文档库 最新最全的文档下载
当前位置:文档库 › 醇胺法脱硫脱碳工艺技术及应用(最新版)

醇胺法脱硫脱碳工艺技术及应用(最新版)

醇胺法脱硫脱碳工艺技术及应用(最新版)
醇胺法脱硫脱碳工艺技术及应用(最新版)

醇胺法脱硫脱碳工艺技术及应

用(最新版)

Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production.

( 安全管理 )

单位:______________________

姓名:______________________

日期:______________________

编号:AQ-SN-0625

醇胺法脱硫脱碳工艺技术及应用(最新版)

醇胺法和砜胺法的典型工艺流程和设备是相同的。

(一)工艺流程

醇胺法脱硫脱碳的典型工艺流程见图2-2。由图可知,该流程由吸收、闪蒸、换热和再生(汽提)四部分组成。其中,吸收部分是将原料气中的酸性组分脱除至规定指标或要求;闪蒸部分是将富液(即吸收了酸性组分后的溶液)在吸收酸性组分时所吸收的一部分烃类

通过闪蒸除去;换热是回收离开再生塔的贫液热量;再生是将富液中吸收的酸性组分解吸出来成为贫液循环使用。

图2-2中,原料气经进口分离器除去游离液体和携带的固体杂质后进入吸收塔底部,与由塔顶自上而下流动的醇胺溶液逆流接触,吸收其中的酸性组分。离开吸收塔顶部的是含饱和水的湿净化气,

经出口分离器除去携带的溶液液滴后出装置。通常,都要将此湿净化气脱水后再作为商品气或管输,或去下游的NGL回收装置或LNG 生产装置。

由吸收塔底部流出的富液降压后进入闪蒸罐,以脱除被醇胺溶液吸收的烃类。然后,富液再经过滤器进贫富液换热器,利用热贫液将其加热后进入在低压下操作的再生塔上部,使一部分酸性组分在再生塔顶部塔板上从富液中闪蒸出来。随着溶液自上而下流至底部,溶液中剩余的酸性组分就会被在重沸器中加热汽化的气体(主要是水蒸气)进一步汽提出来。因此,离开再生塔的是贫液,只含少量未汽提出来的残余酸性气体。此热贫液经贫富液换热器、溶液冷却器冷却和贫液泵增压,温度降至比塔内气体烃露点高5~6℃以上,然后进入吸收塔循环使用。有时,贫液在换热与增压后也经过一个过滤器。

从富液中汽提出来的酸性组分和水蒸气离开再生塔顶,经冷凝器冷却与冷凝后,冷凝水作为回流返回再生塔顶部。由回流罐分出的酸气根据其组成和流量,或去硫磺回收装置,或压缩后回注地层

以提高原油采收率,或经处理后去火炬等。

在图2-2所示的典型流程基础上,还可根据需要衍生出一些其他流程,例如分流流程(见图2-3)。在图2-3中,由再生塔中部引出一部分半贫液(已在塔内汽提出绝大部分酸性组分但尚未在重沸器内进一步汽提的溶液)送至吸收塔的中部,而经过重沸器汽提后的贫液仍送至吸收塔的顶部。此流程虽然增加了一些设备与投资,但对酸性组分含量高的天然气脱硫脱碳装置却可显著降低能耗。

图2-4是BASF公司采用活化MDEA(aMDEA)溶液的分流法脱碳工艺流程。该流程中活化MDEA溶液分为两股在不同位置进入吸收塔,即半贫液进入塔的中部,而贫液则进入塔的顶部。从低压闪蒸罐底部流出的是未完全汽提好的半贫液,将其送到酸性组分浓度较高的吸收塔中部;而从再生塔底部流出的贫液则进入吸收塔的顶部,与酸性组分浓度很低的气流接触,使湿净化气中的酸性组分含量降低至所要求之值。离开吸收塔的富液先适当降压闪蒸,再在更低压力下闪蒸,然后去再生塔内进行汽提,离开低压闪蒸罐顶部的气体即为所脱除的酸气。此流程的特点是装置处理量可提高,再生能耗较

少,主要用于天然气及合成气脱碳。

(二)主要设备

1.高压吸收系统

高压吸收系统由原料气进口分离器、吸收塔和湿净化气出口分离器等组成。

吸收塔可为填料塔或板式塔,后者常用浮阀塔板。

浮阀塔的塔板数应根据原料气中H2

S、CO2

含量、净化气质量指标经计算确定。通常,其实际塔板数在14~20块。对于选择性醇胺法(例如MDEA溶液)来讲,适当控制溶液在塔内停留时间(限制塔板数或溶液循环量)可使其选择性更好。这是由于在达到所需的H2

S净化度后,增加吸收塔塔板数实际上几乎只是使溶液多吸收CO2

,故在选择性脱H2

S时塔板应适当少些,而在脱碳时则可适当多些塔板。采用MDEA

半干法与湿法脱硫的工艺必选

半干法与湿法脱硫的工艺必选 1.脱硫工艺的选择(半干法与湿法的比选) 烧结烟气脱硫是烧结机尾气排放SO2控制的主要技术手段,已达到工业应用水平的烟气脱硫工艺有10余种,大致可以分为干法和湿法,但能在大烟气量、高脱硫效率下,长期、稳定运行的脱硫工艺并不多。目前,国内已上烧结脱硫装置采取的工艺类型也各不相同,干法工艺有:活性炭吸附法、密相干塔法等;半干法工艺有:循环流化床法、旋转喷雾法;湿法工艺有:石灰/石灰石-石膏湿法、氧化镁湿法、氨-硫铵湿法、钠-钙双碱法、鼓泡法、有机胺法(又称:离子液法)等。 根据国内目前的实际应用推广情况,湿法工艺约占烧结脱硫装置总数的80%以上,其中湿法以石灰/石灰石-石膏工艺为主,氨-硫铵湿法、钠-钙双碱法为辅;干法工艺仅有2-3个工程示范,活性炭吸附法过于昂贵,密相干塔法基本失败;半干法工艺以循环流化床法、旋转喷雾法为主。 对于石灰—石膏湿法脱硫工艺与半干法脱硫工艺的对比,二者既有相同点也有不同点。相同点是脱硫剂均采用生石灰(CaO)和工业水介质进行,湿法脱硫剂采用Ca(OH)2浆液形式;半干法工艺有两种:一种采用Ca(OH)2浆液,一种采用喷石灰粉和工业水的形式。 不同点差异较大,概括起来,主要有以下几个方面: 一、净化原理: 湿法:空塔逆流喷淋洗涤工艺原理,属气液反应。反应速度快、效率高、能耗低。湿法工艺脱硫效率≥95%。 半干法:当烟气自下而上地穿过固体颗粒随意填充状态的料层,而气流速度达到或超过颗粒的临界流化速度时,料层中颗粒呈上下翻腾,SO2分子与石灰颗粒在表面发生反应,并有部分颗粒被气流夹带出料层的状态。属气固反应,反应速度低,效率低,湿法工艺脱硫效率80%~85%。欲达到与湿法同样的减排量,能耗高。 二、生成物: 湿法:CaSO4?2H2O,俗称:石膏。性质稳定,不二次分解,易二次利用。 半干法:CaSO3,常温下易分解,二次利用困难。

MDEA天然气脱硫工艺流程

《仪陇天然气脱硫》项目书 目录 1总论 (3) 1.1项目名称、建设单位、企业性质 (3) 1.2编制依据 (3) 1.3项目背景和项目建设的必要性 (3) 1、4设计范围 (5) 1、5编制原则 (5) 1.6遵循的主要标准、规范 (8) 1.7 工艺路线 (8) 2 基础数据 (8) 2.1原料气和产品 (8) 2.2 建设规模 (9) 2.3 工艺流程简介 (9) 2.3.1醇胺法脱硫原则工艺流程: (9) 2.3.2直流法硫磺回收工艺流程: (10) 3 脱硫装置 (11) 3.1 脱硫工艺方法选择 (11) 3.1.1 脱硫的方法 (11) 3.1.2醇胺法脱硫的基本原理 (12) 3.2 常用醇胺溶液性能比较 (13) 3.1.2.1几种方法性质比较 (14) 3.2醇胺法脱硫的基本原理 (17) 3.3主要工艺设备 (18) 3.3.1主要设备作用 (18) 3.3.2运行参数 (19) 3.3.3操作要点 (20) 3.4乙醇胺降解产物的生成及其回收 (21) 3.5脱硫的开、停车及正常操作 (22) 3.5.1乙醇胺溶液脱硫的开车 (22) 3.5.2保证乙醇胺溶液脱硫的正常操作 (22) 3.6胺法的一般操作问题 (23) 3.6.1胺法存在的一般操作问题 (23) 3.6.2操作要点 (24) 3.7选择性脱硫工艺的发展 (25) 4 节能 (25) 4.1装置能耗 (25) 装置中主要的能量消耗是在闪蒸罐、换热器和再生塔。 (25)

4.2节能措施 (25) 5 环境保护 (26) 5.1建设地区的环境现状 (26) 5.2、主要污染源和污染物 (26) 5.3、污染控制 (26) 6 物料衡算与热量衡算 (28) 6.1天然气的处理量 (28) 7.天然气脱硫工艺主要设备的计算 (33) 7.1MDEA吸收塔的工艺设计 (33) 7.1.1选型 (33) 7.1.2塔板数 (33) 7.1.3塔径 (34) 7.1.4堰及降液管 (36) 7.1.5浮阀计算 (37) 7.1.6 塔板压降 (37) 7.1.7塔附件设计 (39) 7.1.8塔体总高度的设计 (40) 7.2解吸塔 (41) 7.2.1 计算依据 (41) 7.2.2塔板数的确定 (41) 7.2.3解吸塔的工艺条件及有关物性的计算 (42) 7.2.4解吸塔的塔体工艺尺寸计算 (43) 8参数校核 (44) 8.1浮阀塔的流体力学校核 (44) 8.1.1溢流液泛的校核 (44) 8.1.2液泛校核 (44) 8.1.3液沫夹带校核 (45) 8.2塔板负荷性能计算 (45) 8.2.1漏液线(气相负荷下限线) (45) 8.2.2 过量雾沫夹带线 (45) 8.2.3 液相负荷下限 (46) 8.2.4 液相负荷上限 (46) 8.2.5 液泛线 (46) 9 附属设备及主要附件的选型和计算 (47) 10.心得体会 (49) 11.参考文献 (50)

腐植酸复混肥的生产工艺与技术及工艺流程图

腐植酸复混肥的生产工艺与技术 随着腐植酸机理研究的不断深化, 我国腐植酸肥料的研制开发及其在农业上的应用有了新的进展。现从腐植酸复混肥的性能、作用、机理、生产工艺特点及农田效果等方面进行探讨与分析, 以推动腐植酸复混肥料在农业上的迅速推广应用。 1 腐植酸的性能 腐植酸是一种化学结构相当复杂的胶体无定型高分子有机化合物, 它是由几个相似的结构单元所形成的大分子复合体, 每个单元又以芳香族聚合物为核, 在核的外面带有羧基、酚羟基、羰基、甲氧基等活性基团。这些活性基团使腐植酸具有酸性、亲水性、较强的离子交换能力和吸附能力, 能与 K+、Na+、Ca2+、 M g2+、Fe3+、Al3+和 NH4 +形成腐植酸盐, 并能与某些金属离子生成络合物或螯合物。腐植酸由很多极小的球形微粒积聚而成, 表面大, 其阳离子交换量比矿质胶体大 10~20 倍。 腐植酸可与碱成盐, 其 1 价盐如 NH4+、Na+、K+盐为水溶性, 2 价盐如 Ca2+、Mg 2+盐和 3 价盐如 Fe3+、Al3+盐均不溶于水。 腐植酸具有胶体性质, 在水溶液中呈现出疏松的结构, 加入电解质后会破坏腐植酸胶体溶液的稳定性, 使其凝聚成絮状沉淀。腐植酸的热稳定性差, 在高温下很容易脱羧基、酚羟基而发生裂解, 以致失去原有的活性。 腐植酸具有良好的生理活性, 其分子中所含的多酚基结构参与

了植物体的氧化还原过程, 有活化生物体多种酶的活性, 促进细胞分裂, 加速作物生长点分化及增强根系发育, 刺激作物生长的作用。它还能抑制土壤中脲酶和硝化菌的活性, 增强作物对养分的吸收, 提高化肥利用率。 腐植酸存在于泥炭、褐煤和风化煤中, 其总含量一般为 30% ~50% 。目前统称的腐植酸由胡敏酸( 黑腐酸和棕腐酸) 和富里酸组成, 富里酸又称黄腐酸, 含量少。由于原生植物、地质年代所经历的变化和环境不同, 其腐植酸含量、成分、结构有很大差异, 直接影响到腐植酸产品的质量和应用效果。一般来讲, 活性基团的含量越高, 调剂肥料中养分释放和供给能力越强。 腐植酸在农业上的应用, 则表现出具有 5 大作用, 即: 改良土壤; 增强化肥效能; 刺激作物生长; 改善作物品质; 增强作物抗逆能力。 我国蕴藏着上千亿吨的腐植酸资源, 为发展腐植酸复混肥提供了可靠的物质基础。 2 腐植酸对氮肥分解的抑制机理 2·1腐植酸的脲酶抑制和硝化抑制机理 多元复混肥, 其氮源多采用尿素为原料。 ( 1) 酰胺水解作用 尿素进入土壤后, 在土壤脲酶作用下, 很快发生水解而生成氨。水解后的氨, 一方面与土壤中的水发生水合反应而形成 NH4 + , 使其存在于土壤中供作物吸收利用; 另一方面可进入大气而损失。其化学

现运行的各种脱硫工艺流程图汇总

现运行的各种脱硫工艺流程图汇总 通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。 其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:以CaCO3(石灰石)为基础的钙法,以MgO为基础的镁法,以Na2SO3为基础的钠法,以NH3为基础的氨法,以有机碱为基础的有机碱法。世界上普 遍使用的商业化技术是钙法,所占比例在90%以上。 按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、 干法和半干(半湿)法。湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态 下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等 优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。 干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水 废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、 设备庞大等问题。 半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗 活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾

干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。 烧结烟气脱硫 海水脱硫技术

烟气脱硫技术

烟气脱硫技术 目前烟气脱硫技术种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。 湿法烟气脱硫技术最为成熟,已得到大规模工业化应用,但由于投资成本高还需对工艺和设备进行优化;干法烟气脱硫技术不存在腐蚀和结露等问题,但脱硫率远低于湿法脱硫技术,一般电厂都不会选用,须进一步开发基于新脱硫原理的干法脱硫工艺;半干法脱硫技术脱硫率高,但不适合大容量燃烧设备。 湿法烟气脱硫技术 优点:湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,技术成熟,适用面广。 缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重;洗涤后烟气需再热,能耗高;占地面积大,投资和运行费用高;系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。 常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 1、石灰石/石灰-石膏法: 原理:利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3)可以抛弃,也可以氧化为硫酸钙(CaSO4),以石膏形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90%以上。 由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术则克服了石灰石—石灰法容易结垢的缺点。 2、间接石灰石-石膏法: 常见的间接石灰石-石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。原理:钠碱、碱性氧化铝或稀硫酸吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 3、柠檬吸收法:

HPF脱硫工艺流程图

粗焦炉煤气脱硫工艺有干法和湿法脱硫两大类。干法脱硫多用于精脱硫,对无机硫和有机硫都有较高的净化度。不同的干法脱硫剂,在不同的温区工作,由此可划分低温(常温和低于100 ℃) 、中温(100 ℃~400 ℃) 和高温(> 400 ℃)脱硫剂。 干法脱硫由于脱硫催化剂硫容小,设备庞大,一般用于小规模的煤气厂脱硫或用于湿法脱硫后的精脱硫。 湿法脱硫又分为“湿式氧化法”和“胺法”。湿式氧化法是溶液吸收H2S后,将H2S直接转化为单质硫,分离后溶液循环使用。目前我国已经建成(包括引进)采用的具有代表性的湿式氧化脱硫工艺主要有TH法、FRC法、ADA法和HPF法。胺法是将吸收的H2S 经再生系统释放出来送到克劳斯装置,再转化为单质硫,溶液循环使用,主要有索尔菲班法、单乙醇胺法、AS法和氨硫联合洗涤法。湿法脱硫多用于合成氨原料气、焦炉气、天然气中大量硫化物的脱除。当煤气量标准状态下大于3000m3/h 时,主要采用湿法脱硫。 HPF法脱硫工艺流程: 来自煤气鼓风机后的煤气首先进入预冷塔,与塔顶喷洒的循环冷却液逆向接触,被冷却至25℃~30℃;循环冷却液从塔下部用泵抽出送至循环液冷却器,用低温水冷却至2 3℃~28℃后进入塔顶循环喷洒。来自冷凝工段的部分剩余氨水进行补充更新循环液。多余的循环液返回冷凝工段。

预冷塔后煤气并联进入脱硫塔A、脱硫塔B,与塔顶喷淋下来的脱硫液逆流接触,以吸收煤气中的硫化氢(同时吸收煤气中的氨,以补充脱硫液中的碱源)。脱硫后煤气进入下道工序进行脱氨脱苯。 脱硫基本反应如下: H2S+NH4OH→NH4HS+H2O 2NH4OH+H2S→(NH4)2S+2H2O NH4OH+HCN→NH4CN+H2O NH4OH+CO2→NH4HCO3 NH4OH+NH4HCO3→(NH4)2CO3+ H2O 吸收了H2S、HCN的脱硫液从脱硫塔A、B下部自流至反应槽,然后用脱硫液循环泵抽送进入再生塔再生。来自空压机站压缩空气与脱硫富液由再生塔下部并流进入再生塔A、B,对脱硫液进行氧化再生,再生后的溶液从塔顶经液位调节器自流回脱硫塔循环使用。 再生塔内的基本反应如下: NH4HS+1/2O2→NH4OH+S (NH4)2S+1/2O2+ H2O→ 2NH4OH+S (NH4)2Sx+1/2O2+ H2O→2NH4OH+Sx 除上述反应外,还进行以下副反应: 2NH4HS+2O2→(NH4)2S2O3+ H2O 2(NH4)2S2O3+O2→2(NH4)2SO4+2S 从再生塔A、B顶部浮选出的硫泡沫,自流入硫泡沫槽,在此经搅拌,沉降分离,排出清液返回反应槽,硫泡沫经泡

醇胺法脱硫脱碳工艺技术及应用(最新版)

醇胺法脱硫脱碳工艺技术及应 用(最新版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0625

醇胺法脱硫脱碳工艺技术及应用(最新版) 醇胺法和砜胺法的典型工艺流程和设备是相同的。 (一)工艺流程 醇胺法脱硫脱碳的典型工艺流程见图2-2。由图可知,该流程由吸收、闪蒸、换热和再生(汽提)四部分组成。其中,吸收部分是将原料气中的酸性组分脱除至规定指标或要求;闪蒸部分是将富液(即吸收了酸性组分后的溶液)在吸收酸性组分时所吸收的一部分烃类 通过闪蒸除去;换热是回收离开再生塔的贫液热量;再生是将富液中吸收的酸性组分解吸出来成为贫液循环使用。 图2-2中,原料气经进口分离器除去游离液体和携带的固体杂质后进入吸收塔底部,与由塔顶自上而下流动的醇胺溶液逆流接触,吸收其中的酸性组分。离开吸收塔顶部的是含饱和水的湿净化气,

经出口分离器除去携带的溶液液滴后出装置。通常,都要将此湿净化气脱水后再作为商品气或管输,或去下游的NGL回收装置或LNG 生产装置。 由吸收塔底部流出的富液降压后进入闪蒸罐,以脱除被醇胺溶液吸收的烃类。然后,富液再经过滤器进贫富液换热器,利用热贫液将其加热后进入在低压下操作的再生塔上部,使一部分酸性组分在再生塔顶部塔板上从富液中闪蒸出来。随着溶液自上而下流至底部,溶液中剩余的酸性组分就会被在重沸器中加热汽化的气体(主要是水蒸气)进一步汽提出来。因此,离开再生塔的是贫液,只含少量未汽提出来的残余酸性气体。此热贫液经贫富液换热器、溶液冷却器冷却和贫液泵增压,温度降至比塔内气体烃露点高5~6℃以上,然后进入吸收塔循环使用。有时,贫液在换热与增压后也经过一个过滤器。 从富液中汽提出来的酸性组分和水蒸气离开再生塔顶,经冷凝器冷却与冷凝后,冷凝水作为回流返回再生塔顶部。由回流罐分出的酸气根据其组成和流量,或去硫磺回收装置,或压缩后回注地层

有机胺法脱硫工艺流程电子教案

有机胺法脱硫工艺流 程

有机胺法脱硫工艺 1、工艺流程 本烟气脱硫装置采用湿法有机胺脱硫工艺,装置采用有机胺浓液稀释到一定浓度后作为脱硫剂。该工艺主要分为4个过程,即烟气的预处理、SO2的吸收、SO2的再生和胺液的净化。 烟气预处理的目的是降低进入脱硫塔烟气温度和洗涤烟气中的酸雾及粉尘等杂质,为烟气在脱硫塔采用有机胺脱硫剂高效脱硫奠定基础。烟气预处理设置洗涤塔一座,采用空塔喷雾洗涤降温除尘。 二氧化硫吸收系统是烟气脱硫系统的核心。在吸收装置中吸收剂与烟气相接触,吸收剂与SO2发生可逆性反应。为了达到最大的吸收效果,采用高效耐腐蚀规整填料塔和空喷吸收相结合的形式。烟气经过洗涤塔洗涤降温净化后,将烟气中的粉尘和部分SO3等杂质洗涤下来,烟气温度被降低至约40℃,进入脱硫塔下段,与从喷头处循环喷淋的脱硫液逆流接触,气体中60%的SO2被吸收。未被吸收的烟气进入脱硫塔中部,在两段分布的规整填料中实现气液的逆流接触和SO2的高效吸收,吸收液为再生塔再生后温度35~45℃的贫液。未被吸收的净化气进入脱硫塔上部,经回收液回收夹带的溶液后,从塔顶引出,经塔顶烟囱送至硫酸尾气总管。 SO2再生装置包含一个再沸器、一座再生塔及二氧化硫、蒸汽冷凝冷却系统和二氧化硫真空系统,将吸收了SO2的富液从吸收装

置通过换热后进入再生装置,减压再生后返回脱硫塔。从脱硫塔底部出来的吸收液温度约43~45℃,经富液泵打入再生塔一级冷凝器、贫富液换热器升温至约60~65℃,进入再生塔上部,塔釜经再沸器加热至75~85℃再生。从再生塔底部出来的溶液经贫液泵加压,进入贫富液换热器换热、贫液冷却器冷却后,大部分进入脱硫塔吸收SO2,小部分送溶液净化装置,以除去溶液中的热稳定性盐。 贫液经脱盐前冷却器冷却后,进入脱硫液净化系统除去系统中的SO42-和Cl-。净化后的脱硫液进入系统继续使用。 2、工艺原理 有机胺湿法烟气脱硫技术是一种新兴的烟气脱硫技术、具有处理二氧化硫浓度低、脱硫效率高、吸收剂可以循环利用、不产生二次污染、能有效解决烟气制酸的稳定性问题等优点。 有机胺脱硫化学原理为:在水溶液中,溶解的SO2会发生式(1) 、(2) 所示的可逆水合和电离过程。 在水中加入有机胺缓冲剂,通过和水中的氢离子发生反应,形成胺盐,反应(1)、(2) 方3程式向右发生反应,增大了SO2的溶解量如反应(3),可以增加SO2的溶解量。采用蒸汽加热,可以逆转(1) ~(3) 的方程式,再生吸收剂,得到高浓度的SO2气体,对SO2进行回收利用。 一元胺的吸收功能过于稳定,以至于无法通过改变温度再生 SO2,一旦一元胺与SO2或其他的强酸发生化学反应便永久的生成

合成氨精脱硫工艺介绍

氨气合成工艺流程图新乡中科化工合成氨工艺 煤…… 造气…… 净化除尘……静电除尘…… 脱硫……合成甲醇(CO+2H 2-----CH 3 OH △H1 =651kj/mol 吸热) CO置换……

脱碳…… 精制气体……制取氨气……

气体循环……气体回收 1)予脱塔 原料气进入工段经过预脱塔先进行初脱硫。 2)预热塔 用蒸汽加热到40-80℃,为接下来的水解塔工段进行做准备。 3)水解塔 使用水解催化剂,脱出无机硫。在温度为320~350℃、压力为1.3~1.5MPa的条件下,在钴钼脱硫剂的作用下进行有机硫加氢转化反应及氧化锌吸收生成H2S ZnS,排入地沟。 4)水冷器 水冷器是为使水冷却到常温,方便后一阶段的精脱硫。 5)精脱塔 这个工段脱出的是有机硫,把最后残余的硫进行精脱,减少氨气中硫的含量。 经过这5个工段后,硫的含量小于0.06×10-6,甲醇催化剂寿命大大延长, 减少更换甲醇催化剂,生产时间和能力大幅度提高。 用到的设备有预脱塔、预热器、水解塔、水冷器、精脱塔。 合成氨 氨氨(Ammonia,旧称阿莫尼亚)是重要的无机化工产品之一,在国民经济中占有重要地位。农业上使用的氮肥,除氨水外,诸如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥都是以氨为原料生产的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。 合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨。别名氨气,分子式为NH3,英文名:synthetic ammonia。世界上的氨除少量从焦炉气中回收外,绝大部分是合成的氨。 合成氨主要用于制造氮肥和复合肥料。氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡

至万吨有机肥生产的工艺流程

1至5万吨有机肥生产的工艺流程加工有机肥原料如下: 1、农业废弃物:比如秸秆、豆粕、棉粕等。 2、畜禽粪便:比如鸡粪、牛羊马粪、兔粪; 3、工业废弃物:比如酒糟、醋糟、木薯渣、糖渣、糠醛渣等; 4、生活垃圾:比如餐厨垃圾等; 5、污泥; 有机肥原料发酵工艺: 机肥全套生产线产品是以鲜鸡粪、猪粪,秸秆,污泥等为主要原料制造成有机肥料,不含任何化学成份。那么该如何操作有机肥生产线生产肥料呢? 下面为大家介绍有机肥生产线 一、设施:地面堆放 二、设备:铁锹、粪钩、脸盆、称等。 三、操作方法 1、准备工作:将需处理的畜禽粪便(含水量在70%左右)称量分份。准备BM菌剂。 2、生产工艺 (1)将畜禽粪便和BM菌种按1:10000的重量比例进行混合,然后进行搅拌,搅拌2-3遍即可。 (2)搅拌好的发酵物水份应控制在55%-60%,达到手握成团,松手既散的效果即可。 (3)把搅拌好的发酵物堆放到平地上面,高度不小于1m,宽度不小于1.5m。长度不限。 (4)发酵24-48小时,温度可过到55℃以上,最高达70℃以上,三天可达到除臭效果。 (5)堆放发酵10—15天后达到无公害和国家有机肥规范,可作基肥和专用肥使用。 步骤一:拌匀发酵剂。 1~1.5吨干鸡粪(鲜鸡粪约2.5~3.5吨)加一公斤鸡粪发酵剂,每公斤的发酵剂平均加5~10公斤M糠或玉M、麸皮,搅拌均匀后撒入已准备好的物料中,效果最佳。 步骤二:调剂碳氮比。发酵肥料的碳氮比应保持在25~30:1,酸碱度调到6~8(ph)为宜,因鸡粪的碳氮比偏高,应在发酵时加入一些秸秆、稻草、蘑菇渣等一起发酵。 步骤三:调节鸡粪水分。发酵有机肥料的过程中,水分含量是否适宜非常重要的,不能太高,也不能太低,应保持在60~65%,判断方法:手紧抓一把物料,指缝见水印但不滴水,落地能散开为宜。 步骤四:鸡粪建堆。在做发酵堆时不能做的太小太矮,太小会影响发酵,高度一般在1.5M左右,宽度2M左右,长度在2~4M以上的堆发酵效果较好。 步骤五:拌匀通气。发酵助剂是耗氧性微生物,所以在发酵过程中应加大供氧措施,做到拌匀、勤翻、通气为宜,否则会因为厌氧发酵影响物料发酵效果。 步骤六: 发酵完成。一般在鸡粪堆积48小时后,温度会升至50~60℃,第三天可达65℃以上,在此高温下翻倒一次,一般情况下,在发酵过程中会出现2~3次65℃以上的高温,翻倒2~3次即可完成发酵,正常一周左右可发酵完成,使物料彻底脱臭、发酵腐熟,灭菌杀虫。鸡粪发酵有机肥技术鸡粪经鸡粪发酵剂发酵之后,肥效更好,使用更安全方便,还可提高化肥利用率等。不仅鸡粪可以发酵有机肥,各种动物粪便、秸秆、落叶垃圾、树皮、锯末等均可发酵有机肥,发酵方法基本一样。最后还要提醒大家,无论用什么物料发酵有机肥,都要把握好水分含量,否则会功亏一篑。 5万吨有机肥生产工艺: 1、生产工艺发酵池投放发酵物--均匀撒入菌剂--翻堆发酵--发酵12-15天--出池--分筛--粉碎--予混--(造粒)--烘干--冷却--筛分--包装--出售. 2、生产设备工艺流程 1)、槽式翻堆机采用槽式生物发酵,根据您的生产规模需建9M宽45M长发酵槽三条,将发酵物连续投入发酵池中,每天利用翻堆机向发酵槽另一端移位三M,同时能够起到水分调节和搅拌均匀目的,

天然气脱硫脱碳方法-醇胺法(新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 天然气脱硫脱碳方法-醇胺法 (新版) Safety management is an important part of production management. Safety and production are in the implementation process

天然气脱硫脱碳方法-醇胺法(新版) 醇胺法是目前最常用的天然气脱硫脱碳方法。据统计,20世纪90年代美国采用化学溶剂法的脱硫脱碳装置处理量约占总处理量的72%,其中又绝大多数是采用醇胺法。 20世纪30年代最先采用的醇胺法溶剂是三乙醇胺(TEA)。因其反应能力和稳定性差已不再采用。目前,主要采用的是MEA、DEA、DIPA、DGA和MDEA等溶剂。 醇胺法适用于天然气中酸性组分分压低和要求净化气中酸性组分含量低的场合。由于醇胺法使用的是醇胺水溶液,溶液中含水可使被吸收的重烃降低至最少程度,故非常适用于重烃含量高的天然气脱硫脱碳。MDEA等醇胺溶液还具有在CO2存在下选择性脱除H2S 的能力。 醇胺法的缺点是有些醇胺与COS和CS2的反应是不可逆的,会造成溶剂的化学降解损失,故不宜用于COS和CS2含量高的天然气

脱硫脱碳。醇胺还具有腐蚀性,与天然气中的H2S和CO2等会引起设备腐蚀。此外,醇胺作为脱硫脱碳溶剂,其富液(即吸收了天然气中酸性组分后的溶液)在再生时需要加热,不仅能耗较高,而且在高温下再生时也会发生热降解,所以损耗较大。 云博创意设计 MzYunBo Creative Design Co., Ltd.

有机胺法脱硫工艺流程

有机胺法脱硫工艺 1、工艺流程 本烟气脱硫装置采用湿法有机胺脱硫工艺,装置采用有机胺浓液稀释到一定浓度后作为脱硫剂。该工艺主要分为4个过程,即烟气的预处理、SO2的吸收、SO2的再生和胺液的净化。 烟气预处理的目的是降低进入脱硫塔烟气温度和洗涤烟气中的酸雾及粉尘等杂质,为烟气在脱硫塔采用有机胺脱硫剂高效脱硫奠定基础。烟气预处理设置洗涤塔一座,采用空塔喷雾洗涤降温除尘。 二氧化硫吸收系统是烟气脱硫系统的核心。在吸收装置中吸收剂与烟气相接触,吸收剂与SO2发生可逆性反应。为了达到最大的吸收效果,采用高效耐腐蚀规整填料塔和空喷吸收相结合的形式。烟气经过洗涤塔洗涤降温净化后,将烟气中的粉尘和部分SO3等杂质洗涤下来,烟气温度被降低至约40℃,进入脱硫塔下段,与从喷头处循环喷淋的脱硫液逆流接触,气体中60%的SO2被吸收。未被吸收的烟气进入脱硫塔中部,在两段分布的规整填料中实现气液的逆流接触和SO2的高效吸收,吸收液为再生塔再生后温度35~45℃的贫液。未被吸收的净化气进入脱硫塔上部,经回收液回收夹带的溶液后,从塔顶引出,经塔顶烟囱送至硫酸尾气总管。 SO2再生装置包含一个再沸器、一座再生塔及二氧化硫、蒸汽冷凝冷却系统和二氧化硫真空系统,将吸收了SO2的富液从吸收装置通过换热后进入再生装置,减压再生后返回脱硫塔。从脱硫塔底部出来

的吸收液温度约43~45℃,经富液泵打入再生塔一级冷凝器、贫富液换热器升温至约60~65℃,进入再生塔上部,塔釜经再沸器加热至75~85℃再生。从再生塔底部出来的溶液经贫液泵加压,进入贫富液换热器换热、贫液冷却器冷却后,大部分进入脱硫塔吸收SO2,小部分送溶液净化装置,以除去溶液中的热稳定性盐。 贫液经脱盐前冷却器冷却后,进入脱硫液净化系统除去系统中的SO42-和Cl-。净化后的脱硫液进入系统继续使用。 2、工艺原理 有机胺湿法烟气脱硫技术是一种新兴的烟气脱硫技术、具有处理二氧化硫浓度低、脱硫效率高、吸收剂可以循环利用、不产生二次污染、能有效解决烟气制酸的稳定性问题等优点。 有机胺脱硫化学原理为:在水溶液中,溶解的SO2会发生式(1) 、(2) 所示的可逆水合和电离过程。 在水中加入有机胺缓冲剂,通过和水中的氢离子发生反应,形成胺盐,反应(1)、(2) 方3程式向右发生反应,增大了SO2的溶解量如反应(3),可以增加SO2的溶解量。采用蒸汽加热,可以逆转(1) ~(3) 的方程式,再生吸收剂,得到高浓度的SO2气体,对SO2进行回收利用。 一元胺的吸收功能过于稳定,以至于无法通过改变温度再生SO2,一旦一元胺与SO2或其他的强酸发生化学反应便永久的生成一种非常稳定的胺盐。二元胺在烟气脱硫上具有更大优势,二元胺在工艺过程中首先与一种发生反应:

天然气脱硫工艺介绍

天然气脱硫工艺介绍 (1)工程中常用的天然气脱硫方法 天然气脱硫的方法有很多种,习惯上把采用溶液或溶剂做脱硫剂的脱硫方法称为湿法脱硫,采用固体做脱硫剂的脱硫方法称为干法脱硫。 一般的湿法脱硫有化学溶剂法(如醇胺法)、物理溶剂法(如Selexol法、Flour法)、化学-物理溶剂法(如砜胺法)和直接转化法(如矶法、铁法)。常见的干法脱硫有膜分离法、分子筛法、不可再生固定床吸附法和低温分离法等。 (2)天然气脱硫方法选用原则 天然气组分、处理量、硫含量、厂站所处自然条件、产品质量要求、运行操作要求等都是天然气脱硫工艺的选择依据。目前,根据国内外工业实践的经验,天然气脱硫脱碳工艺的选择原则可参考以下内容。 ①原料气中含硫量高,处理量大,硫碳比高需要选择性吸收H2S同时脱除相当量的CO2,原料气压力低,净化气H2S要求严格等条件下,可选择醇胺法作为脱酸工艺。 ②原料气中含有超量的有机硫化物需要脱除,宜选用砜胺法。此外,H2S分压高的原料气选用砜胺法时能耗远低于醇胺法。 ③H2S含量较低的原料气中,潜硫量在d?5t/d时可考虑直接转化法,潜硫量低于d的可选用非再生固体脱硫法如固体氧化铁法等。 实践中,往往在选择基本工艺方案之后,根据具体情况进行技术经济比较,最终确定天然气的脱硫脱碳方法。图1和图2分别表示了原料气中酸气分压和出口气质量指标对脱硫方案选择的影响。 图1脱硫方案选择与酸气分压的关系 图2脱硫方案选择与进、出口气质量指标的关系 (3)低含硫量天然气脱硫方案 某项目天然气组分和参数如下: 表1原料气组分表

表2原料气工艺参数表 几种脱硫工艺方案如下: ①干法脱硫固定床吸附法 氧化铁固体脱硫是典型的干法脱硫工艺,处理原料气中的H2S含量一般在lOppm 到1%之间。工艺流程图如图3。 原料气首先进行过滤分离,除去固体杂质和游离水后,进入脱硫装置固体脱硫塔进行吸附脱除气体中含有的H2S,其余塔进行更换脱硫剂工作。脱硫后的净化气经过滤分离,除去化学反应产生的水和气流带出的脱硫剂杂质后输出。 氧化铁固体脱硫工艺所需要的主要设备见表3,常见脱硫装置见图4。 图3氧化铁固体脱硫工艺流程

醇胺法脱硫脱碳工艺技术及应用.doc

醇胺法脱硫脱碳工艺技术及应用 醇胺法和砜胺法的典型工艺流程和设备是相同的。 (一) 工艺流程醇胺法脱硫脱碳的典型工艺流程见图2-2。由图可知,该流程由吸收、闪蒸、换热和再生(汽提)四部分组成。其中,吸收部分是将原料气中的酸性组分脱除至规定指标或要求;闪蒸部分是将富液(即吸收了酸性组分后的溶液)在吸收酸性组分时所吸收的一部分烃类通过闪蒸除去;换热是回收离开再生塔的贫液热量;再生是将富液中吸收的酸性组分解吸出来成为贫液循环使用。图2-2中,原料气经进口分离器除去游离液体和携带的固体杂质后进入吸收塔底部,与由塔顶自上而下流动的醇胺溶液逆流接触,吸收其中的酸性组分。离开吸收塔顶部的是含饱和水的湿净化气,经出口分离器除去携带的溶液液滴后出装置。通常,都要将此湿净化气脱水后再作为商品气或管输,或去下游的NGL回收装置或LNG生产装置。由吸收塔底部流出的富液降压后进入闪蒸罐,以脱除被醇胺溶液吸收的烃类。然后,富液再经过滤器进贫富液换热器,利用热贫液将其加热后进入在低压下操作的再生塔上部,使一部分酸性组分在再生塔顶部塔板上从富液中闪蒸出来。随着溶液自上而下流至底部,溶液中剩余的酸性组分就会被在重沸器中加热汽化的气体(主要是水蒸气)进一步汽提出来。因此,离开再生塔的是贫液,只含少量未汽提出来的残余酸性气体。此热贫液经贫富液换热器、溶液冷却器冷却和贫液泵增压,温度降至比塔内气体烃露点高5~6℃以上,然

后进入吸收塔循环使用。有时,贫液在换热与增压后也经过一个过滤器。从富液中汽提出来的酸性组分和水蒸气离开再生塔顶,经冷凝器冷却与冷凝后,冷凝水作为回流返回再生塔顶部。由回流罐分出的酸气根据其组成和流量,或去硫磺回收装置,或压缩后回注地层以提高原油采收率,或经处理后去火炬等。在图2-2所示的典型流程基础上,还可根据需要衍生出一些其他流程,例如分流流程(见图2-3)。在图2-3中,由再生塔中部引出一部分半贫液(已在塔内汽提出绝大部分酸性组分但尚未在重沸器内进一步汽提的溶液)送至吸收塔的中部,而经过重沸器汽提后的贫液仍送至吸收塔的顶部。此流程虽然增加了一些设备与投资,但对酸性组分含量高的天然气脱硫脱碳装置却可显著降低能耗。图2-4是BASF公司采用活化MDEA(aMDEA)溶液的分流法脱碳工艺流程。该流程中活化MDEA溶液分为两股在不同位置进入吸收塔,即半贫液进入塔的中部,而贫液则进入塔的顶部。从低压闪蒸罐底部流出的是未完全汽提好的半贫液,将其送到酸性组分浓度较高的吸收塔中部;而从再生塔底部流出的贫液则进入吸收塔的顶部,与酸性组分浓度很低的气流接触,使湿净化气中的酸性组分含量降低至所要求之值。离开吸收塔的富液先适当降压闪蒸,再在更低压力下闪蒸,然后去再生塔内进行汽提,离开低压闪蒸罐顶部的气体即为所脱除的酸气。此流程的特点是装置处理量可提高,再生能耗较少,主要用于天然气及合成气脱碳。 (二) 主要设备 1. 高压吸收系统高压吸收系统由原料

天然气脱硫工艺介绍

天然气脱硫工艺介绍公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

天然气脱硫工艺介绍 (1)工程中常用的天然气脱硫方法 天然气脱硫的方法有很多种,习惯上把采用溶液或溶剂做脱硫剂的脱硫方法称为湿法脱硫,采用固体做脱硫剂的脱硫方法称为干法脱硫。 一般的湿法脱硫有化学溶剂法(如醇胺法)、物理溶剂法(如Selexol法、Flour法)、化学-物理溶剂法(如砜胺法)和直接转化法(如矾法、铁法)。常见的干法脱硫有膜分离法、分子筛法、不可再生固定床吸附法和低温分离法等。(2)天然气脱硫方法选用原则 天然气组分、处理量、硫含量、厂站所处自然条件、产品质量要求、运行操作要求等都是天然气脱硫工艺的选择依据。目前,根据国内外工业实践的经验,天然气脱硫脱碳工艺的选择原则可参考以下内容。 ①原料气中含硫量高,处理量大,硫碳比高需要选择性吸收H 2 S同时脱除相 当量的CO 2,原料气压力低,净化气H 2 S要求严格等条件下,可选择醇胺法作为脱 酸工艺。 ②原料气中含有超量的有机硫化物需要脱除,宜选用砜胺法。此外,H 2 S分压高的原料气选用砜胺法时能耗远低于醇胺法。 ③ H 2 S含量较低的原料气中,潜硫量在d~5t/d时可考虑直接转化法,潜硫量低于d的可选用非再生固体脱硫法如固体氧化铁法等。 实践中,往往在选择基本工艺方案之后,根据具体情况进行技术经济比较,最终确定天然气的脱硫脱碳方法。图1 和图2 分别表示了原料气中酸气分压和出口气质量指标对脱硫方案选择的影响。

图1 脱硫方案选择与酸气分压的关系 图2 脱硫方案选择与进、出口气质量指标的关系(3)低含硫量天然气脱硫方案 某项目天然气组分和参数如下: 表1 原料气组分表 表2 原料气工艺参数表

醇胺法脱硫工艺流程图

1.醇胺法脱硫工艺流程图。 (一) 工艺流程 醇胺法脱硫脱碳的典型工艺流程见图2-2。由图可知,该流程由吸收、闪蒸、换热和再生(汽提)四部分组成。其中,吸收部分是 将原料气中的酸性组分脱除至规定指标或要求;闪蒸部分是将富液 (即吸收了酸性组分后的溶液)在吸收酸性组分时所吸收的一部分烃 类通过闪蒸除去;换热是回收离开再生塔的贫液热量;再生是将富液 中吸收的酸性组分解吸出来成为贫液循环使用。 图2-2中,原料气经进口分离器除去游离液体和携带的固体杂质后进入吸收塔底部,与由塔顶自上而下流动的醇胺溶液逆流接 触,吸收其中的酸性组分。离开吸收塔顶部的是含饱和水的湿净化气, 经出口分离器除去携带的溶液液滴后出装置。通常,都要将此湿净化 气脱水后再作为商品气或管输,或去下游的NGL回收装置或LNG生产 装置。 由吸收塔底部流出的富液降压后进入闪蒸罐,以脱除被醇胺溶液吸收的烃类。然后,富液再经过滤器进贫富液换热器,利用热贫 液将其加热后进入在低压下操作的再生塔上部,使一部分酸性组分在 再生塔顶部塔板上从富液中闪蒸出来。随着溶液自上而下流至底部, 溶液中剩余的酸性组分就会被在重沸器中加热汽化的气体(主要是水 蒸气)进一步汽提出来。因此,离开再生塔的是贫液,只含少量未汽 提出来的残余酸性气体。此热贫液经贫富液换热器、溶液冷却器冷却 和贫液泵增压,温度降至比塔内气体烃露点高5~6℃以上,然后进 入吸收塔循环使用。有时,贫液在换热与增压后也经过一个过滤器。 从富液中汽提出来的酸性组分和水蒸气离开再生塔顶,经冷凝器冷却与冷凝后,冷凝水作为回流返回再生塔顶部。由回流罐分出 的酸气根据其组成和流量,或去硫磺回收装置,或压缩后回注地层以 提高原油采收率,或经处理后去火炬等 2.甘醇法吸收脱水工艺流程 1. 工艺流程 图3-5为典型的三甘醇脱水装置工艺流程。该装置由高压吸收系统和低压再生系统两部分组成。通常将再生后提浓的甘醇溶液称为贫甘醇,吸收气体中水蒸 气后浓度降低的甘醇溶液称为富甘醇。

API RP945 避免胺法脱硫装置的开裂

避免胺法脱硫装置的开裂 API推荐性规范 945 第三版,2003年6月 声明 目录 I 范围 2参考文献 2.1 参考出版物 2.2 参考标准和规范 2.3其他标准和规范 2.4 3定义 4 背景 4.1胺处理装置 4.2胺处理装置存在的主要问题 5 建造材料和制造新设备指导 5.1建造材料 5.2制造 6现有设备的检测与维修 6.1概述 6.2检测材料 6.3 应当进行检验的设备和管道 6.4检测方法 6.5设备消缺 6.6无损伤设备的焊后热处理 附录A 开裂机理 附录B设备防腐应当考虑的问题 附录C 有关胺处理装置开裂问题新信息提供的要求 图 胺处理装置的典型流程图 A-1焊缝热影响区的硫化物应力腐蚀开裂 A-2碳钢法兰内表面的氢鼓泡 A-3碳钢的阶梯状氢致开裂(HIC) A-4应力导向氢致开裂 A-5临近焊缝部位的碱应力腐蚀开裂 A-6 MEA装置中管道焊缝的碱应力腐蚀开裂 A-7 DEA装置中的弯头部位的碱应力腐蚀开裂 A-8 DEA环境中的碱穿晶应力腐蚀开裂 1、范围 本推荐性规范主要探讨了胺处理装置的碳钢设备的环境开裂问题。胺处理装置中不锈钢的应力腐蚀开裂不在本规范的范围,尽管胺处理装置中的不锈钢应力腐蚀开裂也有些独立的报道。本推荐性规范目的是用来提出碳钢材料,包括建造、检测和维修,方面的指导,以确保装置安全可靠的运行。本规范中的钢采

用的是ASTM或其他标准规范中与其等效的钢材。焊接是胺处理设备主要的建造和连接方式。关于焊缝和焊肉的定义见3.1 and 3.2。 本文是建立在当前的一些工程实践基础上,并参考了近来的一些工业经验。老的胺处理装置可能不能完全遵照本规范中的要求,这并不意味着这些装置不安全或不可靠。没有两个胺处理装置是完全一样的,对特定设备需要进行的调整取决于其运行条件、检测和维护历史。每一家公司都要对自己装置的安全性和可靠性负责。 2、参考文献 2.1参考出版物 下面是本规范的参考文献。 1. H. W. Schmidt et al., “Stress Corrosion Cracking in Alkaline Solutions”,Corrosion, 1951, Volume 7, No. 9, p. 295. 2. G. L Garwood, “What to Do About Amine Stress Corrosion”, Oil and Gas Journal, July 27, 1953, Volume 52, p. 334. 3. P G. Hughes, “Stress Corrosion Cracking in an MBA Unit”, Proceedings of the 1982 U.K. National Corrosion Conference, Institute of Corrosion Science and Technology, Birmingham, I3ngland, 1982, p. 87. 4. H. l. MeHenry et al., “Failure Analysis of an Amine Absorber Pressure Vessel,” Materials Performance, 1987. Volume 26, No. 8, p. 18. 5. J. Gutzeit and I M. Johnson, “Stress Corrosion Cracking of Carbon Steel Welds in Amine Service”, Materials Performance, 1986, Volume 25, No. 7, p. 18. 6. J. P. Richert et al., “Stress Corrosion Cracking of Carbon Steel in Amine Systems”, Materials Performance, 1988, Volume 27, No. l, p.9. 7. A. J. Bagdasanian et al., “Stress Corrosion Cracking of Carbon Steel in DEA and ADIP Solutions”, Materials Performance, 1991,Volume 30, No. 5, p. 63. 8. R. J. Horvath, Group Committee T-8 Minutes, Sec. 5.l0——Amine Units, Fall Committee WeekI93, September 29, 1993. NACE International. 9. R. N. Parkins and Z. A. Foroulis, “The Stress Corrosion Cracking of Mild Steel in Monoethanolamine Solutions?± (Paper 188), Cor,vsion/87, NACE Tnternational, Houston, 1987. 10. H. U. Schutt, “New Aspects of Stress Corrosion Cracking in Monethanolamine Solutions” (Paper 159), Cormsion/88, NACE International, Houston, 1988. 11. M.S. Cayard, R.D. Kane, L. Kaley and M. Prager, “Research Report on Characterization and Monitoring of Cracking in Wet H2S Service”, API Publication 939, American Petroleum Institute, Washington, D.C., October1994. 12. T.G. Gooch, “Hardness and Stress Corrosion Cracking of Fern tic Steel”, Welding Institute Research Bulletin. 1982, Volume 23, No.8,p. 241. 13. C. S. Carter and M. V. Hyatt, Review of Stress Comasion Cracking in Low Alloy Steels with Yield Strengths Below 1 50 KST,?± Sfr?ˉcw Cortnsion Cracking and Hydrogen Embrittlement of Iron Base Alloys.NACE International, Houston, 1977, p. 524. 2.2 参考标准和规范 下面给出了本推荐性规范直接参考的标准和规范(文中没有标出)。这些标准和规范都会定期更新,发布新版本,在采用本规范时应当参考这些标准规范的最新版本。 API API 510 压力容器检验规程:维护、检验、定级、维修和更换 API 570 管道检验规程:检测、维修、更换和在役管道的定级

相关文档
相关文档 最新文档