文档库 最新最全的文档下载
当前位置:文档库 › 航空用钛合金材料及钛合金标准发展综述

航空用钛合金材料及钛合金标准发展综述

航空用钛合金材料及钛合金标准发展综述
航空用钛合金材料及钛合金标准发展综述

航空用钛合金的发展概况

航空用钛合金的发展概况 □北京航空材料研究院曹春晓 摘要:航空用钛合金近期工程化发展中呈现出一些技术创新的"亮点",其中工艺创新的亮点比成分创新的亮点更多一些。这些亮点包括阻燃钛合金、钛基复合材料、纤维钛层板、超塑性钛合金、特大整体结构件锻造工艺、金属型精铸工艺、大型整体结构件精铸工艺、激光成形工艺、摩擦焊工艺和β热处理工艺等。 关键词:钛合金飞机发动机热处理工艺 20世纪50年代,军用飞机进入了超声速时代,航空发动机相应地进入喷气发动机时代,原有的铝、钢结构已不能满足新的需求。钛合金恰恰在这个时候进入了工业性发展阶段,由于它具有比强度高、使用温度范围宽(-269~600℃)、抗蚀性好和其他一些可利用的特性,因此很快被选用于飞机及航空发动机。50年来的世界钛市场中最大的用户始终属于航空。当前,航空仍然占50%左右市场份额。 受2002年"9.11"事件影响,美国2003年钛工业产品发货量降至15625t(2002年为16071t),日本2003年钛加工材发货量则降至13838t(2002年为14481t),而中国从2000~2004年的钛加工材销售量却一直以很高的速度增长(见表1)。 1993年以后,几乎看不到新推出的工业性钛合金,而钛合金工艺方面的创新却屡见不鲜。这既与冷战时代的结束有关,也与工艺创新往往起到事半功倍之效有关。 一、钛合金在飞机及航空发动机上的用量不断扩大 . 飞机机体的钛用量 表2中列出的-18、A-22、F-35三大战斗攻击机和B-2轰炸机是美国在2015年前保持空中优势的4块"王牌"。由表2可知,总的发展趋势是钛在飞机机体上的用量不断扩大。-18在不断改型的过程中其钛用量也不断增多。 民用飞机的钛用量也在不断扩大(图1和表3)。 我国战斗机的钛用量也在不断扩大:20世纪80年代开始服役的歼八系列的钛用量为2%,两种新一代战斗机的钛用量分别为4%和15%,更新一代的高性能新型战斗机的钛用量将达25%~30%。 . 航空发动机的钛用量 从表4和图2可知,国外先进发动机上的钛用量通常保持在20%~35%的水平。 我国早期生产的涡喷发动机均不用钛,1978年开始研制并于1988年初设计定型的涡喷13发动机的钛用量达到13%。2002年设计定型的昆仑涡喷发动机是我国第一个拥有完全自主知识产权的航空发动机,钛用量提高至15%。即将设计定型的我国第一台拥有自主知识产权的涡扇发动机又进一步把钛用量提高到25%的水平。 二、航空用钛合金近期工程化发展中的一些"亮点" . 阻燃钛合金闪亮登场 为了避免"钛火",俄罗斯曾研制了含Cu高量的BTT-1和BTT-3阻燃钛合金,但由于其力学性能和熔铸性能差而未能工程化。美国发明的AlloyC(Ti-35V-15Cr)阻燃钛合金近期已成功地应用于F119发动机(-22战斗机的动力装置)的高压压气机机匣、导向叶片和矢量尾喷管。这是高温钛合金领域的最新亮点,也是钛发展史

航空发动机复杂零部件的新型测量技术

航空发动机复杂零部件的新型测量技术 发布时间:2014-6-30 13:37:51 近几年来,航空市场发展迅猛,国内的航空发动机制造技术也正加速发展。在技术提升的过程中,航空发动机从研发到制造,对计量和测量的需求都非常迫切。在新型号研制过程中,设计部门希望获得准确的测量数据,用于设计验证;制造部门需要更加高效地完成测量工作,提升合格率并控制制造成本。目前,国内对高精度测量设备的投入和对新型测量技术的采用程度,与国外先进企业的水平还有一定的差距。 航空发动机的零部件种类多、结构复杂,进而带来了复杂的测量任务。以整体叶盘为例,目前测量编程仍然是一个很大挑战,在现有的技术平台上,测量过程既要根据叶盘的整体结构设计测量路线,还要根据叶片型线考虑扫描过程控制。因此,测量设备本身的效率和精度的提升是必然的,同时,在设备的附属工具、测量软件、探测技术等方面寻找新的突破点,提升复杂零部件的测量效率和测量效果,也成为新型测量技术的发展趋势。 全球对航空发动机的性能追求从未停歇,对航空发动机零部件的要求也日益提高。海克斯康最新研发的Leitz三坐标测量机扫描技术、HP-O非接触测量和I++ Simulator模拟软件等,为解决航空发动机复杂零部件的测量难题,提出了新的手段和方法。 基于航空发动机复杂零部件的制造发展和质控需求,本文将介绍海克斯康计量新近推出的典型测量技术,包括高效率精密扫描技术、复合式高效高精密探测技术和提高测量机有效工时的仿真模拟软件技术等。 Leitz高精密高速扫描技术 触发式模拟扫描技术已经成为发动机精密零部件测量的主要探测方式,该技术能高速提供密集点云,实现几何量形状和位置的精密判定,但是,复杂曲面曲线的高密度扫描,需要设备能够实时根据曲率变化给出智能的调整,以期平衡点密度和效率的同时获取最精确的结果。Leitz最新的扫描技术,借助最先进的控制技术,控制系统根据机器特性和工件扫描状态,判断和调整扫描过程。多样的扫描形式和控制形式的实现,使三坐标测量机的扫描能力显著提升,面对复杂专业的测量任务更加得心应手。 1VHSS 扫描技术:可变速扫描 能快则快,当慢则慢。依据曲面曲率,在已知几何特征上实时连续调整测量速度。在此之前的扫描技术,需要人为编程控制机器扫描的速度,速度的设定,需要考虑机器性能、工件特点、效率要求等多种因素,对编程者的挑战是:想达到最佳的效率,要么具备经验,要么从此任务中开始积累经验。VHSS扫描则无关乎具体使用者的经验,机器根据自身的性能特点和待检测曲面的数据,自动优化扫描过程的速度,编程者直接得到最佳的测量效率。 在进行复杂零部件的扫描时,比如航空发动机叶片,传统的扫描方法需要手动调整速度,以避免探针和工件表面“失联”。采用来自Leitz Pathfinder的VHSS技术,机器可以在已知几何量情况下进行持续的调整,实时调整扫描。平直的部位扫描速度快,前尾缘附

航空发动机钛合金板材热成形加工技术

航空发动机钛合金板材热成形加工技术 陈淳陆辰张东升 (西安航空发动机(集团)有限公司冲压焊接厂,陕西) 钛及钛合金板作为结构材料有很多优点,它具有强度大,比强度高,能耐多种介质的腐蚀的性能,钛的密度不到铁的60%,仅为4.5g/cm3。钛合金抗拉强度却与高强钢相近,σb 可达1470MPa,即比强度(强度/密度)大。比强度是评价航空及航天工业用材料的一个重要指标。 目前钛合金被广泛应用于航空发动机制造领域中。航空发动机用钛合金主要驱动如下:①减重(替代钢和镍基超合金);②使用温度(可替代铝合金、钢和镍基超合金);③抗蚀性(可替代铝合金和低合金钢)。 但钛及钛合金也存在不足。由于其拉伸强度和屈服强度比较接近,即屈服极限对强度极限的比值大,延伸率低,因而塑性变形区范围窄,稍有塑性变形便达到强度极限,发生破坏。此外钛的弹性模量小,回弹性大,钛板冷成形时硬化比较严重,摩擦系数大,与其它金属的亲和力强,成形中容易粘模、滑伤,其特点给冷成形带来了极大困难。 1、钛合金材料成形性能分析 纯钛的塑性高,但强度低,因而限制了它在工业上的应用。为了获得要求的性能,在钛中添加不同的合金元素,得到各种不同牌号的钛合金。 工业纯钛TA1、TA2、TA3的钛的弹性模量小,回弹性大,对压力加工特别是冷冲成形很不利。多以钛板制造350℃以下工作零件,如飞机蒙皮和隔热板等。 钛合金TB1(Ti-3AI-8MO-11Cr)等β合金,可以强化到非常高的强度水平。这类合金的缺点是对杂元素敏感性高,组织不够稳定,不宜在高温下使用,另外,其冶金工艺也较一般合金复杂。 良好,可以强化到较高的强度水平,约占和航空工业中使用的钛合金石70%以上。 2、热成形加工工艺 为了改善材料的成形性能,一般在加工过程中要退火,以消除冷作硬化和应力。常常采用加热成形工艺以减少回弹,提高贴模效果。因为在一定的高温下状态下(≥550℃),屈强 比及都减少了,延伸率显著增加,可进行钛合金板成形。 2.1电阻加热成形 电阻加热就是利用钛及其合金板本身具有高电阻的特性,采用低电压大电流在钛板上直接通电。具体是在钛合金板两端,各焊接上一段不同于钛合金的金属工艺材料板片,然后在两端工艺板上接通电源,由于金属工艺板片与钛合金导电率不同而产生的电阻使钛板在几十秒内加热到成形温度,然后立即在常规的冲床等设备上用模具冲压成形。 2.1.1电阻加热成形不需要复杂特殊成形设备,工艺装备制造简单,制造周期短,可在常规的冲床、液压机或落锤等设备上用模具进行压制成形,需要增加的设备较简单,只要配备一台低电压装置作为加热源和一套夹持工件两端以便接通

航空发动机总资料

第一章概论 航空发动机可以分为活塞式发动机(小型发动机、直升飞机)和空气喷气发动机两大类型。P3 空气喷气发动机中又可分为带压气机的燃气涡轮发动机和不带压气机的冲压喷气发动机(构造简单,推力大,适合高速飞行。不能在静止状态及低速性能不好,适用于靶弹和巡航导弹)。涡轮发动机包括:涡轮喷气发动机WP,涡轮螺旋桨发动机WJ,涡轮风扇发动机WS,涡轮轴发动机WZ,涡轮桨扇发动机JS。在航空器上应用还有火箭发动机(燃料消耗率大,早期超声速实验飞机上用过,也曾在某些飞机上用作短时间的加速器)、脉冲喷气发动机(用于低速靶机和航模飞机)和航空电动机(适用于高空长航时的轻型飞机)。P4 燃气涡轮发动机是由进气装置、压气机、燃烧室、涡轮和尾喷管等主要部件组成。 由压气机、燃烧室和驱动压气机的涡轮这三个部件组成的燃气发生器,它不断输出具有一定可用能量的燃气。涡桨发动机的螺桨、涡扇发动机的风扇和涡轴发动机的旋翼,它们的驱动力都来自燃气发生器。按燃气发生器出口燃气可用能量的利用方式不同,对燃气涡轮发动机进行分类:将燃气发生器获得的机械能全部自己用就是涡轮喷气发动机;将燃气发生器获得的机械能85%~90%用来带动螺旋桨,就是涡桨发动机;将获得的机械能的90%以上转换为轴功率输出,就是涡轮轴发动机;将小于50%的机械能输出带动风扇,就是小涵道比涡扇发动机(涵道比1:1);将大于80%的机械能输出带动风扇,就是大涵道比涡轮风扇发动机(涵道比大于4:1)。P5 航空燃气涡轮发动机的主要性能参数:1.推力,我国用国际单位制N或dan,1daN=10N,美国和欧洲采用英制磅(Pd),1Pd=0.4536Kg,俄罗斯/苏联采用工程制用Kg,1Kg=9.8N;2.推重比(功重比),推重比是推力重量比的简称,即发动机在海平面静止条件下最大推力与发动机重力之比,是无量纲单位。对活塞式发动机、涡桨发动机和涡轴发动机则用功重比(功率重量比的简称)表示,即发动机在海平面静止状态下的功率与发动机重力之比,KW/daN;3.耗油率,对于产生推力、的喷气发动机,表示1daN推力每小时所消耗的燃油量单位Kg/(daN·h),对于活塞式发动机、涡桨发动机和涡轴发动机来说,它表示1KW功率每小时所消耗的燃油量单位Kg/(kw·h);4.增压比,压气机出口总压与进口总压之比,飞速较高增压比较低,低耗油率增压比较高;5.涡轮前燃气温度,是第一级涡轮导向器进口截面处燃气的总温,也有发动机用涡轮转子进口截面处总温表示,发动机技术水平高低的重要标志之一;6.涵道比,是涡扇发动机外涵道和内涵道的空气质量流量之比,又称流量比。涵道比小于1为小涵道比,大于4为大涵道比,大于1小于4为中涵道比,加力式涡扇发动机涵道比一般小于1,甚至0.2~0.3。P8~9 喷气时代(主流),服役战斗机发动机推重比从2提高到7~9,定型投入使用的达9~11,我国到8。民用大涵道比涡扇发动机的最大推力已超过50000daN 巡航耗油率从20世纪50年代涡喷发动机 1.0kg(daN·h)-1下降到0.55kg(daN·h)-1,噪声下降20dB,NO X下降45%。服役的直升飞机用涡轴发动机的功重比从2Kg/daN提高到4.6kW/daN~7.1kw/daN。发动机可靠性和耐久性倍增,军用发动机空中停车率一般为0.2/1000EFH~0.4/1000EFH(发动机飞行小时),民用发动机为0.002/1000EFH~0.02/1000EFH。战斗机发动机热端零件寿命达

钛合金在多领域的应用与发展

上海大学 本科生课程论文论文题目:钛合金在多领域的应用与发展 课程名称: 课程号: 学生姓名: 学生学号: 所在学院:材料科学与工程学院 日期:2015.05.24

摘要:钛合金因具有强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域。世界上许多国家都认识到钛合金材料的重要性,相继对其进行研究开发,并得到了实际应用。本文综述了钛合金在航空航天飞行器、热氢处理、发动机、高温钛合金、生物医用材料等方面的应用与发展。 关键词:钛合金;航空;氢;发动机;生物医用材料 钛合金在航空方面的应用与发展 钛合金具有比强度高、耐腐蚀性好、耐高温等优点。从20世纪50年代开始,钛合金在航空航天领域中得到了迅速的发展。钛合金是当代飞机和发动机的主要结构材料之一,可以减轻飞机的重量,提高结构效率。在飞机用材中钛的比例,客机波音777为7%,运输机C-17为10.3%,战斗机F-4为8%,F-15为25.8%,F-22为39%。 高性能航空发动机的发展需求牵引着高温钛合金的发展,钛合金的使用温度逐步提高,从20世纪50年代以Ti-6Al-4V合金为代表的350℃,经过IMI679和IMI829提高到了以IMI834合金为代表的600℃。目前,代表国际先进的高温钛合金有美国的Ti-6242S,Ti-1100,英国的IMI834,俄罗斯的BT36以及中国的Ti-60。表2为600℃主要高温钛合金的成分及性能特点。 Ti-6242S(Ti-6Al-2Sn-4Zr-2Mo-0.1Si)钛合金是美国于20世纪60年代为了满足改善钛合金高温性能的需要,特别是为了满足喷气发动机使用要求而研制的一种近α型钛合金。合金的最高使用温度为540℃,室温的σb=930 MPa。特点是具有强度、蠕变强度、韧性和热稳定性的良好结合,并具有良好的焊接性能,主要应用于燃气涡轮发动机零件,发动机结构板材零件,飞机机体热端零件。 BT36(Ti-6.2A1-2Sn-3.6Zr-0.7Mo-0.1Y-5.0W-0.15Si)合金是俄罗斯于1992年研制成功的一种使用温度在600~650℃的钛合金。合金中加入了5%W和约0.1%Y。加入W对提高合金的热强性有明显作用。加入微量Y可以明显地细化合金的晶粒,改善了合金的塑性和热稳定性。 Ti60(Ti-5.8 Al-4.8 Sn-2.OZr-1.0 Mo-0.35Si-0.85Nd)合金由中国科学院金属研究所在Ti55合金基础上改型设计、宝鸡有色金属加工厂参与研制的一种600℃高温钛合金。Ti60合金的特点之一是合金中加入了1%Nd(质量分数),通过内氧化方式形成富含Nd、Sn和O的稀土相,降低基体中的氧含量,从而起到净化基体,改善合金热稳定性的作用。Ti60合金已进行了半工业性中试试验(包括压气机盘模锻)和全面性能测定。 根据国内外研究现状,未来高温钛合金的发展趋势是:(1)研制600℃以上的新型高温钛合金。可对现有高温钛合金的成分进行调整,改进加工工艺,或研发新的高温钛合金,提高高温钛合金的使用温度。(2)稀土元素在高温钛合金中的作用尚待进一步研究。我国研制的含稀土元素的高温钛合金其使用温度已达到600℃,其各项性能显示均为良好。但稀土元素在合金

航空用钛合金挤压型材

文档从网络中收集,已重新整理排版.word版本可编辑.欢迎下载支持. 航空用钛合金挤压型材 (GB/T ××××-××××) 编制说明 (预审稿) 2018年8月

《航空用钛合金挤压型材》 编制说明 一、工作简介 1.任务来源 根据国标委《国家标准委关于下达2016年第三批国家标准制修订计划的通知》(国标委综合[2016]76号)的精神,由宝钛集团有限公司等单位负责修订《航空用钛合金挤压型材》国家标准。项目计划编号:20161658-T-610,计划完成年限为2019年。 2.本标准所涉及的产品简况 钛合金型材是一种近终形的成品或半成品,具有结构效益高的特点,不需加工或经过少量加工后可直接做为构件使用。挤压成型可生产形式各异、截面复杂的型材,具有生产灵活、加工效率高等特点,并且是复杂断面、空腹、变断面型材的唯一加工方法。相对于板弯型材,挤压型材的刚度好。钛合金型材在飞机结构中主要做为长桁和次承力框、前机身、起落架、中机身结构使用,国内个别型号曾经应用了钛合金的挤压型材。 从2014年起,宝鸡钛业股份有限公司为我国航天大推力火箭研制并批量生产了三种规格的TC4型材500余支。2016年国内战车研制开始使用U型材作为车体的支撑梁,预计每年的需求量50吨以上。 3.起草单位简况 宝钛集团有限公司是我国“三五”期间为满足国防军工和尖端科技发展需要,以“902”为工程代号投资兴建的国家重点企业。现拥有“宝鸡钛业股份有限公司”、“南京钛业股份有限公司”和“上海远东公司”等10多个控股公司、5个全资子公司和宽厚板、复合板、装备设计制造等10多个二级单位。可生产钛、锆、铪、钨、钼、钽、铌、镍等有色金属及其合金达110多个牌号,产品类型包括:板、管、棒、丝、箔、铸件、锻件及复合材料共6000多种产品。经过四十多年的发展,目前已成为国内最大的以钛为主导产品的稀有金属材料专业化生产和科研基地,被誉为“中国钛城”。1999年,被国家科技部和中国科学院认定为“高新技术企业”。2001年首批获得国防科工委颁发的军工生产科研资格许可证。现隶属于陕西有色金属控股集团有限责任公司。

CFM56-7B飞机发动机部件位置及功能

第70-80章: 发动机系统 名称 反推控制手柄 启动电门 发动机启动电门, 发动机点火选择电门 发动机附件装置(EAU)位置 中央操作台、推力手柄上 驾驶舱P5面板上 驾驶舱P5前顶板 在电气设备(EE)舱内 E3架上 主电子舱E3架上功能 提供反推的放出和收回的信号向发动机启动系统提供启动信号的输入…….. 启动电门选择启动模式,点火选择电门选择点火模式控制反推装置(T/R)自动再收入操作,帮助做反推装置控制系统的故障分析,控制驾驶舱内P5后舱顶板上的反推灯计算机存储每台发动机的振动值,提供帮助?发动机配平平衡操作的振动平衡? 发动机主要的控制器,控制和监控容纳发动机滑油,从回油中清除空气,使你做滑油而检查和充加滑油系统冷却IDG滑油,同时加温发动机燃油供给发动机伺服系统和燃油系统的燃油

增压燃油 启动活门打开提供气压动力至起动机测量流至燃油总管和燃油喷嘴的燃油质量流量 提供一号轴承振动信号 AVM信号处理器 发动机电子控制组件(EEC) 滑油箱 IDG滑油冷却器 燃油滤压差电门 液压机械组件(HMU) 燃油泵 启动活门 燃油喷嘴油滤 燃油流量传感器 1号轴承振动传感器位置: 在风扇机匣 风扇机匣2:00钟位置 风扇机匣3:00位置 风扇机匣7:00位置 风扇机匣8:00钟位置 风扇机匣8:00钟位置

AGB的后面,在发动机风扇 机匣左侧08:00钟位置 风扇机匣上(9:00)高于起动机风扇机匣10:00钟位置 风扇机匣10:00钟位置 在发动机内部,接头在风扇机 匣上,发动机滑油箱后部,发 哦的那个叫铭牌的上面 风扇机匣的右侧下部 风扇框架上3:00钟位置 风扇框架6:00钟位置 点火激励器 风扇框架压气机机匣垂直振 动传感器(FFCCV) 防漏活门 VBV作动筒 VBV门 LPTCC活门提供高能电压到点火电嘴提供风扇框架压气机机匣垂直面的振动值 风扇框架后面在4: 00、"8:00钟VBV作动筒接受指令作动,带动摇臂作动VBV门,打开到指令位置风扇框架上一圈,12个

航空发动机钛合金筒体加工工艺研究

航空发动机钛合金筒体加工工艺研究 筒体是发动机上的重要零件,结构复杂,尺寸精度及形位公差要求高。由于用TC6钛合金材料制成,切削性能较差,其质量直接影响组件的强度及密封性。文章对钛合金筒体的结构特点、材料特点、工艺特点等进行深入分析,從加工方法的选择、刀具选择、定位装夹等方面介绍了钛合金筒体加工工艺,为同类零件的加工提供参考。 标签:钛合金筒体;内孔;密封槽 1 概述 作动筒主要由筒体、活塞杆组成,在航空发动机上的主要功能是通过活塞杆在筒体内的直线往复运动,将液压能转换成机械能,推动加力燃烧室的调节环移动。其中作动筒筒体的加工精度对整个组件的运动灵活性和工作可靠性有着直接影响。因此如何提高作动筒筒体的加工质量是关系到发动机工作可靠性的关键之一。文中针对航空发动机钛合金作动筒筒体(如图1)的加工工艺进行了梳理和总结。 2 钛合金作动筒筒体工艺分析 2.1 材料分析 筒体是用TC6钛合金材料制成,钛合金材料由于导热性、塑性较低,弹性模量小等特点,切削性能较差;钛合金磨削时温度高,磨削力大,砂轮黏附现象严重,因此通常工艺上对钛合金材料不选择磨削的加工方法。由于钛合金自身的切削性能特点,在加工方法的确定、刀具选择、切削参数的选取及切削液的使用方面要考虑很多因素,给工艺路线安排和加工都带来了一定的难度。 2.2 结构与精度分析 如图1所示,此钛合金筒体从结构上属于整体结构,零件两端的外部各有一对接嘴,大端内孔部位壁厚较薄,属于薄壁结构,在加工中极易变形,影响加工精度。 2.2.1 内孔分析。筒体内孔是作动筒的主要工作表面之一,它的尺寸精度、形状精度要求均比较高。但由于零件属于薄壁件,最小壁厚2mm左右,内孔尺寸精度要求7级,表面粗糙度要求Ra0.20μm,对基准的跳动要求为0.03mm;且零件外部带有接嘴(如图1),这种结构对加工时的定位装夹提出了更高的要求。 2.2.2 密封槽的要求。筒体密封槽的尺寸和形状精度直接影响筒体装配后的密封性能,因此设计图对密封槽的尺寸精度及表面粗糙度要求也较为严格,而且对于槽口尖边也需要严格控制,避免划伤槽内的密封圈,影响密封;同时对4

航空结构件用钛合金棒材规范-中国有色金属标准质量信息网

《钛及钛合金棒材》编制说明 (送审稿) (2006年12月)

钛及钛合金棒材 一、任务来源及计划要求 根据全国有色金属标准化技术委员会《关于下达2006~2008年有色金属国家标准修订计划的通知》(有色标委[2006]第13号)的要求,由宝钛集团有限公司、宝鸡钛业股份有限公司负责修订GB/T 2965-1996《钛及钛合金棒材》。按要求于2006年完成修订任务。 二、编制过程(包括编制原则、工作分工、征求意见单位、各阶段工作过程等) 1、编制原则 在现行标准的基础上,结合近些年来钛及钛合金棒材的研制成果及生产、使用的实际情况,参考宝钛集团有限公司与国内使用单位签订的相关的产品协议标准,并充分考虑现行标准在执行过程中产生的问题进行修订。 1)根据国家标准GB/T 3620.1《钛及钛合金牌号与化学成分》的修订情况,将工业纯钛棒材的牌号相应修订为TA1、TA2、TA3和TA4(分别对应ASTM标准的Gr.1、Gr.2、Gr.3和Gr.4);并新增TC4 ELI、TA13、TA15和TA19等钛合金牌号。 2)扩大了棒材的尺寸范围:最小直径或截面厚度从8mm降为>7mm;棒材的最大规格由200mm增大到230mm;退火态棒材的长度范围扩大为300mm~3000mm。 3)依据ASTM B348-06ε1标准,补充了TA1、TA2、TA3、TA4和TC4 ELI 的力学性能指标;根据相关协议标准,确定TA13、TA15和TA19钛合金棒材的力学性能指标。 4)增加了所有牌号钛棒材的规定非比例延伸强度R p0.2指标。 5)提高了棒材的直径或截面厚度的尺寸允许偏差要求。 6)增加了机加工棒材的表面粗糙度要求。 2、分工 本标准由宝钛集团有限公司和宝鸡钛业股份有限公司起草。 3、征求意见单位 本标准在中国有色金属标准计量质量研究所网站公开征求意见。 4、各阶段工作计划 2005年6月~2006年4月调研; 2006年5月~2006年7月提出标准草案; ~2006年11月标准征求意见,形成讨论稿并完成标准的预审; ~2006年12月完成标准送审稿。

航空发动机构造

航空发动机构造 课堂测试-1 1.航空发动机的研究和发展工作具有那些特点? 技术难度大;周期长;费用高 2.简述航空燃气涡轮发动机的作用。 是现代飞机与直升机的主要动力(少数轻型、小型飞机和直升机采用航空活塞式发动机),为飞机提供推进力,为直升机提供转动旋翼的功率。 3.航空燃气涡轮发动机包括哪几类?民航发动机主要采用哪种? 涡喷、涡桨、涡扇、涡轴、桨扇、齿扇等;涡扇。 4.高涵道比民用涡扇发动机的涵道比范围是多少? 5-12 课堂测试-2 1.发动机吊舱包括(进气道)、(整流罩)和(尾喷管)等。 2.对于民用飞机来说,动力装置的安装位置应该考虑到以下几点: 不影响进气道的效率;排气远离机身;容易接近,便于维护 3.在现代民用飞机上,发动机在飞机上的安装布局常见的有(翼下安装)、(翼下吊装和垂直尾翼安装)和(机身尾部安装)。 4.发动机安装节分两种:(主安装节)与(辅助安装节)。前者传递轴向力、径向力、扭矩,后者传递径向力、扭矩。一般主安装节装于(温度较低,靠近转子止推轴承处的压气机或风扇机匣上)上,辅助安装节装于(涡轮或喷管的外壳上)上。 5.涡轮喷气发动机的进气道可分为(亚音速)进气道和(超音速)进气道两大类。我国民航主要使用亚音速飞机,其发动机的进气道大多采用(亚音速)进气道。 6.通常在涡轮喷气和涡轮风扇发动机上采用(热空气)防冰的方式,在涡轮螺旋桨发动机上采用(电加热)防冰,或是两种结合的方式。 7.对于涡轮螺旋桨发动机来说,需要防冰的部位有(进气道)、(桨叶)和(进气锥)。 8.为了对吊舱进行通风冷却,一般把吊舱分成不同区域,各区之间靠(防火墙)隔开,以阻挡火焰的传播。9.发动机防火系统包括(火情探测)、(火情警告)和(灭火)三部分。 课堂测试-3 1.现代涡轮喷气发动机由(进气道)、(压气机)、(燃烧室)、(涡轮)、(尾喷管)五大部件和附件传动装置 与附属系统所组成。 2.发动机工作时,在所有的零部件上都作用着各种负荷。根据这些负荷的性质可以分为(气动)、(质量) 和(温度)三种。 3.航空燃气涡轮发动机主轴承均采用(滚动)轴承,其中(滚棒轴承)仅承受径向载荷,(滚珠轴承)可承 受径向载荷与轴向载荷。 4.转子上的止推支点除承受转子的(轴向)负荷、(径向)负荷外,还决定了转子相对于机匣的(轴向)位 置。因此每个转子有(一)个止推支点,一般置于温度较(低)的地方。 5.压气机转子轴和涡轮转子轴由(联轴器)连接形成发动机转子,分为(柔性联轴器)和(刚性联轴器)。 其中(柔性联轴器)允许涡轮转子相对压气机转子轴线有一定的偏斜角。 6.结合图3.9,简述发动机的减荷措施有哪些?这些措施是否会减少发动机推力? 减荷措施:

航空航天钛合金研究现状

航空航天钛合金研究现状 摘要介绍了钛合金在航空航天领域中应用的进展情况和未来的发展趋势。关键词钛合金,航空航天,应用,发展 引言大量采用现金钛合金极其应用技术,提高钛合金用量,是新一代飞机和发动机先进性的显著标志之一,可大幅度提高结构减重效果和安全 可靠性。如美国第四代战斗机F/A-22的用钛量占结构的38.8%,其 中大部分零件是按照耐久性/损伤容限设计准则选用现金的Ti6Al4V ELI和Ti-6-22-22S损伤容限型钛合金制造的,真是“一代材料,一 代飞机”。同样,航空发动机结构的钛合金用量也在不断提高,如F100 的用钛量为25%。F119的用钛量达40%。 飞机结构钛合金在飞机上的应用可以取得良好的减重效益,满足军用飞机高机动性、高可靠性和长寿命的设计需要。早在世纪50年代初期,国外一些军用飞机上就开始用工业纯钛制造后机身的隔热板、机尾整流罩、减速板等受力不大的结构件。20世纪60年代,钛合金在飞机结构上的应用,进一步扩大到襟翼滑轨、承力隔框、中央翼盒型梁、起落架梁、直升机桨毂等主要受力构件。到20世纪70年代,钛合金在飞机结构上的应用又从战斗机扩大到军用大型轰炸机和运输机,而且在民用飞机上也开始大量采用钛合金构建。例如,波音747大型客机的起落架支承梁,是由Ti6Al4V合金制造的大型锻件。长6cm,质量1.8t。波音787大型客机的起落架转向架梁,是由TI-5553高强度钛合金制造的大型锻件,强度级别为1240MPa,质量约为2.0t。随着钛合金的研究和生产的发展,飞机上的用钛量也越来越大,美国第四代战斗机代表机型FA-22的用钛量已经占到飞机结构的38.8%。F/A-22飞机主要使用7个牌号的钛合金,分别是:中强度钛合金

钛合金在国防工业上的应用

“化学与国防”课程论文 授课学期2013 学年至2014 学年 第一学期 学院化学与药学学院 专业应用化学 学号201110901084 姓名韦利娜 任课教师刘延成 交稿日期 成绩 阅读教师签名 日期 广西师范大学学工部(处)制

钛合金在国防工业上的应用 学院:化学与药学学院专业:应用化学姓名:韦利娜学号:201110901084 摘要:钛合金在国防高技术和武器装备的发展中占有极为重要的地位。它能降低军用飞机的重量,改善机动性能从而极大地提高其战斗力和生存能力;提高航空发动机的推重比;提高舰船搜索、发现、跟踪和反监护能力以及减轻武器重量,延长使用寿命。正因如此,世界各军事强国在其先进的战机、导弹、核潜艇、兵器等武器装备上都大量使用钛合金,并有逐步增加的趋势。此外,钛合金有很好的应用前景。 关键词:钛合金、特点、国防、应用 一、钛合金的特点 (一)钛元素的发现 钛元素发现于1789年,1908年挪威和美国开始用硫酸法生产钛白,1910年在试验室中第一次用钠法制得海绵钛,1948年美国杜邦公司(DUPONT)才用镁法成吨生产海绵钛,这标志着海绵钛即钛工业化生产的开始。反应过程如下: TiO2+Cl2 →TiCl4 TiCl4+Mg →Ti 可见钛材生产过程中涉及剧毒化学介质氯气(二战中的化学武器)和贵金属镁,而且反应过程需要大量的能量,这就是钛材昂贵的原因。这个过程冶炼出来的钛材还不能用于生产,因为它还是多孔疏松状的,形似海绵,称为海绵钛,海绵钛将被置于真空自耗电弧炉中冶炼出钛锭,用于板材、棒、管子及其他形式钛材的生产。 (二)钛合金的特性 钛合金具有很多优良性能,钛的比重为4.5g/cm3,仅为普通结构钢的56%,而其具有钛合金的强度高,很好的耐热和耐低温性能能在550℃高温下和零下250℃低温下长期工作而保持性能不变,很好的抗腐蚀能力,把钛合金放在海水中泡上几年,仍能保持光亮。此外,钛的导热系数小、无磁性,某些钛合金还具有超导性能、记忆性能和贮氢性能等功能。正因这些优点,钛金属被称为“太空金属”、“海洋金属”以及21世纪最有发展前景、继钢铁、铝之后的第三金属。目前,钛金属的造价昂贵,使用最多的是航空航天、舰船、兵器等军事工业部门,以用于国防[1]。

航空发动机金属材料要点

军用手册 航空航天飞行器机构的金属材料和元件 分配表A。允许公开发行:有限的发布量。 前言 1.这本军事手册被批准用于国防部和联邦航空管理部门。 2.对可用于完善次手册的有益的建议(推荐,增加,删除)和任何相关数据,请致信:军 事手册—5协调委员会(937-656-9134留言,937-255-4997传真),AFRL/MLSC, 2179特福斯-史特,122室,赖特-帕特森, AFB, OH 45433-7718,可以通过写清自己的地址并在第一章的结尾写上标准化文件改进建议,如果使用的是本纸质书籍可以致信给我们。3.这本书包括金属材料强度特性和航空航天飞行器元件的设计信息。这本手册中所有的信 息和数据都和空军,陆军,海军,美国联邦航空管理局相一致,和行业出版保持一致,并且和国防部,联邦航空管理局共同努力,完善数据。 4.此手册的电子版与纸质印刷版保持技术一致;但是在格式上存在微小的差异,例如表格 或者图形的位置可能有差异。根据显示器的尺寸和分辨率设置,可能更多的数据可以不在显示器放大下得到。这些数据被通过几种方法中的一种转换成电子格式。例如,数字化或者重新计算的方法被用于绝大多数的像典型的应力应变图和温度影响等的工程图。 例如第一章和第九章用扫描的方法获取图形的数据信息,以及第四章和第七章中绝大多数的S/N曲线合图表。这些电子数据也被用于生成纸质的数据以保持纸质书和电子书籍的等价。在所有的情况下,电子数据都和纸质的数据相对比以确保电子数据是技术上等同的。附录E提供了这本手册所有图形的详细列表,并附有每个图形格式的描述。 项目编号.1560-0187

数控代码解释 对于包含有材料特性的章节,用决策数据系统来辨别文本,表格和说明部分。此系统由下面的例子来解释。在第一,第八和第九章中也用到了各种此类的决策系统。A例: 一般的材料类型(本例:钢) 基于遗传特性的基材的(本例,中间合金钢)或者对于元件特性的逻辑故障。 所有数据都相关的特种合金。如果数据是零,则此部分包含遗传特性的诠释。 如果是零,则此部分包含对合金的特殊诠释;如果是整数,此数字是用于区分具体的工况或者状况(热处理)。 用给定数据给出的图表数据的类型(见下面的描述) B例 铝 2000系列的锻造合金 2024合金 在T3, T351, T3510, T3511, T4, 和T42 下的特性 以下是具体的属性: 拉伸性能(极限强度和屈服强度)~~~1 压缩屈服和剪切极限强度~~~~~2 轴承性能(极限和屈服强度)~~~3 弹性模量和剪切模量~~~4 失效时的伸长率,总的应变和面积缩减~~~5 应力应变曲线和正切模量的曲线~~~6 蠕变~~~7 疲劳~~~8 疲劳裂纹扩展~~~9 断裂韧性~~~10

航空材料-钛合金

航空材料---钛合金 MASTER 一、钛的简介 1948年美国杜邦公司才用镁法成吨生产海绵钛——这标志着海绵钛即钛工业化生产的开始。而钛合金因具有比强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域。 钛在地壳中含量较丰富,含量排第九位,远高于铜、锌、锡等常见金属。钛广泛存在于许多岩石中,特别是砂石和粘土中。 二、钛的特性 强度高:是铝合金的1.3倍,镁合金的1.6倍,不锈钢的3.5倍,金属材料中的冠军。 热强度高:使用温度比铝合金高几百度,可在450~500℃的温度下长期工作。 抗蚀性好:耐酸、耐碱、耐大气腐蚀,对点蚀、应力腐蚀的抵抗力特别强。 低温性能好:间隙元素极低的钛合金TA7,在-253℃下还能保持一定的塑性。 化学活性大:高温时化学活性很高,轻易与空气中的氢、氧等气体杂质发生化学反应,生成硬化层。 导热系数小、弹性模量小:导热系数约为镍的1/4,铁的1/5,铝的1/14,而各种钛合金的导热系数比钛的导热系数约下降50%。钛合金的弹性模量约为钢的1/2 。 三、钛合金的分类及用途 钛合金按用途可分为:耐热合金、高强合金、耐蚀合金(钛-钼,钛-钯合金等)、低温合金以及特殊功能合金(钛-铁贮氢材料和钛-镍记忆合金)等。 尽管钛及其合金应用的历史不长,但由于它那超众的性能,已经获得了多个光荣称号。首先荣获的称号就是“空间金属”。它重量轻、强度大又耐高温,特别适于制造飞机和各种航天器。目前世界上生产的钛及钛合金,大约有四分之三都用于航空航天工业。许多原来用铝合金的部件,都改用了钛合金。 四、钛合金的航空应用 钛合金主要用于飞机及发动机的制造材料,如锻造钛风扇、压气机盘和叶片、发动机罩、排气装置等零件以及飞机的大梁隔框等结构框架件。航天器主要利用钛合金的高比强度,耐腐蚀和耐低温性能来制造各种压力容器、燃料贮箱、紧固件、仪器绑带、构架和火箭壳体。人

航空发动机复杂结构零件加工技术探索

航空发动机复杂结构零件加工技术探索 摘要:现阶段,科学技术的发展迅速,航空事业的发展也有了很大的改善。航 空发动机作为飞机的动力装置,是飞机的心脏,其设计与制造技术对于航空工业 的发展起着关键性的作用,是体现一个国家科技水平、军事实力和综合国力的重 要标志之一。航空发动机零件结构复杂、制造难度大、技术含量高,代表制造业 发展的方向,被称为制造业一颗璀璨的明珠。数控加工技术和设备起源于满足航 空航天制造的需求,并在不断满足高、精、尖加工要求的过程中发展提高,成为 现代航空航天制造业的基础性关键技术。国内外航空航天制造业一直是数控技术 与数控机床的最大用户,在航空航天制造企业中,数控机床制造企业的比例高达80%以上。 关键词:航空发动机;复杂结构;零件加工技术探索 引言 航空发动机零件的制造具有材料难加工、形状结构复杂、容易变形振动、加 工精度高等特点,代表着一个国家制造技术的实力和国防现代化的发展水平。以 航空发动机叶片、叶轮、机匣、盘轴类零件为研究对象,分析了这些典型零部件 的材料和结构特性、加工工艺方法与特点、加工装备等,总结了航空发动机零件 加工对数控机床性能与功能的要求,并展望了航空发动机制造技术的发展趋势。 1加工复杂结构零件的机床工具特征 刀具在解决航空难加工材料复杂结构零件的加工中起着至关重要的作用。先 进的航空产品要求航空零件具有更优异的性能、更低的成本和更高的环保性。加 工工艺要求具有更快的加工速度、更高的可靠性、高重复精度和可再现性。航空 钛合金、高温合金零件难切削的工件材料、复杂而薄壁的形状、高精度的尺寸和 表面粗糙度要求及大的金属去除量等特点,对刀具质量一致性提出了更高的要求。现代高效精准加工要求刀具具有高精度、高耐磨性、高抗冲击性和高可靠性的特点,即具有高性能刀具的全部特征。高质量的刀具方案明显标志是刀具结构形式、刀具材料与被加工零件的材料、结构相适应。国外各著名数控机床制造商不遗余 力的开发高性能数控机床,进一步针对高动态响应、高精度和高刚性等展开研发。高刚性以及高承载性能的线性导轨确保了全行程内光滑连续地移动,获得了工件 的高几何精度和表面质量,也保证了高加工效率。机床的高刚性减小了加工系统 的振动,延长了刀具使用寿命。高性能刀具涉及刀具材料、刀具涂层技术、刀具 结构设计与优化、刀具配套技术及刀具的应用等很多方面。刀具结构的创新体现 在刀具结构的优化、切削负荷的合理分布、断屑槽型以及各种新型可转位刀片结构。零件的精准加工对刀具的装夹提出了新的要求,它要求装夹精度高、径向圆 跳动小、夹持刚性好、结构紧凑且操作简单等。 2典型零件加工 2.1叶片加工 航空发动机叶片多采用钛合金、高温合金等材料,材料切削性能差,尺寸精 度要求严格,表面质量要求高。叶片的加工部位主要包括叶身型面加工、叶片榫 头和榫齿加工、阻尼台加工、安装板及叶冠加工。叶片加工的复杂性在于叶身部 分由复杂曲面组成,曲面按成形原理可分为直纹面和非直纹面,直纹面分为可展 和不可展。对于可展直纹面,可以采用常规机械加工技术加工。对于不可展直纹

航空用钛合金的发展概况

航空用钛合金地发展概况 □北京航空材料研究院曹春晓 摘要:航空用钛合金近期工程化发展中呈现出一些技术创新地"亮点",其中工艺创新地亮点比成分创新地亮点更多一些.这些亮点包括阻燃钛合金、钛基复合材料、纤维钛层板、超塑性钛合金、特大整体结构件锻造工艺、金属型精铸工艺、大型整体结构件精铸工艺、激光成形工艺、摩擦焊工艺和β热处理工艺等. 关键词:钛合金飞机发动机热处理工艺 20世纪50年代,军用飞机进入了超声速时代,航空发动机相应地进入喷气发动机时代,原有地铝、钢结构已不能满足新地需求.钛合金恰恰在这个时候进入了工业性发展阶段,由于它具有比强度高、使用温度范围宽(-269~600℃)、抗蚀性好和其他一些可利用地特性,因此很快被选用于飞机及航空发动机.50年来地世界钛市场中最大地用户始终属于航空.当前,航空仍然占50%左右市场份额. 受2002年"9.11"事件影响,美国2003年钛工业产品发货量降至15625t(2002年为16071t),日本2003年钛加工材发货量则降至13838t(2002年为14481t),而中国从2000~2004年地钛加工材销售量却一直以很高地速度增长(见表1). 1993年以后,几乎看不到新推出地工业性钛合金,而钛合金工艺方面地创新却屡见不鲜.这既与冷战时代地结束有关,也与工艺创新往往起到事半功倍之效有关. 一、钛合金在飞机及航空发动机上地用量不断扩大 . 飞机机体地钛用量 表2中列出地-18、A-22、F-35三大战斗攻击机和B-2轰炸机是美国在2015年前保持空中优势地4块"王牌".由表2可知,总地发展趋势是钛在飞机机体上地用量不断扩大.-18在不断改型地过程中其钛用量也不断增多. 民用飞机地钛用量也在不断扩大(图1和表3). 我国战斗机地钛用量也在不断扩大:20世纪80年代开始服役地歼八系列地钛用量为2%,两种新一代战斗机地钛用量分别为4%和15%,更新一代地高性能新型战斗机地钛用量将达25%~30%. . 航空发动机地钛用量 从表4和图2可知,国外先进发动机上地钛用量通常保持在20%~35%地水平. 我国早期生产地涡喷发动机均不用钛,1978年开始研制并于1988年初设计定型地涡喷13发动机地钛用量达到13%.2002年设计定型地昆仑涡喷发动机是我国第一个拥有完全自主知识产权地航空发动机,钛用量提高至15%.即将设计定型地我国第一台拥有自主知识产权地涡扇发动机又进一步把钛用量提高到25%地水平. 二、航空用钛合金近期工程化发展中地一些"亮点" . 阻燃钛合金闪亮登场 为了避免"钛火",俄罗斯曾研制了含Cu高量地BTT-1和BTT-3阻燃钛合金,但由于其力学性能和熔铸性能差而未能工程化.美国发明地AlloyC(Ti-35V-15Cr)阻燃钛合金近期已成功地应用于F119发动机(-22战斗机地动力装置)地高压压气机机匣、导向叶片和矢量尾喷管.这是高温钛合金领域地最新亮点,也是钛发展史

航空航天用钛合金的切削加工现状及发展趋势

航空航天用钛合金的切削加工现状及发展趋势 钛合金在航空航天工业和其他工业部门有着广泛的应用前景。随着科学技术的不断进步和我国国民经济的快速发展,作为“崛起的第三代金属”钛工业必将大有作为。 航空航天用钛合金的特点及应用 作为航空航天领域不断兴起的材料,钛合金有以下优势[1-3]: (1)比强度高。钛合金具有很高的强度,其抗拉强度为686~1176MPa,而密度仅为钢的60%左右,所以比强度很高。 (2)高温性能优良。钛合金在高温下仍能保持良好的机械性能,其耐热性远高于铝合金,且工作温度范围较宽。 (3)抗腐蚀性强。在550℃以下的空气中,钛表面会迅速形成薄而致密的氧化钛膜,其耐蚀性优于大多数不锈钢。 在航空工业领域,钛合金主要用于制造喷气发动机的压气机盘、涡轮盘、叶片、机匣等,以及诸如大型主起落架支撑梁、机身后段及转向梁等结构件[4]。因钛合金具有比强度高和耐高温特点,用于制造飞机发动机和机体能够有效地提高发动机推重比和机体机构效率,有利于缓解热障现象[5]。近年来军用飞机上所用钛合金材料的比例正在不断增加[6],钛合金材料的应用水平已成为衡量飞机先进性的重要标志之一。美国第四代战斗机的F-22 的机体主要承力材料大量采用钛64(Ti-6Al-4V),约占机身总质量的36%,钛62222 主要用于发动机周围蒙皮机构及发动机框架,约占机身总质量的3%[7]。在民用飞机方面,钛合金的应用也较为广泛。在波音777 上大约采用了11%的钛结构,其平面钛箔的用量将达到12247 kg[8]。在航天工业领域,钛合金主要用于制造耐高温和低温零件[9]。如上海钢铁研究所的7 715D 用于DFH-3 卫星的FY-25 型远地点发动机喷注器;俄罗斯的BT37 合金广泛应用于宇航工业形状复杂的低温管路系统。 航空航天用钛合金的切削加工现状 航空航天用钛合金零部件主要有两类。一类是复杂曲面,如叶轮、涡轮盘和叶片等,实际生产中采用多轴数控加工。图1 中采用多轴铣削加工的钛合金涡轮即为复杂曲面。另一类是薄壁框型件,如大型框、梁和壁板等多采用铣削加工。图2 中采用立铣加工的钛合金壁板是典型的薄壁框型件。上述两种工件的加工都必须从整块坯料中去除大量的材料,而钛合金的切削加工性较差,其工件的加工成本占工件总成本的比重很大。切削加工困难是导致钛合金零件价格高昂的重要因素。

相关文档