文档库 最新最全的文档下载
当前位置:文档库 › 第一章光的电磁理论基础

第一章光的电磁理论基础

电磁学答案第1章

第一部分 习题 第一章 静电场基本规律 1.2.1在真空中有两个点电荷,设其中一个所带电量是另一个的四倍,它们个距2510-?米时,相互排斥力为牛顿。问它们相距0.1米时,排斥力是多少两点电荷的电量各为多少 解:设两点电荷中一个所带电量为q ,则另一个为4q : (1) 根据库仑定律:r r q q K F ?22 1 =? 得:21 2221r r F F = (牛顿)) () (4.01010560.12 12 2222112=??==--r r F F (2) 21 2 24r q K F = ∴ 21 9 4221 211109410560.14)()(????±=± =-K r F q =±×710- (库仑) 4q=±×810- (库仑) 1.2.2两个同号点电荷所带电量之和为 Q ,问它们带电量各为多少时,相互作用力最大 解: 设其中一个所带电量为q ,则一个所带电量为 Q-q 。 根据库仑定律知,相互作用力的大小: 2 ) (r q Q q K F -= 求 F 对q 的极值 使0='F 即:0)2(=-q Q r K ∴ Q q 2 1 =。 1.2.3两个点电荷所带电量分别为2q 和q ,相距L ,将第三个点电荷放在何处时,它所受合力为零 解:设第三个点电荷放在如图所示位置是,其受到的合力为零。 图 1.2.3

即: 41πε 2 0x q q = 041 πε )(220x L q q - =2 1x 2)(2x L - 即:0222=-+L xL x 解此方程得: )()21(0距离的是到q q X L x ±-= (1) 当为所求答案。时,0)12(>-=x L x (2) 当不合题意,舍去。时,0)12(<--=x L x 1.2.4在直角坐标系中,在(0,),(0,)的两个位置上分别放有电量为1010q -=(库)的点电荷,在(,0)的位置上放有一电量为810Q -=(库)的点电荷,求Q 所受力的大小和方向(坐标的单位是米) 解:根据库仑定律知: 121 1?r r Q q K F =? )?sin ?(cos 1121 1j i r Q q K αα-=  2 28 1092.01.010 10109+???= --???? ? ?????+-++2 1222122)2.01.0(?1.0)2.01.0(?2.0j i =j i ?100.8?1061.187--?-? 如图所示,其中 2 1 21211 1) (cos y x x += α 2121 211 1) (sin y x y += α 同理:)?sin ?(cos 2222 12j i r Q q K F αα+?=  ? 2281092.01.01010109+???=--×???? ? ?????+-++2 1222122)2.01.0(?1.0)2.01.0(?2.0j i

2009级电磁场理论期末试题-1(A)-题目和答案--房丽丽

课程编号:INF05005 北京理工大学2011-2012学年第一学期 2009级电子类电磁场理论基础期末试题A 卷 班级________ 学号________ 姓名________ 成绩________ 一、简答题(共12分)(2题) 1.请写出无源、线性各向同性、均匀的一般导电(0<σ<∞)媒质中,复麦克斯韦方程组的限定微分形式。 2.请写出谐振腔以TE mnp 模振荡时的谐振条件。并说明m ,n ,p 的物理意义。 二、选择题(每空2分,共20分)(4题)(最好是1题中各选项为同样类型) 1. 在通电流导体(0<σ<∞)内部,静电场( A ),静磁场(B ),恒定电流场(B ),时变电磁场( C )。 A. 恒为零; B. 恒不为零; C.可以为零,也可以不为零; 2. 以下关于全反射和全折射论述不正确的是:( B ) A.理想介质分界面上,平面波由光密介质入射到光疏介质,当入射角大于某一临界角时会发生全反射现象; B.非磁性理想介质分界面上,垂直极化波以某一角度入射时会发生全折射现象; C.在理想介质与理想导体分界面,平面波以任意角度入射均可发生全反射现象; D.理想介质分界面上发生全反射时,在两种介质中电磁场均不为零。 3. 置于空气中半径为a 的导体球附近M 处有一点电荷q ,它与导体球心O 的距离为d(d>a),当导体球接地时,导体球上的感应电荷可用球内区域设置的(D )的镜像电荷代替;当导体球不接地且不带电荷时,导体球上的感应电荷可用(B )的镜像电荷代替; A. 电量为/q qd a '=-,距球心2/d a d '=;以及一个位于球心处,电量为q aq d ''=; B. 电量为/q qa d '=-,距球心2/d a d '=;以及一个位于球心处,电量为q aq d ''=; C. 电量为/q qd a '=-,距球心2/d a d '=; D. 电量为/q qa d '=-,距球心2/d a d '=; 4.时变电磁场满足如下边界条件:两种理想介质分界面上,( C );两种一般导电介质(0<σ<∞)分界面上,(A );理想介质与理想导体分界面上,( D )。 A. 存在s ρ,不存在s J ; B. 不存在s ρ,存在s J ; C. 不存在s ρ和s J ; D. 存在s ρ和s J ; 三、(12分)如图所示,一个平行板电容 器,极板沿x 方向长度为L ,沿y 方向宽 度为W ,板间距离为z 0。板间部分填充 一段长度为d 的介电常数为ε1的电介质,如两极板间电位差为U ,求:(1)两极板 间的电场强度;(2)电容器储能;(3)电 介质所受到的静电力。

2011级电磁场理论期末试题带详细答案

课程编号:INF05005 北京理工大学2013-2014学年第一学期 2011级电子类电磁场理论基础期末试题B 卷 班级________ 学号________ 姓名________ 成绩________ 一、简答题(12分) 1.请写出无源媒质中瞬时麦克斯韦方程组积分形式的限定形式。(4分) 答:媒质中无源,则0su J =,0ρ= ()l s E H dl E ds t ?εσ??? ?=+??????? ?? ()l s H E dl ds t ?μ??=-?? ? =0s E ds ε?? =0s H ds μ?? (评分标准:每式各1分) 2.请写出理想导体表面外侧时变电磁场的边界条件。(4分) 答:? ??==?00?t E E n , ?? ?==?s n s D D n ρρ ?, ???==?00 ?n B B n , ? ? ?==?s t s J H J H n ? 3.请利用动态矢量磁位A 和动态电位U 分别表示磁感应强度B 和电场E ;并简要叙述引入A 和U 的依据条件。(4分) 答:B A =??,A E U t ?=-?- ?; 引入A 的依据为:0B ??=,也就是对无散场可以引入上述磁矢位;引入U 的依 据为:0A E t ?? ???+= ????,也就是对无旋场,可以引入势函数。 二、选择题(共20分)(4题) 1. 以?z 为正方向传播的电磁波为例,将其电场分解为x ,y 两个方向的分量:(,)cos()x xm x E z t E t kz ωφ=-+和(,)sin()y ym y E z t E t kz ωφ=-+。判断以下各项中电 磁波的极化形式:线极化波为( B );右旋圆极化波为( C )。(4分)

工程光学习题参考答案第十章 光的电磁理论基础

第十章 光的电磁理论基础 解:(1)平面电磁波cos[2()]E A t c πν?=-+ 对应有14 62,10,,3102 A Hz m π ν?λ-=== =?。 (2)波传播方向沿z 轴,电矢量振动方向为y 轴。 (3)B E → → 与垂直,传播方向相同,∴0 By Bz == 814610[210()] z Bx CEy t π π===??-+ 解:(1)215 cos[2()]10cos[10()]0.65E A t t c c πν?π=-+=- ∴15 14 210510v Hz πνπν=?=? 72/2/0.65 3.910n k c m λππ-===? (2)8 714310 1.543.910510 n c c n v λν-?====??? 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5, 若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。 解:光程变化为 (1)0.005n h mm ?= -= 相位变化为)(202500 10005.026 rad πππλδ=??= ? = 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光 的电场强度的大小。假设太阳光发出波长为600nm λ=的单色光。 解:∵2201 2 I cA ε= = ∴1 320 2()10/I A v m c ε= 5. 写出平面波8 100exp{[(234)1610]}E i x y z t =++-?的传播方向上的单位矢量0k 。

解:∵ exp[()]E A i k r t ω=- x y z k r k x k y k z ?=?+?+? 0000000000 2,3,4234x y z x y z k k k k k x k y k z x y z k x y z ===∴=?+?+?=++=+ 6. 一束线偏振光以45度角从空气入射到玻璃的界面,线偏振光的电矢量垂直于入射面,试 求反射系数和透射系数。设玻璃折射率为1.5。 解:由折射定律 1 2211221122111122sin sin cos 1.5cos cos 0.3034cos cos 22cos 0.6966cos cos s s n n n r n n n t n n θθθθθθθθθθ= =∴=--∴==-+===+ 7. 太阳光(自然光)以60度角入射到窗玻璃(n=1.5)上,试求太阳光的透射比。 解: 22 2221 2 1112222221 22 111212sin sin 212111.54cos 4sin cos 30.8231cos sin () 2 cos 4sin cos 0.998cos sin ()cos ()() 0.91 2 s p s p n n ocs n n n n θθθθθθτθθθθθθτθθθθθτττ==∴=??= ?==+=?=+-+∴= = 8. 光波以入射角1θ从折射率为1n 介质入射到折射率为2n 的介质,在两介质的表面上发生反

工程光学习题解答第九章_光的电磁理论基础

第九 章 光的电磁理论基础 1. 一个平面电磁波可以表示为14 0,2cos[210()],02 x y z z E E t E c π π==?-+ =,求(1)该 电磁波的频率、波长、振幅和原点的初相位?(2)拨的传播方向和电矢量的振动方向?(3)相应的磁场B的表达式? 解:(1)平面电磁波cos[2()]z E A t c πν?=-+ 对应有14 62,10,,3102 A Hz m π ν?λ-=== =?。 (2)波传播方向沿z 轴,电矢量振动方向为y 轴。 (3)B E → → 与垂直,传播方向相同,∴0By Bz == 814610[210()]2 z Bx CEy t c π π===??-+ 2. 在玻璃中传播的一个线偏振光可以表示215 0,0,10cos 10()0.65y z x z E E E t c π===-,试求(1)光的频率和波长;(2)玻璃的折射率。 解:(1)215 cos[2()]10cos[10( )]0.65z z E A t t c c πν?π=-+=- ∴15 14 210510v Hz πνπν=?=? 72/2/0.65 3.910n k c m λππ-===? (2)8 714310 1.543.910510 n c c n v λν-?====??? 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5, 若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。 解:光程变化为 (1)0.005n h mm ?=-= 相位变化为)(202500 10005.026 rad πππλδ=??= ? = 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光 的电场强度的大小。假设太阳光发出波长为600nm λ=的单色光。 解:∵2201 2 I cA ε= = ∴1 32 2()10/I A v m c ε= 5. 写出平面波8 100exp{[(234)1610]}E i x y z t =++-?的传播方向上的单位矢量0k 。

电磁学第一章静电场 (1)

第二篇 电磁学 第一章 静电场 1-1 解:设正方形的边长为a ,则点电荷Q 所受的电场力分别为 2 12 01 42Q F a πε= ; 232 01 4Qq F F a πε== ; 由于作用在Q 上的力为零,故 2 122 00012cos 4542Q F F a πε==== 从上式可知Q 与q 的关系为 Q =- (带异种电荷) 1-2 解:沿细棒方向建立坐标系,中点为坐标原点O ,距离坐标原点x 处取一线元d x ,带 电量为d d q q x L = 可看做点电荷,它到点电荷0q 的距离为r ,故两点电荷之间的作用力为 0022200d 1 d d 44q q q q x F L r x a πεπε= = + 整个细棒与点电荷0q 的作用力为 ? -+=22 2 2004L L a x dx L q q F πε 根据对称性可知沿x 轴库仑力的分量0=x F 。

沿y 轴库仑力的分量为 L y F == ? 1-3 解:将正的试探电荷0q 放在点)1P -处,根据库仑定律可得试探电荷受到的库仑力为 r e q Q F 4410101πε-= j q Q F y 1 410202πε= 将1F 分解在,x y 方向上有?=30cos 11F F x ,?-=30cos 11F F y 故点)1P -处的场强为 12100 y y x F F F E i j q q += + ,即 j i j Q Q i Q E 6.90149.381645.023160 2101+-=+-=πεπε 大小为E == C N /7.9014 方向为与x 轴正向夹角为?且0043.06 .80146 .38tan -=- =? 1-4 解:(1)沿棒长方向建立坐标,A 为坐标原点。设棒的带电量为q ,在棒上距坐 标原点x 处取线元d x ,带电量为d d q q x L =,则其在距棒B 端为a 处激发的电

物理光学第一章答案

第4章 光的电磁理论 1、计算由下式表示的平面波电矢量的振动方向、传播方向、相位速度、振幅、频率、波长,并求解该平面波所处介质的折射率,同时证明该平面波的横波性,该平面波是何种偏振态?(其中x 和y 分别为x 和y 方向上的单位矢量,式中所有数值均为国际单位制表示) ( )) 8223exp 610E x y i y t ??=- +++?? ? 答案: 由题意得到 ) ) 88 2exp 610610x y i y t i y t E E ???=-??? ? ?? ?=++?+??+?? 所以电矢量的振动方向为13 2O x y =- +,为线偏振态。 x 和y 方向的波数分别为)1x k m -=和() 11y k m -= ,所以平面波传播方向为 312 P x y =- -,总波数为()12k m -===。 ()4V m = 角频率为()8610rad s ω=?,所以频率为()83 102Hz ωυππ = =? 波长为()8831010c m s m Hz λπυπ ?== =? 相位速度为()88 1 6103102rad s v m s k m ω -?===? 该平面波所处介质的折射率为883101310c m s n v m s ?== =? 振动方向1322O x y =- +和传播方向3122 P x y =+的内积为

111102222???-?=-+= ? ????? 所以振动方向与传播方向垂直,平面波的横波性得证。 2、已知单色平面光波的频率为1410Hz υ=,在0z =平面上相位线性增加的情况如图所示,求空间频率x f 、y f 、z f 。 答案: 单色平面光波的波长814 310310c m s m Hz λμυ?===,空间频率61 11103 f m λ-==?。 从图中可以看到x 和y 方向上的波长为8x m λμ=、5y m λμ=,所以x 和y 方向上的空间频率()5111 1.25108x x f m m λμ-= = =?、() 5111 2105y y f m m λμ-===?。 由关系式2222x y z f f f f =++得到()512.3554910z f m -=≈?。 3、设一单色平面光波的频率为1410Hz υ=,振幅为1V m 。0t =时,在xOy 面(0z =)上的相位分布如图所示:等相位线与x 轴垂直(即与y 轴平行),0?=的等相位线坐标为5x m μ=-,?随x 线性增加,x 每增加4m μ,相位增加2π。

高等电磁场理论.

高等电磁场理论 教学目的:光学、电子科学与技术和信息与通讯工程等专业研究生的理论基础课。内容提要: 第一章电磁场理论基本方程 第一节麦克斯韦方程 第二节物质的电磁特性 第三节边界条件与辐射条件 第四节波动方程 第五节辅助位函数极其方程 第六节赫兹矢量 第七节电磁能量和能流 第二章基本原理和定理 第一节亥姆霍兹定理 第二节唯一性定理 第三节镜像原理 第四节等效原理 第五节感应原理 第六节巴比涅原理 第七节互易原理 第三章基本波函数 第一节标量波函数 第二节平面波、柱面波和球面波用标量基本波函数展开 第三节理想导电圆柱对平面波的散射 第四节理想导电圆柱对柱面波的散射 第五节理想导电劈对柱面波的散射 第六节理想导电圆筒上的孔隙辐射 第七节理想导电圆球对平面波的散射 第八节理想导电圆球对柱面波的散射 第九节分层介质中的波 第十节矢量波函数

第四章波动方程的积分解 第一节非齐次标量亥姆霍兹方程的积分解第二节非齐次矢量亥姆霍兹方程的积分解第三节辐射场与辐射矢量 第四节口径辐射场 第五节电场与磁场积分方程 第五章格林函数 第一节标量格林函数 第二节用镜像法标量格林函数 第三节标量格林函数的本征函数展开法 第四节标量格林函数的傅里叶变换解法 第五节并矢与并矢函数 第六节自由空间的并矢格林函数 第七节有界空间的并矢格林函数 第八节用镜像法建立半空间的并矢格林函数第九节并矢格林函数的本征函数展开 第六章导行电磁波 第一节规则波导中的场和参量 第二节模式的正交性 第三节规则波导中的能量和功率 第四节常用规则波导举例 第五节规则波导的一般分析 第六节波导的损耗 第七节波导的激励 第八节纵截面电模和磁模 第九节部分介质填充的矩形波导 第十节微带传输线 第十一节耦合微带线 第十二节介质波导 第十三节波导和微带不连续性的近似分析第十四节其它微波毫米波传输线简介

光的电磁理论习题

光的电磁理论习题

第四章 光的电磁波理论 4-1计算由8(22 3)exp (3610)i x y t ?? =-+++????? E i 表示的平 面波电矢量的振动方向、传播方向、相位速度、振幅、频率、波长。 解:由题意:) 81063(2t y x i e E x ?++-= ) 81063(32t y x i e E y ?++= ∴3 -=x y E E ∴振动方向为:j i 3+ - 由平面波电矢量的表达式: 3 =x k 1=y k ∴传播方向为: j i +3 平面电磁波的相位速度为光速: 8 103?=c m/s 振幅:4 )32()2(222 200 =+-=+=oy x E E E V/m 频率: 8810321062?=?==π ππωf Hz 波长:πλ==f c m 4-2 一列平面光波从A 点传到B 点,今在AB 之间插入一透明薄片,薄片的厚度mm h 2.0=,折射率n =1.5。假定光波的波长为550 =λ nm ,试计算 插入薄片前后B 点光程和相位的变化。 解:设AB 两点间的距离为d ,未插入薄片时光

束经过的光程为:d d n l ==01 插入薄片后光束经过的光程为:h n d nh h d n l )1()(0 2 -+=+-= ∴光程差为:mm h n l l 1.02.05.0)1(12 =?=-=-=? 则相位差为:π π λπδ6.3631.010 550226 =??= ?=- 4-3 试确定下列各组光波表示式所代表的偏振态: (1)) sin(0kz t E E x -=ω,) cos(0kz t E E y -=ω (2))cos(0kz t E E x -=ω,) 4/cos(0πω+-=kz t E E y (3)) sin(0kz t E E x -=ω,) sin(0kz t E E x --=ω 解:(1)∵) 2cos()sin(00π ωω- -=-=kz t E kz t E E x ∴2 π ?? ?= -=x y ∴ 为右旋圆偏振光。 (2)4 π ?? ?= -=x y ∴ 为右旋椭圆偏振光,椭圆长轴沿y =x (3)0 =-=x y ??? ∴ 为线偏振光,振动方向沿y =-x

工程光学习题解答 第十章 光的电磁理论基础

第十章 光的电磁理论基础 1. 一个平面电磁波可以表示为14 0,2cos[210()],02 x y z z E E t E c π π==?-+ =,求(1)该 电磁波的频率、波长、振幅和原点的初相位?(2)拨的传播方向和电矢量的振动方向?(3)相应的磁场B的表达式? 解:(1)平面电磁波cos[2()]z E A t c πν?=-+ 对应有14 62,10,,3102 A Hz m π ν?λ-=== =?。 (2)波传播方向沿z 轴,电矢量振动方向为y 轴。 (3)B E → → 与垂直,传播方向相同,∴0 By Bz == 814610[210()]2 z Bx CEy t c π π===??-+ 2. 在玻璃中传播的一个线偏振光可以表示2 15 0,0,10cos 10()0.65y z x z E E E t c π===-,试求(1)光的频率和波长;(2)玻璃的折射率。 解:(1)215 cos[2()]10cos[10()]0.65z z E A t t c c πν?π=-+=- ∴15 14 210510v Hz πνπν=?=? 72/2/0.65 3.910n k c m λππ-===? (2)8 714310 1.543.910510 n c c n v λν-?====??? 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5, 若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。 解:光程变化为 (1)0.005n h mm ?=-= 相位变化为)(202500 10005.026 rad πππλδ=??= ? = 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光 的电场强度的大小。假设太阳光发出波长为600nm λ=的单色光。 解:∵2201 2 I cA ε= = ∴1 320 2()10/I A v m c ε= 5. 写出平面波8 100exp{[(234)1610]}E i x y z t =++-?的传播方向上的单位矢量0k 。

电磁学第一章汇总

四川师范大学教案电磁学物理与电子工程学院 物理与电子工程学院

注:教案按授课章数填写,每一章均应填写一份。重复班授课可不另填写教案。教学内容须另加附页。 绪论 一、研究对象及目的、手段

电磁学是研究电磁现象的规律的科学。 研究对象: 电磁现象(电磁场) 目的: 通过对现象的研究,揭示电磁场的基本规律及本质。 手段: 以实验定律为基础,导出电磁场的基本规律。 在电磁学中,有三大基本实验定律: 库仑定律: 电荷激发电场的规律,是电磁学历史上第一个定量的规律,是整个电磁学的基础 (电荷→电场) 毕奥-萨伐尔定律: 电流元产生磁场的规律(电→磁) 法拉第电磁感应定律: 变化的磁场产生电场的规律(磁→电) 二、本书结构 ??????? ? ? ??? ?? ?? ??????????????????)介质中()真空中(磁场电流在其周围激发磁场 交流电路,电路又分直流电路和电流流过的路径是电路动就要形成电流,):电荷产生定向的流、电流及电路()电磁感应(、导体和介质中观察者是静止的产生电场的电荷相对于与电荷有关真空中静电场)电磁场(75846)32(, (1)9 第一章 静电场的基本规律 一、静电场 相对于观察者(惯性系)为静止的电荷所产生的电场。 二、描述电场的(两个重要)物理量 ???)(位电势电场强度都是空间位置的函数? ? ? ?????代数量算术量标量点函数矢量点函数

三、描述静电场基本性质的规律 场强迭加原理:说明场具有迭加性,几个电磁场可以同时占据同一个几何空间; 高斯定理:说明静电场是有源场,激发电场的电荷就是“源”; 环路定理:说明静电场是有势场,静电场力作功与路径无关。 §1.1 电荷 一、电荷是物质的一种基本属性 用丝绸或毛皮摩擦过的玻璃棒、硬橡胶棒、石英等都能吸引轻小物体,这表明它们在摩擦后进入一种特别的状态。我们把处于这种状态的物体叫做带电体,并说它们带有电荷。 自然界中的电荷只有两种: 用丝绸摩擦过的玻璃棒所带的电荷命名为正电荷 用毛皮摩擦过的硬橡胶棒所带的电荷命名为负电荷 在这里要注意几个概念的区别和联系: 带电体:处于带电状态的物体; 电荷:是指带电体的一种属性(和质量是一个相当的物理量) 电量:是电荷的定量测度,正电荷的电量以正值表示,负电荷的电量以负值表示。 二、电荷的基本性质 1、对偶性:自然界中只有两种电荷(正电荷、负电荷),它是物质对称性的一种表现形式。 2、量子性:一切物体所带的电荷都是分立的,是以一个一个不连续的量值出现的,这种现象叫做电荷的量子化。物体所带电荷都是基元电荷的整数倍。基元电荷也叫电荷量子,它就是一个电子所带的电荷,用e表示,且e=1.602*10-19库仑。 应注意(指出):基元电荷太小,宏观带电物体所带基元电荷的数目非常巨大,因此,电荷的量子化表现不出来。所以,在经典电磁学范围内,不考虑电荷的量子化,而把宏观带电物体所带电荷视为连续分布。 3、电荷之间有相互作用: 同种电荷相互排斥,异种电荷相互吸引。当异种电荷在一起时,它们的效应有互相抵消的作用。正负电荷完全抵消的状态叫中和。 4、电荷守恒定律: 电荷既不能产生,也不能消失,只是由一个物体转移到另一个物体,或者从物体的这一部分转

光子与经典电磁理论

光子与经典电磁理论 何谓光子 光子是传递电磁相互作用的基本粒子,是一种规范玻色子。 光子是电磁辐射的载体,而在量子场论中光子被认为是电磁相互作用的媒介子。与大多数基本粒子(如电子和夸克)相比,光子的静止质量为零,这意味着其在真空中的传播速度是光速。与其他量子一样,光子具有波粒二象性:光子能够表现出经典波的折射、干涉、衍射等性质(关于光子的波动性是经典电磁理论描述的电磁波的波动还是量子力学描述的几率波的波动这一问题请参考下文波粒二象性和不确定性原理);而光子的粒子性则表现为和物质相互作用时不像经典的波那样可以传递任意值的能量,光子只能传递量子化的能量,即:这里是普朗克常数,是光波的频率。对可见光而言,单个光子携带的能量约为4×10-19焦耳,这样大小的能量足以激发起眼睛上感光细胞的一个分子,从而引起视觉。除能量以外,光子还具有动量和偏振态,不过由于有量子力学定律的制约,单个光子没有确定的动量或偏振态,而只存在测量其位置、动量或偏振时得到对应本征值的几率。 光子的概念是爱因斯坦在1905年至1917年间提出的[,当时被普遍接受的关于光是电磁波的经典电磁理论无法解释光电效应等实验现象。相对于当时的其他半经典理论在麦克斯韦方程的框架下将物质吸收和发射光的能量量子化,爱因斯坦首先提出光本身就是量子化的,这种光量子(英文light quantum,德文das Lichtquant)被称作光子。这一概念的形成带动了实验和理论物理学在多个领域的巨大进展,例如激光、玻色-爱因斯坦凝聚、量子场论、量子力学的统计诠释、量子光学和量子计算等。根据粒子物理的标准模型,光子是所有电场和磁场的产生原因,而它们本身的存在,则是满足物理定律在时空内每一点具有特定对称性要求的结果。光子的内秉属性,例如质量、电荷、自旋等,则是由规范对称性所决定的。 光子的概念也应用到物理学外的其他领域当中,如光化学、双光子激发显微技术,以及分子间距的测量等。在当代相关研究中,光子是研究量子计算机的基本元素,也在复杂的光通信技术,例如量子密码学等领域有重要的研究价值。

工程光学习题解答第九章-光的电磁理论基础

工程光学习题解答第九章-光的电磁理论基础

————————————————————————————————作者:————————————————————————————————日期:

第九 章 光的电磁理论基础 1. 一个平面电磁波可以表示为14 0,2cos[210()],02 x y z z E E t E c π π==?-+ =,求(1)该 电磁波的频率、波长、振幅和原点的初相位?(2)拨的传播方向和电矢量的振动方向?(3)相应的磁场B的表达式? 解:(1)平面电磁波cos[2()]z E A t c πν?=-+ 对应有14 62,10,,3102 A Hz m π ν?λ-=== =?。 (2)波传播方向沿z 轴,电矢量振动方向为y 轴。 (3)B E → → 与垂直,传播方向相同,∴0By Bz == 814610[210()]2 z Bx Ey CEy t c π μεπ===??-+ 2. 在玻璃中传播的一个线偏振光可以表示215 0,0,10cos 10()0.65y z x z E E E t c π===-,试求(1)光的频率和波长;(2)玻璃的折射率。 解:(1)215 cos[2()]10cos[10( )]0.65z z E A t t c c πν?π=-+=- ∴15 14 210510v Hz πνπν=?=? 72/2/0.65 3.910n k c m λππ-===? (2)8 714310 1.543.910510 n c c n v λν-?====??? 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5, 若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。 解:光程变化为 (1)0.005n h mm ?=-= 相位变化为)(202500 10005.026 rad πππλδ=??= ? = 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光 的电场强度的大小。假设太阳光发出波长为600nm λ=的单色光。 解:∵22011 22 I A cA εεμ= = ∴1 32 2()10/I A v m c ε= 5. 写出平面波8 100exp{[(234)1610]}E i x y z t =++-?的传播方向上的单位矢量0k 。

电磁场理论发展史

电磁场理论 在法拉弟发现电磁感应现象的那一年,英国诞生了一位伟大的科学家--麦克斯韦,他因创立电磁场理论而成为十九世纪最伟大的物理学家.麦克斯韦创立电磁场理论的思路与方法大致如下. 一、历史的前奏 在麦克斯韦以前,解释电磁相互作用有两种相互对立的观点.一种是超距作用学说.即在研究两个电荷之间相互作用力时,忽略中介空间的作用,电荷会超越空间距离而互相作用,库仑、韦伯、安培等人都是主张用超距作用学说来解释电磁相互作用的.这种学说当时拥有数学基础.另一种是媒递作用学说.认为空间有一种能传递电力的媒质(称作以太)存在,电荷间通过媒质互相作用.法拉弟通过实验揭露了空间媒质的重要作用,他认为在空间媒质中充满了电力线,即通过场来传递,但媒递作用学说还没有数学基础,不易被人接受.也使其发展受到了阻碍.麦克斯韦功绩就在于建立了电磁场理论并促进了它的发展.他中学时曾在数学和诗歌比赛中获第一名,这显示了他的数学才华与丰富的想象力方面的潜力.他年轻时曾读过法拉弟的《电学实验研究》,对法拉弟的物理思想(如电力线和场的思想)十分推崇,同时也发现了它的弱点.麦克斯韦对电磁相互作用的超距观点早就表示"不能接受即时传播的思想",在法拉弟的物理思想影响下,他决心"为法拉弟的场概念提供数学方法的基础". 二、麦克斯韦创立电磁场理论 麦克斯韦创立电磁场理论可分为三个阶段: 第一阶段,统一已知电磁定律 麦克斯韦于1856年发表了他的第一篇论文《论法拉弟的力线》,在这篇文章中,他试图用数学语言精确地表述法拉弟的力线概念,他采用数学推论与物理类比相结合的方法,以假想流体的力学模型去模拟电磁现象.他说:"借助于这种类比,我试图以一种方便的和易于处理的形式为研究电现象提供必要的数学观念"他的目标是想据此统一已知的电磁学定律.麦克斯韦为达到此目的,他运用了"建立力学模型--引出基本公式--进行数学引伸推导"的解决科学问题的思路和方法. 第一步,建立力学模型 首先运用类比方法,麦克斯韦把电磁现象和力学现象做了类比,认为可以建立一种不可压缩流体的力学模型来模拟电磁现象.这种流体模型为:一是没有惯性,因而也就没有质量;二是不可压缩;三是可以从无产生,又可消失.显然这是一种假设理想流体.麦克斯韦在这篇文章中写道:"我企图把一个在空间画力线的清楚概念摆在一个几何学家的面前,并利用一个流体的流线的概念,说明如何画出这些流线来""力线的切线方向就是电场力的方向,力线的密度表示电场力的大小".他企图阐明电力线和电力线所在空间之间的几何关系.他还试图通过类比凭借已知的力学公式推导出电磁学公式,寻求这两种不同的现象在数学形式上的类似. 第二步,引出基本公式 早在1842年,W·汤姆逊就曾把拉普拉斯的势函数的二阶微分方程,普遍用于热、电和磁的运动,建立了这三种相似现象的数学联系.1847年,他又在不可压缩流体的流线连续性基础上,论述了电磁现象和流体力学现象的共同性.麦克斯韦正是吸收了W·汤姆逊这种类比方法,把它发展成为研究各种力线的重要工具.例如麦克斯韦把电学中的势等效于流

工程光学习题解答光的电磁理论基础

第九 章 光的电磁理论基础 1. 一个平面电磁波可以表示为140,2cos[210()],02 x y z z E E t E c π π==?-+=, 求(1)该电磁波的频率、波长、振幅和原点的初相位(2)拨的传播方向和电矢量的振动方向(3)相应的磁场B的表达式 解:(1)平面电磁波cos[2()]z E A t c πν?=-+ 对应有1462,10,,3102 A Hz m π ν?λ-=== =?。 (2)波传播方向沿z 轴,电矢量振动方向为y 轴。 (3)B E → → 与垂直,传播方向相同,∴0By Bz == 814610[210()]2 z Bx CEy t c π π===??-+ 2. 在玻璃中传播的一个线偏振光可以表示 2150,0,10cos 10( )0.65y z x z E E E t c π===-,试求(1)光的频率和波长; (2)玻璃的折射率。 解:(1)215cos[2()]10cos[10()]0.65z z E A t t c c πν?π=-+=- ∴1514210510v Hz πνπν=?=? 72/2/0.65 3.910n k c m λππ-===? (2)8 714 310 1.543.910510 n c c n v λν-?====??? 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度 0.01h mm =,折射率n=,若光波的波长为500nm λ=,试计算透明薄片插入前 后所引起的光程和相位的变化。 解:光程变化为 (1)0.005n h mm ?=-= 相位变化为)(202500 10005.026 rad πππλδ=??= ? =

电磁学第一章总结

电磁学第一章总结 §1 -1 电场 电场强度 一.基本电现象 1、电荷 表示物体所带电荷多少的物理量叫作电荷量,简称电荷,用q 或Q 表示,单位是库仑(C)。基本电荷:电子电量的绝对值C e 1910602.1-?= 2、电荷守恒定律 3、电荷相对论不变性 在相对运动的参考系中测得带电体的电量相等,即电荷的电量与它的运动状态无关。 二.库仑定律 1、点电荷 当带电体的大小、形状 与带电体间的距离相比可以忽略时,就可把带电体视为一个带电的几何点。 2、库仑定律 三、 电场力的叠加 静电力的叠加原理 作用于某电荷上的总静电力等于其它点电荷单独存在时作用于该电荷的静电力的矢量和。 四、电场 (1)电场对位于其中的任何带电体都有电场力的作用 (2)带电体在电场中运动,电场力要作功——电场具有能量 五、 电场强度 试验电荷带正电,满足 线度足够地小——场点确定;电量充分地小——不至于使源电荷重新分布。 场强是矢量,其大小等于单位电荷所受电场力,方向为正电荷的受力方向。是反映电场强弱和方向性的物理量,是场点位置的函数。单位:N/C 或 V/m 六、电场强度叠加原理及场强的计算 1. 点电荷的电场 2. 电场叠加原理与点电荷系的电场 设真空中有n 个点电荷q1,q2,…qn ,则P 点的总场强为 3.电偶极子延长线和中垂线上一点的场强 如图已知:q 、-q 、 r >>l , 电偶极矩 3.连续分布带电体的场强 ①无限长均匀带电直线的场强 如图 E E y ,0,0>>λ E E y ,0,0<<λ②均匀带电圆环轴线上任一点 x 已知: q 、a 、 x 。 0 P E ? =F d F 204r r qdq F d πε=连续分1o 2211221r r q q k F F =-=2 290 100.941-??≈=C m N k πε q F E = 定义: q P E 0202141i i i i i i n r r q E E E E E πε∑=∑=+++=l q p =

光的电磁理论 习题集

第一章 光的电磁理论 1.1 一个平面电磁波可以表示成 E x =0,E y =2cos[2?π1014 2π+??? ??-t c z ],E z =0,问: (1) 该电磁波的频率、波长、振幅原点的初位相为多少?(2)波的传播和电矢量的振动取哪个方向?(3)与电场想联系的磁场B 的表达式如何写? 1.2 一个线偏振光在玻璃中传播时可以表示为 E y =0,E z =0,E x =102cos π1015 ??? ??-t c z 65.0。 试求 (1)光的频率;(2)波长;(3)玻璃的折射率。 1.3 证明E =A cos(kz-ωt)是波动方程(1-22)的解。 1.4 一种机械波的波函数为y=Acos2π??? ? ?-T t x λ,其中A=20mm ,T=12s ,λ=20mm 试画出t=3s 时的波形曲线。从x=0画到x=40mm 。 1.5 在与一平行光束垂直的方向上插入一透明薄片,起厚度=0.01,折射率=1.5,若光波的波长=500,试计算插入玻璃片前后光束光程和位相的变化。 1.6 地球表面每平方米接受到来自太阳光的功率约为1.33kW ,试计算投射到地球表面的太阳光的电场强度。假设可以把太阳光看作是波长为λ=600nm 的单色光。 1.7 在离无线电发射机10km 远处飞行的一架飞机,收到功率密度为10μW/m 2的信号。试计算(1)在飞机上来自此信号的电场强度大小;(2)相应的磁感应强度大小;(3)发射机的总功率。假设发射机各向同性地辐射,且不考虑地球表面反射的影响。 1.8 沿空间k 方向传播的平面波可以表示为 E=100exp{i[(2x+3y+4z)-16?108t]} 试求k 方向的单位矢量k 。 1.9 球面电磁波的电场是r 和t 的函数,其中r 是一定点到波源的距离,t 是时间。(1)写出与球面波相应的波动方程的形式;(2)求出波动方程的解。 1.10 证明柱面波的振幅与柱面波到波源的距离的平方根成反比。 1.11 一束线偏振光在450角下入射到空气-玻璃界面,线偏振光的电矢量垂直于入射面,假设玻璃的折射率为1.5,求反射系数和透射系数。 1.12 假设窗玻璃的折射率为1.5,斜照的太阳光(自然光)的入射角为600,求太阳光的透射率。 1.13 利用菲涅耳公式证明(1)R S +T S =1;(2)R P +T P =1 1.14 入射到两种不同介质界面上的线偏振光的电矢量与入射面成α角,若电矢量垂直于入射面的分波(s 波)和电矢量平行于入射面的分波(p 波)的反射率分别为R S 和R P ,试写出总反射率R 的表达式。 1.15 证明光束在布儒斯特角下入射到平行平面玻璃片的上表面时,在下表面的入射角也是布儒斯特角。 1.16 光波在折射率分别为n 1和n 2的二介质界面上反射和折射,当入射角为θ1时(折射角为θ2,如图a ),s 波和p 波的反射系数分别为r s 和r p ,透射系数分别为t s 和t p 。若光波反过来从n 2介质入射到n 1介质,且当入射角为θ2时(折射角为θ1,如图b ),s 波和p 波的反射系数分别为r s /和r p /,透射系数分别为t s /和t p /。试利用菲涅耳公式证明(1)r s =-r s / (2)r p =-r p / (3)t s t s /=T s (4)t p t p /=T p .

第一章 光波的电磁理论

第一章 光波的电磁理论 一、平面简谐电磁波 1、可见光的波谱范围(λ?)在 到 范围内;介质的折射率n 为: 2、单色平面波表达式为: 复数形式的表达式为 ,其振幅为 、复振幅为 、位相为 。 波矢(k )表示 ,等位相面为: 。 3、[]0exp ()E E i t kz ω=--与[]0exp ()E E i t kz ω=-+描述的是 b 传播的光波。 A. 沿正z 方向 B. 沿负z 方向 C. 分别沿正 z 和负z 方向 D. 分别沿负z 和正z 方向 4、真空中传播的平面电磁波为????? ???? ??-?+???? ????? ??-?=t c z j t c z i E 1515102cos 102cos ππ ,则其偏振态为 、传播方向为 、频率为 、波长为 振幅为 。 5、发散(会聚)球面波的波函数 、复数表达式 、复振幅 6、空间频率、空间周期 7、H E k 右手螺旋定则 光波在真空中传播,波矢方向如图所示,已知其电场的方向平行于纸面向上,相应磁场的

方向一定 。 8、坡印廷矢量、光强度 光波的能流密度S 正比于 。 A .或 B . 或 C .,与无关 D .,与E 无关 二、光波:自然光、部分偏振光、偏振光 1、偏振光的分类及偏振度 ①光波按其偏振特性可为 、 、 ;光矢量在某一方向的振动比其它方向占优势的光称为 ,光矢量呈现无规则振动的光称为 ; ②完全偏振光的种类有 、 、 ; ③线偏振光的偏振度(P )为 、自然光的偏振度(P )为 。部分偏振光的偏振度为 。 2、琼斯矢量 ①一种偏振态的光有 种偏振矩阵。(1 2 多种 3) 左旋圆偏振光的琼斯矢量为 。右旋圆偏振光的琼斯矢量为 。沿着x 振动的线偏振光的琼斯矢量为 。 ②对左旋圆偏振光, 。 A. 、都左旋 B. 左旋、右旋 C. 右旋、左旋 D. 、都右旋 ③琼斯矩阵 表示的是 。 A .线偏振光 B .左旋椭圆偏振光 C .右旋椭圆偏振光 D .圆偏振光 E H 2 E 2 H 2 E H 2 H E → H → E → H → E → H → E → H → 2 i ?? ?? ??

相关文档
相关文档 最新文档