文档库 最新最全的文档下载
当前位置:文档库 › 高考物理解题方法例话二次函数法讲解

高考物理解题方法例话二次函数法讲解

高考物理解题方法例话二次函数法讲解
高考物理解题方法例话二次函数法讲解

1二次函数法

对于二次函数;2c bx ax y ++=

;442,02

min a

b a

c y y a b x a -=-=>有最小值为时当时若.442,02

max a

b a

c y y a b x a -=-=<有最大值为时当时若 [例题1]如图所示,光滑轨道竖直放置,半圆部分半径为R ,在水平轨道上停着一个质量为M=0。99kg 的林块,一颗质量m=0。01kg 的子弹以v=400m/s 的水平速度射入木块中,然后一起运动到轨道最高点水平抛出,求圆半

径R 为多大时平抛的水平位移最大?最大值 为多少?

解析:子弹和木块碰撞过程动量守恒,设共同速度为1v 则

1)(v m M mv +=解得s m v m

M m v /41=+= 设在轨道最高点平抛时速度为2v ,轨道光滑,根据机械能守恒定律

2221)(2

1)(2)(21v m M gR m M v m M +++=+解得R Rg v v 40164212-=-= 所以平抛的水平位移R R R R g R v t v s 5

24104)4016(4222+-=-=== 根号下的部分是关于R 的二次函数,二次项系数01<-=a ,所以水平位移S 有最大值,当时m a

b R 2.02=-=,二次函数有最大值,此时水平位移也 有最大值 ()m S 8.02.04.02.042max =?+-=

[例题2]把电量+Q 分配给相距为r 的两金属球上,问如何分配才能使它们之间的相互作用力最大?

解析:设一金属球分得的电量为q 。则另一金属球分得的电量为(Q-q ),由库仑定律可得它们之间的相互作用力为:

2)(r q Q kq F -==)(22qQ q r

k +- 因为01<-=a ,所以F 有最大值,此时2

2Q a b q =-=,即当两球所分得的电量相等时,

它们间的相互作用力最大。

[例题3]如图所示,电源电动势ε=24V ,内电阻r =1Ω,Ω=41R , Ω=62R ,Ω=100R 为滑动变阻器,求当滑动变阴器触头C 在什么位置时,电源输出的电流强度最小,并计算这个最小值。

解析:设滑动触头滑到使AC 段电阻为R 时,外路总电阴为R 总,电源输

出的电流为I ,这时有:

)6412(20

16

410)

610)(4())((22121++-=+++-+=+++++=

R R R R R R R R R R R R R BC AC BC AC 总 由于r R I +=总ε

,所以当总R 最大时,电源输出的电流强度最小,此时

Ω==-=62

122a b R ,即变阻器触头C 对应的位置。电流的最小值为)(41)246126(20

1242A r R I =++?+-=+=

总ε

二次函数最值问题及解题技巧(个人整理)

一、二次函数线段最值问题 1、平行于x轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用右侧端点的横坐标减去左侧端点的横坐标 3)得到一个线段长关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、平行于y轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用上面端点的纵坐标减去下面端点的纵坐标 3)得到一个线段长关于自变量的二次函数解析式 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 3、既不平行于x轴,又不平行于y轴的线段最值问题 1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴 2)根据线段两个端点的坐标表示出直角顶点坐标 3)根据“上减下,右减左”分别表示出两直角边长 4)根据勾股定理表示出斜边的平方(即两直角边的平方和) 5)得到一个斜边的平方关于自变量的二次函数 6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 7)根据所求得的斜边平方的最值求出斜边的最值即可 二、二次函数周长最值问题 1、矩形周长最值问题 1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值 2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长 3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、利用两点之间线段最短求三角形周长最值 1)首先判断图形中那些边是定值,哪些边是变量 2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长 三、二次函数面积最值问题 1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴) 1)首先表示出所需的边长及高 2)利用求面积公式表示出面积 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、不规则图形面积最值问题 1)分割。将已有的不规则图形经过分割后得到几个规则图形 2)再分别表示出分割后的几个规则图形面积,求和 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的面积来得到

二次函数综合题解题方法与技巧

. . C x x y y A O B E D A C B C D G 图1 图2 A P O B E C x y 压轴题解题技巧练习 引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。 一、 动态:动点、动线 1.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4),其中x 1、 x 2是方程x 2-2x -8=0的两个根. (1)求这条抛物线的解析式; (2)点P 是线段AB 上的动点,过点P 作 PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标; (3)探究:若点Q 是抛物线对称轴上的点, 是否存在这样的点Q ,使△QBC 成为等腰三 角形?若存在,请直接写出所有符合条件的 点Q 的坐标;若不存在,请说明理由. 二、圆 2. 如图10,已知点A (3,0),以A 为圆心作⊙A 与Y 轴切于原点,与x 轴的另一个交点为B ,过B 作⊙A 的切线l. (1)以直线l 为对称轴的抛物线过点A 及点C (0,9),求此抛物线的解析式; (2)抛物线与x 轴的另一个交点为D ,过D 作⊙A 的切线DE ,E 为切点,求此切线长; (3)点F 是切线DE 上的一个动点,当△BFD 与EAD△相似时,求出BF 的长 .

二次函数典型例题解析与习题训练

又∵y=x 2-x+m=[x 2-x+(12)2]- 14+m=(x -12)2+414 m - ∴对称轴是直线x=12,顶点坐标为(12,41 4 m -). (2)∵顶点在x 轴上方, ∴顶点的纵坐标大于0,即41 4 m ->0 ∴m> 14 ∴m>1 4 时,顶点在x 轴上方. (3)令x=0,则y=m . 即抛物线y=x 2-x+m 与y 轴交点的坐标是A (0,m ). ∵AB ∥x 轴 ∴B 点的纵坐标为m . 当x 2-x+m=m 时,解得x 1=0,x 2=1. ∴A (0,m ),B (1,m ) 在Rt △BAO 中,AB=1,OA=│m │. ∵S △AOB =1 2 OA ·AB=4. ∴ 1 2 │m │·1=4,∴m=±8 故所求二次函数的解析式为y=x 2-x+8或y=x 2-x -8. 【点评】正确理解并掌握二次函数中常数a ,b ,c 的符号与函数性质及位置的关系是解答本题的关键之处. 例2 已知:m ,n 是方程x 2-6x+5=0的两个实数根,且m

为D,试求出点C,D的坐标和△BCD的面积; (3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH 分成面积之比为2:3的两部分,请求出P点的坐标. 【分析】(1)解方程求出m,n的值.用待定系数法求出b,c的值. (2)过D作x轴的垂线交x轴于点M,可求出△DMC,梯形BDBO,△BOC的面积,用割补法可求出△BCD的面积. (3)PH与BC的交点设为E点,则点E有两种可能:①EH=3 2EP,②EH=2 3 EP. 【解答】(1)解方程x2-6x+5=0, 得x1=5,x2=1. 由m

初中二次函数的解题方法

初中二次函数的解题方 法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

11.1班沈阳 14号 初中二次函数的解题方法 首先回顾一下初中二次函数的重要性质和基本表达式:一般式:y=a x2+bx+c(a≠0,a、b、c为常数),顶点坐 标为(-b/2a,4ac-b2/4a) ; 顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标 为(h,k),对称轴为x=h,顶点的位置特征和图像的开口方 向与函数y=ax2的图像相同,有时题目会指出让你用配 方法把一般式化成顶点式。 交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0 有交点A(x1,0)和 B(x2,0)的抛物线,即b^2-4ac≥0] :由 一般式变为交点式的步骤:∵X1+x2=-b/a x1·x2=c/a ∴ y=ax2+bx+c=a(x2+b/ax+c/a)=a[﹙x2;-(x1+x2)x+x1x2]=a(x- x1)(x-x2) 重要概念:。 1.二次函数图像是轴对称图形。对称轴为直线x = h 或者x=-b/2a 对称轴与二次函数图像唯一的交点为二次 函数图像的顶点P。特别地,当h=0时,二次函数图像 的对称轴是y轴(即直线x=0);a,b同号,对称轴在y轴左 b=0,对称轴是y轴;a,b异号,对称轴在y轴右侧

2.二次函数图像有一个顶点P,坐标为P ( h,k ) 当 h=0时,P在y轴上;当k=0时,P在x轴上。h=-b/2a k=(4ac-b2)/4a 3.二次项系数a决定二次函数图像的开口方向和大 小。当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。|a|越大,则二次函数图像的开口越小。 有时也可以考虑图像的整体性质、特殊点的位置及二次方程的联系,结合韦达定理和判别式定理确定a,b,c, △及系数的代数符号。 常见问题 1、抛物线中特殊点组成的三角形问题:抛物线线中的特殊三角形主要有两类:(1)、抛物线与x轴的两个交点和与y轴的交点所组成的三角形;(2)、抛物线与x轴的两个交点和顶点所组成的三角形。 解决策略是:应用平面几何的有关定理,如等腰三角形的三线合一、直角三角形的勾股定理、射影定理、斜边中线定理等结合两点间的距离公式及二次方程的求根公式、判别式定理、韦达定理等知识求解。用到的数学思想方法有数形结合、分类讨论、转化等。 2、二次函数的定点和动点问题:求动点运动所形成的直线或曲线一般采用消去参数法,即消去参数以后的方程即为动点需满足的函数解析式。

二次函数综合题解题方法与技巧

图1 图 2 压轴题解题技巧练习 引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。 一、 动态:动点、动线 1.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4),其中x 1、 x 2是方程x 2-2x -8=0的两个根. (1)求这条抛物线的解析式; (2)点P 是线段AB 上的动点,过点P 作 PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标; (3)探究:若点Q 是抛物线对称轴上的点, 是否存在这样的点Q ,使△QBC 成为等腰三 角形?若存在,请直接写出所有符合条件的 点Q 的坐标;若不存在,请说明理由. 二、圆 2. 如图10,已知点A (3,0),以A 为圆心作⊙A 与Y 轴切于原点,与x 轴的另一个交点为B ,过B 作⊙A 的切线l. (1)以直线l 为对称轴的抛物线过点A 及点C (0,9),求此抛物线的解析式; (2)抛物线与x 轴的另一个交点为D ,过D 作⊙A 的切线DE ,E 为切点,求此切线长; (3)点F 是切线DE 上的一个动点,当△BFD 与EAD△相似时,求出BF 的长 . 2

二次函数典型例题解析

二次函数典型例题解析 关于二次函数的概念 例1 如果函数1)3(232++-=+-mx x m y m m 是二次函数,那么m 的值为 。 例2 抛物线422-+=x x y 的开口方向是 ;对称轴是 ;顶点为 。 关于二次函数的性质及图象 例3 函数)0(2≠++=a c bx ax y 的图象如图所示, 则a 、b 、c ,?,c b a ++,c b a +-的符号 为 , 例4 (镇江2001中考题)老师给出一个函数y=f (x ),甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。乙:函数的图像经过第一象限。丙:当x <2时,y 随x 的增大而减小。丁:当x <2时,y >0,已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数—————————————————。 例5 (荆州2001)已知二次函数y=x 2+bx +c 的图像过点A (c ,0),且关于直线x=2对称,则这个二次函数的解析式可能是 (只要写出一个可能的解析式) 例6 已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( ) (A ) 第一或第二象限 (B )第三或第四象限 (C )第一或第四象限 (D )第二或第三象限 例7 双曲线x k y = )0(≠k 的两分支多在第二、四象限内,则抛物线222k x kx y +-=的大致图 象是( ) 例8 在同一坐标系中,直线b ax y +=和抛物线c bx ax y ++=2 确定二次函数的解析式 例9 已知:函数c bx ax y ++=2的图象如图:那么函数解析式为((A )322++-=x x y (B )322--=x x y (C )322+--=x x y (D )322---=x x y

二次函数动点问题解答方法技巧(含例解答案)33935

函数解题思路方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;

(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为 顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M 为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平 分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方 法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

二次函数压轴题解题思路

?二次函数压轴题解题思路路 ?一、基本知识 1会求解析式 2.会利利?用函数性质和图像 3.相关知识:如?一次函数、反?比例例函数、点的坐标、?方程。图形中的三?角形、四边形、圆及平?行行线、垂直。?一些?方法:如相似、三?角函数、解?方程。?一些转换:如轴对称、平移、旋转。 ?二、典型例例题: (?一)、求解析式 1.(2014?莱芜)过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c 经过O、C、D三点.(1)求抛物线的表达式; 2.(2012?莱芜)顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式; 练习:(2014兰州)把抛物线y=﹣2x2先向右平移1个单位?长度,再向上平移2个单位?长度后,所得函数的表达式为() A.y=﹣2(x+1)2+2 B.y=﹣2(x+1)2﹣2 C.y=﹣2(x﹣1)2+2 D.y=﹣2(x﹣1)2﹣2 (?二)、?二次函数的相关应?用 第?一类:?面积问题 例例题.(2012?莱芜)如图,顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0) 与y轴交于点C(0,3),与x轴交于A、B两点. (1)求抛物线的表达式;(抛物线的解析式:y=(x﹣2)2﹣1=x2﹣4x+3.) (2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的?面积; 2.(2014?莱芜)如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线 y=ax2+bx+c经过O、C、D三点. (1)求抛物线的表达式;(抛物线的表达式为:y=﹣x2+x.) (3)若△AOC沿CD?方向平移(点C在线段CD上,且不不与点D重合), 在平移的过程中△AOC与△OBD重叠部分的?面积记为S,试求S的最?大值.

二次函数压轴题解题技巧

二次函数压轴题解题技巧 引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。 一、动态:动点、动线 1.如图,抛物线与 x 轴交于 (1,0)、(2,0)两点,且1>2,与 y轴交于点 (0,4), A x B x x x C 其中 x1、 x2是方程 x2-2x-8=0的两个根. (1)求这条抛物线的解析式; (2)点 P是线段 AB上的动点,过点 P 作 PE∥AC,交 BC于点 E,连接 CP,当△ CPE的面积最大时,求点 P 的坐标; (3) 探究:若点 Q 是抛物线对称轴上的点,是否存在这样的点,使△成为等腰三角 Q QBC 形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由. y C E B A 二、圆 OP 2.如图1,在平面直角坐标系xOy,二次函数 y= ax2+bx+ c( a>0)的图象顶点为D,与 轴交于点,与 x 轴交于点、,点在原点的左侧,点 B 的坐标为 (3 , 0) ,=, C A BA OB OC 1 tan ∠ACO=3.x y (1)求这个二次函数的解析式; (2)若平行于 x 轴的直线与该抛物线交于点 M、N,且以 MN为直径的圆与 x 轴相切,求该圆的半径长度; (3)如图 2,若点G(2 ,y) 是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点 P 运动到什么位置时,△AGP的面积最大?求此时点P 的坐标和△ AGP的最大面积. y y A B E O x AC B x C C G D D 图 1图 2

二次函数压轴题解题技巧

C x x y y A O B E D A C B C D G 图1 图 2 A P O B E C x y 二次函数压轴题解题技巧 引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。 一、动态:动点、动线 1.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4), 其中x 1、x 2是方程x 2-2x -8=0的两个根. (1)求这条抛物线的解析式; (2)点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标; (3)探究:若点Q 是抛物线对称轴上的点,是否存在这样的点Q ,使△QBC 成为等腰三角形?若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由. 二、圆 2.如图1,在平面直角坐标系xOy ,二次函数y =ax 2+bx +c (a >0)的图象顶点为D ,与y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为(3,0),OB =OC , tan ∠ACO = 1 3 . (1)求这个二次函数的解析式; (2)若平行于x 轴的直线与该抛物线交于点M 、N ,且以MN 为直径的圆与x 轴相切,求该圆的半径长度; (3)如图2,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大?求此时点P 的坐标和△AGP 的最大面积.

商品利润问题与二次函数典型例题解析

商品利润问题与二次函数典型例题解析 知识链接复习: 1、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元 解:设每千克应涨价x 元,读题完成下列填空 问题一:涨价后每千克盈利 元; 问题二:涨价后日销售量减少 千克; 问题三:涨价后每天的销售量是 千克; 问题四:涨价后每天盈利 元 根据题意列方程得: 解方程得: 因为商家涨价的目的是 ;所以 符合题意。 答: 。 2、二次函数y=ax 2 +bx+c 的顶点坐标是x= y= 3、函数y=x 2+2x-3(-2≤x ≤2)的最大值和最小值分别是 新知解析: 例1、某商品现在的售价为每件35元,每天可卖出50件。市场调查发现:如果调整价格,每降价1元,那么每天可多卖出两件。请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少 解:设当降价X 元时销售额为y 元,根据题意得: y=(35-x )(50+2x )=-2x 2+20x+1750 x=-a b 2=-) 2(×220=5 因为0<5<35且a=-2<0 所以y=(35-5)(50+10)=1800 答:当降价5元时 销售额最大为1800元。 此类习题注意要点: 1、根据题意设未知量,一般设增加或者减少量为x 元时相应的收益为y 元,列出函数关系式。 2、判断顶点横坐标是否在取值范围内。因为函数的最值不一定是实际问题的最值 3、根据题意求最值。写出正确答案。 例2、某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费10元时,床位可全部租出,若每张床位每天收费提高2元,则相应的减少了10张床位租出,如果每张床位每天以2元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是多少元租金最高是多少钱 解:设当张价X 元时租金为y 元,根据题意得:y=(100-10 ×2 x )(10+x )=-5x 2+50x+1000 x=-a b 2=-)5_( ×250=5

二次函数典型题解题技巧

二次函数典型题解题技巧

————————————————————————————————作者:————————————————————————————————日期:

二次函数典型题解题技巧 (一)有关角 1、已知抛物线2y ax bx c =++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴 交于点(0C ,3),过点C 作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线5y x =+经过D 、M 两点. (1) 求此抛物线的解析式; (2)连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由. 思路点拨:对于第(1)问,需要注意的是CD 和x 轴平行(过点C 作x 轴的平行线与抛物线交于点D ) 对于第(2)问,比较角的大小 a 、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就清楚了 b 、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就确定了 c 、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大小 d 、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等 e 、 可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快速的找出题目的结论问题,在本题中,需要用到的点只有M 、C、A、B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看d 这一条 解:(1)∵CD ∥x 轴且点C(0,3), ∴设点D 的坐标为(x ,3) . ∵直线y = x+5经过D 点, ∴3= x+5.∴x=-2. 即点D(-2,3) . 根据抛物线的对称性,设顶点的坐标为M (-1,y ), 又∵直线y= x+5经过M 点, ∴y =-1+5,y =4.即M(-1,4). ∴设抛物线的解析式为 2(1)4y a x =++. ∵点C (0,3)在抛物线上,∴a=-1. 即抛物线的解析式为 223y x x =--+.…………3分 (2)作BP ⊥AC 于点P,MN⊥AB 于点N. 由(1)中抛物线 223y x x =--+可得 点A(-3,0),B(1,0), ∴AB=4,AO =C O=3,A C=32. ∴∠PAB =45°. ∵∠ABP=45°,∴P A=PB=22. ∴P C=A C-PA =2. 在Rt△BPC 中,tan ∠BCP=PB PC =2.

二次函数知识点总结与典型例题讲解

二次函数知识点总结及典型例题讲解 一、二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法 五点法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。 二、二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, (3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1 x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这样表示。 三、二次函数的性质

二次函数知识点总结及典型例题

二次函数知识点总结及典型例题 一、二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2 ≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法---五点法: 二、二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2 ≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2 ≠+-=a k h a k h x a y 是常数, (3)当抛物线c bx ax y ++=2 与x 轴有交点时,即对应二次好方程0 2=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212 x x x x a c bx ax --=++,二次函数c bx ax y ++=2 可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这 样表示。 三、抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线 a b x 2- =,故:①0=b 时,对称轴为y 轴所在直线;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0

二次函数解题方法与技巧例题练习题

【解读二次函数的系数】 1、a 的正负决定抛物线的开口方向 a >0时,抛物线开口向上,a <0时,抛物线开口向下。 2、︳a ︳决定抛物线张开角度 ︳a ︳越大,张开角度越小;︳a ︳越小,张开角度越大;︳a ︳相等,张开角度相同。 3、a 和b 共同决定抛物线对称轴的位置 (1)a ,b 同号(ab >0),则对称轴x= - b 2a o,对称轴在y 轴的右侧; (3)若b =0,则对称轴x= - b 2a =o,对称轴与y 轴重合; 4、C 与图像和y 轴的交点位置 (1)C >0时,抛物线与y 轴的交点在y 轴的正半轴上; (2)C <0时,抛物线与y 轴的交点在y 轴的负半轴上; (3)C=0时,抛物线过原点; 5、b 2 —4ac 决定抛物线与x 轴交点个数 (1)b 2 -4ac >0时,抛物线与x 轴相交(有两个交点); (2)b 2-4ac =0时,抛物线与x 轴相切(有一个交点); (3)b 2-4ac <0时,抛物线与x 轴相离(没有交点); 6、若抛物线过点(1,0),则a+b+c = 0 若抛物线与过点(1,0)且平行于y 轴的直线相关交于x 轴上方,则a+b+c > 0;反之,则a+b+c < 0. 7、若抛物线过点(-1,0),则a -b+c = 0 若抛物线与过点(-1,0)且平行于y 轴的直线相关交于x 轴上方,则a -b+c > 0;反之,则a -b+c < 0. ◆练一练 1、如图,若a <0,b >0,c <0,则抛物线y=ax 2 +bx +c 的大致图象为( ) 2、函数y=ax 2 +bx +c 和y=ax +b 在同一坐标系中,如图所示,则正确的是( ) 3、在同一坐标系中,函数y=ax 2 +bx 与y=b x 的图象大致是图中的( )

二次函数压轴题解题技巧

图1 图 2 二次函数压轴题解题技巧 引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。 一、动态:动点、动线 1.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4), 其中x 1、x 2是方程x 2 -2x -8=0的两个根. (1)求这条抛物线的解析式;(2)点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标; (3)探究:若点Q 是抛物线对称轴上的点,是否存在这样的点Q ,使△QBC 成为等腰三角形?若存在,请直接写出所有符合条件的点Q 二、圆 2.如图1,在平面直角坐标系xOy ,二次函数y =ax 2 +bx +c (a >0)的图象顶点为D ,与y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为(3,0),OB =OC , tan ∠ACO = 1 3 . (1)求这个二次函数的解析式; (2)若平行于x 轴的直线与该抛物线交于点M 、N ,且以MN 为直径的圆与x 轴相切,求该圆的半径长度; (3)如图2,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大?求此时点P 的坐标和△AGP 的最大面积.

初中二次函数知识点详解及典型例题

知识点一、二次函数的概念和图像 1、二次函数的概念 一般地,如果特)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零 那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2- =对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法 五点法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2 与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。 知识点二、二次函数的解析式 二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点 (1)一般 一般式:)0,,(2 ≠++=a c b a c bx ax y 是常数, (2)两根 当抛物线c bx ax y ++=2 与x 轴有交点时,即对应二次好方程02 =++c bx ax 有 实根1x 和2x 存在时,根据二次三项式的分解因式))((212 x x x x a c bx ax --=++,二次函数 c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这样表示。 a 的绝对值越大,抛物线的开口越小。 (3)三顶点 顶点式:)0,,()(2 ≠+-=a k h a k h x a y 是常数, 知识点三、二次函数的最值

中考数学压轴题解题技巧超详细

中考数学压轴题解题技 巧超详细 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

2012年中考数学压轴题解题技巧解说 数学压轴题是初中数学中覆盖知识面最广,综合性最强的题型。综合近年来各地中考的实际情况,压轴题多以函数和几何综合题的形式出现。压轴题考查知识点多,条件也相当隐蔽,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质。下面谈谈中考数学压轴题的解题技巧。 如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D (8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式; (2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出 发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P作PE⊥AB交AC于点E. ①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG 最长 ②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形请直接写出相应的t值. 解:(1)点A的坐标为(4,8)…………………1分将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx 8=16a+4b 得 0=64a+8b 解得a=-1 2 ,b=4 ∴抛物线的解析式为:y=-1 2 x2+4x …………………3分 (2)①在Rt△APE和Rt△ABC中,tan∠PAE=PE AP = BC AB ,即 PE AP = 4 8 ∴PE=1 2 AP= 1 2 t.PB=8-t. ∴点E的坐标为(4+1 2 t,8-t).

二次函数典型题解题技巧

二次函数典型题解题技巧 (一)有关角 1、已知抛物线2y ax bx c =++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴 交于点(0C ,3),过点C 作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线5y x =+经过D 、M 两点. (1) 求此抛物线的解析式; (2)连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由. 思路点拨:对于第(1)问,需要注意的是CD 和x 轴平行(过点C 作x 轴的平行线与抛物线交于点D ) 对于第(2)问,比较角的大小 a 、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就 清楚了 b 、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就 确定了 c 、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大 小 d 、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全 等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等 e 、 可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快 速的找出题目的结论问题,在本题中,需要用到的点只有M 、C 、A 、B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看d 这一条 解:(1)∵CD∥x 轴且点C (0,3), ∴设点D 的坐标为(x ,3) . ∵直线y= x+5经过D 点, ∴3= x+5.∴x=-2. 即点D(-2,3) .

相关文档
相关文档 最新文档