文档库 最新最全的文档下载
当前位置:文档库 › 大学物理 动理论习题 新

大学物理 动理论习题 新

大学物理 动理论习题 新
大学物理 动理论习题 新

第10章 气体动理论

一、选择题

1. 一理想气体样品, 总质量为M , 体积为V , 压强为p , 绝对温度为T , 密度为ρ, 总分子数为N , k 为玻尔兹曼常数, R 为气体普适常数, 则其摩尔质量可表示为 [ ] (A)

MRT pV (B) pV MkT (C) p kT ρ (D) p

RT

ρ

2. 如T10-1-2图所示,一个瓶内装有气体, 但有小孔与外界相通, 原来

瓶内温度为300K .现在把瓶内的气体加热到400K (不计容积膨胀), 此时瓶内气体的质量为原来质量的______倍.

[ ] (A) 27/127 (B) 2/3 (C) 3/4 (D) 1/10

3. 相等质量的氢气和氧气被密封在一粗细均匀的细玻璃管内, 并由一水银滴隔开, 当玻璃管平放时, 氢气柱和氧气柱的长度之比为 [ ] (A) 16:1 (B) 1:1

(C) 1:16 (D) 32:1

4. 一容器中装有一定质量的某种气体, 下列所述中是平衡态的为

[ ] (A) 气体各部分压强相等 (B) 气体各部分温度相等

(C) 气体各部分密度相等 (D) 气体各部分温度和密度都相等

5. 一容器中装有一定质量的某种气体, 下面叙述中正确的是 [ ] (A) 容器中各处压强相等, 则各处温度也一定相等 (B) 容器中各处压强相等, 则各处密度也一定相等

(C) 容器中各处压强相等, 且各处密度相等, 则各处温度也一定相等

(D) 容器中各处压强相等, 则各处的分子平均平动动能一定相等

6. 理想气体能达到平衡态的原因是

[ ] (A) 各处温度相同 (B) 各处压强相同

(C) 分子永恒运动并不断相互碰撞 (D) 各处分子的碰撞次数相同

7. 理想气体的压强公式k 3

2

εn p =

可理解为 [ ] (A) 是一个力学规律 (B) 是一个统计规律 (C) 仅是计算压强的公式 (D) 仅由实验得出

8. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是:

[ ] (A) p 1> p 2 (B) p 1< p 2 (C) p 1=p 2 (D)不确定的

T10-1-2图

T 10-1-3图

9. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态.A 种气体的分子数密度为n 1,它产生的压强为p 1;B 种气体的分子数密度为2n 1;C 种气体的分子数密度为3 n 1.则混合气体的压强p 为

[ ] (A) 3 p 1 (B) 4 p 1 (C) 5 p 1 (D) 6 p 1

10. 若室内生起炉子后温度从15?C 升高到27?C, 而室内气压不变, 则此时室内的分子数减少了

[ ] (A) 0.5% (B) 4% (C) 9% (D) 21%

11. 无法用实验来直接验证理想气体的压强公式, 是因为 [ ] (A) 在理论推导过程中作了某些假设

(B) 现有实验仪器的测量误差达不到规定的要求 (C) 公式中的压强是统计量, 有涨落现象 (D) 公式中所涉及到的微观量无法用仪器测量

12. 对于一定质量的理想气体, 以下说法中正确的是

[ ] (A) 如果体积减小, 气体分子在单位时间内作用于器壁单位面积的总冲量一定增

(B) 如果压强增大, 气体分子在单位时间内作用于器壁单位面积上的总冲量一定

增大

(C) 如果温度不变, 气体分子在单位时间内作用于器壁单位面积上的总冲量一定

不变

(D) 如果压强增大, 气体分子在单位时间内作用于器壁单位面积上的总冲量一定

减小

13. 对于kT 2

3

k =ε中的平均平动动能k ε和温度T 可作如下理解 [ ] (A) k ε是某一分子的平均平动动能 (B) k ε是某一分子的能量长时间的平均值 (C)

k ε是温度为T 的几个分子的平均平动动能

(D) 气体的温度越高, 分子的平均平动动能越大

14. 根据气体动理论, 单原子分子理想气体的温度正比于

[ ] (A) 气体的体积 (B) 气体分子的平均自由程

(C) 气体分子的平均动量 (D) 气体分子的平均平动动能

15. 在刚性密闭容器中的气体, 当温度升高时, 将不会改变容器中 [ ] (A) 分子的动能 (B) 气体的密度

(C) 分子的平均速率 (D) 气体的压强

16. 在一固定容积的容器内, 理想气体温度提高为原来的两倍, 则 [ ] (A) 分子的平均动能和压强都提高为原来的两倍

(B) 分子的平均动能提高为原来的两倍, 压强提高为原来的四倍 (C) 分子的平均动能提高为原来的四倍, 压强提高为原来的两倍 (D) 因为体积不变, 所以分子的动能和压强都不变

17. 两种不同的气体, 一瓶是氦气, 另一瓶是氮气, 它们的压强相同, 温度相同, 但容积不同, 则

[ ] (A) 单位体积内的分子数相等 (B) 单位体积内气体的质量相等 (C) 单位体积内气体的内能相等 (D) 单位体积内气体分子的动能相等

18. 相同条件下, 氧原子的平均动能是氧分子平均动能的 [ ] (A)

56倍 (B) 53倍 (C) 10

3倍 (D) 21倍

19. B

如果氢气和氦气的温度相同, 摩尔数也相同, 则这两种气体的

[ ] (A) 平均动能相等 (B) 平均平动动能相等 (C) 内能相等 (D) 势能相等

20. 某气体的分子具有t 个平动自由度, r 个转动自由度, s 个振动自由度, 根据能均分定理知气体分子的平均总动能为

[ ] (A) kT t

21 (B) kT s r t 21)(++ (C) kT r 21 (D) kT s r t 2

1

)2(++

21. 平衡状态下, 刚性分子理想气体的内能是

[ ] (A) 部分势能和部分动能之和 (B) 全部势能之和 (C) 全部转动动能之和 (D) 全部动能之和

22. 在标准状态下, 体积比为V 1/V 2 = 1/2的氧气和氦气(均视为刚性分子理想气体)相混合, 则其混合气体中氧气和氦气的内能比为:

[ ] (A) 1/2 (B) 5/3 (C) 5/6 (D) 3/10

23. 水蒸汽分解成同温度的氢气和氧气(均视为刚性分子理想气体), 其内能的增加量为

[ ] (A) 66.7% (B) 50% (C) 25% (D) 0

24. 压强为p 、体积为V 的氢气(视为理想气体)的内能为 [ ] (A)

pV 25 (B) pV 23 (C) pV 2

1

(D) p V

25. 理想气体分子的平均平动动能为 [ ] (A)

221v m (B) 221

v m (C) 12kT (D) 72

kT

26. 某容积不变的容器中有理想气体, 若绝对温度提高为原来的两倍, 用p 和k ε分别表示气体的压强和气体分子的平均动能, 则

[ ] (A) p 、k ε均提高一倍 (B) p 提高三倍,

k ε提高一倍

(C) p 、k ε均提高三倍 (D) p 、k ε均不变

27. 根据经典的能量均分原理, 在适当的正交坐标系中, 每个自由度的平均能量为 [ ] (A) kT (B)

kT 31 (C) kT 23 (D) kT 2

1

28. 温度和压强均相同的氦气和氢气, 它们分子的平均动能k ε和平均平动动能k ε有如下关系 [ ] (A) k ε和k ε相同 (B) k ε相等而k ε不相等 (C)

k ε相等而k ε不相等 (D) k ε和k ε都不相等

29. 在一定速率v 附近麦克斯韦速率分布函数f (v )的物理意义是: 一定量的理想气体在给定温度下处于平衡态时的 [ ] (A) 速率为v 时的分子数 (B) 分子数随速率v 的变化

(C) 速率为v 的分子数占总分子数的百分比

(D) 速率在v 附近单位速率区间内的分子数占总分子数的百分比

30. 关于麦克斯韦速率分布函数f (v )的适用条件, 下列说法中正确的说法是 [ ] (A) f (v )适用于各种气体

(B) f (v )只适用于理想气体的各种状态 (C) 只要是理想气体,f (v )就一定适用 (D) f (v )适用于理想气体系统的平衡态

31. A 和B 两容器均贮有气体, 使其麦氏速率分布函数相同的条件是 [ ] (A) A 、B 中气体的质量相等

(B) A 、B 中气体的质量相等, 温度相同 (C) A 、B 中为同种气体, 压强和密度相同 (D) A 、B 中气体的质量不同, 密度不同

32. 关于麦氏速率分布曲线, 有下列说法, 其中正确的是 [ ] (A) 分布曲线与v 轴围成的面积表示分子总数

(B) 以某一速率v 为界, 两边的面积相等时, 两边的分子

数也相等

(C) 麦氏速率分布曲线下的面积大小受气体的温度与分子

质量的影响 (D) 以上说法都不对

33. 在平衡态下, 理想气体分子速率区间v 1 ~ v 2内的分子数为 [ ] (A) ?2

1

d )(v v

v v f (B) ?2

1

d )(v v v v Nf (C)

?2

1

d )(v v

v v v f (D)

?2

1

d )(v v

v v f

34. 平衡态下, 理想气体分子在速率区间v ~ v +d v 内的分子数密度为 [ ] (A) nf (v )d v (B) Nf (v ) d v (C)

?2

1

d )(v v v v f (D)

?2

1

d )(v v

v v Nf

35. 在平衡态下, 理想气体分子速率在区间v 1 ~ v 2内的概率是 [ ] (A) ?2

1

d )(v v

v v f (B) ?2

1

d )(v v v v Nf (C)

?2

1

d )(v v v v v f (D)

?2

1

d )(v v

v v f

36. 在平衡态下, 理想气体分子速率区间v 1 ~ v 2内分子的平均速率是 [ ] (A)

?2

1

d )(v v

v v v f (B) ?2

1

d )(v v

2v v v f

(C)

?2

1

d )(v v

v v v f /?

21

d )(v v v v f (D)

?2

1

d )(1

v v

v v v f N

37. 在273K 时, 氧气分子热运动速率恰好等于100m.s -1的分子数占总分子数的百分比数为

[ ] (A) 10% (B) 50%

(C) 0 (D) 应通过积分来计算, 但总不为零

38. f (v )是理想气体分子在平衡状态下的速率分布函数, 物理式?2

1

d )(v v

v v Nf 的物理

意义是

[ ] (A) 速率在v 1 ~ v 2区间内的分子数

(B) 速率在v 1 ~ v 2区间内的分子数占总分子数的百分比 (C) 速率在v 1 ~ v 2之间的分子的平均速率

(D) 速率在v 1 ~ v 2区间内的分子的方均根速率

T 10-1-32图

O

T 10-1-33图

O

T 10-1-35图

O

1

39. 某气体分子的速率分布服从麦克斯韦速率分布律.现取相等的速率间隔?v 考察具有v +?v 速率的气体分子数?N .?N 为最大所对应的v 为

[ ] (A) 平均速率 (B) 方均根速率 (C) 最概然速率 (D) 最大速率

40. 设声波通过理想气体的速率正比于气体分子的热运动平均速率, 则声波通过具有相同温度的氧气和氢气的速率之比22H O /u u 为

[ ] (A) 1 (B) 1/2 (C) 1/3 (D) 1/4

41. 设T10-1-41图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()

2

O p v 和()

2

H p v 分别表示氧气和氢气的最概然速率,则 [ ] (A) 图中a 表示氧气分子的速率分布曲线,

()2

O p v /()2

H

p v =4

(B) 图中a 表示氧气分子的速率分布曲线, ()2

O p

v /()2

H

p v =1/4

(C) 图中b 表示氧气分子的速率分布曲线, ()2

O p

v /()2

H p v =1/4

(D) 图中b 表示氧气分子的速率分布曲线;()2

O p v /()2

H p v = 4

42. 温度为T 时,在方均根速率s /m 502

±v 的速率区间内,氢、氨两种气体分子数占总分子数的百分率相比较:则有(附:麦克斯韦速率分布定律:

v v ??????

? ??-??

?

??π=?2

22

/32exp 24kT m kT m N N v

符号exp(a ),即e a .) [ ] (A) 22N H ???

???>??? ???N N N N

(B) 22N H ???

???=??? ???N N N N

(C) 2

2N H ??? ???

???N N N N

(D) 温度较低时22N H ??? ???>???

???N N N N , 温度较高时2

2N H ???

???

T 10-1-41图

O

43. 一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值

[ ] (A) m kT x 32

=

v (B) m

kT x 3312

=v (C) m kT x 32=v (D) m

kT x =2

v

44. 在一封闭容器中装有1mol 氮气(视为理想气体), 当温度一定时,分子无规则运动

的平均自由程仅决定于

[ ] (A) 压强p (B) 体积V

(C) 温度T (D) 平均碰撞频率

45. 理想气体经历一等压过程, 其分子的平均碰撞频率Z 与温度T 的关系是 [ ] (A) Z T ∝ (B) Z T ∝

1 (C) Z T ∝ (D) Z T

∝1 46. 体积恒定时, 一定质量理想气体的温度升高, 其分子的

[ ] (A) 平均碰撞次数将增大 (B) 平均自由程将增大 (C) 平均碰撞次数将减小 (D) 平均自由程将减小

47. 一定质量的理想气体等压膨胀时, 气体分子的

[ ] (A) 平均自由程不变 (B) 平均碰撞频率不变 (C) 平均自由程变小 (D) 平均自由程变大

48. 气缸内盛有一定量的氢气, 当温度不变而压强增大一倍时, 氢气分子的平均碰撞次数Z 和平均自由程的变化情况是 [ ] (A) Z 和λ都增大一倍 (B) Z 和λ都减为原来的一半 (C) Z 增大一倍λ减为原来的一半 (D) Z 减为原来的一半而λ增大一倍

49. 一定量的理想气体, 在容积不变的条件下, 当温度降低时, 分子的平均碰撞次数

Z 和平均自由程λ的变化情况是

[ ] (A) Z 减小不变 (B) Z 不变减小

(C) Z 和都减小 (D) Z 和都不变

50. 理想气体绝热地向真空自由膨胀, 体积增大为原来的两倍, 则始末两态的温度T 1、T 2和始末两态气体分子的平均自由程λ1、λ2的关系为 [ ] (A) T T 1212==,

λλ (B) T T 121212

==,λλ (C) T T 12122==,

λλ (D) T T 1212212

==,λλ

51. 在下列所给出的四个图象中,能够描述一定质量的理想气体,在可逆绝热过程中,密度随压强变化的图象是 [ ]

52. 气体作等体变化, 当绝对温度降至原来的一半时,

气体分子的平均自由程将变为

原来的多少倍

?

[ ] (A) 0.7 (B) 1.4 (C) 1 (D) 2

53. 气体的热传导系数κ和粘滞系数η与压强p 的关系 [ ] (A) 在任何情况下, κ和η与 p 成正比 (B) 在常压情况下, κ和η与 p 成正比 (C) 在低压情况下, κ和η与 p 成正比 (D) 在低压情况下, κ和η与 p 无关

54. 一定量理想气体分子的扩散情况与气体温度T 、压强p 的关系为 [ ] (A) T 越高p 越大, 则扩散越快 (B) T 越低p 越大, 则扩散越快 (C) T 越高p 越小, 则扩散越快 (D) T 越低p 越小, 则扩散越快

55. 下列说法中正确的是

[ ] (A) 为使单原子分子理想气体的温度升高, 外界所供给的能量的一部份 是用于克服分子间的引力使分子间距离拉大

(B) 温度相同时, 不同分子量的各种气体分子都具有相同的平均平动动能 (C) 绝对零度时气体分子的线速度为零

(D) 温度相同时, 不同分子量的气体分子内能不同

56. 一年四季大气压强的差异可忽略不计, 下面说法中正确的是 [ ] (A) 冬天空气密度大 (B) 夏天空气密度大 (C) 冬、夏季空气密度相同 (D) 无法比较

57. 把内能为U 的1mol 氢气与内能为E 的1mol 氦气相混合, 在混合过程中与外界不发生任何能量交换.若这两种气体均被视为理想气体, 则达平衡后混合气体的温度为 [ ] (A)

R E U 3+ (B) R E

U 4+ (C) R

E U 5+ (D) 条件不足, 难以判定

(D)

(C)

(B)

(A)

58. 被密封的理想气体的温度从300K 起缓慢地上升, 直至其分子的方均根速率增加两倍, 则气体的最终温度为

[ ] (A) 327K (B) 381K (C) 600K (D) 1200K

59. 设有以下一些过程:

(1) 两种不同气体在等温下互相混合. (2) 理想气体在定容下降温. (3) 液体在等温下汽化. (4) 理想气体在等温下压缩. (5) 理想气体绝热自由膨胀.

在这些过程中,使系统的熵增加的过程是:

[ ] (A) (1)、(2)、(3) (B) (2)、(3)、(4)

(C) (3)、(4)、(5) (D) (1)、(3)、(5)

60. 一定量的理想气体向真空作绝热自由膨胀,体积由1V 增至2V ,在此过程中气体的 [ ] (A) 内能不变,熵增加 (B) 内能不变,熵减少

(C) 内能不变,熵不变 (D) 内能增加,熵增加

61. 关于温度的意义,有下列几种说法: (1) 气体的温度是分子平均平动动能的量度.

(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 上述说法中正确的是:

[ ] (A) (1)、(2)、(4) (B) (1)、(2)、(3) (C) (2)、(3)、(4) (D) (1)、(3)、(4)

二、填空题

1. 设某理想气体体积为V , 压强为p , 温度为T , 每个分子的质量为m ,玻尔兹曼恒量为k , 则该气体的分子总数可表示为 .

2. 氢分子的质量为

3.3×10-24 g ,如果每秒有1023 个氢分子沿着与容器器壁的法线成45°角的方向以105 cm ?s -1的速率撞击在 2.0 cm 2 面积上(碰撞是完全弹性的),则此氢气的压强为____________.

3. 在推导理想气体压强公式中,体现统计意义的两条假设是

(1) ______________________________________________________;

(2) ______________________________________________________.

4. 有一个电子管,其真空度(即电子管内气体压强)为 1.0×10-

5 mmHg ,则27 ℃ 时

管内单位体积的分子数为_________________ .

5. 气体分子间的平均距离l 与压强p 、温度T 的关系为______________,在压强为1 atm 、温度为0℃的情况下,气体分子间的平均距离l =________________m .

6. 若某容器内温度为 300 K 的二氧化碳气体(视为刚性分子理想气体)的内能为 3.74×103 J ,则该容器内气体分子总数为___________________.

7. 某容器内分子数密度为326m 10-,每个分子的质量为kg 10327-?,设其中1/6分子数以速率1

s m 200-?=v 垂直地向容器的一壁运动,而其余5/6分子或者离开此壁、或者平行此壁方向运动,且分子与容器壁的碰撞为完全弹性.则

(1) 每个分子作用于器壁的冲量=?p ; (2) 每秒碰在器壁单位面积上的分子数=0n ; (3) 作用在器壁上的压强p = .

8. 容器中储有1 mol 的氮气,压强为1.33 Pa ,温度为 7 ℃,则 (1) 1 m 3中氮气的分子数为___________________; (2) 容器中的氮气的密度为____________________;

(3) 1 m 3中氮分子的总平动动能为_________________.

9. 体积和压强都相同的氦气和氢气(均视为刚性分子理想气体),在某一温度T 下混合,所有氢分子所具有的热运动动能在系统总热运动动能中所占的百分比为_________.

10. 容积为10 l 的盒子以速率v = 200m ?s -1匀速运动,容器中充有质量为50g ,温度为

C 18 的氢气,设盒子突然停止,全部定向运动的动能都变为气体分子热运动的动能,容器

与外界没有热量交换,则达到热平衡后,氢气的温度增加了 K ;氢气的压强增加了 Pa .(摩尔气体常量11K mol 1J 3.8--??=R ,氢气分子可视为刚性分子.)

11. 一能量为1012 eV 的宇宙射线粒子,射入一氖管中,氖管内充有 0.1 mol 的氖气,若宇宙射线粒子的能量全部被氖气分子所吸收,则氖气温度升高了________________K .(1 eV =1.60×10-19J ,普适气体常量R =8.31 J/(mol ?K))

12. 一氧气瓶的容积为V ,充入氧气的压强为p 1,用了一段时间后压强降为p 2,则瓶中剩下的氧气的内能与未用前氧气的内能之比为__________.

13. 如T10-2-13图所示,大气中有一绝热气缸,其中装有一定量的理想气体,然后用电炉徐徐供热,使活塞(无摩擦地)缓慢上升.在此过程中,以下物理量将如何变化? (选用“变大”、“变小”、“不变”填空) (1) 气体压强______________; (2) 气体分子平均动能______________; (3) 气体内能______________.

14. 氧气和氦气(均视为理想气体)温度相同时, 它们的 相等. 15. 若某种理想气体分子的方均根速率

12s m 450-?=v ,气体压强为

Pa 1074?=p ,则该气体的密度为ρ= .

16. 理想气体在平衡状态下,速率区间v ~ v + d v 内的分子数为 . 17. f (v )是理想气体分子在平衡状态下的速率分布函数, 则式

?2

1

d )(v v

v v f 的物理意义

是: .

18. 在与最概然速率相差1%的速率区间内的分子数占总分子数的百分比为 .

19. 图示氢气分子和氧气分子在相同温度下的麦克斯韦速率分布曲线.则氢气分子的最概然速率为______________,氧分子的最概然速率为____________.

20. 当理想气体处于平衡态时,若气体分子速率分

布函数为f (v ),则分子速率处于最概然速率v p 至∞范围内的概率△N / N =________________.

21. 已知f (v )为麦克斯韦速率分布函数,N 为总分子数,则

(1) 速率v > 100 m ·s -1的分子数占总分子数的百分比的表达式为_________________;

(2) 速率v > 100 m ·s -1的分子数的表达式为________________________. 22. 用总分子数N 、气体分子速率v 和速率分布函数f (v ) 表示下列各量: (1) 速率大于v 0的分子数=____________________; (2) 速率大于v 0的那些分子的平均速率=_____________________;

(3) 多次观察某一分子的速率,发现其速率大于v 0的概率=___________________.

T 10-2-13图

T 10-2-19图

O

)

s

1-?

23. T10-2-23图示曲线为处于同一温度T 时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线.其中

曲线(a )是 气分子的速率分布曲线;

曲线(c )是 气分子的速率分布曲线.

24.** 处于重力场中的某种气体,在高度z 处单位体积内

的分子数即分子数密度为n .若f (v )是分子的速率分布函数,则坐标介于x ~x +d x 、y ~y +d y 、z ~z +d z 区间内,速率介于v ~ v + d v 区间内的分子数d N =____________________.

25. 由玻尔兹曼分布律可知,在温度为T 的平衡态中,分布在某一状态区间的分子数d N 与该区间粒子的能量ε有关,其关系为d N ∝____________.

26. 已知大气压强随高度变化的规律为???

?

?-=RT gh M p p mol 0exp .拉萨海拔约为

3600m ,设大气温度t =27℃,而且处处相同,则拉萨的气压p = .

27. 已知大气中分子数密度n 随高度h 的变化规律n =n 0exp[-

RT

gh

μ],式中n 0为h =0处的分子数密度.若大气中空气的摩尔质量为μ,温度为T ,且处处相同,并设重力场是均匀的,则空气分子数密度减少到地面的一半时的高度为 .

28. 在一个容积不变的容器中,储有一定量的理想气体,温度为0T 时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ.当气体温度升高为04T 时,气体分子的平均速率为v = ;平均碰撞次数z = ;平均自由程λ= .

29. 氮气在标准状态下的分子平均碰撞频率为5.42×108 s -1,分子平均自由程为6×10-6 cm ,若温度不变,气压降为 0.1 atm ,则分子的平均碰撞频率变为_______________;平均自由程变为_______________.

30. 一定量的理想气体,经等压过程从体积V 0膨胀到2V 0,则描述分子运动的下列各量与原来的量值之比是

(1) 平均自由程

λλ

=______________;

T10-2-23图

O

(2) 平均速率

v v

=______________; (3) 平均动能

k k

εε=______________. 31. 已知空气的摩尔质量是kg 109.23-?=m ,则空气中气体分子的平均质量为 ;成年人作一次深呼吸,约吸入3

cm 450的空气,其相应的质量为 ;吸入的气体分子数约为 个.

大学物理实验作业习题

作业习题 第一部分:力学部分 1、长度、密度测量 ⑴使用游标时,怎样识别它的精度? ⑵如何从卡尺和螺旋测微计上读出被测的毫米整数和小数? ⑶用静力秤衡法测固体密度,在秤浸入液体中的固体质量时,能否让固体接触烧杯 壁和底部,为什么? ⑷如要测定一块任意形状的固体的密度,试选择一种实验方法,写出测量的步骤。 2 、三线悬盘测刚体转动惯量 ⑴为什么实验时必须要求两盘水平,三根悬线长度相等? ⑵如何启动三线摆才能防止晃动? ⑶为什么三线摆的扭转角不能过大? ⑷仪器常数m0、m1、m2应选用什么仪器测量?a和b分别表示什么距离?为什么 周期T要通过测量50周的时间50T计算得到,直接测量行吗?为什么? 3、碰撞和动量守恒 ⑴分析实验过程中的守恒原理,动量和能量是否遵守同一守恒定律、你能给出什么 结论? ⑵比较以下实验结果: 把光电门放在远离及靠近碰撞位置; 碰撞速度大和小; 正碰与斜碰 导轨中气压大与小。 4 、拉伸法测杨氏模量 ⑴仪器调节的步骤很重要,为在望远镜中找到直尺的象,事先应作好哪些准备,试 说明操作程序。 ⑵如果在调节光杠杆和镜尺组时,竖尺有5度的倾斜,其它都按要求调节。问对结 果有无影响?影响多大?如果竖尺调好为竖直而小镜有5度的倾斜,对结果有无影响? ⑶本实验中各个长度量用不同的仪器(螺旋测微计、钢卷尺等)来测量是怎样考虑

的,为什么? ⑷利用光杠杆把测微小长度△L变成测D等量,光杠杆放大率为2D/l,根据此式 能否以增加D减少1来提高放大率?这样做有无好处?有无限度?应怎样考虑这个问题? ⑸加砝码后立即读数和过一会读数,读数值有无区别,从而判断弹性滞后对测量有无 影响。由此可得出什么结论? 5、焦利氏秤测液体的表面张力系数 ⑴焦利氏秤的弹簧为什么要做成锥形? ⑵实验中应注意哪些方面因素才能减小误差? 6 、落球法测液体的粘滞系数 ⑴本实验中可能引起误差的因素有哪些? ⑵本实验所采用的测液体粘滞系数的方法是否对一切液体都适用? ⑶什么是雷诺系数?说明其物理意义,结合以上实验,分析其影响。 第二部分:电学部分 7、万用表及电路 ⑴为什么不宜用欧姆计测量表头的内阻? ⑵万用表使用完毕后,为什么不能让功能旋钮停在欧姆挡? ⑶选择两个电位器,组成一个可以进行粗调和细调的分压电路(画出电路图,标明 电位器的阻值)。 8 、电流计的研究 ⑴灵敏电流计之所以有较高的灵敏度是由于结构上做了哪些改进? 9、单臂电桥测电阻 (1)电桥采用什么方法测电阻? (2)单臂电桥适合测多大的电阻?能读几位有效数字? 10、双臂电桥测低电阻 ⑴如果将标准电阻和待测铜棒的电压接头与电流接头互相颠倒,等效电路是怎样的 这样做好不好? (2)双臂电桥是怎样消除导线电阻及接触电阻的影响的?

大学物理试卷期末考试试题答案

2003—2004学年度第2学期期末考试试卷(A 卷) 《A 卷参考解答与评分标准》 一 填空题:(18分) 1. 10V 2.(变化的磁场能激发涡旋电场),(变化的电场能激发涡旋磁场). 3. 5, 4. 2, 5. 3 8 6. 293K ,9887nm . 二 选择题:(15分) 1. C 2. D 3. A 4. B 5. A . 三、【解】(1) 如图所示,内球带电Q ,外球壳内表面带电Q -. 选取半径为r (12R r R <<)的同心球面S ,则根据高斯定理有 2() 0d 4πS Q r E ε?==? E S 于是,电场强度 204πQ E r ε= (2) 内导体球与外导体球壳间的电势差 22 2 1 1 1 2200 01211d 4π4π4πR R R AB R R R Q Q dr Q U dr r r R R εεε?? =?=?==- ????? ? r E (3) 电容 12 001221114π/4πAB R R Q C U R R R R εε??= =-= ?-?? 四、【解】 在导体薄板上宽为dx 的细条,通过它的电流为 I dI dx b = 在p 点产生的磁感应强度的大小为 02dI dB x μπ= 方向垂直纸面向外. 电流I 在p 点产生的总磁感应强度的大小为 22000ln 2222b b b b dI I I dx B x b x b μμμπππ===? ? 总磁感应强度方向垂直纸面向外. 五、【解法一】 设x vt =, 回路的法线方向为竖直向上( 即回路的绕行方向为逆时

针方向), 则 21 d cos602B S Blx klvt Φ=?=?= ? ∴ d d klvt t εΦ =- =- 0ac ε < ,电动势方向与回路绕行方向相反,即沿顺时针方向(abcd 方向). 【解法二】 动生电动势 1 cos602 Blv klvt ε?动生== 感生电动势 d 111 d [cos60]d 222d d dB B S Blx lx lxk klvt t dt dt dt εΦ=- =?=--?===?感生- klvt εεε==感生动生+ 电动势ε的方向沿顺时针方向(即abcd 方向)。 六、【解】 1. 已知波方程 10.06cos(4.0)y t x ππ=- 与标准波方程 2cos(2) y A t x π πνλ =比较得 , 2.02, 4/Z H m u m s νλνλ==== 2. 当212(21)0x k ππΦ-Φ==+合时,A = 于是,波节位置 21 0.52k x k m += =+ 0,1,2, k =±± 3. 当 21222x k A ππΦ-Φ==合时,A = 于是,波腹位置 x k m = 0,1,2, k =±± ( 或由驻波方程 120.12cos()cos(4)y y y x t m ππ=+= 有 (21) 00.52 x k A x k m π π=+?=+合= 0,1,2, k =±± 20.122 x k A m x k m π π=?=合=, 0,1,2, k =±± )

大学物理第七章气体动理论

第七章 气体动理论 一.选择题 1[ C ]两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内气体的质量ρ的关系为: (A) n 不同,(E K /V )不同,ρ 不同. (B) n 不同,(E K /V )不同,ρ 相同. (C) n 相同,(E K /V )相同,ρ 不同. (D) n 相同,(E K /V )相同,ρ 相同. 解答:1. ∵nkT p =,由题意,T ,p 相同∴n 相同; 2. ∵kT n V kT N V E k 2 323==,而n ,T 均相同∴V E k 相同 3. 由RT M m pV =得RT pM V M ==ρ,∵不同种类气体M 不同∴ρ不同 2[ C ]设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分 子的平均速率为 (A) ?2 1d )(v v v v v f . (B) 2 1 ()d v v v vf v v ?. (C) ? 2 1 d )(v v v v v f /?2 1 d )(v v v v f . (D) ? 2 1 d )(v v v v v f /0 ()d f v v ∞ ? . 解答:因为速率分布函数f (v )表示速率分布在v 附近单位速率间隔内的分子数占总分子数的百分率,所以 ? 2 1 d )(v v v v v f N 表示速率分布在v 1~v 2区间内的分子的速率总和,而 2 1 ()d v v Nf v v ? 表示速率分布在v 1~v 2区间内的分子数总和,因此 ? 2 1 d )(v v v v v f / ? 2 1 d )(v v v v f 表示速率分布在v 1~v 2区间内的分子的平均速率。 3[ B ]一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是: (A) Z 减小而λ不变. (B)Z 减小而λ增大. (C) Z 增大而λ减小. (D)Z 不变而λ增大. 解答:n d Z 22π= ,n d 2 21πλ= ,在温度不变的条件下,当体积增大时,n 减小,所以 Z 减小而λ增大。 4[ B ]若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了

《大学物理》课后习题答案

《大学物理》课后习题 答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

习题4-12图 H L H h H 4-12 一个器壁竖直的开口水槽,如图所示,水的深度为H =10m ,在水面下h =3m 处的侧壁开一个小孔。试求:(1)从小孔射出的水流在槽底的水平射程L 是多少(2)h 为何值时射程最远最远射程是多少 解:(1)设水槽表面压强为p 1,流速为v 1,高度为h 1, 小孔处压强为p 2,流速为v 2,高度为h 2,由伯努利方程得: 22 2212112 121gh v p gh v p ρρρρ++=++ 根据题中的条件可知: 211021,0,h h h v p p p -==== 由上式解得:gh v 22= 由运动学方程:221gt h H = -,解得: g h H t ) (2-= 水平射程为:)(m 17.9)310(34)(42=-??=-==h H h t v L (2)根据极值条件,令0=dh dL ,L出现最大值, 即 022 =--h hH h H ,解得:h=5m 此时L的最大值为10m 。 4-14 水在粗细不均匀的水平管中作稳定流动,已知在截面S1处的压强为110Pa ,流速为0.2m/s ,在截面S2处的压强为5Pa ,求S2处的流速(把水看作理想流体)。 解:由伯努利方程得:2 222112 121v p v p ρ+=ρ+ 2323100.12 1 52.0100.121110v ???+=???+ )(5.012-?=s m v 4-16在水管的某一端水的流速为1.0m/s ,压强为5100.3?Pa ,水管的另一端比第一端降低了20.0m ,第二端处水管的横截面积是第一端处的1/2。求第二 端处的压强。设管中的水为理想流体,且作稳定流动。 解: 由连续性方程 2 21 1v S v S = 得:)(211 2 12212 -?=?== s m v S S v 由伯努利方程22 2212112 121gh v p gh v p ρρρρ++=++ 得:)()(2 121222112h h g v v p p -+-+ =ρρ

(完整word版)大学物理气体动理论热力学基础复习题及答案详解

第12章 气体动理论 一、 填空题: 1、一打足气的自行车内胎,若在7℃时轮胎中空气压强为4.0×510pa .则在温度变为37℃,轮胎内空气的 压强是 。(设内胎容积不变) 2、在湖面下50.0m 深处(温度为4.0℃),有一个体积为531.010m -?的空气泡升到水面上来,若湖面的 温度为17.0℃,则气泡到达湖面的体积是 。(取大气压强为50 1.01310p pa =?) 3、一容器内储有氧气,其压强为50 1.0110p pa =?,温度为27.0℃,则气体分子的数密度 为 ;氧气的密度为 ;分子的平均平动动能为 ;分子间的平均 距离为 。(设分子均匀等距排列) 4、星际空间温度可达 2.7k ,则氢分子的平均速率为 ,方均根速率为 ,最概然速率 为 。 5、在压强为51.0110pa ?下,氮气分子的平均自由程为66.010cm -?,当温度不变时,压强 为 ,则其平均自由程为1.0mm 。 6、若氖气分子的有效直径为82.5910cm -?,则在温度为600k ,压强为21.3310pa ?时,氖分子1s 内的 平均碰撞次数为 。 7、如图12-1所示两条曲线(1)和(2),分别定性的表示一定量的 某种理想气体不同温度下的速率分布曲线,对应温度高的曲线 是 .若图中两条曲线定性的表示相同温 度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的 是 . 8、试说明下列各量的物理物理意义: (1) 12kT , (2)32 kT , (3)2i kT , (4)2 i RT , (5)32RT , (6)2M i RT Mmol 。 参考答案: 1、54.4310pa ? 2、536.1110m -? 3、25332192.4410 1.30 6.2110 3.4510m kg m J m ----???? 4、21 21121.6910 1.8310 1.5010m s m s m s ---?????? 图12-1

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

《大学物理习题集》上)习题解答

) 2(选择题(5) 选择题单 元一 质点运动学(一) 一、选择题 1. 下列两句话是否正确: (1) 质点作直线运动,位置矢量的方向一定不变; 【 ? 】 (2) 质点作园周运动位置矢量大小一定不变。 【 ? 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为3.14m/s ,方向为A 点切线方向; (D) 大小为3.14m/s ,方向为B 点切线方向。 3. 某质点的运动方程为x=3t-5t 3+6(SI),则该质点作 【 D 】 (A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向; (C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向 4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则一秒钟后质点的速度: 【 D 】 (A) 等于零 (B) 等于-2m/s (C) 等于2m/s (D) 不能确定。 5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。设该人以匀速度V 0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】 (A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。 6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5s 时,

大学物理习题详解—近代物理部分.doc

狭义相对论基本假设、洛伦兹变换、狭义相对论时空观 17. 2两火箭A 、B 沿同一直线相向运动,测得两者相对地球的速度大小分别是 = 0.9c, v B = 0.8c.则两者互测的相对运动速度大小为: (A) 1.7c ; (B) 0.988c ; (C) 0.95c ; (D) 0.975c. 答:B . 分析:以 A 为 S ,系,则 w=0.9c, V v =-0.8c, 由相对论速度变换关系可知: S A S' 爪 VB -0.8c-0.9c ?0& ??。.9疽一 第十七章相对论 17. 1在狭义相对论中,下列说法哪些正确? (1) 一切运动物体相对于观察者的速度都不能大于真空中的光速, (2) 质量、长度、时间的测量结果都是随物体与观察者的运动状态而改变的, (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其它一切惯性系中 也 是同时发生的, (4) 惯性系中观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比 与 他相对静止的相同时钟走得慢些. (A) (1) (3) (4) ; (B) (1) (2) (4); (C) (2) (3) (4) ; (D) (1) (2) (3). [ ] 答:B. 分析: (1) 根据洛仑兹变换和速度变换关系,光速是速度的极限,所以(1)正确; (2) 由长度收缩和时间碰撞(钟慢尺缩)公式,长度、时间的测量结果都是随 物体 与观察者的运动状态而改变的;同时在相对论情况下,质量不再是守恒量,也 会随速度大小而变化,所以(2)是正确的; (3) 由同时的相对性,在S'系中同时但不同地发生的两个事件,在S 系中观察不 是同时的。只有同时、同地发生的事件,在另一惯性系中才会是同时发生的,故排 除⑶; (4) 由于相对论效应使得动钟变慢,故(4)也是正确的。 所以该题答案选(B) 所以选(B)

大学物理期末考试试题

西安工业大学试题纸 1.若质点的运动方程为:()2r 52/2t t i t j =+-+(SI ),则质点的v = 。 2. 一个轴光滑的定滑轮的转动惯量为2/2MR ,则要使其获得β的角加速度,需要施加的合外力矩的大小为 。 3.刚体的转动惯量取决于刚体的质量、质量的空间分布和 。 4.一物体沿x 轴运动,受到F =3t (N)的作用,则在前1秒内F 对物体的冲量是 (Ns )。 5. 一个质点的动量增量与参照系 。(填“有关”、“无关”) 6. 由力对物体的做功定义可知道功是个过程量,试回答:在保守力场中,当始末位置确定以后,场力做功与路径 。(填“有关”、“无关”) 7.狭义相对论理论中有2个基本原理(假设),一个是相对性原理,另一个是 原理。 8.在一个惯性系下,1、2分别代表一对因果事件的因事件和果事件,则在另一个惯性系下,1事件的发生 2事件的发生(填“早于”、“晚于”)。 9. 一个粒子的固有质量为m 0,当其相对于某惯性系以0.8c 运动时的质量m = ;其动能为 。 10. 波长为λ,周期为T 的一平面简谐波在介质中传播。有A 、B 两个介质质点相距为L ,则A 、B 两个质点的振动相位差=?φ____;振动在A 、B 之间传播所需的时间为_ 。 11. 已知平面简谐波方程为cos()y A Bt Cx =-,式中A 、B 、C 为正值恒量,则波的频率为 ;波长为 ;波沿x 轴的 向传播(填“正”、“负”)。 12.惠更斯原理和波动的叠加原理是研究波动学的基本原理,对于两列波动的干涉而言,产生稳定的干涉现象需要三个基本条件:相同或者相近的振动方向,稳定的位相差,以及 。 13. 已知一个简谐振动的振动方程为10.06cos(10/5)()X t SI π=+,现在另有一简谐振动,其振动方程为20.07cos(10)X t =+Φ,则Φ= 时,它们的合振动振幅最 大;Φ= 时,它们的合振动振幅最小。 14. 平衡态下温度为T 的1mol 单原子分子气体的内能为 。 15. 平衡态下理想气体(分子数密度为n ,分子质量为m ,分子速率为v )的统计压强P= ;从统计角度来看,对压强和温度这些状态量而言, 是理想气体分子热运动激烈程度的标志。

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3 ,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间合力作功为 A 1,32t t →时间合力作功为A 2,43t t → 3 C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间,其平均 速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D ) T R π2, 0 5、质点在恒力F 作用下由静止开始作直线运动。已知在时间1t ?,速率由0增加到υ;在2t ?, 由υ增加到υ2。设该力在1t ?,冲量大小为1I ,所作的功为1A ;在2t ?,冲量大小为2I , 所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线 运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的 大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第12章 气体动理论

第十二章 气体动理论 12-1 一容积为10L 的真空系统已被抽成1.0×10-5 mmHg 的真空,初态温度为20℃。为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出所吸附的气体,如果烘烤后压强为1.0×10-2 mmHg ,问器壁原来吸附了多少个气体分子? 解:由式nkT p =,有 3 2023 52/1068.1573 1038.1760/10013.1100.1m kT p n 个?≈?????==-- 因而器壁原来吸附的气体分子数为 个183201068.110101068.1?=???==?-nV N 12-2 一容器内储有氧气,其压强为1.01?105 Pa ,温度为27℃,求:(l )气体分子的 数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。(设分子间等距排列) 分析:在题中压强和温度的条件下,氧气可视为理想气体。因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解。又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知d n V ,10=即可求出。 解:(l )单位体积分子数 3 25m 1044.2-?==kT p n (2)氧气的密度 3m kg 30.1-?===RT pM V m ρ (3)氧气分子的平均平动动能 J 1021.62321k -?==kT ε (4)氧气分子的平均距离 m 1045.3193-?==n d 12-3 本题图中I 、II 两条曲线是两种不同气体(氢气和氧气)在同一温度下的麦克斯韦分子速率分布曲线。试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2)两种气体所处的温度。 分析:由M RT v /2p =可知,在相同温度下,由于不同气体的摩尔质量不同,它们的最概然速率p v 也就不同。因22O H M M <,故氢气比氧气的p v 要大,由此可判定图中曲线II 所标13p s m 100.2-??=v 应是对应于氢气分子的最概然速率。从而可求出该曲线所对应的温度。又因曲线I 、II 所处的温度相同,故曲线I 中氧气的最概然速率也可按上式求得。 解:(1)由分析知氢气分子的最概然速率为

大学物理近代物理练习题

10量子力学 一、选择题 1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) (B) (C) (D) [ ] 3.4383:用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [ ] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 [ ] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [ ] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV [ ] 9.4241: 若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是 (A) (B) (C) (D) [ ] 10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 [ ] 11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为: ( - a ≤x ≤a ),那么粒子在x = 5a /6处出现的概率密度为 (A) 1/(2a ) (B) 1/a (C) (D) [ ] 12.4778:设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子 动量的精确度最高的波函数是哪个图? [ ] 0λhc 0λhc m eRB 2)(2 +0λhc m eRB +0λhc eRB 2+)2/(eRB h )/(eRB h )2/(1eRBh ) /(1eRBh a x a x 23cos 1)(π?= ψa 2/1a /1x (A) x (C) x (B) x (D)

大学物理4

9. 气体分子动理论 姓名 孟凡笛 学号 102520011 专业 机电一体化 教学点 同济本部 一、选择题 1.一定量的理想气体可以: (A) 保持压强和温度不变同时减小体积; (B) 保持体积和温度不变同时增大压强; (C) 保持体积不变同时增大压强降低温度; (D) 保持温度不变同时增大体积降低压强。 ( C ) 2.设某理想气体体积为V ,压强为P ,温度为T ,每个分子的质量为μ,玻尔兹曼常数为k ,则该气体的分子总数可以表示为: (A) μ k PV (B) V PT μ (C) kT PV (D) kV PT ( B ) 3.关于温度的意义,有下列几种说法: (1)气体的温度是分子平均平动动能的量度; (2)气体的温度是大量气体分子热运动的集体表现,具有统计意义; (3)温度的高低反映物质内部分子运动剧烈程度的不同; (4)从微观上看,气体的温度表示每个气体分子的冷热程度; 上述说法中正确的是: (A ) (1) 、(2)、(4). (B ) (1) 、(2)、(3). (C ) (2) 、(3)、(4). (D ) (1) 、(3)、(4). ( B ) 4.设某种气体的分子速率分布函数为)(v f ,则速率在1v ~2v 区间内的分子平均速率为: (A ) ? 2 1 d v v v )v (vf (B )?2 1 d v v v )v (vf v (C )? ?21 2 1d d v v v v v )v (f v )v (vf (D ) ? ?∞0 d d 2 1 v )v (f v )v (vf v v ( A )

5.两容积不等的容器内分别盛有可视为理想气体的氦气和氮气,如果它们的温度和压强相同,则两气体 (A) 单位体积内的分子数必相同; (B) 单位体积内的质量必相同; (C) 单位体积内分子的平均动能必相同; (D) 单位体积内气体的内能必相同。 ( A ) 6.摩尔数相同的氢气和氦气,如果它们的温度相同,则两气体: (A) 内能必相等; (B) 分子的平均动能必相同; (C) 分子的平均平动动能必相同; (D) 分子的平均转动动能必相同。 ( C ) 7.在标准状态下,体积比为1:2的氧气和氦气(均视为理想气体)相混合,混合气体中氧气和氦气的内能之比为: (A) 1 : 2 (B) 5 : 3 (C) 5 : 6 (D) 10 : 3 ( A ) 8. 体积恒定时,一定量理想气体的温度升高,其分子的: (A) 平均碰撞次数将增大 (B) 平均碰撞次数将减小 (C) 平均自由程将增大 (D) 平均自由程将减小 ( C ) 二、填充题 1.设氢气在27?C 时,每立方厘米内的分子数为12 104.2?个,则氢气分子的平均平动动能 2.下面给出理想气体状态方程的几种微分形式,指出它们各表示什么过程。 (1)T R )M /M (V P d d mol = 表示 过程; (2)T R )M /M (P V d d mol = 表示 过程; (3)0d d =+P V V P 表示 过程。 3.容积为10升的容器中储有10克的氧气。若气体分子的方均根速率1 2s m 600-?=v , 则此气体的温度 =T ;压强=P 。

大学物理期末考试试卷(含答案) 2

2008年下学期2007级《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) (2717) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分)(2391) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分)(2594) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分)(2314) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分)(2125) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分)(2421) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

大学物理上册期末考试题库

质 点 运 动 学 选择题 [ ]1、某质点作直线运动的运动学方程为x =6+3t -5t 3 (SI),则点作 A 、匀加速直线运动,加速度沿x 轴正方向. B 、匀加速直线运动,加速度沿x 轴负方向. C 、变加速直线运动,加速度沿x 轴正方向. D 、变加速直线运动,加速度沿x 轴负方向. [ ]2、某物体的运动规律为2v dv k t dt =-,式中的k 为大于零的常量.当0=t 时,初速v 0,则速度v 与时间t 的函数关系是 A 、0221v kt v += B 、022 1v kt v +-= C 、02211v kt v +=, D 、02211v kt v +-= [ ]3、质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻 质点的速率) A 、dt dv B 、R v 2 C 、R v dt dv 2+ D 、 242)(R v dt dv + [ ]4、关于曲线运动叙述错误的是 A 、有圆周运动的加速度都指向圆心 B 、圆周运动的速率和角速度之间的关系是ωr v = C 、质点作曲线运动时,某点的速度方向就是沿该点曲线的切线方向 D 、速度的方向一定与运动轨迹相切 [ ]5、以r 表示质点的位失, ?S 表示在?t 的时间内所通过的路程,质点在?t 时间内平均速度的大小为 A 、t S ??; B 、t r ?? C 、t r ?? ; D 、t r ?? 填空题 6、已知质点的运动方程为26(34)r t i t j =++ (SI),则该质点的轨道方程 为 ;s t 4=时速度的大小 ;方向 。 7、在xy 平面内有一运动质点,其运动学方程为:j t i t r 5sin 105cos 10+=(SI ), 则t 时刻其速度=v ;其切向加速度的大小t a ;该质 点运动的轨迹是 。 8、在x 轴上作变加速直线运动的质点,已知其初速度为v 0,初始位置为x 0加速度为a=C t 2 (其中C 为常量),则其速度与时间的关系v= , 运动

大学物理期末考试试卷(含答案)

《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

大学物理同步训练第10章气体动理论

第八章 气体动理论 一、选择题 1. 一定量的氢气(视为刚性分子的理想气体),若温度每升高1 K ,其内能增加20.8 J ,则该氢气的质量为(普适气体常量R =8.31 J ?mol ?1?K ?1) (A )1.0×10?3 kg (B )2.0×10?3 kg (C )3.0×10?3 kg (D )4.0×10?3 kg 答案:B 分析:内能公式E =ν?iRT 2?(式中ν为物质的量,i 为自由度;物质的量可由气体质量和气体摩尔质量算出,常见气体氢气2 g ?mol ?1、氦气4 g ?mol ?1、氮气28 g ?mol ?1、氧气32 g ?mol ?1、甲烷16 g ?mol ?1、水蒸气18 g ?mol ?1;单原子分子即惰性气体自由度i =3,双原子分子i =5,多原子分子如甲烷、水蒸气i =6)。由题可得?E =ν?5R?T 2?,代入可得物质的量ν=2×20.8(5×8.31)?≈1 mol ,故质量为2 g ,即B 选项。 2. 有一瓶质量为m 的氢气(视作刚性双原子分子的理想气体),温度为T ,则氢分子的平均动能为 (A )3kT 2? (B )5kT 2? (C )3RT 2? (D )5RT 2? 答案:B 分析:气体分子的平均动能为ε?=ikT 2?(式中i 为气体分子自由度,见选择题1)。 3. 有两瓶气体,一瓶是氦气,另一瓶是氢气(均视为刚性分子理想气体),若它们的压强、体积、温度均相同,则氢气的内能是氦气的 (A )1/2倍 (B )2/3倍 (C )5/3倍 (D )2倍 答案:C 分析:由物态方程pV =νRT 可知两瓶气体的物质的量ν相同。由内能公式(见选择题1)可得 E H 2E He =v ?5RT 2?v ?3RT 2?=53 4. A 、B 、C 3个容器中皆装有理想气体,它们的分子数密度之比为n A :n B :n C =4:2:1,而分子的平均平动动能之比为w ?A :w ?B :w ?C =1:2:4,则它们的压强之比p A :p B :p C 为

长安大学大学物理近代物理一参考答案

近代物理一 参考答案 一、 1. B 2. A 3. C 4. C 5. B 6. C 7. B 8. C 解:1. A 选项,光子可达到光速; C 选项,应为不同惯性系中测定… ; D 选项,应为光速不变。 2. 应用洛伦兹变换 (1)S 系中同一地点同一时刻的两事件,即21x x =,21t t =,求' -'12t t 0)()()()(1221212122212=---=---=' -'x x c u t t x c u t x c u t t t γγγγ S '系中同时发生 (2)S 系中同一时刻不同地点的两事件,即21x x ≠,21t t =,求' -'12t t )()()()()(1221221212122212≠--=---=---=' -'x x c u x x c u t t x c u t x c u t t t γγγγγ S '系中不同时发生 3. 以宇航员作参照系,则,光速为c , 时间t ?, 飞船的长度0l ,则t c l ?=0 宇航员相对于飞船静止,所测得为固有长度 飞船的运动长度01 l l γ = ,选C 4. 尺运动时, x 方向长度收缩,y 方向长度不变,可得结果。 (见例题) 5.脉冲星上的人看到的为固有周期0T ,地球上看到的为s 5.0=T 6. 02 02m c Km mc =?=γ,可得C 选项 7. 2 mc E =可得 8. 动量守恒,质能守恒。 两个小粒子运动,合成一个大粒子不运动 根据质能守恒002 0222M m c M mc mc =?=+γ 二、 1. ??? ? ??-22001c v V m ; 2. 513= L m , 3 35 arctan =θ; 3. 8.89×10-8 s ; 4. 9.6 m ; 5. 270 m ; 5. 2 00.25m c 6. 8 ; 7. 2.91×108 m/s ; 解: 1. 立方体运动,质量增加为静止质量的γ倍,一个棱的长度缩短为原来的γ倍,设静止棱长为a , 运动时,质量0m m γ=,体积γ γ V a a a V = ? ?= 所以观察者测得密度??? ? ??-===22 000 2 1/c v V m V m V m γ ρ

《大学物理(一)》期末考试试题]

《大学物理(一)》综合复习资料 一.选择题 1. 某人骑自行车以速率V 向正西方行驶,遇到由北向南刮的风(设风速大小也为V ),则他感到风是从 (A )东北方向吹来.(B )东南方向吹来.(C )西北方向吹来.(D )西南方向吹来. [ ] 2.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 2 2 +=(其中a 、b 为常量)则该质点作 (A )匀速直线运动.(B )变速直线运动.(C )抛物线运动.(D )一般曲线运动. [ ] 3.一轻绳绕在有水平轮的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 (A )不变.(B )变小.(C )变大.(D )无法判断. 4. 质点系的内力可以改变 (A )系统的总质量.(B )系统的总动量.(C )系统的总动能.(D )系统的总动量. 5.一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的 (A )1/2 .(B )1/4.(C )2/1.(D) 3/4.(E )2/3. [ ] 6.一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 1变为 (A )4/1E .(B ) 2/1E .(C )12E .(D )14E . [ ] 7.在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )λ/4. (B )λ/2.(C ) 3λ/4 . (D )λ. [ ] 8.一平面简谐波沿x 轴负方向传播.已知x =b 处质点的振动方程为)cos(0φω+=t y ,波速为u ,则波动方程为:

相关文档
相关文档 最新文档