文档库 最新最全的文档下载
当前位置:文档库 › 多晶硅硅的化学制备

多晶硅硅的化学制备

多晶硅硅的化学制备
多晶硅硅的化学制备

多晶硅硅的化学制备

【摘要】硅是一种重要的半导体材料,目前广泛应用于微电子、太阳能、光信息等领域。作为这些领域的原材料,硅的纯度必须大于5N[1]。目前制备多晶硅的方法主要有化学法和物理法(又称“冶金法”)两大类。化学方法主要有:三氯氢硅氢还原法(改良西门子法)、硅烷法和流化床法,其他方法很少有工业化生产的实例,本文主要对三种方法进行介绍并比较分析各方法的优缺点。

【关键词】多晶硅化学方法介绍比较分析

引言

半导体材料是半导体科学发展的基础。对Si和以GaAs为代表的化合物的深入研究使集成电路、半导体激光器、高速场效应晶体管的研制获得成功,大大丰富了半导体科学的内容。近年来,半导体超晶格的发展为半导体光电子学和量子功能器件的发展开辟了广阔的道路。[2]

多晶硅的生产方法有化学法和物理法(又称“合金法”)两大类,化学法应用化学原理对硅进行提纯,物理方法通过冶金原理对硅进行提纯。物理法制备的多晶硅纯度有限,一般在4N-6N左右,根据市场应用情况来看,太阳能级多晶硅纯度需达到6N-7N,而电子级多晶硅的纯度以9N以上为宜。因此,物理法制备的多晶硅不能用于半导体材料,用于太阳能电池也尚处于探索、试产阶段,暂时还不具备进行大规模工业生产的能力。而化学法生产多晶硅的工艺相对比较成熟,产品纯度高(可达到9N-12N),不仅能够满足太阳能电池的使用,也能满足半导体材料的使用。

化学法制备多晶硅一般先将工业硅(冶金级硅,纯度97%-99.9%)通过化学反应转为硅化合物,再经过精馏提纯得到高纯硅化合物,高纯硅化合物经过化学反应生成多晶硅。其中,工业硅是从含硅矿物中提取的,高纯硅化合物一般通过化学气相沉积的方式生成棒状多晶硅或粒状多晶硅。

目前,已经工业化的多晶硅化学制备方法主要包括改良三氯氢硅氢还原法(改良西门子法)、硅烷法和流化床法,其他方法很少有工业化生产的实例,本文主要对三种方法进行介绍并比较分析各方法的优缺点。

一、多晶硅化学制备方法介绍

1、改良西门子法[3]

多晶硅生产的西门子工艺,其原理就是在1100℃左右的高纯硅芯上用高纯氢还原高纯三氯氢硅,生成多晶硅沉积在硅芯上。改良西门子工艺是在传统西门子工艺的基础上,同时具备节能、降耗、回收利用生产过程中伴随产生的大量H2、HCI、SiCI4等副产物以及大量副产热能的配套工艺。目前世界上绝大部分厂家均采用改良西门子法生产多晶硅。

这种方法的优点是节能降耗显著、成本低、质量好、采用综合利用技术,对环境不产生污染,具有明显的竞争优势。改良西门子工艺法生产多晶硅所用设备主要有:氯化氢合成炉,三氯氢硅沸腾床加压合成炉,三氯氢硅水解凝胶处理系统,三氯氢硅粗馏、精馏塔提纯系统,硅芯炉,节电还原炉,磷检炉,硅棒切断机,腐蚀、清洗、干燥、包装系统装置,还原尾气干法回收装置;其他包括分析、检测仪器,控制仪表,热能转换站,压缩空气站,循环水站,变配电站,净化厂房等。

(1)石英砂在电弧炉中冶炼提纯到98%并生成工业硅,其化学反应为:

SiO2+C→Si+CO2↑

(2)为了满足高纯度的需要,必须进一步提纯。把工业硅粉碎并用无水氯化氢(HCl)与之反应在一个流化床反应器中,生成拟溶解的三氯氢硅(SiHCl3)。其化学反应为:

Si+HCl→SiHCl3+H2↑

反应温度为300度,该反应是放热的。同时形成气态混合物(Н2,НСl, SiHCl3,SiCl4,Si)。

(3)第二步骤中产生的气态混合物还需要进一步提纯,需要分解:过滤硅粉,冷凝SiHCl3,SiC14,而气态Н2,НС1返回到反应中或排放到大气中。然后分解冷凝物SiHCl3, SiC14,净化三氯氢硅(多级精馏)。

(4)净化后的三氯氢硅采用高温还原工艺,以高纯的SiHCl3在H2气氛中还原沉积而生成多晶硅。其化学反应为:

SiHCl3+H2→Si+HCl

图1 改良西门子法工艺流程简图

多晶硅的反应容器为密封的,用电加热硅池硅棒(直径5-10毫米,长度1.5-2米,数量80根),在1050-1100度在棒上生长多晶硅,直径可达到150-200毫米。这样大约三分之一的三氯氢硅发生反应,并生成多晶硅。剩余部分同Н2,НСl,SiНС13,SiCl4从反应容器中分离。这些混合物进行低温分离,或再利用,或返回到整个反应中。气态混合物的分离是复杂的、耗能量大的,从某种程度上决定了多晶硅的成本和该工艺的竞争力。

改良西门子法相对于传统西门子法的优点主要在于:

1)节能:由于改良西门子法采用多对棒、大直径还原炉,可有效降低还原炉消耗的电能;

2)降低物耗:改良西门子法对还原尾气进行了有效的回收。所谓还原尾气:是指从还原炉中排放出来的,经反应后的混合气体。改良西门子法将尾气中的各种组分全部进行回收利用,这样就可以大大低降低原料的消耗。

3)减少污染:由于改良西门子法是一个闭路循环系统,多晶硅生产中的各种物料得到充分的利用,排出的废料极少,相对传统西门子法而言,污染得到了控制,保护了环境。

改良西门子法属于欧美淘汰的旧技术,相对国外最先进的硅烷法成本较高,而且能耗高,污染重。是国内多晶硅企业一般采用的方法。一般3到5年之内会淘汰。

2、硅烷法

1.硅烷热解法

在高纯硅的制备方法中,有发展前途的是硅烷热分解法。这种方法的整个工艺流程可分为三个部分:SiH4的合成、提纯和热分解。

(1)硅烷的合成

桂花镁热分解生成硅烷是目前工业上广泛采用的方法。硅化镁(Mg2Si)是将硅粉和镁粉在氢气(也可真空或在Ar气中)中加热500~550℃时混合合成的,其反应式如下:

2Mg+Si= Mg2Si

然后使硅化镁和固体氯化铵在液氨介质中反应得到硅烷。

Mg2Si+4NH4Cl=SiH4↑+ 2MgCl2+4NH3↑

其中液氨不仅是介质,而且它还提供一个低温的环境。这样所得的硅烷比较纯,但在实际生产中尚有未反应的镁存在,所以会发生如下的副反应:

Mg+ 2NH4Cl=MgCl2+2NH3+H2↑

所以生成的硅烷气体中往往混有氢气。

生产中所用的氯化铵一定要干燥,否则硅化镁与水作用生成的产物不是硅烷,而是氢气,其反应式如下:

2Mg2Si+8 NH4Cl+H2O=4 MgCl2+Si2H2O3+8 NH3↑+6 H2↑

由于硅烷在空气中易燃,浓度高时容易发生爆炸,因此,整个系统必须与氧隔绝,严禁与外界空气接触。

(2)硅烷的提纯

硅烷在常温下为气态,一般来说气体提纯比液体和固体容易。因为硅烷的生成温度低,大部分金属杂货在这样低的温度下不易形成挥发性的氢化物,而即便能生成,也因其沸点较高难以随硅烷挥发出来,所以硅烷在生成过程中就已经经过一次冷化,有效地除去了那些不生成挥发性氢化物的杂质。

硅烷是在液氨中进行的,在低温下乙硼烷(B2H6)与液氨生成难以挥发的络合物(B2H6?2NH3)而被除去,因而生成的硅烷不合硼杂质,这是硅烷法的优点之一。但硅烷中还有氨、氢及微量磷化氢(PH3)、硫化氢(H2S)、砷化氢(AsH3)、锑化氢(SbH3)、甲烷(CH4)、水等杂质。由于硅烷与它们的沸点相差较大,所以,可用低温液化方法除去水和氨,再用精馏提纯除去其它杂质。此外,还可用吸附法、预热分解法(因为除硅烷的分解温度高达600℃外,其它杂质氢化物气体的分解温度均低于380℃,所以把预热炉的温度控制在380℃左右,就可将杂质的氢化物分解,从而达到纯化硅烷的目的),或者将多种方法组合使用都可以达到提纯的目的。

(3)硅烷的热分解

将硅烷气体导入硅烷分解炉,在800~900℃的发热硅芯上,硅烷分解并沉积出高纯多晶硅,其反应式如下:SiH4=Si+ 2H2↑

硅烷热分解法有如下优点:

①分解过程不加还原剂,因而不存在还原剂的玷污。

②硅烷纯度高。在硅烷合成过程中,就已有效地去除金属杂质。尤其可贵的是因为氨对硼氢化合物有强烈的络合作用,能除去硅中最难以分离的有害杂质硼。然后还能用对磷烷、砷烷、硫化氢、硼烷等杂质有很高吸附能力的分子筛提纯硅烷,从而获得高纯度的产品,这是硅烷法的又一个突出的优点。

③硅烷分解温度一般为800~900℃,远低于其它方法,因此由高温挥发或扩散引入的

杂质就少。同时,硅烷的分解产物都没有腐蚀性,从而避免了对设备的腐蚀以及硅受腐蚀而被玷污的现象。而四氯化硅或三氯氢硅氢气还原法都会产生强腐蚀性的氯化氢气体。

因硅烷气是易燃易爆的气体,所以整个吸附系统以及分解室都要有高度严密性,必须隔绝空气。贮藏和运输硅烷常采用两种方法:一种是用分子筛吸附硅烷,使用时可用氖气携带;另一种是把硅烷压入钢瓶,再以氢气稀释,使其浓度降低5%以下,从而避免爆炸、燃烧的危险。

3、流化床法[5]

流化床法也缩写为FBR,,即使用流化床反应器进行多晶硅生产的工艺方法,生产示意图见图2.目前,在多晶硅生产领域,流化床反应器一般有2种使用方式:

图2 流化床法制备多晶硅示意图

①即上述硅烷法中提到的使用方式,在②内加入细硅粒,并通入SiH4气,一般

在通入SiH4气的同时,通入一定量的保护气体,如氩气、氮气等,这些保护气体通入流化床前已经加热到规定的温度。控制适当的温度和压力,使SiH4气在流化床反应器内惊醒热分解反应,分解生成Si和H2,生成的Si在预先加入的细硅粒表面沉积,得到粒状多晶硅。

②以SiCl4、H2、HCl、工业Si粉为原料,控制适当的温度和压力,使上述原料

在流化床内发生化学反应,生成SiHCl3,SiHCl3通过歧化反应生成SiH2Cl2和SiCl4,其中,SiH2Cl2发生分解,生成SiH4气和SiHCl3.制取的SiH4气在流化床反应炉内进行热分解反应,生成的多晶硅在预先加入的细硅粒表面生长,最终得到粒状多晶硅。这种

生产过程涉及的化学反应方程式如下:

3SiCl4+H2+2Si+3HCl=5SiHCl3

2SiHCl3 =SiCl4+SiH2Cl2

3SiH2Cl2 =2SiHCl3+SiH4

SiH4 =2 H2+Si

流化床技术具有反应温度低(550~700℃),沉积效率高(整个流化床内温度基本一致,硅粒比表面积大,有利于气相沉积反应的进行),连续化不间断生产等优点。目前,采用流化床法生产颗粒状多晶硅的公司有美国的REC、瓦克公司、美国MEMC等。

如上说述,硅烷法和流化床法的工艺有交叉的地方,即硅烷法制备多晶硅可以在流化床反应器内进行,流化床法制备多晶硅可以使用SiH4为原料。但一般而言,如果制备了高纯度的SiH4气,通常不会将高纯SiH4气通入流化床反应器内反应制备多晶硅,因为流化床反应器内温度与反应器壁温度基本一致,在高温下反应壁磨损较快,容易带入杂质,并且,如果家兔的硅粒含杂质质量偏高,也会影响多晶硅产品的质量。所以,在流化床反应器内制备的多晶硅一般只能达到太阳能级多晶硅的纯度,达不到电子级多晶硅的纯度。

改良西门子法的冷氢化工艺也使用了流化床反应器,即SiCl4、H2与冶金级硅在流化床内反应生成SiHCl3,但并不直接在流化床反应器内生成多晶硅,所以冷氢化工艺仍然属于改良西门子法的范畴。

二、多晶硅化学工艺制备方法优缺点比较

1、改良西门子法

优点:

与硅烷法和流化床法相比,改良西门子法工艺更成熟、安全性更高:硅烷法和流化床法生产多晶硅的过程中都存在中间产物SiH4气,SiH4易燃易爆,并且在实际生产过程中发生过严重的爆炸事故,所以这2种方法的安全性比较差,危险系数高。

流化床法除安全性差外,其生产的产品纯度也不高,不能达到电子级多晶硅产品的要求,但基本能满足太阳能电池生产的使用:而改良西门子法生产的多晶硅产品纯度高,能够同时满足光伏行业和半导体行业对产品质量的要求:并且改良西门子法适合大规模工业化生产,

所生产的多晶硅占全球多晶硅产量的80%以上,国内外现有的多晶硅生产厂家绝大部分都采用改良西门子法。

美国GT Solar公司统计了使用不同工艺方法生产多晶硅的成本(生产成本包括原材料采购成本、能耗成本、维修保养成本、折旧费、股息及一般性费用),如表1所示。由表1数据可以看出:改良西门子法的冷氢化工艺能达到的生产成本最低,现阶段流化床法和硅烷法的生产成本与改良西门子法相比没有明显优势,这主要是由于流化床法和硅烷法的折旧费用比改良西门子法高:但流化床法的能耗比改良西门子法的能耗低,能耗从小到大的顺序依次为:流化床法、改良西门子法冷氢化工艺、硅烷法。硅烷法的能耗最高,主要是因为制备硅烷的过程耗能较多:

从安全生产、产品质量以及生产成本等多方面的综合比较分析,可以得出结论:现阶段,与流化床法和硅烷法流相比,改良西门子法还具有明显优势,是现阶段多晶硅工业化生产最成熟的主流技术方法:

不足:

a)能耗高

b)产生大量的副产物

c)原料一次利用率过低

d)设备折旧费过高

2、硅烷法[4]

优点:

①分解过程不加还原剂,因而不存在还原剂的玷污。

②硅烷纯度高。在硅烷合成过程中,就已有效地去除金属杂质。尤其可贵的是因为氨对硼氢化合物有强烈的络合作用,能除去硅中最难以分离的有害杂质硼。然后还能用对磷烷、砷烷、硫化氢、硼烷等杂质有很高吸附能力的分子筛提纯硅烷,从而获得高纯度的产品,这是硅烷法的又一个突出的优点。

③硅烷分解温度一般为800~900℃,远低于其它方法,因此由高温挥发或扩散引入的杂质就少。同时,硅烷的分解产物都没有腐蚀性,从而避免了对设备的腐蚀以及硅受腐蚀而被玷污的现象。而四氯化硅或三氯氢硅氢气还原法都会产生强腐蚀性的氯化氢气体。

缺点:

因硅烷气是易燃易爆的气体,所以整个吸附系统以及分解室都要有高度严密性,必须隔绝空气。贮藏和运输硅烷常采用两种方法:一种是用分子筛吸附硅烷,使用时可用氖气携带;另一种是把硅烷压入钢瓶,再以氢气稀释,使其浓度降低5%以下,从而避免爆炸、燃烧的危险。

3、流化床法的优势

与改良西门子法相比,流化床法有以下优势:流化床法中气相沉积反应是在粒状硅表面进行,粒状硅的比较面积比棒状硅大,相同体积的反应容器内,气固相的反应接触更大,生产效率更高;流化床法反应温度低(约为550~700):改良西门子法中还原炉壁与硅芯之间存在很大的温度差,大量的热量被炉罩冷却水带走,而流化床内部温度基本一致,热量被充分利用;流化床法可以利用SiCl4为原料,有利于处理改良西门子法所产生的大量SiCl4,流化床法为连续化生产过程,不需要拆炉,装炉;并且,改良西门子法生产的棒状多晶硅需要进行破碎处理,而流化床法生产的粒状多晶硅则不需要在进行这方面的处理。

综上,改良西门子法,硅烷法,流化床法的比较详见表2.分析可知,改良西门子法虽然是目前生产多晶硅最成熟,最普遍的技术方法,但该工艺方法的能耗高,生产成本高,并且副产物多,环保压力大,迫切要求能够开发新的成熟的低能耗,低污染工艺方法。正因为此,目前对低能耗,低成本,低污染新方法和新技术的研究非常活跃。现阶段,流化床法和硅烷法虽然工艺技术还不成熟,但这两种工艺方法能以SiCl4为原料,具有转化率高,副产物少,对环境污染小等优势,其中,流化床法的能耗也低于改良西门子法。流化床法和硅烷法通过不断的研究,开发,改进后,其生产成本可能会大幅降低,并随着工艺技术的不断成熟,有可能大规模广泛使用。

表2 多晶硅主要化学生产方法的比较

三、参考文献

[1] 《硅的知识》2012-3-28 https://www.wendangku.net/doc/187139523.html,/view/4042ba3243323968011c92b2.html

[2] 《半导体材料》杨树人王宗昌王兢——2版.——北京:科学出版社,2004

[3] 《改良西门子法》百度百科2012-3-28 https://www.wendangku.net/doc/187139523.html,/view/2497433.htm

[4] 《硅烷法》百度百科2012-3-28 https://www.wendangku.net/doc/187139523.html,/view/5631633.htm

[5] 刘小峰王岭. 多晶硅化学制备方法的比较分析新材料产业NO.6 2011 69

多晶硅的三大生产工艺之比较

多晶硅的三大生产工艺之比较 从西门子法到改良西门子法的演进是一个从开环到闭环的过程。 1955年,德国西门子开发出以氢气(H2)还原高纯度三氯氢硅(SiHCl3),在加热到1100℃左右的硅芯(也称“硅棒”)上沉积多晶硅的生产工艺;1957年,这种多晶硅生产工艺开始应用于工业化生产,被外界称为“西门子法”。 由于西门子法生产多晶硅存在转化率低,副产品排放污染严重(例如四氯化硅SiCl4)的主要问题,升级版的改良西门子法被有针对性地推出。改良西门子法即在西门子法的基础上增加了尾气回收和四氯化硅氢化工艺,实现了生产过程的闭路循环,既可以避免剧毒副产品直接排放污染环境,又实现了原料的循环利用、大大降低了生产成本(针对单次转化率低)。因此,改良西门子法又被称为“闭环西门子法”。 改良西门子法一直是多晶硅生产最主要的工艺方法,目前全世界有超过85%的多晶硅是采用改良西门子法生产的。过去很长一段时间改良西门子法主要用来生产半导体行业电子级多晶硅(纯度在99.9999999%~99.999999999%,即9N~11N的多晶硅);光伏市场兴起之后,太阳能级多晶硅(对纯度的要求低于电子级)的产量迅速上升并大大超过了电子级多晶硅,改良西门法也成为太阳能级多晶硅最主要的生产方法。 2.改良西门子法生产多晶硅的工艺流程 (改良西门子法工艺流程示意图) 改良西门子法是一种化学方法,首先利用冶金硅(纯度要求在99.5%以上)与氯化氢(HCl)合成产生便于提纯的三氯氢硅气体(SiHCl3,下文简称TCS),然后将TCS精馏提纯,最后通过还原反应和化学气相沉积(CVD)将高纯度的TCS转化为高纯度的多晶硅。 在TCS还原为多晶硅的过程中,会有大量的剧毒副产品四氯化硅(SiCl4,下文简称STC)生成。改良西门子法通过尾气回收系统将还原反应的尾气回收、分离后,把回收的STC送到氢化反应环节将其转化为TCS,并与尾气中分离出来的TCS一起送入精馏提纯系统循环利用,尾气中分离出来的氢气被送回还原炉,氯化氢被送回TCS合成装置,均实现了闭路循环利用。这是改良西门子法和传统西门子法最大的区别。

(完整版)多晶硅生产工艺学

多晶硅生产工艺学 绪论 一、硅材料的发展概况半导体材料是电子技术的基础,早在十九世纪末,人们就发现了半导体材料,而真正实用还是从二十世纪四十年代开始的,五十年代以后锗为主,由于锗晶体管大量生产、应用,促进了半导体工业的出现,到了六十年代,硅成为主要应用的半导体材料,到七十年代随着激光、发光、微波、红外技术的发展,一些化合物半导体和混晶半导体材料:如砷化镓、硫化镉、碳化硅、镓铝砷的应用有所发展。一些非晶态半导休和有机半导休材料(如萘、蒽、以及金属衍生物等)在一定范围内也有其半导休特性,也开始得到了应用。 半导休材料硅的生产历史是比较年青的,约30 年。美国是从 1949?1951年从事半导体硅的制取研究和生产的。几年后其产量就翻了几翻,日本、西德、捷克斯洛伐克,丹麦等国家的生产量也相当可观的。 从多晶硅产量来看,就79 年来说,美国产量1620?1670 吨日本420

?440 吨。西德700?800 吨。预计到85 年美国的产量将达到2700 吨、日本1040 吨、西德瓦克化学电子有限公司的产量将达到3000 吨。 我国多晶硅生产比较分散,真正生产由58 年有色金属研究院开始研究,65 年投入生产。从产量来说是由少到多,到七七年产量仅达70?80吨,预计到85年达到300吨左右。 二、硅的应用半导体材料之所以被广泛利用的原因是:耐高压、硅器件体积小,效率高,寿命长,及可靠性好等优点,为此硅材料越来越多地应用在半导体器件上。硅的用途: 1、作电子整流器和可控硅整流器,用于电气铁道机床,电解食盐,有色金属电解、各种机床的控制部分、汽车等整流设备上,用以代替直流发电机组,水银整流器等设备。 2、硅二极管,用于电气测定仪器,电子计算机装置,微波通讯装置等。 3、晶体管及集成电路,用于各种无线电装置,自动电话交换台,自动控制系统,电视摄相机的接收机,计测仪器髟来代替真空管,在各种无线电设备作为放大器和振荡器。 4、太阳能电池,以单晶硅做成的太阳能电池,可以直接将太阳能转变为电能。 三、提高多晶硅质量的措施和途径:为了满足器件的要求,硅材料的质量好坏,直接关系到晶体管的合格率与电学性能,随着大规模集成电路和MOS 集成电路的发展而获得电路的高可靠性,适应性。因此对半导体材料硅的要求越来越高。 1、提高多晶硅产品质量的措施:在生产过程中,主要矛盾是如何稳定产品的质 量问题,搞好工艺卫生是一项最重要的操作技术,在生产实践中要树立

多晶硅的传统制备方法

https://www.wendangku.net/doc/187139523.html, 多晶硅的传统制备方法 目前世界上多晶硅生产最常见的方法有三种;四氯化硅氢还原法、三氯氢硅氢还原法和硅烷裂解法。三氯氢硅氢还原法是德国西门子公司发明的,因此又被称为西门子法。由于西门子法诞生的时间较早,后来有人又进行了一些新的改良,因此又有人将其称为改良西门子法。其实,改良西门子法还是西门子法,它的主体工艺流程基本没有变,还是利用氢气还原三氯氢硅来生产多晶硅。因此,为简单起见,我们还称它为西门子法。 上诉这三种多晶硅的制备方法格有千秋,从制备的难度和投资额的多少来看,四氯化硅氢还原法生产设备最少,最简单,四氯化硅的合成和提纯不需要冷冻系统,普通水冷即可将四氯化硅气体冷凝为液态的四氯化硅,而且无需将工业硅加工成硅粉,只需是合格的硅块就可以了。因此,四氯化硅还原法的投资额最少,最容易上马。硅烷沸点太低,为-112℃,要想用精馏法提纯硅烷,不仅要有极深度的制冷机,而且设备也极其复杂。因此,硅烷裂解法的投资额最大,最难。从沉积硅的直接回收率上看,硅烷裂解法最高,几乎是100%,最低是四氯化硅氢还原法,不足20%,西门子法高于四氯化硅氢还原法,约为25%左右。从安全上看,硅烷最危险,最容易爆炸,三氯氢硅次之,也容易爆炸,四氯化硅最安全,根本就不会发生爆炸。 从上面的介绍可以看出,硅烷裂解法最难,投资额最大,特别是,硅烷本身是易燃易爆物,容易发生剧烈的爆炸,一旦爆炸,将造成不可挽回的经济损失。20世纪60、70年代玩过曾有人研究过硅烷裂解法,而且也曾生产出品质很高的多晶硅,但由于事故频繁,损失惨重,最终还是停产下马。目前我国已经很少再有人采用此法来生产多晶硅了。虽然如此,也要清楚硅烷裂解法是具有许多优势的,只要解决好防爆问题,它还是非常有前途的。 当前常采用的是四氯化硅氢还原法和三氯氢硅氢还原法(西门子法),而且这两种方法与多晶硅和石英玻璃的联合制备法密切相关。 四氯化硅氢还原法是以四氯化硅和氢气为原料,在还原炉内发生化学反应来生成多晶硅的方法;三氯氢硅氢还原法是以三氯氢硅和氢气为原料,在还原炉内发生化学反应来生成多晶硅的方法。这两种方法基本相同,不同之处只是,一个是以四氯化硅和氢气为原料,另一个是以三氯氢硅和氢气为原料。

硅的提纯

第二章硅的提纯 2.1 硅的化学提纯与多晶硅的制备 半导体硅是元素半导体,半导体的基本特征是掺入微量电活性杂质将明显改变其电学性能。最 纯净的本征硅单晶的电阻率在室温下理论值大于200kΩ·cm。而若在单晶中掺入百万分之一磷杂质原子,就能使单品电阻率下降到大约0.2Ω·cm,即下降了约一百万倍。杂质对于半导体的性能是如此 的敏感,因此在用半导体制造固体器件时必须控制所用的半导体材料基本上不存在有害杂质。虽然 有些杂质影响显著,而有些杂质影响器件性能较少,但为了控制硅单晶的性能,我们不可能采用某种 技术有选择地只去除有害杂质而又保留若干无害杂质。所以最实际的办法是将硅的纯度提高到足 够的高度,去除各种杂质,然后再根据应用的需要有控制地掺入特定的杂质。作为生长硅单晶的原 始材料,在半导体工业中需要很纯的多晶硅。一般要求纯度达到小数点后面7个“9”至8 个“9”的范围(n个9表示纯度为99·99…9%)。 硅是由石英砂(二氧化硅)在电炉中用碳还原而得,其反应式为 所得硅纯度约为95%~99%,称为粗硅,又称冶金级硅,其中含有各种杂质,如Fe、C、B、P等。 为了将粗硅提纯到半导体器件所需的纯度,硅必须经过化学提纯。所谓硅的化学提纯是把硅用化学方法转化为中间化合物,再将中间化合物提纯至所需的高纯度,然后再还原成为高纯硅。中间化合物一般选择易于被提纯的化合物。曾被研究过的中间化合物有四氯化硅、四碘化硅、甲硅烷等。中间化合物提纯到高纯度后,在还原过程中如果工艺技术不恰当,还会造成污染而降低产品纯度。因此,还原也是重要的工艺过程。高纯多晶硅的生产方法大多数分为三个步骤:①中间化合物的合成; ②中间化合物的提纯;③还原成纯硅。 历史上,人们研究或应用过各种高纯多晶硅的制造方法。最早实现的是四氯化硅锌还原法,由于在还原时锌的沾污,产品还要经过区域提纯(物理提纯)才能达到电子级的要求,整个过程不经济所以已被淘汰。用四碘化硅作为中间化合物也曾被重视,因为四碘化硅能用各种方法提纯,如精馏、萃取、区域提纯等方法均可用于提纯四碘化硅,但由于结果并不经济,纯度也不优于其他方法而被淘汰。现代大量用于生产的是四氯化硅氢还原法、二氯二氢硅还原法、三氯氢硅氢还原法和甲硅烷热分解法。尤其是后两者,在国际上占主导地位。现分述如下。 2.1.1 三氯氢硅氢还原法 三氯氢硅氢还原法最早由西门子公司研究成功,有的文献上称此法为西门子法。三氯氢硅氢还原法可分为三个重要过程:一是中间化合物三氯氢硅的合成,二是三氯氢硅的提纯,三是用 氢还原三氯氢硅获得高纯硅多晶。

2010年冶金法提纯多晶硅的进展-史珺

Progress of Metallurgical Purified Solar Grade Poly-Silicon Industry and Technology in 2010 2010年冶金法太阳能级多晶硅产业技术进展 史珺 冶金法太阳能多晶硅产业技术创新战略联盟 (UMSOG) 上海普罗新能源有限公司 ProPower Inc.

目录?Technical Progress of Metallurgical Purification of SOG 冶金法太阳能级多晶硅的技术进展?Industrialization Progress of MSOG 冶金法太阳能级多晶硅的产业化进展?Application Progress of MSOG 冶金法太阳能级多晶硅的应用进展 ?Elite Equipment Manufacturing Ability of Propower 普罗卓越的装备制造能力

太阳能所需要的多晶硅纯度?Poly silicon with purity higher than 7N could not be made into solar cell directly 7N以上的多晶硅无法用来直接作太阳能电池 ? B or P must be mixed as dopant,The dopant of B must be about 0.15~0.3ppm for P-type solar cell须掺入硼或磷,对太阳能来说硼的掺杂浓度大约在 0.15~0.3ppmw ?Because impurities must added to high pure poly-silicon from Siemens method, which means energy double waste, 采用西门子法得出高纯度的硅后,即便是11N的多晶硅,还是要掺杂到6N的纯度,意味着能源的双重浪费

多晶硅硅的化学制备

多晶硅硅的化学制备 【摘要】硅是一种重要的半导体材料,目前广泛应用于微电子、太阳能、光信息等领域。作为这些领域的原材料,硅的纯度必须大于5N[1]。目前制备多晶硅的方法主要有化学法和物理法(又称“冶金法”)两大类。化学方法主要有:三氯氢硅氢还原法(改良西门子法)、硅烷法和流化床法,其他方法很少有工业化生产的实例,本文主要对三种方法进行介绍并比较分析各方法的优缺点。 【关键词】多晶硅化学方法介绍比较分析 引言 半导体材料是半导体科学发展的基础。对Si和以GaAs为代表的化合物的深入研究使集成电路、半导体激光器、高速场效应晶体管的研制获得成功,大大丰富了半导体科学的内容。近年来,半导体超晶格的发展为半导体光电子学和量子功能器件的发展开辟了广阔的道路。[2] 多晶硅的生产方法有化学法和物理法(又称“合金法”)两大类,化学法应用化学原理对硅进行提纯,物理方法通过冶金原理对硅进行提纯。物理法制备的多晶硅纯度有限,一般在4N-6N左右,根据市场应用情况来看,太阳能级多晶硅纯度需达到6N-7N,而电子级多晶硅的纯度以9N以上为宜。因此,物理法制备的多晶硅不能用于半导体材料,用于太阳能电池也尚处于探索、试产阶段,暂时还不具备进行大规模工业生产的能力。而化学法生产多晶硅的工艺相对比较成熟,产品纯度高(可达到9N-12N),不仅能够满足太阳能电池的使用,也能满足半导体材料的使用。 化学法制备多晶硅一般先将工业硅(冶金级硅,纯度97%-99.9%)通过化学反应转为硅化合物,再经过精馏提纯得到高纯硅化合物,高纯硅化合物经过化学反应生成多晶硅。其中,工业硅是从含硅矿物中提取的,高纯硅化合物一般通过化学气相沉积的方式生成棒状多晶硅或粒状多晶硅。 目前,已经工业化的多晶硅化学制备方法主要包括改良三氯氢硅氢还原法(改良西门子法)、硅烷法和流化床法,其他方法很少有工业化生产的实例,本文主要对三种方法进行介绍并比较分析各方法的优缺点。

冶金法多晶硅酸洗去除金属杂质工艺探索

冶金法多晶硅酸洗去除金属杂质工艺探索 周京明1 云南乾元光能产业有限公司,中国云南昆明650216 Zhou jing ming Yunnan Qian Yuan solar energy industry co., LTD, Kunming Yunnan China 650216 摘要:高纯多晶硅是制备单晶硅和太阳能硅电池的主要原材料,是太阳能光伏产业的基石,由于现阶段高纯多晶硅生产的主流技术西门子法不利于降低太阳能电池的成本,因此探索低成本高纯多晶硅生产技术成为目前国内外的热点之一。目前低成本多晶硅生产技术主要是物理法,其中如何有效脱出金属硅中的金属杂质是关键工序之一。本文就酸洗脱出金属硅中的金属杂质的关键因素进行探索,对相应的工艺条件进行了摸索和验证,为寻找低成本高纯多晶硅生产技术工作进行有益探索。 Abstract: High-purity polysilicon preparation monocrystalline silicon and silicon solar cell is the main raw material, is the cornerstone of the solar pv industry, because at present the mainstream of high-purity polysilicon production technology of Siemens method is not conducive to reduce the cost of solar cells, thus to explore the low cost of high purity polysilicon production technology to become one of the hot spots at home and abroad. Low cost of polysilicon production technology at present is mainly physical method, including how to effectively out metal impurity in silicon metal is one of the key working procedure. In this paper, the metal impurities in silicon metal pickling out key factors to explore, to grope for the corresponding technological conditions and validation, looking for low cost production technology work of high purity polycrystalline silicon. 关键词:冶金法多晶硅;酸洗除杂。 Keyword: Metallurgical method of polysilicon;Removal of impurities with acid. 一、前言 高纯多晶硅是制备单晶硅和太阳能硅电池的主要原材料,是太阳能光伏产业的基石。目前,国内外高纯多晶硅的生产工艺技术主要包括化学法和物理法,化学法典型工艺以改良西门子法—闭环式三氯化硅氢还原法为代表,是目前多晶硅生产的主流技术,现阶段国内外的多晶硅生产厂家80%以上是采用此方法生产多晶硅。该方法是用氯气和氢气合成氯化氢,氯化氢再与工业硅粉在一定温度下合成三氯氢硅,通过精馏进行分离提纯后,在氢 1周京明,1968年出生,男,汉族,云南省昆明市嵩明县人,工程师,工程硕士,从事化工工艺多年,现为云南乾元光能产业有限公司制造部副主任,邮箱:ynzjm68@https://www.wendangku.net/doc/187139523.html,,地址:云南省昆明市盘龙区穿金路云山村457号。

多晶硅生产工艺及其应用

多晶硅生产工艺及其应用 摘要:随着人们对能源需求的不断增长以及面临传统能源日渐枯竭的问题,人们开始关注新能源的研究,而多晶硅作为制备太阳能电池板重要的原材料也被重视起来。本文主要介绍了多晶硅的生产工艺,主要包括改良西门子法、硅烷法、流化床法等,以及多晶硅在能源方面的应用。 关键词:多晶硅生产工艺应用 在传统能源逐渐被消耗殆尽的情况下,人们开始关注其他新型能源的研究,太阳能作为一种最具潜力、最清洁和最普遍的的新型能源被高度重视。在所有的太阳能电池中得到广泛应用的是硅太阳能电池,这主要是由于硅在自然界中的蕴含量极为丰富,并且它还有良好的机械性能和电学性能。此外,硅材料中的晶体硅,是目前所有光伏材料中研究和应用比较成熟的。在过去几十年中被泛应用,而其在商业太阳能电池应用中也有很高的转换率。因此,在以后的光伏产业中,硅材料特别是多晶硅的研究将会有一个广阔的发展空间。 一、多晶硅的性质 多晶硅作为单质硅的一种特殊存在形态,主要是熔融的单质硅在温度较低状态下凝固时,硅原子会以金刚石晶格形式排列成很多晶核,如果这些晶核生长成不同晶面取向的晶粒时,那么这些晶粒就会结合起来,便结晶形成多晶硅。多晶硅可作为拉制单晶硅的原料,单晶硅与多晶硅的不同主要表现在物理性质方面,例如,在光学性质、热学性质和力学性质等向异性方面;在电学性质方面,单晶硅的导电性也比多晶硅明显。但在化学性质方面,两者则没有明显区别[1]。 二、多晶硅生产工艺 目前,已经工业上制备多晶硅的化学方法主要有改良西门子法、硅烷法和流化床法。 1、改良西门子法 3、流化床法 另外制备多晶硅的工艺还有:冶金法、气液沉积法、高纯金属还原法等。 三、多晶硅的应用 高纯度多晶硅作为重要的电子信息材料,被称为“微电子大厦的基石”。多品硅有比较广泛的用途,除信息产业外,多晶硅还被用来制备太阳能电池板以及生产可控硅元件。基于硅材料质量好、原料丰富、价格较低、工艺较成熟,因此在未来几十年里,没有其他材料可以代替多晶硅成为光伏产业和电子信息产业的原

改良西门子法生产多晶硅工艺流程

改良西门子法生产多晶硅工艺流程 1. 氢气制备与净化工序 在电解槽内经电解脱盐水制得氢气。电解制得的氢气经过冷却、分离液体后,进入除氧器,在催化剂的作用下,氢气中的微量氧气与氢气反应生成水而被除去。除氧后的氢气通过一组吸附干燥器而被干燥。净化干燥后的氢气送入氢气贮罐,然后送往氯化氢合成、三氯氢硅氢还原、四氯化硅氢化工序。 电解制得的氧气经冷却、分离液体后,送入氧气贮罐。出氧气贮罐的氧气送去装瓶。气液分离器排放废吸附剂,氢气脱氧器有废脱氧催化剂排放,干燥器有废吸附剂排放,均由供货商回收再利用。 2. 氯化氢合成工序 从氢气制备与净化工序来的氢气和从合成气干法分离工序返回的循环氢气分别进入本工序氢气缓冲罐并在罐内混合。出氢气缓冲罐的氢气引入氯化氢合成炉底部的燃烧枪。从液氯汽化工序来的氯气经氯气缓冲罐,也引入氯化氢合成炉的底部的燃烧枪。氢气与氯气的混合气体在燃烧枪出口被点燃,经燃烧反应生成氯化氢气体。出合成炉的氯化氢气体流经空气冷却器、水冷却器、深冷却器、雾沫分离器后,被送往三氯氢硅合成工序。 为保证安全,本装置设置有一套主要由两台氯化氢降膜吸收器和两套盐酸循环槽、盐酸循环泵组成的氯化氢气体吸收系统,可用水吸收因装置负荷调整或紧急泄放而排出的氯化氢气体。该系统保持连

续运转,可随时接收并吸收装置排出的氯化氢气体。 为保证安全,本工序设置一套主要由废气处理塔、碱液循环槽、碱液循环泵和碱液循环冷却器组成的含氯废气处理系统。必要时,氯气缓冲罐及管道内的氯气可以送入废气处理塔内,用氢氧化钠水溶液洗涤除去。该废气处理系统保持连续运转,以保证可以随时接收并处理含氯气体。 3. 三氯氢硅合成工序 原料硅粉经吊运,通过硅粉下料斗而被卸入硅粉接收料斗。硅粉从接收料斗放入下方的中间料斗,经用热氯化氢气置换料斗内的气体并升压至与下方料斗压力平衡后,硅粉被放入下方的硅粉供应料斗。供应料斗内的硅粉用安装于料斗底部的星型供料机送入三氯氢硅合成炉进料管。 从氯化氢合成工序来的氯化氢气,与从循环氯化氢缓冲罐送来的循环氯化氢气混合后,引入三氯氢硅合成炉进料管,将从硅粉供应料斗供入管内的硅粉挟带并输送,从底部进入三氯氢硅合成炉。 在三氯氢硅合成炉内,硅粉与氯化氢气体形成沸腾床并发生反应,生成三氯氢硅,同时生成四氯化硅、二氯二氢硅、金属氯化物、聚氯硅烷、氢气等产物,此混合气体被称作三氯氢硅合成气。反应大量放热。合成炉外壁设置有水夹套,通过夹套内水带走热量维持炉壁的温度。 出合成炉顶部挟带有硅粉的合成气,经三级旋风除尘器组成的干法除尘系统除去部分硅粉后,送入湿法除尘系统,被四氯化硅液体洗

冶金法生产多晶硅

冶金法多晶硅相关材料 目录 一、冶金法介绍 (1) 二、项目投资成本 (2) 三、技术路径 (3) 四、主要企业 (5) 一、冶金法介绍 目前,国际多晶硅生产的主流工艺是改良西门子法,占总产能85%以上。2010年用该技术生产的多晶硅占全球总产量的86.6%。太阳能级多晶硅仅需要6个9的纯度即可,西门子法一般提纯后可达11个9以上。为保证得到多晶硅电池最佳的电流传输率,西门子法还需要进行掺杂工序(掺硼掺磷),这无疑增加了光伏电池制造的成本。另外,某些公司也采用其他方法来制作多晶硅,如硅烷法、流化床法。此三种方法都属于多晶硅制作中的“化学法”。 物理法是采用对冶金级的硅进行造渣、精炼、酸洗(湿法冶金)、定向凝固等方式,将杂质去除。由于硅是不参加化学反应的,所以俗称物理法。但其实,无论是造渣、精炼还是酸洗,都不可避免地涉及到化学反应,因此,比较准确的叫方法应该是冶金法。物理法主要有

区域熔化法(FZ)、直拉单晶法(CZ)、定向凝固多晶硅锭法(铸造法)等等。 按照硅的纯度不同,硅料分为冶金级硅(MG-Si)、太阳能级硅(SG-Si)、电子级硅(EG-Si),国际业界通常把物理法称为冶金法(Metallurgical Method),把物理法提纯的硅称为UMG-Si(Upgraded Metallurgical Grade Silicon)。 UMG-Si制备由于其工艺路径使其理论提纯水平仅能够达到7N级,化学法可提纯至9N级以上用于半导体行业,而3N以下的冶金级硅料主要用于铝合金等领域。因此,UMG-Si的目标市场即为太阳能光伏领域。 二、项目投资成本 UMG-Si由于采用的是物理提纯方法,主要是通过物理变化而非复杂的系列化学反应来提取硅料,在设备投入、环保控制、能耗指标等均低于化学法制备,就SG-Si制备而言具备成本优势。 在2011年初,就项目总投资而言,化学法多晶硅制备如果从三氯氢硅开始直至多晶硅产出,年产量1000吨的工厂大约需要投资6亿到7亿元人民币,;而UMG-Si制备由于采取的工艺路径和原材料冶金硅品质的区别,其初始投资以年产1000吨计算,大约在2亿元左右。 在2012年的成都西博会上,阿坝州共有25个新项目签约,签约金额达107亿元。其中包括:协鑫集团下属四川协鑫硅业科技有限公

多晶硅生产工艺学

多晶硅生产工艺学

绪论 一、硅材料的发展概况 半导体材料是电子技术的基础,早在十九世纪末,人们就发现了半导体材料,而真正实用还是从二十世纪四十年代开始的,五十年代以后锗为主,由于锗晶体管大量生产、应用,促进了半导体工业的出现,到了六十年代,硅成为主要应用的半导体材料,到七十年代随着激光、发光、微波、红外技术的发展,一些化合物半导体和混晶半导体材料:如砷化镓、硫化镉、碳化硅、镓铝砷的应用有所发展。一些非晶态半导休和有机半导休材料(如萘、蒽、以及金属衍生物等)在一定范围内也有其半导休特性,也开始得到了应用。 半导休材料硅的生产历史是比较年青的,约30年。美国是从1949~1951年从事半导体硅的制取研究和生产的。几年后其产量就翻了几翻,日本、西德、捷克斯洛伐克,丹麦等国家的生产量也相当可观的。 从多晶硅产量来看,就79年来说,美国产量1620~1670吨。日本420~440吨。西德700~800吨。预计到85年美国的产量将达到2700吨、日本1040吨、西德瓦克化学电子有限公司的产量将达到3000吨。 我国多晶硅生产比较分散,真正生产由58年有色金属研究院开始研究,65年投入生产。从产量来说是由少到多,到七七年产

量仅达70~80吨,预计到85年达到300吨左右。 二、硅的应用 半导体材料之所以被广泛利用的原因是:耐高压、硅器件体积小,效率高,寿命长,及可靠性好等优点,为此硅材料越来越多地应用在半导体器件上。硅的用途: 1、作电子整流器和可控硅整流器,用于电气铁道机床,电解食盐,有色金属电解、各种机床的控制部分、汽车等整流设备上,用以代替直流发电机组,水银整流器等设备。 2、硅二极管,用于电气测定仪器,电子计算机装置,微波通讯装置等。 3、晶体管及集成电路,用于各种无线电装置,自动电话交换台,自动控制系统,电视摄相机的接收机,计测仪器髟来代替真空管,在各种无线电设备作为放大器和振荡器。 4、太阳能电池,以单晶硅做成的太阳能电池,可以直接将太阳能转变为电能。 三、提高多晶硅质量的措施和途径: 为了满足器件的要求,硅材料的质量好坏,直接关系到晶体管的合格率与电学性能,随着大规模集成电路和MOS集成电路的发展而获得电路的高可靠性,适应性。因此对半导体材料硅的要求越来越高。 1、提高多晶硅产品质量的措施: 在生产过程中,主要矛盾是如何稳定产品的质量问题,搞好

物理冶金法多晶硅的成本分析与技术壁垒

陈朝**,罗学涛 Chen Chao , Luo Xuetao (厦门大学物理系、材料系,Xiamen University) **E-mail :cchen@https://www.wendangku.net/doc/187139523.html, ____________________________ *获福建省重大专项/专题(2007ZH0005-2)资助

?一、光伏产业的关键在于降低成本?二、物理冶金法简介 ?三、物理冶金法的成本分析 ?四、物理冶金法的技术壁垒 ?五、当前物理冶金法多晶硅的质量?六、对发展我国物理冶金法的建议

一、光伏产业的关键 在于降低成本 Key problem is reduce cost for PV domain.

?Lack of energy sources,serious pollution in the World,

?光伏发电的优点: 清洁,无机械运动,无污染,轻便,有阳光处就可用,能量回收期短,长寿命。 ?光伏发电的各种应用: (1)并网发电:小电站,屋顶工程; (2)离网发电:移动通讯电源、手机直放站电源 PV-LED(光伏-发光二极管)系统: 电压、电流、功率、直流、安全等方面两者匹配最好!(庭园灯、夜景灯、路灯、交通指挥系统、灯塔、长久广告牌、夜景工程、照明等)可能成为光伏应用的亮点。(3)建筑一体化

?光伏发电一次性投入高,但使用寿命长(10~20年)电池:3-4$/Wp;模组:比电池高0.65$/Wp 光伏电价约是风力电价3倍,常规电价的9倍。 ?发展光伏产业的关键: 除了各国政府推出鼓励性政策外, 须大大降低原料成本(约占60%)和电池制备成本!?如果太阳电池成本降低到~1$/Wp, 则可风力发电相当,光伏产业就不需要政府的优惠政策而进入市场。?如果太阳电池成本降低到~0.3$/Wp, 则可火力发电相当,光伏发电就可进入千家万户。 ?所以,在保证质量的前提下,低成本是光伏产业发展的必经之路!

多晶硅生产工艺流程定稿版

多晶硅生产工艺流程 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

多晶硅生产工艺流程(简介) -------------------------来自于网络收集 多晶硅生产工艺流程,多晶硅最主要的工艺包括,三氯氢硅合成、四氯化硅的热氢化(有的采用氯氢化),精馏,还原,尾气回收,还有一些小的主项,制氢、氯化氢合成、废气废液的处理、硅棒的整理等等。 主要反应包括:Si+HCl---SiHCl3+H2(三氯氢硅合成);SiCl4+H2---SiHCl3+HCl(热氢化);SiHCl3+H2---SiCl4+HCl+Si(还原)多晶硅是由硅纯度较低的冶金级硅提炼而来,由于各多晶硅生产工厂所用主辅原料不尽相同,因此生产工艺技术不同;进而对应的多晶硅产品技术经济指标、产品质量指标、用途、产品检测方法、过程安全等方面也存在差异,各有技术特点和技术秘密,总的来说,目前国际上多晶硅生产主要的传统工艺有:改良西门子法、硅烷法和流化床法。改良西门子法是目前主流的生产方法,采用此方法生产的多晶硅约占多晶硅全球总产量的85%。但这种提炼技术的核心工艺仅仅掌握在美、德、日等7家主要硅料厂商手中。这些公司的产品占全球多晶硅总产量的90%,它们形成的企业联盟实行技术封锁,严禁技术转让。短期内产业化技术垄断封锁的局面不会改变。 西门子改良法生产工艺如下: 这种方法的优点是节能降耗显着、成本低、质量好、采用综合利用技术,对环境不产生污染,具有明显的竞争优势。改良西门子工艺法生产多晶硅所用设备主要有:氯化氢合成炉,三氯氢硅沸腾床加压合成炉,三氯氢硅水解凝胶处理系统,三氯氢硅粗馏、精馏塔提纯系统,硅芯炉,节电还原炉,磷检炉,硅棒切断机,腐蚀、清洗、干燥、包装系统装置,还原尾气干法回收装置;其他包括分析、检测仪器,控制仪表,热能转换站,压缩空气站,循环水站,变配电站,净化厂房等。 (1)石英砂在电弧炉中冶炼提纯到98%并生成工业硅, 其化学反应SiO2+C→Si+CO2↑

多晶硅制备及工艺

多晶硅制备及工艺 蒋超 材料与化工学院 材料1103班 【摘要】工业硅是制造多晶硅的原料,它由石英砂(二氧化硅)在电弧炉中用碳还原而 成。化学提纯制备高纯硅的方法有很多,其中SiHCl3 氢还原法具有产量大、质量高、成本低等优点,是目前国内外制取高纯硅的主要方法。硅烷法可有效地除去杂质硼和其他金属杂质,无腐蚀性、不需要还原剂、分解温度低和收率高,所以是个有前途的方法。下面介绍SiHCl3 氢还原法(改良西门子法)和硅烷法。 【关键词】改良西门子法硅烷法高纯硅 改良西门子法 1955年,西门子公司成功开发了利用氢气还原三氯硅烷(SiHCl3)在硅芯发热体上沉积硅的工艺技术,并于1957年开始了工业规模的生产,这就是通常所说的西门子法。 在西门子法工艺的基础上,通过增加还原尾气干法回收系统、SiCl4氢化工艺,实现了闭路循环,于是形成了改良西门子法——闭环式SiHCl3氢还原法。 改良西门子法的生产流程是利用氯气和氢气合成HCl(或外购HCl),HCl和冶金硅粉在一定温度下合成SiHCl3,分离精馏提纯后的SiHCl3进入氢还原炉被氢气还原,通过化学气相沉积反应生产高纯多晶硅。具体生产工艺流程见图1。 改良西门子法包括五个主要环节:SiHCl3合成、SiHCl3精馏提纯、SiHCl3的氢还原、尾气的回收和SiCl4的氢化分离。该方法通过采用大型还原炉,降低了单位产品的能耗。通过采用SiCl4氢化和尾气干法回收工艺,明显降低了原辅材料的消耗。 图1:改良西门子法生产工艺流程图

改良西门子法制备的多晶硅纯度高,安全性好,沉积速率为8~10μm/min,一次通过的转换效率为5%~20%,相比硅烷法、流化床法,其沉积速率与转换效率是最高的。沉积温度为1100℃,仅次于SiCl4(1200℃),所以电耗也较高,为120 kWh/kg(还原电耗)。改良西门子法生产多晶硅属于高能耗的产业,其中电力成本约占总成本的70%左右。SiHCl3还原时一般不生产硅粉,有利于连续操作。该法制备的多晶硅还具有价格比较低、可同时满足直拉和区熔要求的优点。因此是目前生产多晶硅最为成熟、投资风险最小、最容易扩建的工艺,国内外现有的多晶硅厂大多采用此法生产SOG硅与EG硅,所生产的多晶硅占当今世界总产量的70~80%。 硅烷法 1956年,英国标准电讯实验所成功研发出了硅烷(SiH4)热分解制备多晶硅的方法,即通常所说的硅烷法。1959年,日本的石冢研究所也同样成功地开发出了该方法。后来,美国联合碳化合物公司采用歧化法制备SiH4,并综合上述工艺且加以改进,便诞生了生产多晶硅的新硅烷法。 硅烷法以氟硅酸、钠、铝、氢气为主要原辅材料,通过SiCl4氢化法、硅合金分解法、氢化物还原法、硅的直接氢化法等方法制取SiH4,然后将SiH4气提纯后通过SiH4热分解生产纯度较高的棒状多晶硅。硅烷法与改良西门子法接近,只是中间产品不同:改良西门子法的中间产品是SiHCl3;而硅烷法的中间产品是SiH4. 图2:硅烷法生产工艺流程图 硅烷法存在成本高、硅烷易爆炸、安全性低的缺点;另外整个过程的总转换效率为0.3,转换效率低;整个过程要反复加热和冷却,耗能高;SiH4分解时容易在气相成核,所以在反应室内生成硅的粉尘,损失达10%~20%,使硅烷法沉积速率(3~8μm/min)仅为西门子法

高纯硅制备的化学原理

高纯硅制备的化学原理(1) 高纯硅的制备一般首先由硅石(SiO2)制得工业硅(粗硅),再制成高纯的多晶硅,最后拉制成半导体材料硅单晶。 工业上是用硅石(SiO2)和焦炭以一定比例混合,在电炉中加热至 1600~1800℃而制得纯度为95%~99%的粗硅,其反应如下:SiO2+2C=Si+2CO 粗硅中一般含有铁、铝、碳、硼、磷、铜等杂质,这些杂质多以硅化构成硅酸盐的形式存在,为了进一步提高工业粗硅的纯度,可采用酸浸洗法,使杂质大部分溶解(有少数的碳化硅不溶)。其生产工艺过程是:将粗硅粉碎后,依次用盐酸、王水、(HF+H2SO4)混合酸处理,最后用蒸馏水洗至中性,烘干后可得含量为99.9%的工业粗硅。 高纯多晶硅的制备方法很多,据布完全统计有十几种,但所有的方法都是从工业硅(或称硅铁,因为含铁较多)开始,首先制取既易提纯又易分解(即还原)的含硅的中间化合物如SiCl4、SiHCl3、SiH4等,再使这些中间化合物提纯、分解或还原成高纯度的多晶硅,其工艺流程大致如图1: 目前我国制备高纯硅多晶硅主要采用三氯氢硅氢还原法、硅烷热解法和四氯化硅氢还原法。一般说来,由于三氯氢硅还原法具有一定优点,目前比较广泛的被应用。此外,由于SiH4具有易提纯的特点,因此硅烷热分解法是制备高纯硅的很有发展潜力的方法。下面我们就分别介绍上述三种方法制备高纯硅的化学原 理。 1. 三氯氢硅还原法 (1)三氯氢硅的合成 第一步:由硅石制取粗硅硅石(SiO2)和适量的焦炭混合,并在电炉内加热至1600~1800℃ 可制得纯度为95%~99%的粗硅。其反应式如下: SiO2+3C=SiC+2CO(g)↑

多晶硅的用途与生产工艺简介

多晶硅产品 的用途与生产工艺简介 黎展荣编写 2008-03-15 多晶硅产品的用途与生产工艺简介 讲课提纲: 一、多晶硅产品的用途 二、国内外多晶硅生产情况与市场分析 三、多晶硅生产方法 四、多晶硅生产的主要特点 五、多晶硅生产的主要工艺过程 讲课想要达到的目的: 通过介绍,希望达到以下几点目的: 1,了解半导体多晶硅有关基本概念与有关名词,为今后进一步学习、交流与提高打下基础; 2,了解多晶硅的主要用途与国内外多晶硅的生产和市场情况,热爱多晶硅事业与行业; 3,了解多晶硅生产方法和多晶硅生产的主要特点,加深对多晶硅生产工艺流程的初步认识; 4,了解公司3000吨/年多晶硅项目的主要工艺过程、工厂的概况、规模、车间工序的相互关联,有利于今后工作的开展。 一、多晶硅产品的用途 在讲多晶硅的用途前,我们先讲一讲半导体多晶硅的有关概念和有关名词。 1,什么是多晶硅? 我们所说的多晶硅是半导体级多晶硅,或太阳能级多晶硅,它主要是用工业硅或称冶金硅(纯度98-99%)经氯化合成生产硅氯化物,将硅氯化物精制提纯后得到纯三氯氢硅,再将三氯氢硅用氢进行还原生成有金属光泽的、银灰色的、具有半导体特性产品,称为半导体级多晶硅。 2,什么是半导体? 所谓半导体是界于导体与绝缘体性质之间的一类物质,导体、半导体与绝缘体的大概分别是以电阻率来划分的,见表1。 3,纯度表示法 半导体的纯度表示与一般产品的纯度表示是不一样的,一般产品的纯度是以主体物质的含量多少来表示,半导体的纯度是以杂质含量与主体物质含量之比来表示的。见表2。 表2 纯度表示法

外购的工业硅纯度是百分比,1个九,“1N”,98%,两个九,“2N”,99%,是指扣除测定的杂质元素重量后,其余作为硅的含量(纯度)。如工业硅中Fe≤0.4%,AL≤0.3%,Ca≤0.3%,共≤1%, 则工业硅的纯度是:(100-1)X100%=99% 。 2),半导体纯度 工业硅中的B含量是0.002%(W),则工业硅纯度对硼来说被视为99.998%,即4N(对B来说)。 半导体硅中的B含量,如P型电阻率是3000Ω.Cm时,查曲线图得B的原子数为4.3X1012原子/Cm3,则半导体的纯度是:4.3X1012 /4.99X1022=0.86X10-10=8.6X10-11(~11N,0.086PPba),或(4.3X1012 X10.81) /(4.99X1022X28)=0.33X10-10=0.033PPbw=3.3X10-11(~11N)。 对B来说,从工业硅的4N提高到11N,纯度提高7个数量级(,千万倍)即B杂质含量要降低6个数量级(1000000,百万倍),因此生产半导体级多晶硅是比较困难的。 3),集成电路的元件数 集成电路的元件数的比较,列于表3。集成电路的集成度越高,则对硅材料纯度的要求越高。 表3 集成电路的元件数比较 据报导:日本在6.1X5.8 mm的硅芯片上制出的VLSI有15万6千多个元件 4),硅片(单晶硅)发展迅速 硅片(单晶硅)发展迅速,见表4。 大规模生产中多晶硅直径一般公认为是120-150 mm比较合适,也研发过200-250 mm。 5),多晶硅、单晶硅、硅片与硅外延片 多晶硅:内部硅原子的排列是不规则的杂乱无章的。 单晶硅:内部硅原子的排列是有规则的(生产用原料是多晶硅)。 硅片:单晶硅经滚磨、定向后切成硅片,分磨片与抛光片。 硅外延片:抛光片经清洗处理后用CVD方法在其上再生长一层具有需求电阻率的单晶硅层,目前

硅冶炼方法

主要的多晶硅生产工艺 1、改良西门子法——闭环式三氯氢硅氢还原法 改良西门子法是用氯和氢合成氯化氢(或外购氯化氢),氯化氢和工业硅粉在一定的温度下合成三氯氢硅,然后对三氯氢硅进行分离精馏提纯,提纯后的三氯氢硅在氢还原炉内进行CVD反应生产高纯多晶硅。 国内外现有的多晶硅厂绝大部分采用此法生产电子级与太阳能级多晶硅。2、硅烷法——硅烷热分解法 硅烷(SiH4)是以四氯化硅氢化法、硅合金分解法、氢化物还原法、硅的直接氢化法等方法制取。然后将制得的硅烷气提纯后在热分解炉生产纯度较高的棒状多晶硅。以前只有日本小松掌握此技术,由于发生过严重的爆炸事故后,没有继续扩大生产。但美国Asimi和SGS公司仍采用硅烷气热分解生产纯度较高的电子级多晶硅产品。 3、流化床法 以四氯化硅、氢气、氯化氢和工业硅为原料在流化床内(沸腾床)高温高压下生成三氯氢硅,将三氯氢硅再进一步歧化加氢反应生成二氯二氢硅,继而生成硅烷气。 制得的硅烷气通入加有小颗粒硅粉的流化床反应炉内进行连续热分解反应,生成粒状多晶硅产品。因为在流化床反应炉内参与反应的硅表面积大,生产效率高,电耗低与成本低,适用于大规模生产太阳能级多晶硅。唯一的缺点是安全性差,危险性大。其次是产品纯度不高,但基本能满足太阳能电池生产的使用。 此法是美国联合碳化合物公司早年研究的工艺技术。目前世界上只有美国MEMC公司采用此法生产粒状多晶硅。此法比较适合生产价廉的太阳能级多晶硅。 4、太阳能级多晶硅新工艺技术 除了上述改良西门子法、硅烷热分解法、流化床反应炉法三种方法生产电子级与太阳能级多晶硅以外,还涌现出几种专门生产太阳能级多晶硅新工艺技术。1)冶金法生产太阳能级多晶硅 主要工艺是:选择纯度较好的工业硅(即冶金硅)进行水平区熔单向凝固成硅锭,去除硅锭中金属杂质聚集的部分和外表部分后,进行粗粉碎与清洗,在等离子体融解炉中去除硼杂质,再进行第二次水平区熔单向凝固成硅锭,去除第二次区熔硅锭中金属杂质聚集的部分和外表部分,经粗粉碎与清洗后,在电子束融解炉中去除磷和碳杂质,直接生成太阳能级多晶硅。 2)气液沉积法生产粒状太阳能级多晶硅 主要工艺是:将反应器中的石墨管的温度升高到1500℃,流体三氯氢硅和氢气从石墨管的上部注入,在石墨管内壁1500℃高温处反应生成液体状硅,然后滴入底部,温度回升变成固体粒状的太阳能级多晶硅。 3)重掺硅废料提纯法生产太阳能级多晶硅 主要多晶硅厂及工艺

国内多晶硅厂和国外多晶硅厂的设备技术做些比较.

新光核心技术是俄罗斯技术,也就是改良西门子技术同时还有

如何提炼硅

如何提炼硅&多晶硅生产工艺 纯净的硅(Si)是从自然界中的石英矿石(主要成分二氧化硅)中提取出来的,分几步反应: 1.二氧化硅和炭粉在高温条件下反应,生成粗硅: SiO2+2C==Si(粗)+2CO 2.粗硅和氯气在高温条件下反应生成氯化硅: Si(粗)+2Cl2==SiCl4 3.氯化硅和氢气在高温条件下反应得到纯净硅: SiCl4+2H2==Si(纯)+4HCl 以上是硅的工业制法,在实验室中可以用以下方法制得较纯的硅: 1.将细砂粉(SiO2)和镁粉混合加热,制得粗硅: SiO2+2Mg==2MgO+Si(粗) 2.这些粗硅中往往含有镁,氧化镁和硅化镁,这些杂质可以用盐酸除去: Mg+2HCl==MgCl2+H2 MgO+2HCl==MgCl2+H2O Mg2Si+4HCl==2MgCl2+SiH4 3.过滤,滤渣即为纯硅 (一)国内外多晶硅生产的主要工艺技术 1,改良西门子法——闭环式三氯氢硅氢还原法 改良西门子法是用氯和氢合成氯化氢(或外购氯化氢),氯化氢和工业硅粉在一定的温度下合成三氯氢硅,然后对三氯氢硅进行分离精馏提纯,提纯后的三氯氢硅在氢还原炉内进行CVD反应生产高纯多晶硅。 国内外现有的多晶硅厂绝大部分采用此法生产电子级与太阳能级多晶硅。 2,硅烷法——硅烷热分解法 硅烷(SiH4)是以四氯化硅氢化法、硅合金分解法、氢化物还原法、硅的直接氢化法等方法制取。然后将制得的硅烷气提纯后在热分解炉生产纯度较高的棒状多晶硅。以前只有日本小松掌握此技术,由于发生过严重的爆炸事故后,没有继续扩大生产。但美国Asimi和SGS 公司仍采用硅烷气热分解生产纯度较高的电子级多晶硅产品。 3,流化床法 以四氯化硅、氢气、氯化氢和工业硅为原料在流化床内(沸腾床)高温高压下生成三氯氢硅,将三氯氢硅再进一步歧化加氢反应生成二氯二氢硅,继而生成硅烷气。 制得的硅烷气通入加有小颗粒硅粉的流化床反应炉内进行连续热分解反应,生成粒状多晶硅产品。因为在流化床反应炉内参与反应的硅表面积大,生产效率高,电耗低与成本低,适用于大规模生产太阳能级多晶硅。唯一的缺点是安全性差,危险性大。其次是产品纯度 不高,但基本能满足太阳能电池生产的使用。 此法是美国联合碳化合物公司早年研究的工艺技术。目前世界上只有美国MEMC公司采用此法生产粒状多晶硅。此法比较适合生产价廉的太阳能级多晶硅。 4,太阳能级多晶硅新工艺技术 除了上述改良西门子法、硅烷热分解法、流化床反应炉法三种方法生产电子级与太阳能级多晶硅以外,还涌现出几种专门生产太阳能级多晶硅新工艺技术。 1)冶金法生产太阳能级多晶硅 据资料报导[1]日本川崎制铁公司采用冶金法制得的多晶硅已在世界上最大的太阳能电池厂(SHARP公司)应用,现已形成800吨/年的生产能力,全量供给SHARP公司。 主要工艺是:选择纯度较好的工业硅(即冶金硅)进行水平区熔单向凝固成硅锭,去除硅锭

相关文档