文档库 最新最全的文档下载
当前位置:文档库 › 高二物理选修3-1知识点

高二物理选修3-1知识点

高二物理选修3-1知识点
高二物理选修3-1知识点

第一章恒定电流

一、电源和电流

1、电流产生的条件:

(1)导体内有大量自由电荷(金属导体——自由电子;电解质溶液——正负离子;导电气体——正负离子和电子)

(2)导体两端存在电势差(电压)

(3)导体中存在持续电流的条件:是保持导体两端的电势差。

2电流的方向

电流可以由正电荷的定向移动形成,也可以是负电荷的定向移动形成,也可以是由正负电荷同时定向移动形成。习惯上规定:正电荷定向移动的方向为电流的方向。

说明:(1)负电荷沿某一方向运动和等量的正电荷沿相反方向运动产生的效果相同。金属导体中电流的方向与自由电子定向移

动方向相反。

(2)电流有方向但电流强度不是矢量。

(3)方向不随时间而改变的电流叫直流;方向和强度都不随时间改变的电流叫做恒定电流。通常所说的直流常常指的是恒定电流。

二、电动势

1.电源

(1)电源是通过非静电力做功把其他形式的能转化为电势能的装置。(2)非静电力在电源中所起的作用:是把正电荷由负极搬运到正极,同时在该过程中非静电力做功,将其他形式的能转化为电势能。

【注意】在不同的电源中,是不同形式的能量转化为电能。

2.电动势

(1)定义:在电源内部,非静电力所做的功W与被移送的电荷q的比值叫电源的电动势。

(2)定义式:E=W/q

(3)物理意义:表示电源把其它形式的能(非静电力做功)转化为电能的本领大小。电动势越大,电路中每通过1C电量时,电源将其它形式的能转化成电能的数值就越多。

【注意】:①电动势的大小由电源中非静电力的特性(电源本身)决定,跟电源的体积、外电路无关。

②电动势在数值上等于电源没有接入电路时,电源两极间的电压。

③电动势在数值上等于非静电力把1C电量的正电荷在电源内

从负极移送到正极所做的功。

3.电源(池)的几个重要参数

①电动势:它取决于电池的正负极材料及电解液的化学性质,与电池的大小无关。

②内阻(r):电源内部的电阻。

③容量:电池放电时能输出的总电荷量。其单位是:A·h,mA·h. 【注意】:对同一种电池来说,体积越大,容量越大,内阻越小。

三、欧姆定律

1、导体的电阻

①定义:导体两端电压与通过导体电流的比值,叫做这段导体的电阻。

②公式:R=U/I(定义式)

说明:A、对于给定导体,R一定,不存在R与U成正比,与I成反比的关系,R只跟导体本身的性质有关

B、这个式子(定义)给出了测量电阻的方法——伏安法。

C、电阻反映导体对电流的阻碍作用

2、欧姆定律

①定律内容:导体中电流强度跟它两端电压成正比,跟它的电阻成反比。

②公式:I=U/R

③适应范围:一是部分电路,二是金属导体、电解质溶液

3、导体的伏安特性曲线

(1)伏安特性曲线:用纵坐标表示电流I,横坐标表示电压U,这

样画出的I-U图象叫做导体的伏安特性曲线。(2)线性元件和非线性元件

线性元件:伏安特性曲线是通过原点的直线的电学元件。

非线性元件:伏安特性曲线是曲线,即电流与电压不成正比的电学元件

4、导体中的电流与导体两端电压的关系

(1)对同一导体,导体中的电流跟它两端的电压成正比。

(2)在相同电压下,U/I大的导体中电流小,U/I小的导体中电

流大。所以U/I反映了导体阻碍电流的性质,叫做电

阻(R)

(3)在相同电压下,对电阻不同的导体,导体的电流跟它的电阻成反比。

四、串联电路和并联电路

1、串联电路

①电路中各处的电流强度相等。I=I1=I2=I3=…

②电路两端的总电压等于各部分电路两端电压之和

U=U1+U2+U3+…

③串联电路的总电阻,等于各个电阻之和。R=R1+R2+R3+…

④电压分配:U1/R1=U2/R2 U1/R1=U/R

⑤n个相同电池(E、r)串联:E n = nE r n = nr

⑥串联电路的功率分配:P=I2R

P1/R1=P2/R2=P3/R3=…=Pn/Rn

2、并联电路

①并联电路中各支路两端的电压相等。U=U1=U2=U3=…

②电路中的总电流强度等于各支路电流强度之和。I=I1+I2+I3+…

③并联电路总电阻的倒数,等于各个电阻的倒数之和。

1/R=1/R1+1/R2+1/R3+ 对两个电阻并联有:R=R1R2/(R1+R2)

④电流分配:I1/I2=R1/R2 I1/I=R1/R

⑤n个相同电池(E、r)并联:E n = E r n =r/n

⑥并联电路的功率分配:

P1R1=P2R2=P3R3=…=PnRn=U2

3、几点注意事项:

①几个相同的电阻并联,总电阻为一个电阻的几分之一;

②若不同的电阻并联,总电阻小于其中最小的电阻;

③若某一支路的电阻增大,则总电阻也随之增大;

④若并联的支路增多时,总电阻将减小;

⑤当一个大电阻与一个小电阻并联时,总电阻接近小电阻。

4、分压作用和电压表:

说明: 如果给电流表串联一个分压电阻,分担一部分电压,就可以用来测量较大的电压了.加了分压电阻并在刻度板上标出电压值,就把电流表改装成了电压表.电压表的量程越大,串联的电阻R越大。因为电流一定。

5、分流作用和电流表(安培表):

说明: 并联电阻可以分担一部分电流,并联电阻的这种作用叫做分流作用,作这种用途的电阻又叫做分流电阻.为了使电流表能够测量几个安培甚至更大的电流,可能给它并联个分流电阻,分掉一部分电流,这样在测量大电流时,通过电流表的电流也不致超过满偏电流Ig.电流表的量程越大,并联的电阻越小。因为电压一定。

五、焦耳定律

1、电功

定义:电路中电场力对定向移动的电荷所做的功,简称电功,通常也说成是电流的功。用W表示。

实质:是能量守恒定律在电路中的体现。即电流做功的过程就是电能转化为其他形式能的过程,在转化过程中,能量守恒,即有多少电能减少,就有多少其他形式的能增加。

【注意】功是能量转化的量度,电流做了多少功,就有多少电能减少而转化为其他形式的能,即电功等于电路中电能的减少,这是电路中能量转化与守恒的关键表达式:W = Iut

【说明】:①表达式的物理意义:电流在一段电路上的功,跟这段电路两端电压、电路中电流强度和通电时间成正比。

②适用条件:I、U不随时间变化——恒定电流

2、电功率

①定义:单位时间内电流所做的功

②表达式:P=W/t=UI(对任何电路都适用)

上式表明:电流在一段电路上做功的功率P,和等于电流I跟这段电路两端电压U的乘积。

③额定功率和实际功率

额定功率:用电器正常工作时所需电压叫额定电压,在这个电压下消耗的功率称额定功率。

实际功率:用电器在实际电压下的功率。实际功率P实=IU,U、I分别为用电器两端实际电压和通过用电器的实际电流。

3、焦耳定律:电流通过导体产生的热量,跟电流的二次方,导体的

电阻和通电时间成正比公式:Q=I2Rt

说明:a.(1)式表明电流通过导体时要发热,焦耳定律就是研究电流热效应定量规律的。

b.(1)式中各量的单位.

4、电功和电热的关系:

设问: 电流通过电路时要做功,同时,一般电路都是有电阻的,因此电流通过电路时也要生热.那么,电流做的功跟它产生的热之间,

又有什么关系呢?

(1)、纯电阻电路.

如图所示,电阻R,电路两端电压U,通过的电流强度I.

电功即电流所做的功: W=UIt.

电热即电流通过电阻所产生的热量: Q=I2Rt

由部分电路欧姆定律: U=IR

W=UIt=I2Rt=Q

表明: 在纯电阻电路中,电功等于电热.也就是说电流做功将电能全部转化为电路的内能

电功表达式: W=UIt=I 2Rt=(U 2/R)/t

电功率的表达式: P=UI=I 2R=U 2/R

(2)非纯电阻电路.

如图所示,电灯L 和电动机M 的串联电路中,电能各转化成什么能? 电流通过电灯L 时,电能转化为内能再转化为光能.电流通过电动机时,电能转化为机械能和内能.

电流通过电动机M 时

电功即电流所做的功(电动消耗的电能): W=UIt

电热即电流通过电动机电阻时所产生的热量: Q=I 2Rt

W(=UIt)=机械能+Q(=I 2Rt)

表明: 在包含有电动机,电解槽等非纯电阻电路中,电功仍等于UIt,

电热仍等于I 2Rt.但电功不再等于电热而是大于电热了. UIt >I 2Rt

电功表达式: W=UIt ≠Q=I 2Rt

电功率表达式: P=UI ≠I 2R

发热功率表达式: P=I 2R ≠UI

5、应用欧姆定律须注意对应性。

(1)选定研究对象电阻R 后,I 必须是通过这只电阻R 的电流,U 必须是这只电阻R 两端的电压。该公式只能直接用于纯电阻电路,不能直接用于含有电动机、电解槽等用电器的电路。

(2)公式选取的灵活性。 ①计算电流,除了用R U I 外,还经常用并联电路总电流和分电流的

关系:I=I1+I2

②计算电压,除了用U=IR外,还经常用串联电路总电压和分电压的关系:U=U1+U2

③计算电功率,无论串联、并联还是混联,总功率都等于各电阻功率之和:P=P1+P2

U2

对纯电阻,电功率的计算有多种方法:P=UI=I2R=

R

以上公式I=I1+I2、U=U1+U2和P=P1+P2既可用于纯电阻电路,也可用于非纯电阻电路。既可以用于恒定电流,也可以用于交变电流。

六、电阻定律

1、电阻定律R=ΡL/S

2、电阻率是反映材料导电性能的物理量.材料的电阻率随温度的变化而改变;某些材料的电阻率会随温度的升高而变大(如金属材料);某些材料的电阻率会随温度的升高而减小(如半导体材料、绝缘体等);而某些材料的电阻率随温度变化极小(如康铜合金材料)

3、式中ρ是比例常数,它与导体的材料有关,是一个反映材料导电性能的物理量,称为材料的电阻率。

(1)电阻率是反映材料导电性能的物理量。

(2)单位:欧·米(Ω·m)

4、纯金属的电阻率小,合金的电阻率较大,橡胶的电阻率最大

电阻率小用作导电材料,电阻率大的用作绝缘材料.

改变电阻可以通过改变导体的长度,改变导体横截面积或是更换导体材料等途径。

5、材料的电阻率跟温度有关系:

各种材料的电阻率都随温度而变化.a,金属的电阻率随温度的升高而增大,用这一特点可制成电阻温度计(金属铂).b,康铜,锰铜等合金的电阻率随温度变化很小,故常用来制成标准电阻.c,当温度降低到绝对零度附近时,某些材料的电阻率突然减小到零,这种现象叫做超导现象,处于这种状态的物体叫做超导体

七、闭合电路的欧姆定律

1.闭合电路欧姆定律

ε=U+U ′,I=εR r +或ε=IR+Ir ,都称为闭合电路欧姆定律。

式中:ε:若电源是几个电池组成的电池组,应为整个电池组的总电动势,r 为总内阻,R 为外电路总电阻,I 为电路总电流强度。 应注意:ε=U+U ′和ε=IR+Ir ,两式表示电源使电势升高等于内外电路上的电势降落总和,ε理解为电源消耗其它形式能使电荷电势升高。IR 、Ir 理解为在内外电路上电势降落。(也称为电压降)

2.讨论路端电压,电路总电流随外电路电阻变化而变化的规律 根据:ε=U+U ′、U ′=Ir 、I=ε

R r +,ε、r 不变

R ↑→I ↓,U ↑、U ′↓,当R →∞时,I=0、U=ε、U ′=0(也称为断路时)

R ↓→I ↑,U ↓、U ′↑,当R=0时,I=E/r (短路电流强度)U=0、

U ′=ε

3.在闭合电路中的能量转化关系

从功率角度讨论能量转化更有实际价值

电源消耗功率(有时也称为电路消耗总功

率):P 总=εI

外电路消耗功率(有时也称为电源输出功

率):P 出=UI

内电路消耗功率(一定是发热功率):P 内

=I 2r

εI=UI+I 2r

4.电源输出功率随外电路电阻变化关系

ε、r 为定值,R 为自变量,P 出为因变量。

P 出=UI=εR r +·R ·ε

R r +=ε22

()R r +·R ,讨论该函数极值可知,R=r 时,输出功率有极大值; P 出= ε2

4r

,电源输出功率与外阻关系图象如图2所示,R <r 时,随R 增大输出功率增大,R=r 输出功率最大,R >r 时,随R 增大,输出功率减小。

八、多用电表

1、多用电表使用注意事项:

(1)多用电表在使用前,一定要观察指针是否指向电流的零刻度。

若有偏差,应调整机械零点;

(2合理选择电流、电压挡的量程,使指针尽可能指在表盘中央附近;

(3)测电阻时,待测电阻要与别的元件断开,切不要用手接触表笔;

(4)合理选择欧姆挡的量程,使指针尽可能指在表盘中央附近;

(5)换用欧姆档的量程时,一定要重新调整欧姆零点;

(6)要用欧姆档读数时,注意乘以选择开关所指的倍数;

(7)实验完毕,将表笔从插孔中拔出,并将选择开关置于“OFF”挡

或交流电压最高挡。长期不用,应将多用电表中的电池取出。

2、欧姆表测量电阻

(1)欧姆表构造如图所示,G是内阻为R、满偏电流为I g的微安表或毫

安表R0是调零电阻,电池的电动势为E,内阻为r,黑

表笔接电池正极,红表笔接电池负极.

(2)欧姆表原理欧姆表是根据闭合电路欧姆定律制成

的.当红、黑表笔间接入待测电阻R x时,此时通过G表

的电流为I,则:

应当注意,欧姆表刻度是不均匀的.

九、测电池的电动势和内阻

1、实验:测定电池的电动势和内阻

目标:1.掌握实验电路、实验原理及实验方法.2.学会用图象

法处理实验数据.

原理:根据闭合电路欧姆定律的不同表达形式,可以采用下面

几种不同的方法测E和r

(1)由E=U+Ir知,只要测出U、I的两组数据,就可以列出两个关

于正、r的方程,从而解出E、r,电路图如图所示.

(2)由E=IR+Ir知,测出I、R的两组数据,列出方程解出E、r,

电路图如图所示.

(3)由正=U+Ur/R,,测出U 、R两组数据,列出关于E、r的两个

方程,电路图如图所示.

(3)

(1)

(2)

数据处理 图象法:以I 为横坐标,U 为纵坐标建立直角坐标系. 据

实验数据描点.如果发现个别明显错误的数据,应该把它剔除.用直尺画一条直线,使尽量多的点落在这条直线上,不在直线上的点能均分两侧,

注意事项:

(1)为了使电池的路端电压变化明显,电池宜选内阻大些的.

(2) 因该实验中电压U 的变化较小,为此可使纵坐标不从零开始,把坐标的比例放大,可减小实验误差.此时图象与横轴交点不表示短路电流,计算内阻时,要在直线上任取两个相距较大的点,用r =△U/△I 计算出电池的内阻r .

2、误差分析:用电流表和电压表测电源的电动势和内电阻时,电流表外接和内接两种情况下电动势的测量值与真实值、电源内阻的测量值与真实值间的关系如何?

若采用上图电路时,可得:r r E E ?=测测,

若采用下图所示的电路可得:测测r r E E ??,。

十、电池组

1、 串联电池组:

由于开路时路端电压等于电源电动势,故可用电压表测出串联电池组的电动势ε串﹦n ε

串联电池组的内电阻:

由于电池是串联的,电池的内电阻也是串联的,故串联电池组的内电阻r 串=nr

故:串联电池组的电动势等于各个电池电动势之和,串联电池组的内电阻等于各个电池内电阻之和。

说明:(1)串联电池组的电动势比单个电池的电动势高,当用电器的

额定电压高于单个电池的电动势时,可以串联电池组供电。而用电器的额定电流必须小于单个电池允许通过的最大电流。

(2)用几个相同电池组成串联电池组时,注意正确识别每个电池的正负极,不要把某些电池接反。

2、 并联电池组:

特点:设并联电池组是由n 个电动势都是ε,内电阻都是r 的电池组成的

并联电池组的电动势:

ε并=ε

并联电池组的内电阻:r并=r/n

故:由n个电动势和内电阻都相同的电池连接成的并联电池组,它的电动势等于一个电池的电动势,它的内电阻等于一个电池

的内电阻的n分之一。

说明:(1)并联电池组允许通过的最大电流大于单个电池允许通过的最大电流。当用电器的额定电流比单个电池允许通过的最

大电流大时,可以采用并联电池组供电。

十一、电路动态分析

解决这类问题的常见方法如下:

①先搞清电路连接情况;②弄清各电表测量哪段电路的哪个物理量;

③考察电路的变化(如滑动变阻器滑动、开关断开闭合等)而引起

的电路电阻如何变化;④判断电路总电流I及电路路端电压U如何变化;⑤再根据串并联电路的特点、欧姆定律、电功率等公式判断所求物理量的变化。

第二章电场基本知识点总结

(一)电荷间的相互作用

1.电荷间有相互作用力,同种电荷互相排斥,异种电荷相互吸引,两电荷间的相互作用力大小相等,方向相反,作用在同一直线上。

2.库仑定律:在真空中两个点电荷间的作用力大小为F= kQ1Q2/r2,静电力常量k=9.0×109N·m2/C2。

(二)电场强度

1.定义式:E=F/q,该式适用于任何电场,E与F、q无关只取决于电场本身,E的方向规定为正点电荷受到电场力的方向。

(1)场强ε与电场线的关系:电场线越密的地方表示场强越大,电场线上每点的切线方向表示该点的场强方向,电场线的方向与场强ε的大小无直接关系。

(2)场强的合成:场强ε是矢量,求合场强时应遵守矢量合成的平行四边形法则。

(3)电场力:F=qE,F与q、E都有关。

2.决定式

(1)E=kQ/ r2,仅适用于在真空中点电荷Q形成的电场,E的大小与Q成正比,与r2成反比。

(2)E=U/d,仅适用于匀强电场。

(三)电势能

1.电场力做功的特点:电场力对移动电荷做功与路径无关,只与始末位的电势差有关,W ab=qU ab

2.判断电势能变化的方法

(1)根据电场力做功的正负来判断,不管正负电荷,电场力对电荷做正功,该电荷的电势能一定减少;电场力对电荷做负功,该电荷的电势能一定增加。

(2)根据电势的定义式U=ε/q来确定。

(3)利用W=q(U a-U b)来确定电势的高低。

(四)静电平衡

把金属导体放入电场中时,导体中的电荷重新分布,当感应电荷产生的附加电场E'与原场强E0叠加后合场强E为零时,即E= E0+E'=0,金属中的自由电子停止定向移动,导体处于静电平衡状态。

孤立的带电导体和处于电场中的感应导体,处于静电平衡时,主要特点是:

1.导体内部的合场强处处为零(即感应电荷的场强 与原场强 大小相等方向相反)没有电场线。

2.整个导体是等势体,导体表面是等势面。

3.导体外部电场线与导体表面垂直。

4.孤立导体上净电荷分布在外表面。

(五)电容

1.定义式:C=Q/U=Δ Q/ΔU ,适用于任何电容器。

2.决定式;C=εS/4πkd ,仅适用于平行板电容器。

3.对平行板电容器有关的C 、Q 、U 、E 的讨论问题有两种情况。

(Ⅰ)、电容器跟电源相连,U 不变,q 随C 而变。

d ↑→C ↓→q ↓→E ↓

ε、S ↑→C ↑→q ↑→E 不变。 (Ⅱ)、充电后断开,q 不变,U 随C 而变。

d ↑→C ↓→U ↑→s

kq sd kdq cd q d U E επεπ44====不变。 ε、S ↓→C ↓→U ↑→E ↑。

(六)、带有粒子的加速度:若带电粒子仅受电场力且电场力做正功,其电势能减少功能增加。 (1)初速度为零时

22

1mv qU = (2)初速度不为零时

mv mv qU 2022

121-=

上述公式适用于匀强和非匀强电场。

2.带电粒子的偏转:带电粒子仅受电场力作用为初速度v 0垂直

进入匀强电场,做类平势运动,此类问题一般都是分解为两个方向的分运动来处理。

沿初速度方向做匀速运动:v x =v 0,x=v 0t

沿电场方向做匀加速运动:v y =at ,y=at 2/2

两个分运动的联系桥梁:时间t 相等

若偏转电场的电压为U 、距离为d ,则带电粒子的加速度为a=qU/md ,任意时刻的速度为v v vt y 220+=

侧移量md qUx y 2/220=。偏转角θ的

正切为mdv qU v v tg x y //020==θ。 3.处理带电粒子运动问题的三条途径:

(1)匀变速直线运动公式和牛顿运动定律

(2)运动定理或能量守恒定律

(3)运动定理和动量守恒定律

4.带电粒子所受重力是否可以忽略;

(1)基本粒子:如电子、质子、α粒子、离子等,除有说明或明确的暗示以外一般质量都可忽略不计。

(2)带电颗粒:如液滴、尘埃、小球一般质量都不能忽略。

(七)、电场线与等势面的比较:

1、电场线:用来形象描述电场的假想曲线,是由法拉第引入的。 理解:①、起始于正电荷(无穷远处),终止于负电荷(无穷远处),

不是闭合曲线,不相交。

②、电场线上一点的切线方向为该点场强方向。

③、电场线的疏密程度反映了场强的大小。

④、匀强电场的电场线是平行等距的直线。

⑤、沿电场线方向电势逐点降低,是电势最低最快的方向。

⑦、电场线并非电荷运动的轨迹。

2、等势面:电势相等的点构成的面有以下特征;

①在同一等势面上移动电荷电场力不做功。

②等势面与电场力垂直。

③电场中任何两个等势面不相交。

④电场线由高等势面指向低等势面。

⑤规定:相邻等势面间的电势差相差,所以等势面的疏密反

映了场强的大小(匀强点电荷电场等势面的特点)

⑥几种等势面的性质

A、等量同种电荷连线和中线上

连线上:中点电势最小

中线上:由中点到无穷远电势逐渐减小,无穷远电势为零。

B、等量异种电荷连线上和中线上

连线上:由正电荷到负电荷电势逐渐减小。

中线上:各点电势相等且都等于零。

3、电场力做功与电势能的关系:

①、通过电场力做功说明:电场力做正功,电势能减小。

电场力做负功,电势能增大。

②、正电荷:顺着电场线移动时,电势能减小。

逆着电场线移动时,电势能增加。

负电荷:顺着电场线移动时,电势能增加。

逆着电场线移动时,电势能减小。

③、求电荷在电场中A 、B 两点具有的电势能高低

将电荷由A 点移到B 点根据电场力做功情况判断,电场力做正功,电势能减小,电荷在A 点电势能大于在B 点的电势能,反之电场力做负功,电势能增加,电荷在B 点的电势能小于在B 点的电势能

④、在正电荷产生的电场中正电荷在任意一点具有的电势能都为正,负电荷在任一点具有的电势能都为负。

在负电荷产生的电场中正电荷在任意一点具有的电势能都为负,负电荷在任意一点具有的电势能都为正。

(八)、电势与电势差的比较:

(1)电势差是电场中两点间的电势的差值,B A AB U ??-=

(2)电场中某一点的电势的大小,与选取的参考点有关;电势差的大小,与选取的参考点无关。

(3)电势和电势差都是标量,单位都是伏特,都有正负值; 电势的正负表示该点比参考点的电势大或小;

电势差的正负表示两点的电势的高低。

第三章 磁场知识点

一、磁现象和磁场

1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用.

2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用.

二、磁感应强度

1、 表示磁场强弱的物理量.是矢量.

2、 大小:B=F/Il (电流方向与磁感线垂直时的公式).

3、 方向:左手定则:是磁感线的切线方向;是小磁针N 极受力方向;

是小磁针静止时N 极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向.

4、 单位:牛/安米,也叫特斯拉,国际单位制单位符号T .

5、 点定B 定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值.

6、 匀强磁场的磁感应强度处处相等.

7、 磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的

磁场,则该点的磁感应强度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则.

三、几种常见的磁场

(一)、 磁感线

⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。

⒉磁感线是闭合曲线???→→极

极磁体的内部极极磁体的外部N S S N ⒊磁感线的疏密表示磁场的强弱,磁感线上某点的切线方向表示该点的磁场方向。

⒋任何两条磁感线都不会相交,也不能相切。

5.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场.

6.安培定则:姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向·

7、*熟记常用的几种磁场的磁感线:

(二)、匀强磁场

1、磁感线的方向反映了磁感强度的方向,磁感线的疏密反映了磁感强度的大小。

2、磁感应强度的大小和方向处处相同的区域,叫匀强磁场。其磁感线平行且等距。

例:长的通电螺线管内部的磁场、两个靠得很近的异名磁极间的磁场都是匀强磁场。

3、如用B=F/(I·L)测定非匀强磁场的磁感应强度时,所取导线应

足够短,以能反映该位置的磁场为匀强。

(三)、磁通量(Φ)

1.磁通量Φ:穿过某一面积磁力线条数,是标量.

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地

做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010 -m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不 计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15T t K =+ 5、内能 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小) 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 ②物体的内能 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) ③改变内能的方式

人教版高一物理知识点归纳总结

质点参考系和坐标系

时间和位移

实验:用打点计时器测速度 知识点总结 了解打点计时器的构造;会用打点计时器研究物体速度随时间变化的规律;通过分析纸带测定匀变速直线运动的加速度及其某时刻的速度;学会用图像法、列表法处理实验数据。 一、实验目的 1.练习使用打点计时器,学会用打上的点的纸带研究物体的运动。 3.测定匀变速直线运动的加速度。 二、实验原理 ⑴电磁打点计时器 ①工作电压:4~6V的交流电源 ②打点周期:T=0.02s,f=50赫兹 ⑵电火花计时器 ①工作电压:220V的交流电源 ②打点周期:T=0.02s,f=50赫兹 ③打点原理:它利用火花放电在纸带上打出小孔而显示点迹的计时器,当接通220V的交流电源,按下脉冲输出开关时,计时器发出的脉冲电流经接正极的放电针、墨粉纸盘到接负极的纸盘轴,产生电火花,于是在纸带上就打下一系列的点迹。 ⑵由纸带判断物体做匀变速直线运动的方法 0、1、2…为时间间隔相等的各计数点,s1、s2、s3、…为相邻两计数点间的距离,若△s=s2-s1=s3-s2=…=恒量,即若连续相等的时间间隔内的位移之差为恒量,则与纸带相连的物体的运动为匀变速直线运动。 ⑶由纸带求物体运动加速度的方法

三、实验器材 小车,细绳,钩码,一端附有定滑轮的长木板,电火花打点计时器(或打点计时器),低压交流电源,导线两根,纸带,米尺。 四、实验步骤 1.把一端附有定滑轮的长木板平放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路,如图所示。 2.把一条细绳拴在小车上,细绳跨过滑轮,并在细绳的另一端挂上合适的钩码,试放手后,小车能在长木板上平稳地加速滑行一段距离,把纸带穿过打点计时器,并把它的一端固定在小车的后面。 3.把小车停在靠近打点计时器处,先接通电源,再放开小车,让小车运动,打点计时器就在纸带上打下一系列的点, 取下纸带, 换上新纸带, 重复实验三次。 4.选择一条比较理想的纸带,舍掉开头的比较密集的点子, 确定好计数始点0, 标明计数点,正确使用毫米刻度尺测量两点间的距离,用逐差法求出加速度值,最后求其平均值。也可求出各计数点对应的速度, 作v-t图线, 求得直线的斜率即为物体运动的加速度。 五、注意事项 1.纸带打完后及时断开电源。 2.小车的加速度应适当大一些,以能在纸带上长约50cm的范围内清楚地取7~8个计数点为宜。 3.应区别计时器打出的轨迹点与人为选取的计数点,通常每隔4个轨迹点选1个计数点,选取的记数点不少于6个。 4.不要分段测量各段位移,可统一量出各计数点到计数起点0之间的距离,读数时应估读到毫米的下一位。 常见考法 纸带处理时高中遇到的第一个实验,非常重要,在平时的练习中、月考、期中、期末考试均会高频率出现,以致在学业水平测试和高考中也做为重点考察内容,是选择、填空题的形式出现,同学们要引起重视。 误区提醒 要注意的就是会判断纸带的运动形式、会计算某点速度、会计算加速度,在运算的过

物理必修二 知识点归纳

2017—2018学年度下学期高一物理组 主备教师:夏春青 第五章曲线运动 一、教学目标 使学生在理解曲线运动的基础上,进一步学习曲线运动中的两种特殊运动,抛体运动以及圆周运动,进而学习向心加速度并在牛顿第二定律的基础上推导出向心力,结合生活中的实际问题对曲线运动进一步加深理解。 二、教学内容 1.曲线运动及速度的方向; 2.合运动、分运动的概念; 3.知道合运动和分运动是同时发生的,并且互不影响; 4.运动的合成和分解; 5.理解运动的合成和分解遵循平行四边形定则; 6.知道平抛运动的特点,理解平抛运动是匀变速运动,会用平抛运动的规律解答有关问题; 7.知道什么是匀速圆周运动; 8.理解什么是线速度、角速度和周期; 9.理解各参量之间的关系;10.能够用匀速圆周运动的有关公式分析和解决有关问题;11.知道匀速圆周运动是变速运动,存在加速度。12.理解匀速圆周运动的加速度指向圆心,所以叫做向心加速度;13.知道向心加速度和线速度、角速度的关系;14.能够运用向心加速度公式求解有关问题;15.理解向心力的概念,知道向心力大小与哪些因素有关.理解公式的确切含义,并能用来计算;会根据向心力和牛顿第二定律的知识分析和讨论与圆周运动相关的物理现象; 16.培养学生的分析能力、综合能力和推理能力,明确解决实际问题的思路和方法。 三、知识要点

涉及的公式: §5-1 曲线运动 & 运动的合成与分解 一、曲线运动 1.定义:物体运动轨迹是曲线的运动。 2.条件:运动物体所受合力的方向跟它的速度方向不在同一直线上。 3.特点:①方向:某点瞬时速度方向就是通过这一点的曲线的切线方向。 ②运动类型:变速运动(速度方向不断变化)。 ③F 合≠0,一定有加速度a 。 ④F 合方向一定指向曲线凹侧。 ⑤F 合可以分解成水平和竖直的两个力。 4.运动描述——蜡块运动 二、运动的合成与分解 1.合运动 与分运动的关系: 等时性、独立性、等效性、矢量性。 2.互成角度的两个分运动的合运动的判断: ①两个匀速直线运动的合运动仍然是匀速直线运动。 ②速度方向不在同一直线上的两个分运动,一个是匀速直线运动,一个是匀变速直线运动,其合运动是匀变速曲线运动,a 合为分运动的加速度。 ③两初速度为0的匀加速直线运动的合运动仍然是匀加速直线运动。 ④两个初速度不为0的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的和速度方向与这两个分运动的和加速度在同一直线上时,合运动是匀变速直线运动,否则即为曲线运动。

上海市高中物理知识点总结完整版

直线运动 知识点拨: 1. 质点 用一个只有质量没有形状的几何点来代替物体。这个点叫质点。一个实际的物体能否看作质点处理的两个基本原则:(1)做平动的物体。(2)物体的几何尺寸相对研究的距离可以忽略不计。 2. 位置、路程和位移 (1) 位置:质点在空间所对应的点。 (2) 路程:质点运动轨迹的长度。它是标量。 (3) 位移:质点运动位置的变化,即运动质点从初位置指向末位置的有 向线段。它是矢量。 3. 时刻和时间 (1) 时刻:是时间轴上的一个确定的点。如“3秒末”和“4秒初”就 属于同一时刻。 (2) 时间:是时间轴上的一段间隔,即是时间轴上两个不同的时刻之差。 21t t t =- 4. 平均速度、速度和速率 (1) 平均速度(v ):质点在一段时间内的位移与时间的比值,即v = s t ?? 。它是矢量,它的方向与Δs 的方向相同。在S - t 图中是割线的斜率。 (2) 瞬时速度(v ):当平均速度中的Δt →0时,s t ??趋近一个确定的值。 它是矢量,它的方向就是运动方向。在S - t 图中是切线的斜率。 (3) 速率:速度的大小。它是标量。 5. 加速度 描写速度变化的快慢。它是速度的变化量与变化所用的时间之比值,即:

a =t v ??。 它是矢量,它的方向与Δv 的方向相同。当加速度方向与速度 方向一致时,质点作加速运动;当加速度方向与速度方向相反时,质点作减速运动。 6. 匀变速直线运动规律(特点:加速度是一个恒量) (1)基本公式: S = t + 12 a t2 = v0 + a t (2)导出公式: ① 2 - v02 = 2 ② S t - a t2 ③ v == 2 t v v + ④ 初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数: S Ⅱ-S Ⅰ=2 (a 一匀变速直线运动的加速度 T 可导出: - =(M -N) ⑤ A B 段中间时刻的即时速度⑥ 段位移中点的即时速度注:无论是匀加速还是匀减速直线运动均有: 2 < 2 ⑦ 初速为零的匀加速直线运动, 在第1s 内、第 2s 内、第3s 内……第内的位移之比为: S Ⅰ:S Ⅱ:S Ⅲ:……: = 1:3:5……:(21); 1、 2、3、…… ⑧ 初速为零的匀加速直线运动,在第1米内、第2米内、第3米内……第n 米内的时间之比为: t Ⅰ:t Ⅱ:t Ⅲ:…:=1:( )21-:()23-……(n n --1); 1、2、3、 7. 匀减速直线运动至停止:

高中物理选修3-3知识点归纳

选修3-3知识点归纳 2017-11-15 一、分子动理论 1、物体是由大量分子组成:阿伏伽德罗第一个认识到物体是由 分子组成的。 ①分子大小数量级10-10m ②A N M m 摩分子=(对固体液体气体) A N V V 摩分子=(对固体和液体) 摩摩物物V M V m ==ρ 2、油膜法估测分子的大小: ①S V d 纯油酸=,V 为纯油酸体积,而不能是油酸溶液体积。 ②实验的三个假设(或近似):分子呈球形;一个一个整齐地紧密排列;形成单分子层油膜。 3、分子热运动: ①物体内部大量分子的无规则运动称为热运动,在电子显微镜才能观察得到。 ②扩散现象和布朗运动证实分子永不停息作无规则运动,扩散现象还说明了分子间存在间隙。 ③布朗运动是固体小颗粒在液体或气体中的运动,反映了液体分子或气体分子无规则运动。颗粒越小、 温度越高,现象越明显。从阳光中看到教室中尘埃的运动不是布朗运动。 4、分子力: ①分子间同时存在引力和斥力,都随距离的增大而减小,随距离的减小而增大,斥力总比引力变化得快。 ②当r=r 0=10-10m 时,引力=斥力,分子力为零;当r>r 0,表现为引力;当r

人教版高中物理知识点总结上课讲义

高中物理知识点总结人教版 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-V o2=2as 3.中间时刻速度Vt/2=V平=(Vt+V o)/2 4.末速度Vt=V o+at 5.中间位置速度Vs/2=[(V o2+Vt2)/2]1/2 6.位移s=V平t=V ot+at2/2=Vt/2t 7.加速度a=(Vt-V o)/t {以V o为正方向,a与V o同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(V o):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt-V o)/t只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1.初速度V o=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从V o位置向下计算) 4.推论Vt2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动 1.位移s=V ot-gt2/2 2.末速度Vt=V o-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-V o2=-2gs 4.上升最大高度Hm=V o2/2g(抛出点算起) 5.往返时间t=2V o/g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 1.水平方向速度:Vx=V o 2.竖直方向速度:Vy=gt 3.水平方向位移:x=V ot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[V o2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2V o 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)θ与β的关系为tgβ=2tgα;

高二物理下学期知识点

高二物理下学期知识点 高二物理下学期知识点1 电场 1.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=?m2/C2,Q1、 Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 2.两种电荷、电荷守恒定律、元电荷:(e=);带电体电荷量等于元电荷的整数倍 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 6.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 7.电势与电势差:UAB=B,UAB=WAB/q=-EAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 9.电场力做功与电势能变化EAB=-WAB=-qUAB(电势能的

增量等于电场力做功的负值) 10.电势能:EA=qA{EA:带电体在A点的电势能(J),q:电量(C),A:A点的电势(V)} 11.电势能的变化EAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值} 12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容C=S/4kd(S:两极板正对面积,d:两极板间的垂直距离,:介电常数) 常见电容器〔见第二册P111〕 14.带电粒子在电场中的加速(Vo=0):W=EK或qU=mVt2/2,Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d) 抛运动平行电场方向:初速度为零的匀加速直线运动 d=at2/2,a=F/m=qE/m 注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

关于高二物理知识点汇总高二上学期物理知识点总结归纳

高二物理知识点汇总2017高二上学期物理知识点总结高二物理中所涉及到的物理知识是物理学中的最基本的知识,学好高二物 理的相关知识点尤其重要,下面是学而思的2017高二上学期物理知识点总结,希望对你有帮助。 高二上学期物理知识点 一、三种产生电荷的方式: 1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体; 2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和; 3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷; 4、电荷的基本性质:能吸引轻小物体; 二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。 三、元电荷:一个电子所带的电荷叫元电荷,用e表示。1、e=1.610-19c;2、一个质子所带电荷亦等于元电荷;3、任何带电物体所带电荷都是元电荷的整数倍; 四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力,1、计算公式:F=kQ1Q2/r2(k=9.0109N.m2/kg2)2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)3、库仑力不是万有引力; 五、电场:电场是使点电荷之间产生静电力的一种物质。1、只要有电荷存在,在电荷周围就一定存在电场;2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

高二物理选修3-1知识点

第一章恒定电流 一、电源和电流 1、电流产生的条件: (1)导体内有大量自由电荷(金属导体——自由电子;电解质溶液——正负离子;导电气体——正负离子和电子) (2)导体两端存在电势差(电压) (3)导体中存在持续电流的条件:是保持导体两端的电势差。 2电流的方向 电流可以由正电荷的定向移动形成,也可以是负电荷的定向移动形成,也可以是由正负电荷同时定向移动形成。习惯上规定:正电荷定向移动的方向为电流的方向。 说明:(1)负电荷沿某一方向运动和等量的正电荷沿相反方向运动产生的效果相同。金属导体中电流的方向与自由电子定向移 动方向相反。 (2)电流有方向但电流强度不是矢量。 (3)方向不随时间而改变的电流叫直流;方向和强度都不随时间改变的电流叫做恒定电流。通常所说的直流常常指的是恒定电流。 二、电动势 1.电源 (1)电源是通过非静电力做功把其他形式的能转化为电势能的装置。(2)非静电力在电源中所起的作用:是把正电荷由负极搬运到正极,同时在该过程中非静电力做功,将其他形式的能转化为电势能。

【注意】在不同的电源中,是不同形式的能量转化为电能。 2.电动势 (1)定义:在电源内部,非静电力所做的功W与被移送的电荷q的比值叫电源的电动势。 (2)定义式:E=W/q (3)物理意义:表示电源把其它形式的能(非静电力做功)转化为电能的本领大小。电动势越大,电路中每通过1C电量时,电源将其它形式的能转化成电能的数值就越多。 【注意】:①电动势的大小由电源中非静电力的特性(电源本身)决定,跟电源的体积、外电路无关。 ②电动势在数值上等于电源没有接入电路时,电源两极间的电压。 ③电动势在数值上等于非静电力把1C电量的正电荷在电源内 从负极移送到正极所做的功。 3.电源(池)的几个重要参数 ①电动势:它取决于电池的正负极材料及电解液的化学性质,与电池的大小无关。 ②内阻(r):电源内部的电阻。 ③容量:电池放电时能输出的总电荷量。其单位是:A·h,mA·h. 【注意】:对同一种电池来说,体积越大,容量越大,内阻越小。 三、欧姆定律 1、导体的电阻

2017高中物理会考知识点归纳

高中物理学业水平考试要点解读 第一章 运动的描述 第二章 匀变速直线运动的描述 要点解读 一、质点 1.定义:用来代替物体而具有质量的点。 2.实际物体看作质点的条件:当物体的大小和形状相对于所要研究的问题可以忽略不计时,物体可看作质点。 二、描述质点运动的物理量 1.时间:时间在时间轴上对应为一线段,时刻在时间轴上对应于一点。与时间对应的物理量为过程量,与时刻对应的物理量为状态量。 2.位移:用来描述物体位置变化的物理量,是矢量,用由初位置指向末位置的有向线段表示。路程是标量,它是物体实际运动轨迹的长度。只有当物体作单方向直线运动时,物体位移的大小才与路程相等。 3.速度:用来描述物体位置变化快慢的物理量,是矢量。 (1)平均速度:运动物体的位移与时间的比值,方向和位移的方向相同。 (2)瞬时速度:运动物体在某时刻或位置的速度。瞬时速度的大小叫做速率。 (3)速度的测量(实验) ①原理:t x v ??=。当所取的时间间隔越短,物体的平均速度v 越接近某点的瞬时速度v 。然而时间间隔取得过小,造成两点距离过小则测量误差增大,所以应根据实际情况选取两个测量点。 ②仪器:电磁式打点计时器(使用4∽6V 低压交流电,纸带受到的阻力较大)或者电火花计时器(使用220V 交流电,纸带受到的阻力较小)。若使用50Hz 的交流电,打点的时间间隔为0.02s 。还可以利用光电门或闪光照相来测量。 4.加速度 (1)意义:用来描述物体速度变化快慢的物理量,是矢量。 (2)定义:t v a ??=,其方向与Δv 的方向相同或与物体受到的合力方向相同。 (3)当a 与v 0同向时,物体做加速直线运动;当a 与v 0反向时,物体做减速直线运动。加速度与速度没有必然的联系。 三、匀变速直线运动的规律 1.匀变速直线运动 (1)定义:在任意相等的时间内速度的变化量相等的直线运动。 (2)特点:轨迹是直线,加速度a 恒定。当a 与v 0方向相同时,物体做匀加速直线运动;反之,物体做匀减速直线运动。 2.匀变速直线运动的规律

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来

高二物理选修31知识点总结

高二物理选修3-1知识点总结 知识要点: 1.电荷 电荷守恒定律 点电荷 ⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用力就是通过电 场发生的。电荷的多少叫电量。基本电荷e =?-161019.C 。带电体电荷量等于元电荷的整数倍(Q=ne ) ⑵使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电 ②接触带电 ③感应起电。 ⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。 带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷。 2.库仑定律 (1)公式 F K Q Q r =12 2 (真空中静止的两个点电荷) 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,数学表达式为F K Q Q r =12 2 ,其中比例常数K 叫静电力常量,K =?90109.N m C 22 ·。(F:点电荷间的作用力(N), Q 1、Q 2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引) (2)库仑定律的适用条件是(1)真空,(2)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。 3.静电场 电场线 为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。 电场线的特点:(1)始于正电荷 (或无穷远),终止负电荷(或无穷远);(2)任意两条电场线都不相交。 电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。 4.电场强度 点电荷的电场 ⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。电场的这种性质用电场强度来描述。在电场中放入一个检验电荷q ,它所受到的电场力F 跟它所带电量的比值F q 叫做这个位置上的电场

最新最全面人教版高一物理知识点总结(精华版)

物理必修一知识点总结 第一章 运动的描述 第一节 质点、参考系 和坐标系 质点 参考系 坐标系 定义:有质量而不计形状和大小的物质。 定义:用来作参考的物体。 定义:在某一问题中确定坐标的方法,就是该问 题所用的坐标系。 在表示时间的数轴上,时刻用点表示,时间间隔 用线段表示。 第二节 时间和位移 时刻和时间间 隔 路程和位移 路程 位移 物体运动轨迹的长度。 表示物体(质点)的位置变化。 从初位置到末位置作一条有向线 段表示位移。 既有大小又有方 向。 只有大小没有方向。 矢量和标量 矢量 标量 公式: Δx=x 1-x 2 直线运动的位 置和位移 坐 标与坐标的 变化量 速度 第三节 运动快慢的描 述——速度 公式: Δt=t 2-t 1 定义:用位移与发生这个位移所用时间的比值表 示物体运动的快慢。 公式: v=Δx/ Δt 单位:米每秒( m/s ) 速度是矢量,既有大小,又有方向。 速度的大小在数值上等于单位时间内物体位移的 大小,速度的方向也就是物体运动的方向。 平均速度和瞬 时速度 平均速度 物体在时间间隔内的平均快慢程 度。 瞬时速度 时间间隔非常非常小, 间隔内的平均速度。 瞬时速度的大小。 在这个时间 速率 第四节 实验:用打点 电磁打点计时器 电火花计时器 练习使用打点计时器 用打点计时器测量瞬时速度 计时器测速度 用图象表示速 度 加 速度 速度—时间图像( 关系的图象。 v-t 图象):描述速度 v 与时间 t 第五节 速度变化快慢 定义:速度的变化量与发生这一变化所用时间的 比值。 公式: a =Δv/ Δt 单位:米每二次方秒( m/s 2 ) 在直线运动 中,如果速度增加,加速度的方向与 速度的方向相同;如果速度减小,加速度的大方 向与速度的方向相反。 从曲线的倾斜程度就能判断加速度的大小。 的描述——加速度 加速度方向与 速度方向的关 系 从 v-t 图象看加 速度

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

高二物理选修31知识点

高二物理选修3.1知识点总结 第一章 电场基本知识点总结 (一)电荷间的相互作用 1.电荷间有相互作用力,同种电荷互相排斥,异种电荷相互吸引,两电荷间的相互作用力大小相等,方向相反,作用在同一直线上。2.库仑定律:在真空中两个点电荷间的作用力大小为F= kQ 1Q 2/r 2,静电力常量k=9.0×109N ·m 2/C 2。 (二)电场强度 1.定义式:E=F/q ,该式适用于任何电场,E 与F 、q 无关只取决于电场本身,E 的方向规定为正点电荷受到电场力的方向。(1)场强的合成:场强E 是矢量,求合场强时应遵守矢量合成的平行四边形法则。 (2)电场力:F=qE ,F 与q 、E 都有关。 2.决定式:(1)E=kQ/ r 2,仅适用于在真空中点电荷Q 形成的电场,E 的大小与Q 成正比,与r 2成反比。(2)E=U/d ,仅适用于匀强电场。 (三)电势能 1.电场力做功的特点:电场力对移动电荷做功与路径无关,只与始末位的电势差有关,W ab =qU ab 2.判断电势能变化的方法 (1)根据电场力做功的正负来判断,不管正负电荷,电场力对电荷做正功,该电荷的电势能一定减少;电场力对电荷做负功,该电荷的电势能一定增加。(2)根据电势的定义式U=E p /q 来确定。(3)利用W=q(U a -U b )来确定电势的高低。 (四)静电平衡:把金属导体放入电场中时,导体中的电荷重新分布,当感应电荷产生的附加电场E '与原场强E 0叠加后合场强E 为零时,即E= E 0 +E '=0,金属中的自由电子停止定向移动,导体处于静电平衡状态。 (五)电容 1.定义式:C=Q/U=Δ Q/ΔU ,适用于任何电容器。2.决定式;C=ES/4πkd ,仅适用于平行板电容器。 3.对平行板电容器有关的C 、Q 、U 、E 的讨论问题有两种情况。对平行板电容器的讨论: kd s c πε4= 、U q C = 、d U E = (Ⅰ)、电容器跟电源相连,U 不变,q 随C 而变。d ↑→C ↓→q ↓→E ↓ E 、S ↑→C ↑→q ↑→E 不变。 (Ⅱ)、充电后断开,q 不变,U 随C 而变。 d ↑→C ↓→U ↑→s kq sd kdq cd q d U E επεπ44==== 不变。 E 、S ↓→C ↓→U ↑→E ↑。 (六)、带有粒子的加速度 若带电粒子仅受电场力且电场力做正功,其电势能减少功能增加。 (1)初速度为零时221mv qU = (2)初速度不为零时mv mv qU 2 022 121-= 2.带电粒子的偏转:带电粒子仅受电场力作用为初速度v 0垂直进入匀强电场,做类平抛运动,此类问题一般都是分解为两个方向的分运动来处理。 沿初速度方向做匀速运动:v x =v 0,x=v 0t 沿电场方向做匀加速运动:v y =at ,y=at 2/2 两个分运动的联系桥梁:时间t 相等

高一物理下标准知识点

高一物理必修2知识点复习 一、 曲线运动 1、在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。 2、物体做直线或曲线运动的条件: (已知当物体受到合外力F 作用下,在F 方向上便产生加速度a ) (1)若F (或a )的方向与物体速度v 的方向相同,则物体做直线运动; (2)若F (或a )的方向与物体速度v 的方向不同,则物体做曲线运动。 3、物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。 4、平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。 两分运动说明: (1)在水平方向上由于不受力,将做匀速直线运动; (2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。 5、以抛点为坐标原点,水平方向为x 轴(正方向和初速度的方向相同),竖直方向为y 轴,正方向向下,则物体在任意时刻t 的位置坐标为: 2021,gt y t v x == 6、①水平分速度:0v v x =②竖直分速度:gt v y = ③t 秒末的合速度::22y x v v v += ④任意时刻的运动方向可用该点速度方向与x 轴的正方向的夹角θ表示:x y v v =θtan 二、圆周运动 1、匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。 2、描述匀速圆周运动快慢的物理量 (1)线速度v :质点通过的弧长和通过该弧长所用时间的比值,即v =s/t ,单位m/s ;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上 **匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变。 (2)角速度ω:ω=φ/t(φ指转过的角度,转一圈φ为π2),单位 rad/s 或1/s ;对某一确定的匀速圆周运动而言,角速度是恒定的 (3)周期T ,频率f =1/T (4)线速度、角速度及周期之间的关系: r v T r v T ωππω=== ,2,2 3、向心力:r m F 2ω=,或者r v m F 2=,r T m F 2)2(π= 向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。 5、向心加速度:2a r ω=,或2v a r =或r T a 2)2(π= 描述线速度变化快慢,方向与向心力的方向相同, 6,注意的结论: (1)由于a 向方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。 (2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。 (3)做匀速圆周运动的物体受到的合外力就是向心力。 7、离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。 三、万有引力定律及其应用

高中物理选修3-2知识点汇总

第一章 电磁感应 1. 磁通量 穿过某一面积的磁感线条数;标量,但有正负; Φ=BS ·sin θ;单位Wb ,1Wb=1T ·m 2 。 2. 电磁感应现象 利用磁场产生电流的现象;产生的电流叫感应电流,产生的电动势叫感应电动势;产生的条件是穿过闭合回路的磁通量发生变化。 3. 感生电场 变化的磁场在周围激发的电场。 4. 感应电动势 分为感生电动势和动生电动势;由感生电场产生的感应电动势称为感生电动势,由于导体运动而产生的感应电动势称为动生电动势;产生感应电动势的导体相当于电源。 5. 楞次定律 感应电流的磁场总要阻碍引起感应电流的磁通量的变化;判定感应电流和感应电动势方向的一般方法;适用于各种情况的电磁感应现象。 6. 右手定则 让磁感线垂直穿过手心,大拇指指向导体做切割磁感线运动的方向,四指的指向就是导体内部产生的感应电流或感应电动势的方向;仅适用导体切割磁感线的情况。 7. 法拉第电磁感应定律 电路中感应电动势的大小跟穿过这一电路的 磁通量的变化率成正比;E=n t ??Φ 。 8. 动生电动势的计算 法拉第电磁感应定律特殊情况;E=Blv ·sin θ。 9. 互感 两个相互靠近的线圈中,有一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感生电动势,这种现象叫做互感,这种电动势叫做互感电动势;变压器的原理。 10.自感 由于导体本身的电流发生变化而产生的电磁感应现象。 11.自感电动势 由于自感而产生的感应电动势;自感电动势阻碍导体自身电流的变化;大小正比于电流的变化率;E=L t I ??;日光灯的应用。 12.自感系数 上式中的比例系数L 叫做自感系数;简称自感或电感;正比于线圈的长度、横截面积、匝数;有铁芯比没有时要大得多。 13.涡流 线圈中的电流变化时,在附近导体中产生的感应电流,这种电流在导体内自成闭合回路,很像水的漩涡,因此称作涡电流,简称涡流。 第二章 直流电路 1. 电流 电荷的定向移动;单位是安,符号A ;规定正电荷定向移动的方向为正方向;宏观定义I= t q ; 微观解释I=neSv ,n 为单位体积的电荷数,e 是每个自由电荷的电量,S 为横截面积,v 是定向移动的速率。 2. 电阻 导体两端电压与电流的比值;R=I U 。 3. 电阻率 导体材料自身的性质。电阻率与温度有关,一般金属的电阻率随温度升高而增大,绝缘体和半导体随温度升高而减小,电阻率为零是称做超导。 4. 电阻定律 R=ρ S l ,S 为导体横截面积,l 为电阻丝长度, ρ 为电阻率。 5. 电阻的连接 串联和并联。 6. 电功 导体内静电力对自由电荷做的功;W=UIt ;单位是焦。 7. 电功率 单位时间内电流做的功;P=t W =UI ;单位是 瓦。 8. 电热 电流流过导体产生的热量;由焦耳定律计算,Q=I 2 Rt 。 9. 电功与电热的关系 在纯电阻电路中,W=Q ;在非纯电阻电路中,W>Q 。

相关文档
相关文档 最新文档