文档库 最新最全的文档下载
当前位置:文档库 › 微分方程解析近似解的符号计算研究

微分方程解析近似解的符号计算研究

微分方程解析近似解的符号计算研究
微分方程解析近似解的符号计算研究

微分方程解析近似解的符号计算研究

【摘要】:本文基于数学机械化思想,借助于符号计算软件,以非线性方程为对象,系统地研究了适用于强非线性问题的解析近似方法:Adomian分解方法(ADM)和同伦分析方法(HAM)的应用和机械化实现。第一章是与本文相关的研究背景。简要综述了计算机代数和孤立子理论的发展进程,针对性地介绍了近年来解析近似方法的研究成果和现状。第二章改进了Adomian分解方法,能够获得修正Korteweg-deVries(mKdV)方程和Kadomtsev-Petviashvili(KP)方程的双孤子解。通过引入自变量变换和行波变换,将Degasperis-Procesi(DP)方程短波模型化为常微分方程,应用Adomian分解方法求解之,获得其闭合形式的解析解,再经过反变换,能够获得其环状孤子解。以上结果表明了Adomian分解方法在求解方程特殊孤子解方面的有效性。对Adomian分解方法进行了推广,解决了方程中离散变量不同于连续方程中的变量问题,并与Pade近似结合,能够获得几个经典的非线性微分差分方程组的孤子解,显著提高了方程解析近似解的精度。同时,我们还讨论了Pade有理近似中出现的伪极点问题,给出了合适选择Pade 近似阶数的指导原则。获得的解析近似解与精确解符合得很好,表明了Adomian分解方法对复杂强非线性问题的有效性。第三章通过引入自变量变换和行波变换,将偏微分方程化为常微分方程,通过同伦分析方法求解之,再经过反变换,能够获得DP方程短波模型的环状孤子解和Camassa-Holm(CH)方程短波模型的尖状孤子解,结果表明了同伦

分析方法在求解方程特殊孤子解方面的有效性。对同伦分析方法进行了推广,解决了方程中离散变量不同于连续方程中的变量问题,改进了同伦分析方法选择初始猜测解的方法,能够获得离散修正KdV方程的亮孤子解,获得的解析近似解与精确解符合得很好,表明了同伦分析方法对复杂强非线性问题的有效性。第四章在计算机代数系统Maple 上实现了Biazar提出的求解Adomian多项式的算法,编制了构造微分方程(组)和积分方程(组)解析近似解的自动推导软件包,这个算法避免了Adomian多项式的计算膨胀问题,降低了计算难度并显著提高了计算速度,通过大量实例说明了该软件包的有效性和实用性。【关键词】:微分方程微分差分方程解析近似解符号计算孤立子

【学位授予单位】:华东师范大学

【学位级别】:博士

【学位授予年份】:2010

【分类号】:O175

【目录】:摘要6-7Abstract7-11第一章绪论11-181.1数学机械化与计算机代数12-131.2孤立子理论13-141.3求解非线性方程的解析近似方法14-161.3.1Adomian分解方法14-151.3.2同伦分析方法15-161.4本文的选题和主要工作16-18第二章Adomian分解方法在非线性系统中的应用18-592.1Adomian分解方法求解非线性微分方程18-322.1.1

基本原理简介18-202.1.2修正KdV方程及其双孤子解20-242.1.3KP 方程及其双孤子解24-292.1.4Degasperis-Procesi方程的短波模型及其环状孤子解29-322.2Adomian分解方法求解非线性微分差分方程组32-562.2.1基本原理简介32-342.2.2Pade近似基本原理简介34-362.2.3Belov-Chaltikian格方程及其孤子解36-412.2.4非线性自偶网格方程及其扭状孤子解41-482.2.5Blaszak-Marciniak3-场格方程及其孤子解48-512.2.6Blaszak-Marciniak4-场格方程及其孤子解51-562.3本章小结56-59第三章同伦分析方法在非线性系统中的应用59-813.1基本原理简介59-613.2同伦分析方法求解非线性微分方程61-743.2.1Camassa-Holm方程的短波模型及其尖状孤子解61-673.2.2Degasperis-Procesi方程的短波模型及其环状孤子解67-743.3同伦分析方法求解非线性微分差分方程74-803.3.1离散修正KdV方程及其孤子解74-803.4本章小结80-81第四章Adomian分解方法软件包BZAdm81-944.1基本原理简介81-834.2算法描述834.3BZ 算法在Maple系统上的实现:BZAdm软件包83-854.3.1求解微分方程(组)的模块及其功能844.3.2求解积分方程(组)的模块及其功能84-854.4BZAdm软件包的应用85-914.4.1微分方程(组)的求解85-894.4.2积分方程(组)的求解89-914.5效率评估91-924.6本章小结92-94第五章结束语94-95参考文献95-104致谢104-105在读期间完成的论文目录105 本论文购买请联系页眉网站。

第章MATLAB符号计算习题答案

第9章 MATLAB符号计算 习题9 一、选择题 1.设有a=sym(4)。则1/a+1/a的值是()。B A. B.1/2 C.1/4+1/4 D.2/a 2.函数factor(sym(15))的值是()。D A.'15' B.15 C.[ 1, 3, 5] D.[ 3, 5] 3.在命令行窗口输入下列命令: >> f=sym(1); >> eval(int(f,1,4)) 则命令执行后的输出结果是()。A A.3 B.4 C.5 D.1 4.MATLAB将函数展开为幂级数,所使用的函数是()。D A.tailor B.tayler C.diff D.taylor 5.MATLAB用于符号常微分方程求解的函数是()。C

A.solve B.solver C.dsolve D.dsolver 二、填空题 1.在进行符号运算之前首先要建立,所使用的函数或命令有 和。符号对象,sym,syms 2.对于“没有定义”的极限,MATLAB给出的结果为;对于 极限值为无穷大的极限,MATLAB给出的结果为。NaN,Inf 3.在命令行窗口输入下列命令: >> syms n; >> s=symsum(n,1,10) 命令执行后s的值是。55 4.在MATLAB中,函数solve(s,v)用于代数方程符号求解,其中s 代表,v代表。符号代数方程,求解变量 5.在MATLAB符号计算中y的二阶导数表示为。D2y 三、应用题 1.分解因式。 (1)x9-1 (2)x4+x3+2x2+x+1 (3)125x6+75x4+15x2+1 (4)x2+y2+z2+2(xy+yz+zx) (1):

【免费下载】MATLAB符号运算习题

第3讲 MATLAB 符号计算符号计算则是可以对未赋值的符号对象(可以是常数、变量、表达式)进行运算和处理。MATLAB 具有符号数学工具箱(Symbolic Math Toolbox),将符号运算结合到MATLAB 的数值运算环境。符号数学工具箱是建立在Maple 软件基础上的。 1、求矩阵的行列式值、非共轭转置和特征值。??????=22211211a a a a A 解: >> A=sym('[a11,a12;a21,a22]') A = [ a11, a12][ a21, a22] >> B=det(A) B = a11*a22-a12*a21 >> C=A.' C = [ a11, a21][ a12, a22] >> D=eig(A) D = 1/2*a11+1/2*a22+1/2*(a11^2-2*a11*a22+a22^2+4*a12*a21)^(1/2) 1/2*a11+1/2*a22-1/2*(a11^2-2*a11*a22+a22^2+4*a12*a21)^(1/2)2\符号表达式f=2x 2+3x+4与g=5x+6的代数运算(f+g ,f*g )。

解: 2、将g=x3-6x2+11x-6用两种形式的符号表达式的表示。(因 式和嵌套式) 解:>> f=sym('x^3-6*x^2+11*x-6') f = x^3-6*x^2+11*x-6 >> g=sym('(x-1)*(x-2)*(x-3)') g = (x-1)*(x-2)*(x-3) >> g1=sym('x*(x*(x-6)+11)-6') g1 = x*(x*(x-6)+11)-6

一阶常微分方程解法总结

页脚内容1 第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )()(=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(11212 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(1212 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有dy y N y Q dx x P x M ) ()()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x

页脚内容2 解:当0)1)(1(22≠--y x 时,有dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如)(x y g dx dy = 解法:令x y u = ,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(222111c y b x a c y b x a f dx dy ++++= 解法:01、02211 =b a b a ,转化为)(by ax G dx dy +=,下同①; 02、0221 1 ≠b a b a ,???=++=++00222111c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u

偏微分方程数值解

偏微分方程数值解 偏微分方程地构建科学、工程学和其他领域的数学模型的主要手段。一般情况下,这些模型都需要用数值方法去求解。本书提供了标准数值技术的简明介绍。借助抛物线型、双曲线型和椭圆型方程的一些简单例子介绍了常用的有限差分方法、有限元方法、有限体方法、修正方程分析、辛积分格式、对流扩散问题、多重网络、共轭梯度法。利用极大值原理、能量法和离散傅里叶分析清晰严格地处理了稳定性问题。本书全面讨论了这些方法的性质,并附有典型的图像结果,提供了不同难度的例子和练习。 本书可作为数学、工程学及计算机科学专业本科教材,也可供工程技术人员和应用工作者参考。 偏微分方程数值解---学习总结(2) 关于SobolveSobolve空间的几个重要定理 迹定理 : ΩΩ是 RdRd 的一个有界开子集,具有李普希茨连续边界?Ω?Ω, s>12s>12, 则 a.存在唯一的连续线性映射γ0:Hs(Ω)→Hs?12(?Ω),满足γ0v=v ∣∣?Ω,?v∈Hs(Ω)∩C0(Ωˉˉˉˉ), b.存在唯一的连续映射R0:Hs?12(?Ω)→Hs(Ω),满足γ0°R0°φ=φ,?φ∈Hs?12(?Ω).(1)(2)(1)a.存在唯一的连续线性映射γ0:Hs(Ω)→Hs?12(?Ω),满足γ0v=v|?Ω,?v∈

Hs(Ω)∩C0(Ωˉ),(2)b.存在唯一的连续映射R0:Hs?12(?Ω)→Hs(Ω),满足γ0°R0°φ=φ,?φ∈Hs?12(?Ω). 迹定理把区域内部与边界联系起来. 上面定理中边界?Ω?Ω当被它的一个子集ΣΣ代替时,结论依然成立. S=1时, γ0:H1(Ω)→H12(?Ω)?L2(?Ω)||γ0v||0,?Ω≤||γ0v||2,?Ω≤C||v||1=C(||v||0+||?v||0).γ0:H1(Ω)→H12(?Ω)? L2(?Ω)||γ0v||0,?Ω≤||γ0v||2,?Ω≤C||v||1=C(||v||0+||? v||0). 注意几个范数 ||?||k||?||0||?||1||??||0=||?||k,2=||?||L2=||?||1,2=(||?||20+||??||20)12=|?|1.(3)(4)(5)(6)(3)||?||k=||?||k,2(4)||? ||0=||?||L2(5)||?||1=||?||1,2=(||?||02+||??||02)12(6)||?? ||0=|?|1. 庞加莱不等式(Poincare inequality): 假设ΩΩ是 RdRd 的一个有界联通开子集,ΣΣ是边界?Ω?Ω的一个非空的李普希茨连续子集. 则存在一个常数 CΩ>0CΩ>0满足 ∫Ωv2(x)dx≤CΩ∫Ω|?v(x)|2dx,?v∈H1Σ(Ω),其中H1Σ(Ω)={v ∈H1(Ω),γΣv=v∣∣Σ=0}.∫Ωv2(x)dx≤CΩ∫Ω|?v(x)|2dx,?v∈HΣ1(Ω),其中HΣ1(Ω)={v∈H1(Ω),γΣv=v|Σ=0}.

符号运算练习题 homework

第五章符合运算练习题 1.求符号函数f=ax3+by2+cx+d分别对x,y进行三次微分;对 y进行定积分和不定积分,对y 的定积分区间为(0,1);对y趋向于1求极限。

2. 已知f=1/(1+x^2),g=sin(y),求复合函数f(g(y)). >> syms x y; >> f=1/(1+x^2); >> g=sin(y); >> compose(f,g) ans = 1/(1+sin(y)^2) 3.求三元非线性方程组?? ???-==+=++1z *y 43z x 012x x 2的解。 >> syms x y z; >> f1=sym('x^2+2*x+1'); >> f2=sym('x+3*z-4'); >> f3=sym('y*z+1'); >> solve(f1,f2,f3); >> [x,y,z]=solve(f1,f2,f3) x = -1 y = -3/5 z = 5/3

解方程组??? ????=+=-1 cos y dx dz x z dx dy 当y(0)=1,z(0)=0时,求微分方程组的解。 >> [y,z]=dsolve('Dy-z=cos(x)','Dz+y=1','y(0)=1','z(0)=0','x') y = 1+1/2*sin(x)+1/2*cos(x)*x z = -1/2*sin(x)*x 5.求级数 +++++222k 131211和1+x+x 2+…+x k +…的和。 >> syms k; >> symsum(1/k^2,k,1,inf) ans = 1/6*pi^2 >> syms x k; >> symsum(x^k,k,0,inf) ans = -1/(x-1) 6计算积分21x dx 1x +∞?(+) >> syms x ; >> f=sym('sqrt(x)/((1+x)^2)'); >> int(f,x,1,+inf) ans =

24点及巧填运算符号习题(四上数学游戏练习含答案)

. 巧算“24”点练习卷(一) 1.你能将2、4、5、8利用“+、-、×、÷”和括号组成一个结果为24的算式吗?有几种解法? ()()()8524382424583824582420424 -??=?=?-?=?=?÷+=+= 2.四张牌上的数是3、4、6、10,怎样用这四个不同的数组成得数是24 的算式? (写出三种解法) ()()()3104638243610418624 1043618624 ?+-=?=?+-=+=-?+=+= 3. 用1、2、5、8、这四个数组成得数是24的算式。(写出三 种解法) ()()()()()8215462452813824851212224 ÷?+=?=-??=?=+-?=?= 巧算“24”点练习卷(二) 1.怎样用下面四张牌上的数进行计算,使最后得数等于24?(写出三种解法) ()()()() ()2634121224 63423824 46322412434263824 ?+?=+=-??=?=??-=?=?÷+=?= 2. 怎样用3、3,8,9四个数进行计算,使最后得数等 于24?(写出三种解法) ()()()93383824 833915924833933924 --?=?=-?+=+=+?-=-= 3.用两个5和两个6计算,使最后得数等于24。(写出三 种解法) ()()55664624 556625124 65656424 +-?=?=?-÷=-=?--=?=????

. 巧算“24”点练习卷(三) 1.小华从一副扑克牌中摸出四张,请你进行计算,使最后得数等于24。 (写出三种解法) ()()()()6293462493623824396227324 -?-=?=÷?+=?=?-÷=-= 2.有四个数: 1、3、5、9,请你进行计算,使最后得数等于24。 (写出三种解法) ()()()135915924 51934624359124124 ??+=+=-?-=?=?+?=?= 3.你会用2、6、6、7这四个数进行计算,使最后的得数等于24吗? (写出三种解法) ()()()72663062467624822476264624 -?-=-=?+÷=÷=-÷?=?= 巧算“24”点练习卷(四) 1. 你会用两个4和两个5进行计算,使最后的得数是24吗? (写出三种解法) ()()554425124 4554462454546424 ?-÷=-=?+-=?=-+?=?= 2.有四个数: 2、4、8、10,请你进行计算,使最后得数等于 24。 (写出三种解法) ()()()()()82104462410284122244108248224 ÷?-=?=+?÷=?=?+÷=÷= 3.你会用3、4、7、10这四个数进行计算,使最后的得数等于24吗? (写出三种解法)

Mathematica强大的数值计算和符号运算数学专用软件

Mathematica强大的数值计算和符号运算数学专用软件 Mathematica是由美国物理学家Stephen Wolfram领导的Wolfram Research开发的数学系统软件。它拥有强大的数值计算和符号计算能力,在这一方面与Maple类似,但它的符号计算不是基于Maple上的,而是自己开发的。 Mathematica系统介绍 Mathematica的基本系统主要是用C语言开发的,因而可以比较容易地移植到各种平台上,Mathematica是一个交互式的计算系统,计算是在用户和Mathematica互相交换、传递信息数据的过程中完成的。Mathematica系统所接受的命令都被称作表达式,系统在接受了一个表达式之后就对它进行处理,然后再把计算结果返回。Mathematica对于输入形式有比较严格的规定,用户必须按照系统规定的数学格式输入,系统才能正确地处理,不过由于3.0版本(及以后版本)引入输入面板,并且可以修改、重组输入面板,因此以前版本输入指令时需要不断切换大小写字符的繁琐方式得到很好的改善。3.0版本可以用各种格式保存文件和剪贴内容,包括RTF、HTML、BMP等格式。 Mathematica是一个功能强大的数学软件,也是目前国内外最常用的数学软件之一。该软件不但可以解决数学中的数值计算问题,还可以解决符号演算问题,并且能够方便地绘出各种函数图形。不管是一个正在学习的学生,还是教师或科研人员,当在学习或科学研究中遇到棘手的数学问题时,Mathematica会提供的各种命令,可以避免做繁琐的数学推导和计算,帮助方便地解决所遇到的很多数学问题,使能省出更多的时间和精力做进一步的学习和探索。目前,我们在国内外的科研论文、教材等很多地方都能看到Mathematica的身影。此外,Mathematica 具有简单、易学、界面友好和使用方便等特点,只要你有一定的数学知识并了解计算机的基本操作方法,就能快速掌握Mathematica大部分主要功能,并能用Mathematica解决在学习、教学和科学研究中遇到的数学求解问题。 Mathematica功能简介 1、数值计算和符号计算

偏微分方程数值解复习题(2011硕士)

偏微分方程数值解期末复习(2011硕士) 一、考题类型 本次试卷共六道题目,题型及其所占比例分别为: 填空题20%;计算题80% 二、按章节复习内容 第一章 知识点:Euler法、向前差商、向后差商、中心差商、局部截断误差、整体截断误差、相容性、收敛性、阶、稳定性、显格式、隐格式、线性多步法、第一特征多项式、第二特征多项式、稳定多项式、绝对稳定等; 要求: 会辨认差分格式, 判断线性多步法的误差和阶; 第二章 知识点:矩形网格、(正则,非正则)内点、边界点、偏向前(向后,中心)差商、五点差分格式、增设虚点法、积分插值法、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和、稳定性等; 要求: 建立椭圆型方程边值问题的差分格式, 极值原理; 第四章 知识点:最简显格式、最简隐格式、CN格式、双层加权格式、Richardson 格式、网格比、传播因子法(分离变量法) 、传播因子、传播矩阵、谱半径、von Neumann条件、跳点格式、ADI格式、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和稳定性等; 要求: 建立抛物型方程边值问题的差分格式, 计算局部截断误差; 第五章 知识点:左偏心格式、右偏心格式、中心格式、LF格式、LW格式、Wendroff 格式、跳蛙格式、特征线、CFL条件等; 要求: 建立双曲型方程边值问题的差分格式, 计算局部截断误差; 第七章 要求: 会用线性元(线性基)建立常微分方程边值问题的有限元格式

三 练习题 1、 已知显格式21131()22 n n n n u u h f f +++-=-,试证明格式是相容的,并求它的阶。 P39+P41 2、用Taylor 展开原理构造一元函数一阶导数和二阶导数的数值微分公式。 提示:向前、向后和中心差商与一阶导数间关系,二阶中心差商与二阶导数 之间的关系 课件 3、用数值微分方法或数值积分方法建立椭圆型方程 2222(,),(,),u u f x y x y x y ??--=?∈Ω?? :01,01x y Ω≤≤≤≤ 内点差分格式。 P75+课件 4、构造椭圆型方程边值问题的差分格式. P101 (4)题 5、构建一维热传导方程220,(0)u u Lu a a t x ??=-=>??的数值差分格式(显隐格式等)。 参考P132-135相关知识点 6、设有逼近热传导方程22(0)u u Lu a f a const t x ??≡-==>??的带权双层格式 ()()1111111122(1)2k k j j k k k k k k j j j j j j u u a u u u u u u h θθτ++++-+-+-??=-++--+?? 其中[0,1]θ∈,试求其截断误差。并证明当2 1212h a θτ=-时,截断误差的阶最 高阶为24()O h τ+。 P135+P165+课件 7、传播因子法证明抛物型方程22(0)u u Lu a f a const t x ??≡-==>??的最简显隐和六点CN 格式稳定性。 P156+课件 8、对一阶常系数双曲型方程的初边值问题 0,0,0,0,(,0)(),0,(0,)(),0, u u a t T x a t x u x x x u t t t T φψ???+=<≤<<∞>?????=≤<∞??=≤≤?

第2章0和1-语义符号化、符号计算化与计算自动化练习题答案解析

第2章符号化、计算化与自动化 1、易经是用0和1符号化自然现象及其变化规律的典型案例。下列说法不正确的是_____。 (A)易经既是用0和1来抽象自然现象,同时又不单纯是0和1,起始即将0和1与语义“阴”和“阳”绑定在一起; (B)易经本质上是关于0和1、0和1的三画(或六画)组合、以及这些组合之间相互变化规律的一门学问; (C)易经仅仅是以自然现象为依托,对人事及未来进行占卜或算卦的一种学说; (D)易经通过“阴”“阳”(即0和1)符号化,既反映了自然现象及其变化规律,又能将其映射到不同的空间,反映不同空间事务的变化规律,例如人事现象及其变化规律。 答案:C 解释: 本题考核内容:考核0和1与易经 A.A的描述完全正确; B.B的叙述也完全正确; C.不正确,易经不仅仅以自然现象为依托,对事及未来进行占卜或算卦的一种学说,他还是将现象抽象为符号,进行符号组合,利用符号组合表达自然现象; D.D的表述完全正确,易经既反映了自然现象及其变化规律,还反映不同空间事物的变化规律; 具体内容请参考第二章视频“2. 0和1与易经”的“1.1~1.4”视频。 2、易经的乾卦是从“天”这种自然现象抽象出来的,为什么称其为“乾”而不称其为“天”呢?_____。 (A)易经创作者故弄玄虚,引入一个新的名词,其实没有必要; (B)易经的“乾”和“天”是不同的,“乾”是一种比“天”具有更丰富语义的事物; (C)“天”是一种具体事物,只能在自然空间中应用,若变换到不同空间应用,可能会引起混淆;而“乾”是抽象空间中的概念,是指具有“天”这种事务的性质,应用于不同的空间时不会产生这种问题; (D)易经创作者依据阴阳组合的符号特征,选择了更符合该符号的名字“乾”。 答案:C 解释: 本题考核内容:考核0和1与易经 A不正确,易经并不是故弄玄虚的; B不正确,易经中“乾”为“天”,“乾”是抽象空间中的概念,是指具有“天”这种事务的性质所以B并不正确; C完全正确,“天”是具体事物,“乾”是抽象概念; D不正确,“乾”并不是因为阴阳组合而命名的;

二阶常微分方程解

二阶常微分方程解

————————————————————————————————作者: ————————————————————————————————日期:

第七节 二阶常系数线性微分方程 的解法 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。先讨论二阶常系数线性齐次方程的求解方法。 §7.1 二阶常系数线性齐次方程及其求解方法 设给定一常系数二阶线性齐次方程为 ?? 22 dx y d +p dx dy +qy=0 (7.1) 其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y2就可以了,下面讨论这样两个特解的求法。 我们先分析方程(7.1)可能具有什么形式的特解, 从方程的形式上来看,它的特点是22dx y d ,dx dy ,y 各乘以 常数因子后相加等于零,如果能找到一个函数y,其

22dx y d ,dx dy ,y之间只相差一个常数因子,这样的函数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令 y=e r x (其中r 为待定常数)来试解 将y =e rx ,dx dy =re r x,22dx y d =r 2e r x 代入方程(7.1) 得 r 2e rx +pre rx +qerx =0 或 e r x(r 2+pr+q )=0 因为e rx ≠0,故得 ? r 2 +pr +q=0 由此可见,若r 是二次方程 ?? r 2+pr +q=0 (7.2) 的根,那么e r x就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1)的特征方程。 特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。 (1)若特证方程(7.2)有两个不相等的实根r 1, r 2,此时e r 1x ,e r2x 是方程(7.1)的两个特解。

偏微分方程数值解期末试题及答案(内容参考)

偏微分方程数值解试题(06B) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1 )(n R x x b x Ax x J ∈-= ,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2 ),()()()(2 000x Ax x b Ax x J x x J λλλλ?+ -+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有 0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若 n R x ∈0满足 b Ax =0,则对于任意的 x ,)(),(2 1 )0()1()(00x J x Ax x x J >+ ==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:????? ==∈=+-=0 )(,0)() ,()(' b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ] ,[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和 Galerkin 形式的变分方程。 解: 设}0)(),,(|{11 =∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1 b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

Matlab基础(数值计算、符号计算和绘图)

Matlab基础(数值计算、符号计算和绘图) 第一章 MATLAB帮助 1.常用的帮助命令 Help lookfor which set/get doc type edit helpin 2.帮助窗口 3.演示系统 第二章MATLAB基础 1.MATLAB特点 基本计算单元是矩阵、向量,功能的扩展性(除了基本部分外还有专业扩展部分) 2.MATLAB组成 MATLAB MATLAB Compiler Simulink Stateflow RTW 3.MATLAB主要功能 数学计算开发工具(MATLAB Editor M-Lint Code Checker MATLAB Profiler Directory Reports) 数据的可视化交互式编辑创建图形集成的算法开发编程语言和环境图形用户界面开发环境--GUIDE 开放性、可扩展性强专业应用工具箱 4.MATLAB变量 需要注意系统变量,如:ans eps i j pi 5.MATLAB数据类型 需要注意在命令窗口中可以通过输入help datatypes命令来获取MATLAB的数据类型列表。class函数可用来获取一个变量的数据类型。 需要注意MATLAB中变量默认的类型为双精度浮点型(double)。 MATLAB的数据类型名称同样就是数据类型转换的函数。 6.MATLAB路径管理 MATLAB搜索路径(菜单栏File-Set Path) MATLAB目录管理命令(path which addpath rmpath) 7.MATLAB工作空间 工作空间的存取(save load) 工作空间管理命令(who whos clear pack size disp length) 8.MATLAB的其他命令 管理命令和函数(help doc what type lookfor which path) 与文件和操作系统有关的命令(cd dir delete getenv ! unix) 控制命令窗口)(cedit clc clf home more) 启动和退出MATLAB(quit startup) 一般信息(info subscribe hostid whatsnew ver ) 第三章 MATLABA数据 1.矩阵的建立方式 命令窗口中直接输入 通过语句和函数建立矩阵(from:step:to linspace logspace)

偏微分方程数值解法

一、 问题 用有限元方法求下面方程的数值解 2 u u u f t ?-?+=? in (]0,T Ω? 0u = on []0,T ?Ω? ()00,u x u = in Ω 二、 问题分析 第一步 利用Green 公式,求出方程的变分形式 变分形式为:求()()21 00,;u L T H ∈Ω,使得 ()())(2 ,,,,u v u v u v f v t ???+??+= ???? ()10v H ?∈Ω (*) 以及 ()00,u x u =. 第二步 对空间进行离散,得出半离散格式 对区域Ω进行剖分,构造节点基函数,得出有限元子空间:()12,,,h NG V span ???=???,则(*)的Galerkin 逼近为: []0,t T ?∈,求()()1 0,h h u t x V H ∈?Ω,使得 ()()()()() () )(2 ,,,,h h h h h h h d u t v u t v u t v f v dt +??+= h h v V ?∈ (**) 以及()0,0h h u u =,0,h u 为初始条件0u 在h V 中的逼近,设0,h u 为0u 在h V 中的插值. 则0t ?≥,有()()1 N G h i i i u t t ξ? == ∑,0,h u =01 N G i i i ξ?=∑,代人(**)即可得到一常微分方程组. 第三步 进一步对时间进行离散,得到全离散的逼近格式 对 du dt 用差分格式.为此把[]0,T 等分为n 个小区间[]1,i i t t -,其长度1i i T t t t n -?=-= ,n t T =. 这样把求i t 时刻的近似记为i h u ,0 h u 是0u 的近似.这里对(**)采用向后的欧拉格式,即 ()()() () )(2 11 11 1 ,,,,i i i i h h h h h h h i h u u v u v u v f v t ++++-+??+ = ? h h v V ?∈ (***) i=0,1,2…,n-1. 0 h u =0,h u 由于向后欧拉格式为隐式格式且含有非线性项,故相邻两时间步之间采用牛顿迭代,即:

千算万算-10以内加减法-2个数相加减-符号运算-1000题-含答案

1.4( )5=9 21.7( )0=7 41.3( )1=2 61.7( )1=6 81.9( )8=1 2.4( )1=5 22.10( )4=6 42.5( )3=2 62.4( )6=10 82.9( )3=6 3.10( )3=7 23.10( )9=1 43.10( )8=2 63.4( )0=4 83.6( )0=6 4.3( )1=4 24.8( )1=9 44.4( )0=4 64.7( )1=8 84.7( )1=6 5.4( )0=4 25.6( )0=6 45.0( )3=3 65.10( )9=1 85.6( )0=6 6.10( )0=10 26.2( )1=1 46.2( )1=1 66.9( )9=0 86.10( )0=10 7.7( )0=7 27.5( )3=8 47.9( )0=9 67.4( )2=2 87.10( )9=1 8.6( )2=4 28.4( )4=0 48.0( )7=7 68.9( )5=4 88.10( )3=7 9.2( )2=0 29.2( )0=2 49.1( )2=3 69.10( )7=3 89.4( )4=0 10.3( )3=6 30.4( )2=2 50.5( )2=3 70.5( )4=1 90.7( )3=10 11.10( )7=3 31.4( )1=5 51.0( )3=3 71.5( )0=5 91.8( )6=2 12.3( )0=3 32.10( )10=0 52.0( )9=9 72.5( )3=2 92.10( )1=9 13.6( )5=1 33.1( )4=5 53.3( )2=1 73.5( )4=1 93.5( )0=5 14.5( )4=1 34.2( )0=2 54.9( )3=6 74.3( )5=8 94.3( )7=10 15.4( )5=9 35.9( )6=3 55.10( )2=8 75.3( )1=4 95.8( )3=5 16.6( )1=5 36.9( )0=9 56.3( )0=3 76.4( )4=8 96.6( )5=1 17.7( )3=10 37.8( )6=2 57.7( )5=2 77.2( )4=6 97.9( )0=9 18.3( )5=8 38.6( )4=2 58.7( )7=0 78.4( )1=5 98.2( )7=9 19.8( )2=6 39.9( )0=9 59.0( )7=7 79.0( )9=9 99.9( )3=6 20.8( )3=5 40.2( )1=3 60.3( )0=3 80.2( )0=2 100.4( )3=1

数学实验3(符号运算)参考答案

实验3 MATLAB符号运算功能 一、实验目的:掌握MATLAB符号运算功能的基本使用方法 1.符号矩阵的建立及符号矩阵的运算; 2.符号矩阵的简化; 3.符号矩阵的极限和微积分; 4.代数方程求解; 5.一元函数图象简易画法. 二、实验内容: 1.设)1 e x g x x - =x ( ) (- 1) 将) g写成MATLAB符号表达式; (x 2) 求出符号表达式) g; ('x 3) 利用"subs"命令求出)4(g和)4('g; 4) 利用"plot"命令画出函数) g在区间[-3,3]上的光滑图象; (x 5) 利用"ezplot"命令画出函数) g在区间[-3,3]上的图象并与4)所得结果进行 (x 比较. 运行命令: syms x; g=[x*(exp(x)-x-1)] diff(g) G=subs(g,[4]) G1=subs(diff(g),4) x=-3:0.01:3; y=x.*(exp(x)-x-1); plot(x,y) ezplot(g,[-3,3]) 程序运行结果: g = x*(exp(x)-x-1) ans = exp(x)-x-1+x*(exp(x)-1) G = 198.3926 G1 = 263.9908

-3-2-10123 -100 10 20 30 40 50 -3-2-10 123-5 5 10 15 20 25 30 x x (exp(x)-x-1) 用ezplot 作图较精确。 2. 设)1()(1--=x e x x g x ,1)(22+=x x g 1)利用"ezplot "命令画图估计函数)(1x g 与)(2x g 图象交点的x 值; 2) 利用"solve "命令求出函数)(1x g 与)(2x g 图象交点处x 的精确值.

偏微分方程数值解法试题与答案

一.填空(1553=?分) 1.若步长趋于零时,差分方程的截断误差0→lm R ,则差分方程的解lm U 趋近于微分方 程的解lm u . 此结论_______(错或对); 2.一阶Sobolev 空间{} )(,,),()(21 Ω∈''=ΩL f f f y x f H y x 关于内积=1),( g f _____________________是Hilbert 空间; 3.对非线性(变系数)差分格式,常用 _______系数法讨论差分格式的_______稳定性; 4.写出3 x y =在区间]2,1[上的两个一阶广义导数:_________________________________, ________________________________________; 5.隐式差分格式关于初值是无条件稳定的. 此结论_______(错或对)。 二.(13分)设有椭圆型方程边值问题 ??? ? ? ????=??????+??-=-==<<<<-=??+??====x u n u u y u u y x y x y u x u y y x x 2,11 22.00,3.002.003.002222 用1.0=h 作正方形网格剖分 。 (1)用五点菱形差分格式将微分方程在内点离散化; (2)用截断误差为)(2 h O 的差分法将第三边界条件离散化; (3)整理后的差分方程组为 ?????? ? ?? =??????? ????????? ? ?D C B A U U U U 三.(12)给定初值问题 x u t u ??=?? , ()10,+=x x u 取时间步长1.0=τ,空间步长2.0=h 。试合理选用一阶偏心差分格式(最简显格式), 并以此格式求出解函数),(t x u 在2.0,2.0=-=t x 处的近似值。

第十章-偏微分方程数值解法

第十章 偏微分方程数值解法 偏微分方程问题,其求解十分困难。除少数特殊情况外,绝 大多数情况均难以求出精确解。因此,近似解法就显得更为重要。本章仅介绍求解各类典型偏微分方程定解问题的差分方法。 §1 差分方法的基本概念 1.1 几类偏微分方程的定解问题 椭圆型方程:其最典型、最简单的形式是泊松(Poisson )方程 ),(22 2 2y x f y u x u u =??+??=? 特别地,当 0),(≡y x f 时,即为拉普拉斯(Laplace )方程,又称 为调和方程 22 22 =??+??=?y u x u u Poisson 方程的第一边值问题为 ?? ?? ?Ω ?=Γ=Ω∈=??+??Γ∈),(),(),(),(),(22 22y x y x u y x y x f y u x u y x ? 其中 Ω为以Γ为边界的有界区域,Γ为分段光滑曲线, ΓΩY 称为定解区域,),(y x f ,),(y x ?分别为Ω,Γ上的已知连 续函数。 第二类和第三类边界条件可统一表示为

),(),(y x u u y x ?α=??? ? ??+??Γ∈n 其中n 为边界Γ的外法线方向。当0=α时为第二类边界条件, 0≠α时为第三类边界条件。 抛物型方程:其最简单的形式为一维热传导方程 2 20(0)u u a a t x ??-=>?? 方程可以有两种不同类型的定解问题: 初值问题 ?? ???+∞ <<∞-=+∞<<-∞>=??-??x x x u x t x u a t u )()0,(,00 22 ? 初边值问题 2 212 00,0(,0)()0(0,)(),(,)()0u u a t T x l t x u x x x l u t g t u l t g t t T ????-=<<<

第2章0和1-语义符号化、符号计算化与计算自动化练习题答案解析

第2章0和1-语义符号化、符号计算化与计算自动化练习题答案解析

第2章符号化、计算化与自动化 1、易经是用0和1符号化自然现象及其变化规律的典型案例。下列说法不正确的是_____。(A)易经既是用0和1来抽象自然现象,同时又不单纯是0和1,起始即将0和1与语义“阴”和“阳”绑定在一起; (B)易经本质上是关于0和1、0和1的三画(或六画)组合、以及这些组合之间相互变化规律的一门学问; (C)易经仅仅是以自然现象为依托,对人事及未来进行占卜或算卦的一种学说; (D)易经通过“阴”“阳”(即0和1)符号化,既反映了自然现象及其变化规律,又能将其映射到不同的空间,反映不同空间事务的变化规律,例如人事现象及其变化规律。 答案:C 解释: 本题考核内容:考核0和1与易经

A.A的描述完全正确; B.B的叙述也完全正确; C.不正确,易经不仅仅以自然现象为依托,对事及未来进行占卜或算卦的一种学说,他 还是将现象抽象为符号,进行符号组合,利 用符号组合表达自然现象; D.D的表述完全正确,易经既反映了自然现象及其变化规律,还反映不同空间事物的变化规律; 具体内容请参考第二章视频“2. 0和1与易经”的“1.1~1.4”视频。 2、易经的乾卦是从“天”这种自然现象抽象出来的,为什么称其为“乾”而不称其为“天”呢?_____。 (A)易经创作者故弄玄虚,引入一个新的名词,其实没有必要; (B)易经的“乾”和“天”是不同的,“乾”是一种比“天”具有更丰富语义的事物; (C)“天”是一种具体事物,只能在自然空间中应用,若变换到不同空间应用,可能会引起混淆;而“乾”是抽象空间中的概念,是指具有“天”

常微分方程解

第四章常微分方程数值解 [课时安排]6学时 [教学课型]理论课 [教学目的和要求] 了解常微分方程初值问题数值解法的一些基本概念,如单步法和多步法,显式和隐式,方法的阶数,整体截断误差和局部截断误差的区别和关系等;掌握一阶常微分方程初值问题的一些常用的数值计算方法,例如欧拉(Euler)方法、改进的欧拉方法、龙贝-库塔(Runge-Kutta)方法、阿达姆斯(Adams)方法等,要注意各方法的特点及有关的理论分析;掌握构造常微分方程数值解的数值积分的构造方法和泰勒展开的构造方法的基本思想,并能具体应用它们导出一些常用的数值计算公式及评估截断误差;熟练掌握龙格-库塔(R-K)方法的基本思想,公式的推导,R-K公式中系数的确定,特别是能应用“标准四阶R-K公式”解题;掌握数值方法的收敛性和稳定性的概念,并能确定给定方法的绝对稳定性区域。 [教学重点与难点] 重点:欧拉方法,改进的欧拉方法,龙贝-库塔方法。 难点:R—K方法,预估-校正公式。 [教学内容与过程] 4.1 引言 本章讨论常微分方程初值问题 (4.1.1) 的数值解法,这也是科学与工程计算经常遇到的问题,由于只有很特殊的方程能用解析方法求解,而用计算机求解常微分方程的初值问题都要采用数值方法.通常我们假定(4.1.1)中 f(x,y)对y满足Lipschitz条件,即存在常数L>0,使对,有 (4.1.2) 则初值问题(4.1.1)的解存在唯一. 假定(4.1.1)的精确解为,求它的数值解就是要在区间上的一组离散点 上求的近似.通常取 ,h称为步长,求(4.1.1)的数值解是按节点的顺序逐步

推进求得.首先,要对方程做离散逼近,求出数值解的公式,再研究公式的局部截断误差,计算稳定性以及数值解的收敛性与整体误差等问题. 4.2 简单的单步法及基本概念 4.2.1 Euler法、后退Euler法与梯形法 求初值问题(4.1.1)的一种最简单方法是将节点的导数用差商 代替,于是(4.1.1)的方程可近似写成 (4.2.1) 从出发,由(4.2.1)求得再将 代入(4.2.1)右端,得到的近似,一般写成 (4.2.2) 称为解初值问题的Euler法. Euler法的几何意义如图4-1所示.初值问题(4.1.1)的解曲线y=y(x)过点,从出发,以为斜率作一段直线,与直线交点于,显然有 ,再从出发,以为斜率作直线推进到上一点,其余类推,这样得到解曲线的一条近似曲线,它就是折线.

相关文档