的比值不因q 0而变; (C) 试验电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试验电荷q 0,则F = 0,从而E = 0. 2.下列几个说法中哪一个是正确的?(C ) (A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。 (B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。 (C )场强方向可由 E =F /q 定出,其中 q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场力。 ( D )以上说法都不正确。 3.图1.1所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和-λ ( x > 0),则xOy 平面上(0, a )点处的场强为: (A ) (A ) i a 02πελ . (B) 0. (C) i a 04πελ . (D) )(40j +i a πελ . 4. 边长为a 的正方形的四个顶点上放置如图1.2所示的点电荷,则中心O 处场强(C ) (A) 大小为零. (B) 大小为q/(2πε0a 2), 方向沿x 轴正向. (C) 大小为() 2022a q πε, 方向沿y 轴正向. (D) 大小为()2 022a q πε, 方向沿y 轴负向. 5. 如图1.3所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(D ) (A) πR 2E . (B) πR 2E /2 . (C) 2πR 2E . (D) 0 . 6. 下列关于高斯定理理解的说法中,正确的是:(B ) (A)当高斯面内电荷代数和为零时,高斯面上任意点的电场强度都等于零 +λ -λ ? (0, a ) x y O 图 1.1 图1.2 图1.3

大学物理大题及答案汇总

内容为:P37-7.8.14.15.19.21.25; P67-8.11.14.17; P123-11.14.15.17.19.21; P161-7.10.12.15; P236-9.10~14.16.18~23.27.28 第九章 静电场 9-7 点电荷如图分布,试求P 点的电场强度. 分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度. 解 根据上述分析 202 0π1)2/(2π41a q a q E P εε== 题 9-7 图 9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为 2 204π1L r Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为 2204π21L r r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.

题 9-8 图 分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为 r r q εe E 2 0d π41d '= 整个带电体在点P 的电场强度 ?=E E d 接着针对具体问题来处理这个矢量积分. (1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同, ?=L E i E d (2) 若点P 在棒的垂直平分线上,如图(a )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是 ??==L y E E j j E d sin d α 证 (1) 延长线上一点P 的电场强度?' =L r q E 2 0π2d ε,利用几何关系 r ′=r -x 统一积分变量,则 ()220 022 204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=??????+--=-=? 电场强度的方向沿x 轴. (2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为 E r εq αE L d π4d sin 2 ? '= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则 ()2 202/3222 2 041 π2d π41L r r Q r x L x rQ E L/-L/+=+=?εε

大学物理学吴柳下答案

大学物理学下册 吴柳 第12章 12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后, 长度之比是多少)? 解: 活塞两侧气体的始末状态满足各自的理想气体状态方程 左侧: T pV T V p 111= 得, T pT V p V 1 11= 右侧: T pV T V p 222= 得, T pT V p V 2 22= 122121T p T p V V = 即隔板两侧的长度之比 1 22121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2 atm ,密度32kg/m 1024.1-?=ρ.求该气体的摩尔质量. 解: nkT p = (1) nm =ρ (2) A mN M = (3) 由以上三式联立得: 1235 2232028.010022.610 013.1100.12731038.11024.1----?=?????????==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量. 解: () V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ( )()RT M M M V V p 21 22-=- (2)

大学物理练习册答案

大学物理练习册答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第十章 练习一 一、选择题 1、下列四种运动(忽略阻力)中哪一种是简谐振动?( ) (A)小球在地面上作完全弹性的上下跳动 (B)细线悬挂一小球在竖直平面上作大角度的来回摆动 (C)浮在水里的一均匀矩形木块,将它部分按入水中,然后松开,使木块上下浮动 (D)浮在水里的一均匀球形木块,将它部分按入水中,然后松开,使木块上下浮动 2、质点作简谐振动,距平衡位置2.0cm 时,加速度a=4.0cm/s 2,则该质点从一端运动到另一端的时间为( ) (A)1.2s (B)2.4s (C)2.2s (D)4.4s 3、如图下所示,以向右为正方向,用向左的力压缩一弹簧,然后松手任其振动,若从松手时开始计时,则该弹簧振子的初相位为( ) (A) 0 (B) 2π (C) 2 π- (D) π 4、一质量为m 的物体与一个劲度系数为k 的轻弹簧组成弹簧振子,当其振幅 为A 时,该弹簧振子的总能量为E 。若将其弹簧分割成两等份,将两根弹簧并联组成新的弹簧振子,则新弹簧振子的振幅为多少时,其总能量与原先弹簧振子的总能量E 相等( ) (A) 2A (B) 4A (C)2 A (D)A 二、填空题 1、已知简谐振动A x =)cos(0?ω+t 的周期为T ,在2 T t = 时的质点速度为 ,加速度为 。 2、已知月球上的重力加速度是地球的1/6,若一个单摆(只考虑小角度摆动)在地球上的振动周期为T ,将该单摆拿到月球上去,其振动周期应为 。 3、一质点作简谐振动,在同一周期内相继通过相距为11cm 的A,B 两点,历时2秒,速度大小与方向均相同,再经过2秒,从另一方向以相同速率反向通过B 点。 该振动的振幅为 ,周期为 。

大学物理练习册答案

狭义相对论基础(二)第十六页 1.电子的静止质量M0=9.1×10–31kg,经电场加速后具有 0.25兆电子伏特的动能,则电子速率V与真空中光速 C之比是:(C ) [ E k=mC2-m0C2, m=m0/(1-V2/C2)1/2 1兆=106, 1电子伏=1.6×10–19焦耳] (A) 0.1 ( B) 0.5 (C) 0.74(D) 0.85 2.静止质量均为m0的两个粒子,在实验室参照系中以相同大小的速度V=0.6C相向运动(C为真空中光速), 碰撞后粘合为一静止的复合粒子,则复合粒子的静止 质量M0等于:(B ) [ 能量守恒E=M0C2=2mC2 =2m0C2/(1-V2/C2)1/2 ] ( A) 2m0(B) 2.5m0(C) 3.3m0(D) 4m0 3.已知粒子的动能为E K,动量为P,则粒子的静止能量(A )(由 E = E K+E0和E2=E02 + C2P2 )(A)(P2C2-E K2)/(2E K)(B)(P2C2+E K2)/(2E K)(C)(PC-E K )2/(2E K) (D) (PC+E K )2/(2E K) 4.相对论中的质量与能量的关系是:E=mC2;把一个静止质量为M0的粒子从静止加速到V=0.6C时,需作功 A=(1/4)M0C2 A=MC2-M0C2 = γM0C2-M0C2=(γ-1)M0C2 5.某一观察者测得电子的质量为其静止质量的2倍,求

电子相对于观察者运动的速度V =0.87C [ m=m 0/(1-V 2/C 2)1/2, m=2m 0 , 则1-V 2/C 2=1/4 ] 6. 当粒子的速率由0.6C 增加到0.8C 时,末动量与初动 量之比是P 2:P 1=16:9,末动能与初动能之比是 E K2:E K1=8:3 V 1=0.6C,γ1=1/2211C V -=5/4, m 1=γ1m 0=5m 0/4 P 1=m 1V 1=3m 0C/4, V 2=0.8C 时, γ2=1/222/1C V -=5/3 m 2=γ2m 0=5m 0/3,P 2=m 2V 2=4m 0 C/3,∴P 2:P 1=16:9 E K1=m 1C 2-m 0C 2, E K2=m 2C 2-m 0C 2 ∴E K2:E K1=8:3 7. 在惯性系中测得相对论粒子动量的三个分量为:P x=P y = 2.0×10-21kgm/s, P z =1.0×10-21kgm/s ,总能量 E=9.4×106ev ,则该粒子的速度为V=0.6C [E=mC 2 P=mV P=(P x 2+P y 2 +P z 2 )1/2 ] 8. 试证:一粒子的相对论动量可写成 P=(2E 0E K +E 2K )1/2/C 式中E 0(=m 0C 2)和E K 各为粒子的静能量和动能。 证:E=E 0+E k ?E 2=E 20+P 2C 2 ? (E 0+E k )2= E 20+P 2C 2 ? P=(2E 0E K +E 2K )1/2/C 9.在北京正负电子对撞机中,电子可以被加速到动能为E K =2.8×109ev 这种电子的速率比光速差多少米/秒?这样的一个电子的动量多大?(已知电子的静止质量

大学物理(普通物理)考试试题及答案

任课教师: 系(室)负责人: 普通物理试卷第1页,共7页 《普通物理》考试题 开卷( )闭卷(∨ ) 适用专业年级 姓名: 学号: ;考试座号 年级: ; 本试题一共3道大题,共7页,满分100分。考试时间120分钟。 注:1、答题前,请准确、清楚地填各项,涂改及模糊不清者,试卷作废。 2、试卷若有雷同以零分记。 3、常数用相应的符号表示,不用带入具体数字运算。 4、把题答在答题卡上。 一、选择(共15小题,每小题2分,共30分) 1、一质点在某瞬时位于位矢(,)r x y r 的端点处,对其速度的大小有四种意见,即 (1)dr dt (2)d r dt r (3) ds dt (4) 下列判断正确的是( D ) A.只有(1)(2)正确; B. 只有(2)正确; C. 只有(2)(3)正确; D. 只有(3)(4)正确。 2、下列关于经典力学基本观念描述正确的是 ( B )

A、牛顿运动定律在非惯性系中也成立, B、牛顿运动定律适合于宏观低速情况, C、时间是相对的, D、空间是相对的。 3、关于势能的描述不正确的是( D ) A、势能是状态的函数 B、势能具有相对性 C、势能属于系统的 D、保守力做功等于势能的增量 4、一个质点在做圆周运动时,则有:(B) A切向加速度一定改变,法向加速度也改变。B切向加速度可能不变,法向加速度一定改变。 C切向加速的可能不变,法向加速度不变。D 切向加速度一定改变,法向加速度不变。 5、假设卫星环绕地球中心做椭圆运动,则在运动的过程中,卫星对地球中心的( B ) A.角动量守恒,动能守恒;B .角动量守恒,机械能守恒。 C.角动量守恒,动量守恒; D 角动量不守恒,动量也不守恒。 6、一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,两个质量相同、速度大小相同、方向相反并在一条直线上(不通过盘心)的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L和圆盘的角速度ω则有( C ) A.L不变,ω增大; B.两者均不变m m

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

《大学物理C上下》练习册及答案

大学物理C(上、下)练习册 ?质点动力学 ?刚体定轴转动 ?静电场电场强度 ?电势静电场中的导体 ?稳恒磁场 ?电磁感应 ?波动、振动 ?光的干涉 ?光的衍射 注:本习题详细答案,结课后由老师发放

一、质点动力学 一、选择题 1. 以下几种运动形式中,加速度a 保持不变的运动是: (A )单摆的运动; (B )匀速率圆周运动; (C )行星的椭圆轨道运动; (D )抛体运动 。 [ ] 2. 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间 隔中,其平均速度大小与平均速率大小分别为 (A) 2?R /T , 2?R/T . (B) 0 , 2?R /T (C) 0 , 0. (D) 2?R /T , 0. [ ] 3. 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表 示路程,a 表示切向加速度,下列表达式中, (1) a t d /d v , (2) v t r d /d , (3) v t S d /d , (4) t a t d /d v . (A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的. (D) 只有(3)是对的. [ ] 4. 一运动质点在某瞬时位于矢径r 的端点处,其速度大小的表达式为 (A )t d dr ; (B )dt r d ; (C )dt r d || ; (D )222dt dz dt dy dt dx [ ] 5. 质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质 点的速率) (A) t d d v . (B)2V R . (C) R t 2d d v v . (D) 2/1242d d R t v v . [ ] 6. 质量为m 的质点,以不变速率v 沿图中正三角形ABC 的水平光滑轨道

大学物理(上)练习题及答案详解

大学物理学(上)练习题 第一编 力 学 第一章 质点的运动 1.一质点在平面上作一般曲线运动,其瞬时速度为,v 瞬时速率为v ,平均速率为,v 平均 速度为v ,它们之间如下的关系中必定正确的是 (A) v v ≠,v v ≠; (B) v v =,v v ≠; (C) v v =,v v =; (C) v v ≠,v v = [ ] 2.一质点的运动方程为2 6x t t =-(SI),则在t 由0到4s 的时间间隔内,质点位移的大小为 ,质点走过的路程为 。 3.一质点沿x 轴作直线运动,在t 时刻的坐标为23 4.52x t t =-(SI )。试求:质点在 (1)第2秒内的平均速度; (2)第2秒末的瞬时速度; (3)第2秒内运动的路程。 4.灯距地面的高度为1h ,若身高为2h 的人在灯下以匀速率 v 沿水平直线行走,如图所示,则他的头顶在地上的影子M 点沿地 面移动的速率M v = 。 5.质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式 (1) dv a dt =, (2)dr v dt =, (3)ds v dt =, (4)||t dv a dt =. (A )只有(1)、(4)是对的; (B )只有(2)、(4)是对的; (C )只有(2)是对的; (D )只有(3)是对的. [ ] 6.对于沿曲线运动的物体,以下几种说法中哪一种是正确的。 (A )切向加速度必不为零; (B )法向加速度必不为零(拐点处除外); (C )由于速度沿切线方向;法向分速度必为零,因此法向加速度必为零; (D )若物体作匀速率运动,其总加速度必为零; (E )若物体的加速度a 为恒矢量,它一定作匀变速率运动. [ ] 7.在半径为R 的圆周上运动的质点,其速率与时间的关系为2 v ct =(c 为常数),则从 0t =到t 时刻质点走过的路程()s t = ;t 时刻质点的切向加速度t a = ;t 时刻质点 的法向加速度n a = 。 2 h M 1h

《大学物理学》(袁艳红主编)下册课后习题答案

第9章 静电场 习 题 一 选择题 9-1 两个带有电量为2q 等量异号电荷,形状相同的金属小球A 和B 相互作用力为f ,它们之间的距离R 远大于小球本身的直径,现在用一个带有绝缘柄的原来不带电的相同的金属小球C 去和小球A 接触,再和B 接触,然后移去,则球A 和球B 之间的作用力变为[ ] (A) 4f (B) 8f (C) 38f (D) 16 f 答案:B 解析:经过碰撞后,球A 、B 带电量为2q ,根据库伦定律12204q q F r πε=,可知球A 、B 间的作用力变为 8 f 。 9-2关于电场强度定义式/F E =0q ,下列说法中哪个是正确的?[ ] (A) 电场场强E 的大小与试验电荷0q 的大小成反比 (B) 对场中某点,试验电荷受力F 与0q 的比值不因0q 而变 (C) 试验电荷受力F 的方向就是电场强度E 的方向 (D) 若场中某点不放试验电荷0q ,则0=F ,从而0=E 答案:B 解析:根据电场强度的定义,E 的大小与试验电荷无关,方向为试验电荷为正电荷时的受力方向。因而正确答案(B ) 9-3 如图9-3所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且 OP =OT ,那么[ ] (A) 穿过S 面的电场强度通量改变,O 点的场强大小不变 (B) 穿过S 面的电场强度通量改变,O 点的场强大小改变 习题9-3图

(C) 穿过S 面的电场强度通量不变,O 点的场强大小改变 (D) 穿过S 面的电场强度通量不变,O 点的场强大小不变 答案:D 解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S 内电荷量没变,因而电场强度通量不变。O 点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式2 04q E r πε= ,移动电荷后,由于OP =OT , 即r 没有变化,q 没有变化,因而电场强度大小不变。因而正确答案(D ) 9-4 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 [ ] (A) q /ε0 (B) q /2ε0 (C) q /4ε0 (D) q /6ε0 答案:D 解析:根据电场的高斯定理,通过该立方体的电场强度通量为q /ε0,并且电荷位于正立方体中心,因此通过立方体六个面的电场强度通量大小相等。因而通过该立方体任一面的电场强度通量为q /6ε0,答案(D ) 9-5 在静电场中,高斯定理告诉我们[ ] (A) 高斯面内不包围电荷,则面上各点E 的量值处处为零 (B) 高斯面上各点的E 只与面内电荷有关,但与面内电荷分布无关 (C) 穿过高斯面的E 通量,仅与面内电荷有关,而与面内电荷分布无关 (D) 穿过高斯面的E 通量为零,则面上各点的E 必为零 答案:C 解析:高斯定理表明通过闭合曲面的电场强度通量正比于曲面内部电荷量的代数和,与面内电荷分布无关;电场强度E 为矢量,却与空间中所有电荷大小与分布均有关。故答案(C ) 9-6 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1

大学物理大题及答案

大学物理大题及答案

内容为:P37-7.8.14.15.19.21.25; P67-8.11.14.17; P123-11.14.15.17.19.21; P161-7.10.12.15; P236-9.10~14.16.18~23.27.28 第九章 静电场 9-7 点电荷如图分布,试求P 点的电场强度. 分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度. 解 根据上述分析 2 020π1)2/(2π41a q a q E P εε= = 题 9-7 图 9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为

2 20 4π1 L r Q ε E -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为 2 20 4π21L r r Q ε E += 若棒为无限长(即L →∞),试将结果与无限长均 匀带电直线的电场强度相比较. 题 9-8 图 分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为 r r q εe E 2 d π41d ' = 整个带电体在点P 的电场强度 ?=E E d 接着针对具体问题来处理这个矢量积分. (1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同, ?=L E i E d (2) 若点P 在棒的垂直平分线上,如图(a )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是

大学物理学练习册参考答案全

大学物理学练习册参考答案 单元一 质点运动学 四、学生练习 (一)选择题 1.B 2.C 3.B 4.B 5.B (二)填空题 1. 0 0 2.2 192 x y -=, j i ρρ114+, j i ρρ82- 3.16v i j =-+v v v ;14a i j =-+v v v ;4. 0 20 2 11V kt V -;5、16Rt 2 4 6 112M h h h =-v v (三)计算题 1 解答(1)质点在第1s 末的位置为:x (1) = 6×1 2 - 2×1 3 = 4(m). 在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m), 经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2, 因此v (1) = 12×1 - 6×12 = 6(m·s -1), v (2) = 12×2 - 6×22 = 0 质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t , 因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0, 第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2). 2.解答 1)由t y t x ππ6sin 86cos 5==消去t 得轨迹方程: 164 252 2=+y x 2)t dt dy v t dt dx v y x ππππ6cos 486sin 30==-== 当t=5得;πππππ4830cos 48030sin 30===-=y x v v t dt dv a t dt dv a y y x x ππππ6sin 2886cos 18022-==-== 当t=5 030sin 28818030cos 180222=-==-=-=πππππdt dv a a y y x 3.解答:1) () t t dt t dt d t t v v 20 4240 +=+==??? 则:t t )2(42++= 2)()t t t dt t t dt d t t r )3 12(2)2(43 2 2 ++=++= =? ?? t t t )31 2()22(3 2 +++=

相关文档
相关文档 最新文档