文档库 最新最全的文档下载
当前位置:文档库 › 伺服调试步骤及注意点

伺服调试步骤及注意点

伺服调试步骤及注意点
伺服调试步骤及注意点

伺服调试步骤和注意点

用途:介绍FANUC系统伺服调试的方法及步骤

文件使用的限制以及注意事项等

文件版本更新的纪录

修订日期版本号文件名称修订内容修订人2009年11月 1.0 伺服调试步骤和注意点首次发布徐少华

目录

1、伺服调试概述 (2)

1.1伺服优化的对象 (2)

1.2伺服优化的方法 (2)

2、手动一键设定one shot (3)

2.1、one shot功能介绍 (3)

2.2、参数设定支持画面的调用 (3)

2.3手动加入滤波器的方法 (5)

2.4伺服增益的自动调整 (5)

2.5典型加工形状的测试 (7)

3、伺服软件自动调整导航器 (8)

3.1自动调整导航器介绍 (8)

3.2导航器调整具体步骤: (9)

4、servo guide手动调整 (14)

4.1伺服三个环(电流环、速度环、位置环)调整 (14)

4.1.1、电流环的调整:设定HRV控制模式 (14)

4.1.2、速度环的调整:合理提高速度环增益(100%~600%) (16)

4.1.3、位置环的调整:一步到位设定位置环增益为4000~8000 (27)

4.2加减速时间常数的调整 (28)

4.2.1加减速时间常数的分类 (28)

4.2.2一般控制(不使用高速高精度功能)加减速时间常数的调整 (30)

4.2.3高速高精度模式下时间常数的确认 (34)

5、典型加工形状调整、检测 (38)

5.1圆的调整 (38)

5.1.1圆度的调整 (38)

5.1.2圆大小调整 (39)

5.1.3圆象限的调整 (39)

5.2方的调整 (50)

5.3、1/4圆弧的调整 (52)

1、伺服调试概述

1.1伺服优化的对象

先来看一下FANUC系统的伺服控制原理框图,从上图,我们可以看出:系统从里至外分为“电流控制(电流环)”、“速度控制(速度环)”、“位置控制(位置环)”。那么伺服调试的第一重要方面就是三个环在高响应、高刚性下的“和谐”工作,即为:合理提高伺服的增益,又必须保证伺服系统不出现振荡。

另一个方面,伺服的加减速也需要根据实际机械进行调整,保证最合理的加减速,实现伺服的高速、高精度。

由此引出伺服优化的两个方面:

伺服三个环的调整:保证在高响应、高刚性下稳定工作

加减速的调整:包括切削(插补前、插补后切削时间常数)、快速时间常数

1.2伺服优化的方法

对于以上伺服优化的两个方面,分别可以采用手动一键设定one shot、自动调整导航器、软件调整。

● 手动一键设定one shot:主要是利用系统参数设定支持页面,调用已经集成到系统内部的参数,

该参数为FANUC工程师,根据现场经验总结的相关高速高精度参数,大部分的数控机床按此设定都可以大幅度提高加工精度。

● 伺服软件自动调整导航器:在SERVO GUIDE调试软件,利用调整导航器进行在线调整,

SERVO GUIDE从CNC获取波形进行分析,自动确定最佳参数,最大程度减少调试人员对于伺服功

能的理解,通过自动调整,可以很快取得和机械特性相关的最优化参数。

● 伺服软件servo guide手动调整:利用伺服调试软件,按照伺服控制环节、加减速等进行一一

优化,测试波形,独立分析,人为确认最忧参数设定,该方法要求调试人员对于伺服功能、相关加减速等有较清晰的理解。

2、手动一键设定one shot

2.1、one shot功能介绍

在没有伺服调试软件的情况下,利用系统参数设定支援画面,进行ONE SHOT功能一键设定,由FANUC经验丰富的技术人员总结的高速·高精度参数集成到系统,只要按两次软件键就可以完成所有相关参数的设定。

大部分的数控机床按此设定都可以大幅度提高加工精度,操作简单、快捷。

该方法主要针对:MTB现场没有SERVO GUIDE调试软件,且对于高速高精度相关参数不熟悉时,即可采用此方法进行伺服的相关设定。

2.2、参数设定支持画面的调用

利用上述两项功能菜单,将FANUC工程师根据现场经验总结的高速高精度参数进行调用,完成参数的自动设定

通过上述两项的参数初始化,适合一般数控机床的电机参数设定就可以完成。

2.3手动加入滤波器的方法

如果在参数的自动设定后,伺服轴出现振动,可以采用以下方法手动进行共振点的去除。

手动加入滤波器的方法为:

手动将如下参数设定初始值,

NO2360:300―――机床高频共振点,预估300HZ

NO2361:80 ―――带宽

NO2362:10 ―――阻尼

在初始振动点300的基础上,JOG方式移动该轴,如果仍有震动,则将NO2360每次加50设定,再次重新进行上述测试,直至轴运行稳定为止。

注:系统供使用的滤波器共有4组,如果系统存在多个共振点时,需要组合使用滤波器时,可以使用余下的三组,其对于参数如下:

(N2113,N2177,N2359) (N2363,N2364,N2365) (N2366,N2367,N2368)

2.4伺服增益的自动调整

在消除振动后,利用系统伺服增益调整功能,完成伺服电机增益的自动调整,进一步提高伺服增益。

2.5典型加工形状的测试

圆弧的加工对比为例子:

【未进行one short设定前】【one short设定后】

F2000mm/min F2000mm/min

通过上述系统的参数设定画面,即可简单、快速的完成伺服参数优化和设定。

3、伺服软件自动调整导航器

3.1自动调整导航器介绍

如果有SERVO GUIDE 调试工具,而对于伺服调试的相关参数又不十分熟悉,在此情况下,可以利用SERVO GUIDE的[调整向导...]菜单,利用导航器进行自动调整,减少对于具体参数的设定,伺服软件自动对于测试波形进行分析处理,快速完成对于伺服的调试。

在主工作条上按下[调整向导...]按钮后 , 将显示下面的对话框。

调整导航器的各项菜单功能如下:

伺服轴

初始增益调整 这是速度换增益的自动调整。通过目标轴的移动及测量频率响应,可以确定增益。如果还未调整过增益,请首先选择该项目。

滤波器调整 这是HRV滤波器的自动调整(消除共振滤波器)。在由初始增益调整确定的增益情况下,通过检测共振频率确定最佳的滤波器设定。

增益调整 应用上述滤波器后,该向导可以通过自动调整尽量提高增益值。 象限突起调

用来决定自动象限突起补偿功能的参数。

调整快速移动时间常数 进行快速移动时间常数的调整。通过在移动轴的同时测量最大力矩来调整时间常数。

高速高精度调整

该向导可以很容易启动高速高精度的调整。仅通过一个滑动条就可以很容易的确定与高速高精度有关的多个参数。使用带有1/4 圆弧的方形程序进行调整效果的

观察。

3.2导航器调整具体步骤:

第一步:参数初始化,完成基本伺服参数和高精度参数的设定 [0i-D:用“参数设定支援”画面的一下子设定]

在参数设定支援画面的“伺服参数”画面和“高精度设定”画面,按“GR 初期”软件键,设定FANUC 推荐的初始参数。

[31i-A:用SERVO GUIDE 调整导航器的初始设定] FS31i-A 没有参数设定支援画面。

用SERVO GUIDE 调整导航器的“高速&高精度调整(伺服)”菜单设定参数初始化。

选择此选项,然后选择对应的轴和试验程序就显示下面画面。

在这个画面上,按“使用滚动条”后,把滚动条滚到最右边“精读优先”,然后按“下一步”按钮,此时将滚动条对应的参数自动传送至系统侧。

显示下面画面后,按“测定”按钮,测试数据。在这个阶段还没进行增益等的调整,所以不需要看波形确认精度。按“下一步”结束这个菜单。

注:0i-D系统在“参数设定支援画面”可完成设定基本参数,所以不需要使用SERVO GUIDE。

第二步:使用SRVO GUIDE进行滤波器调整:消除振动,为提高伺服增益准备

启动SERVO GUIDE的调整导航器,进行滤波器调整。

进行滤波器自动调整的过程中,测试频率特性。

系统根据测试的频率响应,自动进行分析,并推荐设定共振点频率参数。

注:如果没有进行有效的滤波,将共振点消除,伺服增益的提高后,将会出现振动,故:进行有效滤波主要为后面进一步提高增益准备。

第三步:使用SRVO GUIDE进行增益调整:合理提高速度环增益值和倍率设定值 启动SERVO GUIDE的调整导航器,进行增益调整。

增益调整有两种,即:“初始增益调整”和“增益调整”,首次测试使用“初始增益调整”。

第四步:使用SRVO GUIDE调整导航器进行快速进给加减速时间常数调整

如果机床没有特定快速进给加减速时间常数要求,设定为120msec,确认TCMD没有不饱和即可,所谓的饱和即指:该轴快速运行时的加速电流在100%以内。

如果没有要求使用“快速进给时的前馈功能”的话,不采用钟型加减速。

如果要求尽量快的加减速的话,启动SERVO GUIDE的调整导航器,进行调整加减速时间常数。

另外,第三步时设定的增益是稍微高的增益,所以调整加减速时间常数时需要确认有没有发生异常

声音或者振动。

先时间常数长的状态下测量数据,然后适用自动调整后的状态下测量数据。最后设定软件推荐的加减速时间常数设定值。

第五步:使用SERVO GUIDE 调整导航器进行背隙加速调整

机床进给轴的传动过程中,由于反向间隙、摩擦等因素,造成电机在反向运转时产生滞后,电机的

反转滞后造成加工的延时,此时,在加工圆弧象限过渡处将会留下象限凸起的条纹。

对于这部分的滞后,可以利用SERVO GUIDE调整导航器的背隙加速调整功能,进行自动调整,自

动调整的过程,主要是自学习的过程,最终完成最佳参数的设定。

说明:

关于导航器各项菜单功能操作的相关步骤,请参考伺服调试软件的帮助文件。

F300 F1500F3000

F300 F1500F3000

5μm/格

象限突起补偿自动调整后

象限突起补偿自动调整前

4、servo guide 手动调整

4.1伺服三个环(电流环、速度环、位置环)调整

4.1.1、电流环的调整:设定HRV 控制模式

电流环作为系统最里面一环,是整个伺服系统的底层数据采样环节,离散电流环采样周期越短,伺服刚性就可以提高的越高,伺服的控制性能就会越好。FANUC 伺服系统的电流环采用HRV(High Response Vector)控制,随着硬件性能和软件版本的不断升级,目前可用的HRV 控制有如下: 伺服HRV 控制体系:

伺服HRV 控制

设定哪种HRV 控制模式,和伺服的版本有关

a. 设定HRV1控制模式

·伺服版本9096系列A(01)版或更新版本 ·在参数NO2020设定小于250的电机代码

·电机代码自动初始化完成后,参数NO2004#2、#1、#0:1、1、0;表明HRV1生效。 b. 设定HRV2控制模式

·伺服版本90B0系列A(01)版或更新版本 ·在参数NO2020设定大于250的电机代码

电流环调整

速度环调整

位置环调整

控制伺服HRV1控制(250μs ) 控制伺服HRV2控制(125μs ) 控制伺服HRV3控制(62.5μs ) 控制伺服HRV4控制(31.25μs )

·电机代码自动初始化完成后,参数NO2004#2、#1、#0:0、1、1;表明HRV2生效。

c.设定HRV3控制模式

·伺服版本90B0系列A(01)版或更新版本。

·在参数NO2020设定大于250的电机代码。

·在参数NO2013#0:1,NO2334:150(HRV3电流控制和电流环增益倍率);NO2335:100%~400%。

·电机代码自动初始化完成后,参数NO2004#2、#1、#0:0、1、1;系统诊断DGN700#1:1,表明HRV3设定生效。

注意点:

1、FANUC系统对于αi/βi伺服电机都配有两个电机代码,针对HRV1的电机代码小于250,针对HRV2

的电机代码大于250。设定相应的电机代码后,将参数NO2000设定为00000000,将系统断电、上电,系统将自动加载对应HRV参数,常用电机的电机代码请参见简明联机调试手册。

2、由于0i-C/0i-mate-C的伺服版本为90B5,故0i-C/0i-mate-C系统都可以使用HRV1、HRV2、HRV3,

加上电流环采用周期越短,系统的控制精度将越高,故建议设定电机代码为大于250电机代码,使用HRV2控制,此外,0i-D系统最少使用HRV2,否则出现ALM456报警。

3、使用HRV3需要在HRV2的基础上,故使用HRV3需要将电机代码设为大于250,HRV3设定生效,

系统诊断DGN700#1:1自动变为1,如果没有自动变为,需要将FSSB进行重新设定,将1902#1设定为0,进行FSSB重新自动检测;往往HRV3需要和高速高精度功能同时使用:

O0001

N1 G05.1 Q1;

N2 G05.4 Q1;

加工程序;

N10 G05.4 Q0;

N20 G05.1 Q0;

M30;

4、电流环在设定好HRV控制后,对于电流环的其他参数非特殊使用请勿修改。

4.1.2、速度环的调整:合理提高速度环增益(100%~600%)

4.1.2.1 辅助功能设定

速度环是连接电流环和位置环的中间环节,合理提高速度环增益是整个伺服调试的核心。在调试速度环增益之前,需要设定一些辅助参数,以保证速度环增益可以调整至更高。如下画面:

在设定完上述辅助参数后,还需搞清楚一个问题:FANUC 系统有位置环增益参数NO1825

,但是没

速度环增益

切削时速度增益倍率

有速度环增益,速度环增益和参数N02021(负载惯量比)有如下关系:

速度环增益(%)=(1+负载惯量比/256)×100%

故:在手动调试时,注意修改参数NO2021时有如上公式对应关系。除去修改NO2021参数,在系统的伺服调整画面也可以直接修改速度环增益,如下画面:

在了解上述细节后,下面进入调试速度环的阶段,调试的方法为:一边逐步提高速度环增益,一边有效检验机床的振动临界点。

4.1.2.2 频率响应的测量和分析

在验证伺服轴在初始速度环增益(一般初时值150%)下稳定工作后,利用伺服调试软件,点击图形→工具→频率响应→测试测定出频率响应如下:

曲线1和10dB线之间的余量Δ

10dB以下

高频振荡点低于-20dB

曲线1

响应带宽

曲线2

18

静压式液位计使用说明书

Endress+Hauser Shanghai Instrumentation Co.Ltd.静压式液位计DB5x 系列 一、原理介绍 DB5x 系列液位计是根据液体静压原理所设计的。 P=ρgH P ________压力; ρ________测量液体密度; g ________重力加速度; H ________液体高度。 则测量高度H=P g ρ。若已知液体密度ρ,即可通过测量P 计算出液位H。 二、安装及接线 见图 探头最好安装在固定的管子中,避免探头在测量中晃动,影响测量精度。 三、调试(带FHB 20显示,参见矩阵表〕 1、上电后,可以看到如图显示,其中“V ”及“H ”显示符号及下面的数字表示与操作矩阵相对应的位置。FHB20有四个按钮,分别为“+”、“-”、“V ”、“H ”。其中“+”“-”为修改参数键;“V ““H ”为选择矩阵位置键。 2、解锁。按“V “”H “键,将矩阵设定在”V9H9“位置,用“+”“-”输入“333”,按“V ”或“H ”键确认,即解锁。同时按“V ”“H ”键,将回到回到“V0H0”位置。 3、液位测量的设置。按“V ”和”H “键到”V3H0“位置,按”+“”-“将参数改为”1“(液位)。将“V3H1“设为”0“(单位米),”V3H2=液体密度(调试前测量得,如水为1.000)。 V0H2=测量最大高度(一般为探头的长度)。V0H3=0(电流输出允许小于4mA);V0H3=1(电流输出不允许小于4mA)。V0H4=5(此数字越大,电流输出越稳定)。V0H5=0(电流输出4mA 所对应的高度值,单位与V3H1一致)。V0H6=(电流输出20mA 所对应的高度值,单位与V3H1一致)。V0H7=0(当仪表测量出现错误或故障时电流输出2.2mA);1(当仪表测量出现错误或故障时电流输出22.0mA);2(当仪表测量出现错误或故障时电流输出保持错误或故障前的电流,〔建议使用〕)。 4、压力测量的调试 V3H0=3;V3H4=0(mbar)1(bar)2(mH 2O);V3H5=0(℃)1( )。 V0H5=(电流输出4mA 所对应的压力值,单位与V3H4一致)。 V0H6=(电流输出20mA 所对应的压力值,单位与V3H4一致)。 5、偏压的消除

台达位置与扭矩模式伺服电机文档(一类特选)

台达ASD-B2伺服ECMA-C20401GS电机控制文档一.扭矩模式 1.说明:此扭矩模式是用于外部控制器控制输入给伺服器的电 压来实现电机扭矩大小的输出。 2.接线:将控制器控制的能输出可变电压的引脚直接连接到 CN1的18引脚,将控制器的GND与伺服器CN1的19脚连 接 3.参数设定: P2-15,P2-16,P2-17都设定为0,消除初始状态下AL013 的预警状态。 P1-01:03,将电机设定为转矩模式 P1-02:01,速度限制,电机在没有负载的情况下会转很快 P1-07:500,设置电机加减速的时间,减少通电与断电的时 对于轴与外设的冲击 P1-09=设定电机最高转速 P2-12:00,将TCM0设定为0 P2-13:00,将TCM1设定为0 P2-12与P2-13的作用是将扭矩的命令设定为外部电压来控 制。详情见数据手册144页6.4.1 P2-14:14,设定速度,当不设定此项时,电机只有力矩,没有 转速

P1-41:200,表示输入5V模拟电压,达到100%额定转矩 P2-10:01,启动电机 当此时电机不转时,重启伺服器即可。(建议重启) 要关闭电机则将P2-10设定为00,并保存,然后将开关关闭 并重启即可完成电机的关闭。 二.位置模式 1.说明:当前位置模式是通过外部控制器输出的PWM来控制 伺服电机的位置以及速度,其中PWM频率控制电机速度, PWM的个数与P1-44与P1-45的结合控制电机的具体位置。 使用的脉冲输入为开集极NPN设备输入,电源为内部24v 电源。 2.接线:

上图中的白线是控制器的脉冲输出线,用于输出PWM,蓝色线是控制板的GND的连接线,用于控制器与伺服器的共地作用。

液位计说明书

外贴式液位计01000373 13L129-61 使 用 说 明 书

陕西声科电子科技有限公司

1 产品概述 声呐外贴式液位计(以下简称液位计)采用了先进的信号处理技术及高速信号处理芯片,突破了容器壁厚的影响,实现了对密闭容器内液位高度的真正非接触测量。声呐传感器(探头)安装于被测容器外壁的正下方(底部),无需对被测容器开孔、安装简易、不影响生产。可实现对高温、高压密闭容器内的各种有毒物质﹑强酸﹑强碱及各种纯净液体的液位进行精确测量。液位计对液体介质和容器的材质无特殊要求,并采用隔爆设计,满足防爆要求,可广泛使用。 声呐外贴式液位计按照企业标准Q/SK 001-2013制造。 2 工作原理 液位计以专用声呐处理技术为系统内核,实现了超高速的数字信号处理功能。处理后的液位高度数值准确,无需CPU再作分析、比较、判断。CPU获取液位数值后,可送NVRAM存储、送数码显示器显示。此外仪表可输出(4~20)mA标准信号或通过RS-485接口将测量结果输出至计算机(或二次表)。 如图1所示,测量液位时,经过调制过的声波信号从探头发射出去,经过液面反射回来后由探头检测到回波信号。回波信号经过预处理、加工、后处理后直接准确给出时间t,CPU根据数字模型表述关系计算出液面高度。 t H v =α ? ÷ 2 ? H:液位高度 a:修正系数 v:声呐在液体中传播的声速 t:声纳波从发射到返回所用的时间

图1 3性能指标 量程规格:3m、10m、20m、30m、50m。 显示分辨率:1mm 短时间重复性:1mm 测量误差:±%FS,±%FS(罐壁过厚、压力温度不稳可能影响精度)。 迁移量:±10 m 电流输出:4~20mA,最大负载750Ω 通信:RS-485、Hart、Modbus、Ethernet、红外 液位计主机使用环境温度:-40℃~+60℃ 探头使用环境温度:-40℃~+100℃,(可定制宽温探头)。 使用环境湿度:(15%~100%) RH 防爆标志:ExdⅡCT6 外壳防护:IP65、IP67 液位显示:6位OLED显示(单位:m)或6位段式液晶显示(单位:mm)盲区:当液位在盲区或测不出时,则液晶屏会显示“DEAD”。 4 应用条件 4.1 介质纯净度: 液体中不能有密集气泡; 液体中不能有大量悬浮物质,如结晶物等;

伺服电机的调试步骤

伺服电机的调试步骤 1、初始化参数 在接线之前,先初始化参数。在控制卡上:选好控制方式;将PID参数清零;让控制卡上电时默认使能信号关闭;将此状态保存,确保控制卡再次上电时即为此状态。在伺服电机上:设置控制方式;设置使能由外部控制;编码器信号输出的齿轮比;设置控制信号与电机转速的比例关系。一般来说,建议使伺服工作中的最大设计转速对应9V的控制电压。比如,松下是设置1V电压对应的转速,出厂值为500,如果你只准备让电机在1000转以下工作,那么,将这个参数设置为111。 2、接线 将控制卡断电,连接控制卡与伺服之间的信号线。以下的线是必须要接的:控制卡的模拟量输出线、使能信号线、伺服输出的编码器信号线。复查接线没有错误后,电机和控制卡(以及PC)上电。此时电机应该不动,而且可以用外力轻松转动,如果不是这样,检查使能信号的设置与接线。用外力转动电机,检查控制卡是否可以正确检测到电机位置的变化,否则检查编码器信号的接线和设置3、试方向 对于一个闭环控制系统,如果反馈信号的方向不正确,后果肯定是灾难性的。通过控制卡打开伺服的使能信号。这是伺服应该以一个较低的速度转动,这就是传说中的“零漂”。一般控制卡上都会有抑制零漂的指令或参数。使用这个指令或参数,看电机的转速和方向是否可以通过这个指令(参数)控制。如果不能控制,检查模拟量接线及控制方式的参数设置。确认给出正数,电机正转,编码器计数增加;给出负数,电机反转转,编码器计数减小。如果电机带有负载,行程有限,不要采用这种方式。测试不要给过大的电压,建议在1V以下。如果方向不一致,可以修改控制卡或电机上的参数,使其一致。 4、抑制零漂 在闭环控制过程中,零漂的存在会对控制效果有一定的影响,最好将其抑制住。使用控制卡或伺服上抑制零飘的参数,仔细调整,使电机的转速趋近于零。由于零漂本身也有一定的随机性,所以,不必要求电机转速绝对为零。 5、建立闭环控制 再次通过控制卡将伺服使能信号放开,在控制卡上输入一个较小的比例增益,至于多大算较小,这只能凭感觉了,如果实在不放心,就输入控制卡能允许的最小值。将控制卡和伺服的使能信号打开。这时,电机应该已经能够按照运动指令大致做出动作了。 6、调整闭环参数 细调控制参数,确保电机按照控制卡的指令运动,这是必须要做的工作,而这部分工作,更多的是经验,这里只能从略了。

台达位置与扭矩模式伺服电机文档

一.扭矩模式 1.说明:此扭矩模式是用于外部控制器控制输入给伺服器的电 压来实现电机扭矩大小的输出。 2.接线:将控制器控制的能输出可变电压的引脚直接连接到 CN1的18引脚,将控制器的GND与伺服器CN1的19脚连接 3.参数设定: P2-15,P2-16,P2-17都设定为0,消除初始状态下AL013 的预警状态。 P1-01:03,将电机设定为转矩模式 P1-02:01,速度限制,电机在没有负载的情况下会转很快 P1-07:500,设置电机加减速的时间,减少通电与断电的时 对于轴与外设的冲击 P1-09=设定电机最高转速 P2-12:00,将TCM0设定为0 P2-13:00,将TCM1设定为0 P2-12与P2-13的作用是将扭矩的命令设定为外部电压来控 制。详情见数据手册144页设定速度,当不设定此项时,电 机只有力矩,没有转速 P1-41:200,表示输入5V模拟电压,达到100%额定转矩 P2-10:01,启动电机 当此时电机不转时,重启伺服器即可。(建议重启) 要关闭电机则将P2-10设定为00,并保存,然后将开关关闭

并重启即可完成电机的关闭。 二.位置模式 1.说明:当前位置模式是通过外部控制器输出的PWM来控制伺 服电机的位置以及速度,其中PWM频率控制电机速度,PWM 的个数与P1-44与P1-45的结合控制电机的具体位置。使用 的脉冲输入为开集极NPN设备输入,电源为内部24v电源。 2.接线: 上图中的白线是控制器的脉冲输出线,用于输出PWM,蓝色线是控制 板的GND的连接线,用于控制器与伺服器的共地作用。 上图是伺服器CN1的接线,其中褐色线是CN1的41引脚, 其中的PWM信号是控制器的PWM输出的引脚串接一个电阻通 过一个NPN三极管之后连接到CN1的引脚。其中控制器的 pwm输出引脚连接NPN三极管的基极,三极管的发射极连接 CN1 的14脚(COM-),集电极连接到41引脚。35引脚与17 引脚需要短接,CN1的COM-也就是14引脚必须要与控制器 的GND连接,否则电机将不会转动。在位置模式下将伺服电 机的GND(19脚)与控制器的GND单独连接,电机将不会转 动。其他的线的连接方式见数据手册67页C3-1 3.设定: P2-15,P2-16,P2-17都设定为0,消除初始状态下AL013 的预警状态。 P1-00:02,表示脉冲+方向控制方式

雷达液位计调试步骤及总结

E+H雷达液位计基本原理调试步骤总结: 一、原理:雷达液位计是依据时域反射原理(TDR)为基础的雷达液位计,雷达液位计的电磁脉冲以光速沿钢缆或探棒传播,当遇到被测介质表面时,雷达液位计的部分脉冲被反射形成回波并沿相同路径返回到脉冲发射装置,发射装置与被测介质表面的距离同脉冲在其间的传播时间成正比,经计算得出液位高度。 通电后,会出现

此时,按E键选择语言为英语(ENGLISH),接着出现 按E键选择单位为米,之后会出现,即主画面――百分比显示测量值 之后按下E键开始基本参数设置,按E键后出现 BASIC SETUP就是基本设置,此时按E键进入设置的第一项罐形状设置(TANK SHAPE)

DOME CEILING 为拱顶罐,如现场为拱顶罐就选此项(黑框和对勾即表示选中此项,如要换为别的项,只要按“+”“-”号即可;如此时选中了DOME CEILING ,则按E键确认即可存储并进入下一项,下一项为MEDIUM PROPERTY(介质属性) 如为油品之类的,按“+”“-”号换至上图所示位置1.9-4即可,按E确认,再按E进入下一项 此项为过程条件,如为平静表面则选CALM SURFACE,如为一般情况比如罐区储油罐就选STANDARD(标准)即可,按E 确认,再按E进入下一项

此项为空罐高度设定,既上法兰到最低液位的距离 此项为满罐高度设定,既最高液位到最低液位的距离,此数据即为20mA对应值,即最高量程,按设计的最高液位设定即可。 该项即显示出设定完成后的法兰面到液面的高度,即图中的DIST(以米为单位)和测量出的实际液位,即图中的MEAS.V(以百分比显示)。 按E进入下一项 此项无需设定,直接按E即退回主菜单,退回后同时按下“+”

松下伺服故障及原因

一、基本接线 主电源输入采用~220V,从L1、L3接入(实际使用应参照操作手册); 控制电源输入r、t也可直接接~220V; 电机接线见操作手册第22、23页,编码器接线见操作手册第24~26页,切勿接错。 二、试机步骤 1.JOG试机功能 仅按基本接线就可试机; 在数码显示为初始状态‘r 0’下,按‘SET’键,然后连续按‘MODE’键直至数码显示为‘AF-AcL’,然后按上、下键至‘AF-JoG’; 按‘SET’键,显示‘JoG -’:按住‘^’键直至显示‘rEAdy’; 按住‘<’键直至显示‘SrV-on’; 按住‘^’键电机反时针旋转,按‘V’电机顺时针旋转,其转速可由参数Pr57设定。 按‘SET’键结束。 2.内部速度控制方式 COM+(7脚)接+12~24VDC,COM-(41脚)接该直流电源地;SRV-ON(29脚)接COM-; 参数No.53、No.05设置为1:(注此类参数修改后应写入EEPROM,并重新上电) 调节参数No.53,即可使电机转动。参数值即为转速,正值反时针旋转,负值顺时针旋转。 3.位置控制方式 COM+(7脚)接+12~24VDC,COM-(41脚)接该直流电源地;SRV-ON(29脚)接COM-; PLUS1(3脚)、SIGN1(5脚)接脉冲源的电源正极(+5V); PLUS2(4脚)接脉冲信号,SIGN(6脚)接方向信号; 参数No.02设置为0,No42设置为3,No43设置为1; PLUS(4脚)送入脉冲信号,即可使电机转动;改变SIGN2即可改变电机转向。 另外,调整参数No.46、No.4B,可改变电机每转所需的脉冲数(即电子齿轮)。 常见问题解决方法: 1.松下数字式交流伺服系统MHMA 2KW,试机时一上电,电机就振动并有很大的噪声,然后驱动器出现16号报警,该怎么解决? 这种现象一般是由于驱动器的增益设置过高,产生了自激震荡。请调整参数No.1 0、No.11、No.12,适当降低系统增益。(请参考《使用说明书》中关于增益调整的内容) 2.松下交流伺服驱动器上电就出现22号报警,为什么? 22号报警是编码器故障报警,产生的原因一般有: 编码器接线有问题:断线、短路、接错等等,请仔细查对; 电机上的编码器有问题:错位、损坏等,请送修。 3.松下伺服电机在很低的速度运行时,时快时慢,象爬行一样,怎么办? 伺服电机出现低速爬行现象一般是由于系统增益太低引起的,请调整参数No.10、No.11、No.12,适当调整系统增益,或运行驱动器自动增益调整功能。(请参考《使用说明书》中关于增益调整的内容) 4.松下交流伺服系统在位置控制方式下,控制系统输出的是脉冲和方向信号,但不

台达伺服调机步骤简易说明书

台达伺服调机步骤简易说明书 本调机步骤简易说明书主要就配线及调试做一简易说明,因客户使用情况各异,此说明书只做一个调试流程的大概说明,具体细节部分请依实际要求调整。 一:检查确定伺服驱动器及电机是否为所需型号;注意安装环境。(祥见操作手册) 二:配线 (1)周边装置接线图

(2)信号与配线 请根据您所需的控制模式和具体要求功能来配线,不同控制模式的配线是不同的,具体请参照手册3-23至3-26页说明。但请注意, 1.无论是什么控制模式,伺服驱动器均需DC24V电源,您可以让驱动器自已供给此电源(PIN17脚VDD与PIN11脚COM+短接);也可以外加POWER 供电(+24接伺服驱动器PIN11脚COM+,GND接伺服的PIN45,47,49 脚COM-); 2.驱动器均需SERVO ON,如参数没有变动,PIN9脚DI1 SON 信号需导通。您可以根据您的需要让PIN9与PIN45等常时短接或用个开关量来控制它的ON-OFF; 3.如果您没有用到CW,CCW禁止极限和外加急停按扭,则请把PIN 32,PIN31 ,PIN30与PIN45等COM-脚短路。 (3)编码器接线 1.編碼器引出線連接頭規格: 線材選擇請使用附隔離網線的多芯双绞線,而隔離網線要確實與SHIELD端相連接!

2.CN2接头定义: CN2連接器(公)背面接線端 各信號的意義說明如下: 三:参数调整 A . 参数1-01:此参数为控制模式及控制指令输入源设定。请根据您所用的控制模式来 设定。如为位置模式,且指令由端子输入,则请设为00;如为速度模式,则请 设为02。具体设定请见下表: B . 参数1-00: 当您选用位置控制模式且由端子输入指令时(当参数1-01设为00时),此参数才需设 定,其功能为外部脉冲输入型式设定。 Z Y X X 值設定:脈沖型式 其中X=0:AB 相脈沖列(4x ); X=1:正轉脈沖列及逆轉脈沖列(CW CCW 型式)

超声波液位计简明调试方法

超声波液位计(FMU30)简明调试方法 1.接线方式 屏蔽电缆接入仪表后,24V电压接在仪表的+,—上面,屏蔽层接到仪表里面的接地端子。另外,为保持仪表测量的稳定性,仪表外部的接地端子尽量也做一下接地。 2.调试方法 一般来说,超声波液位计的调试需要修改如下几个选项,002(罐体形状),003(介质属性),004(过程条件),005(空罐标定),006(满罐标定) 上电以后,仪表自检,然后变到测量值00, ⑴按E键进入基本设置菜单,首先看到的是002这个选项,显示的是(拱顶罐,水平卧罐,旁通管,,等几个选项),如需更改,按+或者—号键选需要选择的罐型,按E键确定。更改后+,-号键一起按返回上层菜单。 ⑵如不需更改,直接按E键进入下个菜单003。003代表被测量介质的属性,有如下几个选项(未知,液体,固体直径大于4mm,固体直径小于4mm,, 等),根据现场情况进行选择。修改方法同上。 ⑶继续按E键进入004菜单,有如下几个选项(标准,平静液面,带搅拌器,,等)一般工况选择标准。根据实际情况选择。 ⑷继续按E键进入005菜单,这个是需要修改的很重要的一个值。这个值是空罐值。把池底到超声波探头表面的实际距离输入仪表,按+键进入菜单,选中空罐的值,按E键确认修改,+,—用来修改数值,E键确认。 ⑸ +,—号一起按返回005的主目录,继续按E键进入006菜单,这个也是需要修改的值,这个值是满罐值,它表示池底到最高液位的距离,修改方法同空罐值。

基本上,仪表的调试已经完成。 另,如果显示值波动较大,这个在罐子里面的测量可能出现,这个需要做一下回波抑制。在基本设定中,按E键找到051这个菜单,进入后选择(manual,手动),+,—号—起按返回051菜单,继续按E键进入052菜单,输入抑制的距离,这个距离比空罐值要低一点,如果空罐5M的话,建议输入4.8M。+—一起按返回052菜单,继续按E键进入053菜单,选择抑制打开,等超声波自己开始进行回波抑制后,仪表会自动跳回抑制关闭状态,表示回波抑制完成。界面也会跳到008这个菜单,上面显示(测量的距离/测量值)测量距离表示探头表面到液面的距离,测量值表示池底到液面的距离。

松下PLC控制伺服电机实例程序

松下PLC控制伺服电机实例程序 上位机设定伺服电机旋转速度单位为(转/分),伺服电机设定为1000个脉冲转一圈. PLC输出脉冲频率=(速度设定值/6)*100(HZ)。 上位机设定伺服电机行走长度单位为(0.1mm),伺服电机每转一圈的行走长度10mm,伺服电机转一圈需要的脉冲数为1000,故PLC发出一个脉冲的行走长度为0.01mm(一个丝)。 PLC输出脉冲数=长度设定值*10。 上面两点的计算都是在伺服电机参数设定完的基础上得出的。也就是说,在计算PLC发出脉冲频率与脉冲前,必须先根据机械条件,综合考虑精度与速度要求设定好伺服电机的电子齿轮比!大致方法如下: 机械安装结束,伺服电机转动一圈的行走长度已经固定(如上面所说的10mm),设计要求的行走精度为0.1mm(10个丝)。为了保证此精度,一般情况下是让一个脉冲的行走长度低于0.1mm,如设定一个脉冲的行走长度为如上所述的0.01mm,于是电机转一圈所需要脉冲数即为1000个脉冲。此种设定当电机速度要求为1200转/分时,PLC应该发出的脉冲频率为20K。松下PLC的CPU本体可以发脉冲频率为100K,完全可以满足要求。 如果电机转动一圈为100mm,设定一个脉冲行走仍然是0.01mm,电机转一圈所需要脉冲数即为10000个脉冲,电机速度为1200转时所需要脉冲频率就是200K。PLC的CPU本体就不够了。需要加大成本,如增加脉冲输出专用模块等方式。 知道了频率与脉冲数的算法就简单了,只需应用PLC的相应脉冲指令发出脉冲即可,松下PLC的程序图如下:

松下伺服常见问题 一、基本接线 主电源输入采用~220V,从L1、L3接入(实际使用应参照操作手册); 控制电源输入r、t也可直接接~220V; 电机接线见操作手册第22、23页,编码器接线见操作手册第24~26页,切勿接错。 二、试机步骤 1.JOG试机功能 仅按基本接线就可试机; 在数码显示为初始状态‘r 0’下,按‘SET’键,然后连续按‘MODE’键直至数码显示为‘AF-AcL’,然后按上、下键至‘AF-JoG’; 按‘SET’键,显示‘JoG -’:按住‘^’键直至显示‘rEAdy’; 按住‘<’键直至显示‘SrV-on’; 按住‘^’键电机反时针旋转,按‘V’电机顺时针旋转,其转速可由参数Pr57设定。 按‘SET’键结束。 2.内部速度控制方式 COM+(7脚)接+12~24VDC,COM-(41脚)接该直流电源地;SRV-ON(29脚)接COM-; 参数No.53、No.05设置为1:(注此类参数修改后应写入EEPROM,并重新上电)

台达伺服调试经验故障排除

Q1:伺服电机与普通电机有何区别? A1:伺服电机与普通电机最大的区别在于电机转子和反馈装置。伺服电机转子表面贴有强力磁钢片,因此可以通过定子线圈产生的磁场精确控制转子的位置,并且加减速特性远高于普通电机。反馈装置可以精确反馈电机转子位置到伺服驱动器,伺服电机常用的反馈装置有光学编码器、旋转变压器等。 Q2:伺服驱动器输入电源是否可接单相220V ? A2:台达伺服1.5KW(含)以下可接单相/三相220V电源,2.0KW(含)以上只能接三相220V电源。三相电源整流出来的直流波形质量更好,质量不好的直流电源会消耗母线上电容的能量,电机急加减速时电容会对母线充放电来保持母线电压稳定,因此三相电源输入比单相电源输入伺服的特性会好一些,三相电源输入提供的电流也更大。 Q3:伺服驱动器输出到电机的UVW三相是否可以互换? A3:不可以,伺服驱动器到电机UVW的接法是唯一的。普通异步电机输入电源UVW两相互换时电机会反转,事实上伺服电机UVW任意两相互换电机也会反转,但是伺服电机是有反馈装置的,这样就出现正反馈会导致电机飞车。伺服驱动器会检测并防止飞车,因此在UVW

接错线后我们看到的现象是电机以很快的速度转过一个角度然后报警过负载ALE06。 Q4:伺服电机为何要Servo on之后才可以动作? A4:伺服驱动器并不是在通电后就会输出电流到电机,因此电机是处于放松的状态(手可以转动电机轴)。伺服驱动器接收到Servo on信号后会输出电流到电机,让电机处于一种电气保持的状态,此时才可以接收指令去动作,没有收到指令时是不会动作的即使有外力介入(手转不动电机轴),这样伺服电机才能实现精确定位。

伺服液位计

MCG 1500S FI 伺服液位计 MCG 1500SFI伺服液位计可测量液体的液位、界面、 介质密度,并变送介质的温度、压力等参数。 MCG 1500SFI伺服液位计可适用于石油、化工、轻工、 电力等行业的大型高、低压储罐。 MCG 1500SFI伺服液位计可以配合使用MCG 351平均温度计和 MCG 2350平均温度变送器测量并变送储罐多点温度。 MCG 1500SFI伺服液位计使用MCG 2150或MCG2151(PDA)红外手持器调整和标定仪表的参数,下载程序,方便可靠。 MCG 1500SFI伺服液位计可选用MCG 1350罐底显示器在罐底显示液位、温度等数据,并且可用MCG 2150红外手持器在MCG1350上调整和标定仪表参数,避免了经常爬上罐顶的麻烦。 MCG 1500SFI伺服液位计可配接MCG 3200系列现场总线转换器将数据信息传送到DCS系统。 MCG 1500SFI伺服液位计可配接MCG 5101、MCG5102实现无线通讯,将数据信息传送到DCS系统,节省现场线缆。 技术参数 液位测量范围 22m(标准);46m(可选) 液位测量精度 0.8mm 液位分辨率 0.25mm 液位测量重复性 0.8mm 温度测量可选RTD铂电阻温度计和多点平均温度计 温度测量精度 0.3℃ 温度测量分辨率 0.06℃ 密度测量精度 5kg/m3 显示 4行×40字符LCD 通讯 L&J “TANKWAY”总线、M/S总线、RS485(Modbus RTU)、HART、ENRAF、4-20mA等电源 220VAC、110VAC、24VDC、48VDC、20W 波特率 300-9600可设定 雷电保护多级保护 控制点 2点(泵和阀)(0.5A/24VDC) I/O 2个4~20mA输出,3个4~20mA输入 温度介质温度:-100℃~+315℃ 环境温度:-40℃~+85℃ 工作压力大气压(25psig);150psi,300psig(可选) 安装 2″法兰(标准),其他可选 现场接线 4线(两根双绞线)或KVV四芯电缆至MCG3200(L&J总线) 接线口尺寸两个3/4″NPT螺纹 表体材料铝,不锈钢 安全认证 UL / CUL-Explosion Proof Class I , Div.1 Group C&D ,(Group B option) CENELEC/ ATEX II 1/2 G EEx d ⅡB T6 重量铝制11.37kg, 不锈钢26kg

AT100安装调试操作手册 磁致伸缩液位计

AT100磁致伸缩液位/界位变送器安装调试操作手册

目录 1. 概述 (3) 2. 存放 (3) 3. 安装和启动 3.1 接线 (4) 3.2 液位输出标定 (4) 3.2.1 通过按钮标定 (4) 3.2.2 通过LCD设置菜单标定 (4) 3.3 反安装 3.3.1 如果倒置安装 (4) 3.3.2 倒转标定的步骤 (5) 3.4 挑选一个主要变量 (5) 3.5 挑选测量所用的工程单位 (5) 3.6 挑选温度单位 (5) 3.7 温度输出标定 (6) 3.8 液位偏移 (6) 3.9 阻尼 (6) 3.10 跳线设定 (6) 3.11 温度重置 (6) 4. 通信选项 HART协议界面选项 (7) 4.1 4.1.1 用A 268 罗斯蒙特通讯器或等同设备 (7) 4.1.2 用A 265 罗斯蒙特通讯器或等同设备 (7) 4.2 HONEYWELL DE 协议 (7) 4.2.1 协同性和适应等级 (7) 4.2.2 操作模式 (7) 5. 体积计量表 5.1 计量表是如何工作的 (7) 5.2 设定(或重设)计量表 (8) 5.3 设定输入模式(自动或手动) (8) 5.4 设定计量表点 (8) 5.5 计量表用法注意事项 (9) 5.6 存储/载入一个计量表 (9) 5.7 基于体积设定电流输出 (9) 6. 故障处理信息 6.1 确认变送器正确上电 (9) 6.2 确认电流输出稳定 (10) 6.3 起始液位调节 (10) 7. 附录A 7.1 接线图 (11) 7.2 典型回路接线图 (13) LCD操作菜单 (14)

K-TEK AT100变送器在世界范围内广泛应用于过程容器的精确液位测量。高精度和免维护成为选择这种产品的两个重要原因。拥有温度高达427℃和压力达207bar的可选等级。 K-TEK磁致伸缩液位变送器几乎适合所有的应用条件。HART和HONEYWELL DE通讯协议选项使AT100和大多数的控制系统可以更加方便的进行数字连接。内置LCD可以提供4-20mA,百分比和其他工程单位显示。 当用于储罐时,考虑到高精度,低维护和合理的价格,用户乐意在他们的储罐上安装AT100高精度磁致伸缩变送器。由于AT系列具有可以方便地安装到最大23米高罐的能力,所以可以解决几乎所有的液体存储应用问题:一些常用液体包括水,酸液,腐蚀剂,丙烷,氨水,油,燃剂,药剂,废液等。可选的内置20段增量表使AT100可以在卧罐或球罐内提供精确的输出(见体积计量表第4节) K-TEK家族的AT100系列可用于替代浮筒。在动态处理时大多数浮筒液位计都在操作中重复发现如下问题:大多数输出误差是由重力改变,扭力管渗漏,过程介质黏结在扭力管和转换器上产生的。AT100系列可以插入现有的过滤器浮筒或者新的外浮筒精心测量,可以改善上述不足。精度也可以实现巨大的提高。另外,这是一个更新气动过滤变送器的非常方便的办法。 磁致伸缩液位计可以用于界面测量。AT100是目前最好的液位界面测量和控制的技术。AT100可以提供两个独立输出:一,界面;二,总体液位。可以适用于比重差最小为0.02S.G.的情况。常用于油水界面的测量,和其它包括酸罐,丙烷容器,除盐器和污水池等。 利用AT100系列的非接触式测量,AT100可以用做阀门定位器。在阀门尾部粘附着一块磁铁,AT100就置于阀门尾部的旁边。AT100变送器所固有的0.01%的高精度使其可以比其它产品能更好的测量和控制阀门位置。在进行精确控制时不需要重新标定。AT100也可以用做设备定位器。工业设备需要对仪器精确定位。这可以通过磁致伸缩(非接触测量)实现。它应用于许多器具,包括,大门,天窗,风门,液压缸等。K-TEK有按键结构,和4-20MA的输出优势,繁重的设计结构保证了用户简易的安装和长期的使用寿命。 用水槽决定流速的工业应用依靠精确的流速来监控他们的生产过程。许多这样的设备上都安装了许多AT100系列产品,以轮流提供精确的液位测量从而得到流速变化。内置20段增量表使AT100可以适合任何修正或流量表格的需求。(见体积计量表第4节) 最后,AT100适合各种卫生应用,包括生物技术,制药,和食品工业等。 AT100系列变送器的特征包括: 高精度0.01%满量程;简易按键标定;遗忘技术(永不需要重新标定);不受电介质,水蒸气成分,温度压力变化影响。 二、存放 如果需要,应该存放在优于安装条件的环境温度下并置于室内。不要超出以下条件: 温度范围:-40-65.5℃。 湿度:0-100% R.H. 无冷凝 警告:带/SW3选项的变送器,其探头为柔性软缆,外有不蜜蜂的不锈钢护套,当把柔性软缆滩头移出不锈钢护套时,小心不要使探头受潮,并防止水分进入不锈钢护套。

松下伺服电机常见问题及处理办法

. 松下伺服电机常见问题及处理办法 一、基本接线 主电源输入采用~220V,从L1、L3接入(实际使用应参照操作手册); 控制电源输入r、t也可直接接~220V; 电机接线见操作手册第22、23页,编码器接线见操作手册第24~26页,切勿接错。 二、试机步骤 1.JOG试机功能 仅按基本接线就可试机; 在数码显示为初始状态‘r 0'下,按‘SET'键,然后连续按‘MODE'键直至数码显示为‘AF-AcL',然后按上、下键至‘AF-JoG'; 按‘SET'键,显示‘JoG -':按住‘^'键直至显示‘rEAdy'; 按住‘<'键直至显示‘SrV-on'; 按住‘^'键电机反时针旋转,按‘V'电机顺时针旋转,其转速可由参数Pr57设定。 按‘SET'键结束。 2.内部速度控制方式 COM+(7脚)接+12~24VDC,COM-(41脚)接该直流电源地;SRV- ON(29脚)接COM-; 参数No.53、No.05设置为1: (注此类参数修改后应写入EEPROM,并重新上电)调节参数No.53,即可使电机转动。参数值即为转速,正值反时针旋转,负值顺时针旋转。 3.位置控制方式 COM+(7脚)接+12~24VDC,COM-(41脚)接该直流电源地;SRV- ON(29脚)接COM-; PLUS1(3脚)、SIGN1(5脚)接脉冲源的电源正极(+5V); PLUS2(4脚)接脉冲信号,SIGN(6脚)接方向信号; 参数No.02设置为0,No42设置为3,No43设置为1; PLUS(4脚)送入脉冲信号,即可使电机转动;改变SIGN2即可改变电机转

向。 另外,调整参数No.46、No.4B,可改变电机每转所需的脉冲数(即电子齿轮)。常见问题解决方法: '. . 1.松下数字式交流伺服系统MHMA 2KW,试机时一上电,电机就振动并有很大的噪声,然后驱动器出现16号报警,该怎么解决? 这种现象一般是由于驱动器的增益设置过高,产生了自激震荡。请调整参数No.10、No.11、No.12,适当降低系统增益。(请参考《使用说明书》中关于增 益调整的内容) 2.松下交流伺服驱动器上电就出现22号报警,为什么? 22号报警是编码器故障报警,产生的原因一般有: 编码器接线有问题:断线、短路、接错等等,请仔细查对; 电机上的编码器有问题:错位、损坏等,请送修。 3.松下伺服电机在很低的速度运行时,时快时慢,象爬行一样,怎么办? 伺服电机出现低速爬行现象一般是由于系统增益太低引起的,请调整参数No.10、No.11、No.12,适当调整系统增益,或运行驱动器自动增益调整功能。(请参考《使用说明书》中关于增益调整的内容) 4.松下交流伺服系统在位置控制方式下,控制系统输出的是脉冲和方向信号,但不管是正转指令还是反转指令,电机只朝一个方向转,为什么? 松下交流伺服系统在位置控制方式下,可以接收三种控制信号:脉冲/方向、正/反脉冲、A/B正交脉冲。驱动器的出厂设置为A/B正交脉冲(No42为0),请将No42改为3(脉冲/方向信号)。 5.松下交流伺服系统的使用中,能否用伺服-ON作为控制电机脱机的信号,以便直接转动电机轴? 尽管在SRV-ON信号断开时电机能够脱机(处于自由状态),但不要用它来启动

液位自动控制系统设计与调试

课 程 设 计 2016年6月17日

电气信息学院 课程设计任务书 课题名称液位自动控制系统设计与调试 姓名专业班级学号 指导老师沈细群 课程设计时间2016年6月6日~2016年6月17日(第15~16周) 教研室意见同意开题。审核人:汪超林国汉 一.课程设计的性质与目的 本课程设计是自动化专业教学计划中不可缺少的一个综合性教学环节,是实现理论与实践相结合的重要手段。它的主要目的是培养学生综合运用本课程所学知识和技能去分析和解决本课程范围内的一般工程技术问题,建立正确的设计思想,掌握工程设计的一般程序和方法。通过课程设计使学生得到工程知识和工程技能的综合训练,获得应用本课程的知识和技术去解决工程实际问题的能力。 二. 课程设计的内容 1.根据控制对象的用途、基本结构、运动形式、工艺过程、工作环境和控制要求,确定控制方案。 2.绘制水箱液位系统的PLC I/O接线图和梯形图,写出指令程序清单。 3.选择电器元件,列出电器元件明细表。 4.上机调试程序。 5.编写设计说明书。 三. 课程设计的要求 1.所选控制方案应合理,所设计的控制系统应能够满足控制对象的工艺要求,并且技术先进,安全可靠,操作方便。 2.所绘制的设计图纸符合国家标准局颁布的GB4728-84《电气图用图形符号》、GB6988-87《电气制图》和GB7159-87《电气技术中的文字符号制定通则》的有关规定。 3.所编写的设计说明书应语句通顺,用词准确,层次清楚,条理分明,重点突出,篇幅不少于7000字。

四.进度安排 1.第一周星期一:布置课程设计任务,讲解设计思路和要求,查阅设计资料。 2.第一周星期二~星期四:详细了解搬运机械手的基本组成结构、工艺过程和控制要求。确定控制方案。配置电器元件,选择PLC型号。绘制传送带A、B的拖动电机的控制线路原理图和搬运机械手控制系统的PLC I/O接线图。设计PLC梯形图程序,列出指令程序清单。 3.第一周星期五:上机调试程序。 4.第二周星期一:指导编写设计说明书。 5.第二周星期二~星期四:编写设计说明书。 6.第二周星期五:答辩。 附录:课题简介及控制要求 (1)课题简介 某化工厂水箱的排水量根据工业生产的需要而不断地变化,为了保持水箱压力恒定,就要保持水位恒定,因此就必须自动调整进水量。 本系统要求有手动和自动两种工作方式。手动控制方式用于水泵的调试,即当按下按钮时水泵运转,松开按钮时水泵停止,目的是为了调试水泵是否能正常工作;当系统切换为自动控制方式并启动后,控制系统自动调整水泵的进水量达到给定水位恒定。水位设定高限和低限,当水位超过设定的限位时要进行超限报警。 (2)控制要求 控制系统技术参数表

台达DVP-ES2C系列与ASDA-A2伺服电机调试方法

台达绝对型编码器伺服系统的参数设置 (DVP32ES200RC/TC与ASDA-A2 伺服驱动器)使用之前需要对CANopen型号的PLC进行韧体的更新。(对应的版本为V3.43) 刻录方式: 1.PC 要与 ES2-C PLC 通过 IFD6601 链接。 2.点开有.exe 的文件,选择正确的 COM口。 3.鼠标点击 START burn 开始刻录,待PLC上面的EPROM指示灯闪烁红色以后,重新启动PLC, 4.重启后,再次鼠标点击 START burn 开始刻录可以看到白色进度条在移动(红色进度条也是一样的,白色代表版本升级,红色代表版本降级),同时看到 Progress 有显示百分数值,到达百分之百为刻录完成。 5.刻录后检查版本刻录情况 一,硬件 DI 信号配置 : DI1 → PL : 正向运转禁止极限,为 B 接点,必须时常导通(ON),否则驱动(P2-10),用常闭接近开关,设置为23. 器显示异警。 DI2 → NL : 逆向运转禁止极限,为 B 接点,必须时常导通(ON),否则驱(P2-11),用常闭接近开关,设置为22. 动器显示异警。

DI3 → EMGS : 为 B 接点,必须时常导通(ON),否则驱动器显示异警。(P2-12),用常闭接近开关,设置为21. DI4 → ORGP : 在内部位置缓存器模式下,在搜寻原点时,此讯号接通后伺服将此点之位置当成原点。(可以不接) 二,手动设定参数 : 在使用伺服专用指令之前,需要先将伺服做一些初始化设定,步骤如下 : 1.将伺服 P2-08 设置为 10,回归原厂设定。 2.将伺服断电后重新上电。 3.设定伺服控制模式,将 P1-01 设置为 0001(PR 模式)具体方向可以根据实际情况更改。 4.P3-01通讯速度设置为 0403(1M)。 5.站号设定 : 依照需要的台数,分别设置每台伺服的 P3-00,请依序设定为 1、2、3 …最多可设定 8 台。 6.将伺服断电后重新上电。 1.设置伺服驱动器站号(P3-00),伺服从1到8依次设定。 2.设置伺服电机与PLC的通讯速率(P3-01,可以设置为403) 3.设置伺服电机的运动模式(P1-01如设置为0001就是PR位置控制模式)第三位数值可以设置电机运行方向。 4.设置伺服电机的正反向禁止极限,和急停触发。(P2-10-P2-18)

液位计调试说明书

液 位 料 位 计 调 试 说 明 书 杨帆整理 目录 雷达液位计 (3) 超声波液位计 (4) 雷达料位计 (5)

射频导纳液位计 (6) 雷达液位计 型号:LR 250 操作步骤 (1)语言 (2)介质(选择液体liquid) (3)反应速度(快中慢) Quick Start (4)单位(选择米) (快速开始设置)(5)操作模式(液位level) (6)低标定点(空罐液位) (7)高标定点(一般选择0) (8)确认 说明: 1、低标定点得设置方法就是先任意设置低标,测空 罐得液位,修改低标便可,例如:低标设置1米,确认后 显示-2米,实际液位为3米。再次修改低标为3米, 完成量程设置。 2、默认语言为英语,介质为液体liquid,反应速度为 快、单位为米、操作模式为液位level。 3、每次修改参数后到最后一步选择Yes 确认。

超声波液位计 超声波液位计设置为代码,具体如下: P01操作模式:1液位(level) 2空间(space) 3 距离 (distance) P02界面属性:1水平(standard)2斜面(slope?) P03反应速度:1快(fast)2中(middle)3慢(slow) P04探头类型 P05单位:m、cm 、mm、英尺(feed)、英寸(inch) P06安装位置到池底得距离 P07量程 说明: 1、注意设置量程,例如安装位置到池底为3米,池高 2、8米,则P06为3米,P07为2、8米。不可与雷达 液位计混淆。 2、默认参数:操作模式:液位(level);界面属性:水平 (standard);反应速度:快(fast);单位:m ; 3、探头类型为出厂默认,不用修改。 雷达料位计 设置步骤: 开始设置(start)→快速开始设置(quick start)

松下伺服电机调整参考与常见问题解决方法

松下伺服电机调整参考与常见问题解决方法 一、基本接线 主电源输入采用~220V,从L1、L3接入(实际使用应参照操作手册); 控制电源输入r、t也可直接接~220V; 电机接线见操作手册第22、23页,编码器接线见操作手册第24~26页,切勿接错。 二、试机步骤 1.JOG试机功能 仅按基本接线就可试机; 在数码显示为初始状态‘r 0’下,按‘SET’键,然后连续按‘MODE’键直至数码显示为‘AF -AcL’,然后按上、下键至‘AF-JoG’; 按‘SET’键,显示‘JoG -’:按住‘^’键直至显示‘rEAdy’; 按住‘<’键直至显示‘SrV-on’; 按住‘^’键电机反时针旋转,按‘V’电机顺时针旋转,其转速可由参数Pr57设定。 按‘SET’键结束。 2.内部速度控制方式 COM+(7脚)接+12~24VDC,COM-(41脚)接该直流电源地;SRV-ON(29脚)接COM-; 参数No.53、No.05设置为1:(注此类参数修改后应写入EEPROM,并重新上电) 调节参数No.53,即可使电机转动。参数值即为转速,正值反时针旋转,负值顺时针旋转。 3.位置控制方式 COM+(7脚)接+12~24VDC,COM-(41脚)接该直流电源地;SRV-ON(29脚)接COM-; PLUS1(3脚)、SIGN1(5脚)接脉冲源的电源正极(+5V); PLUS2(4脚)接脉冲信号,SIGN(6脚)接方向信号; 参数No.02设置为0,No42设置为3,No43设置为1; PLUS(4脚)送入脉冲信号,即可使电机转动;改变SIGN2即可改变电机转向。 另外,调整参数No.46、No.4B,可改变电机每转所需的脉冲数(即电子齿轮)。

相关文档