文档库 最新最全的文档下载
当前位置:文档库 › 心率信号的采集与处理

心率信号的采集与处理

心率信号的采集与处理
心率信号的采集与处理

心率信号的采集与处理

技术分类:医疗电子 | 2009-04-08

1 概述

SoC 技术是一项很重要的电子应用技术,十分适合将其用于生物工程领域。为了满足低电压、低功耗的需要,本次系统设计选择SoC 技术用于生物信号处理。

心率是一项重要的生理指标。它是指单位时间内心脏搏动的次数,是临床常规诊断的生理指标。为了测量心率信号,有许多技术可以应用,例如:血液测量,心声测量,ECG测量等等。在混合信号SoC 的设计中,电路可以被分成两部分,模拟电路部分和数字电路部分。其中模拟电路很容易被数字电路干扰,这是因为数字电路部分本身就是一个高频的噪声源。作为一个混合信号的SoC,怎样处理模拟模块和数字模块的连接问题是一个挑战。所以文中对噪声处理技术也进行了讨论。

在这篇文章里,第二部分给出了系统的设计框图,第三部分对心率信号处理中的问题进行了讨论,第四部分设计了一个心率信号处理的滤波器,第五部分是对其功能和指标的准确性进行了测试,第六部分是总结。

2 心率检测的SoC 系统框图

用混合信号SoC 设计心率信号的处理系统,就需要低功耗和低电压的供给,所以电源电压为3.3V。系统框图如图一所示。

图1 系统框图

在图一中,传感器采用的是红外光电式传感器,用于把原始的心率信号转变为微电压信号。信号调理电路包括放大器、滤波器和比较器。调理电路的输入信号是传感器采集进来的原始心率信号,它的输出信号则是有一定电压幅度的脉冲信号。C51 处理部分是数字信号中央处理单元,它的输入信号是上面提到的脉冲信号,输出的是心率数据,最后通过CPU 核把信号显示出来。CPU 核是EZL-8051。

3 心率信号的采集

将一对红外线发射与接收探头置于动脉一侧,当指尖的血流量随心脏跳动而改变时,红外线接收探头便接收到随心脏周期性地收缩和舒张的动脉搏动光脉冲信号,从而采集到心脏搏动信号。

图2 是单光束直射取样式光电传感器。这类槽型光耦由高功率的红外光电二极管和红外光匹配性能强、透镜敏感度高、集电极电流范围大的光敏三极管组成。由于血液中的血红蛋白对近红外线具有吸收作用的生物效应,因而此类传感器灵敏度高、输出信号稳定。其性能指标如表1 所示。

(a)外观

b)内部结构示意图

图2 单光束直射取样式光电传感器

表 1 单光束直射取样式光电传感器的技术指标

经红外光电传感器采集到的原始心率信号的波形如图3 所示。

图3 红外光电传感器采集到的原始心率信号波形由图3 可知,通过红外光电传感器采集到的原始心率信号极其微弱(变化幅值在±10mV之间),非常容易受到外围电路

的干扰。因此,系统必须单独为信号调理电路提供电源。同时,电路板的布局布线也会对信号产生较大的影响。因此,在设计电路板时要对主要信号线与电源地线进行设计。根据图3 所示的原始心率信号波形可以得到波形整体的变化趋势,但其中掺杂了很强的杂波和干扰信号。因此,要对传感器采集到的心率信号进行放大、整形和滤波处理。其中放大整形电路如图4 所示。

点击看原图

图4 放大整形电路

图4 中的虚线框部分为红外光电传感器。图中两个三极管构成了达林顿管,可以有效地防止可见光的干扰,对采集到的微弱心率信号也有较好的增益。传感器采集到的心率信号(图中A 点)经过一级放大和整形后的信号波形(图中B 点)已经比较平滑,B 点信号的变化幅值为0.8V 左右,但还存在一定程度的电压偏置量。经第二级放大可得0~10V 的脉冲信号(图中C 点),并且已去除掉大部分干扰,信号也相对稳定,同时也去掉

了电压偏置量。放大整形电路的输出信号波形(即图中C 点信号的波形)如图5 所示。

图5 放大整形电路的输出信号波形

由图5 可以看出,输出信号具有标准的上升沿和下降沿,且电压变化量为标准量。

4 心率信号的滤波处理

由图5 可知,放大整形电路的输出信号中仅存在50Hz 的工频干扰。下面主要介绍去除50Hz 工频干扰的滤波器的设计。50Hz 模拟陷波器实质上就是带阻滤波电路,是一种特殊的有源RC 滤波器,能有效抑制从前端输入的差模干扰。但使用不当会导致有用的心率信号发生畸变。上文提到的50Hz 工频干扰实际上并不仅仅是指频率为50Hz 的干扰信号,频率为50Hz 整数倍的谐波干扰也不能忽视,其幅值比50Hz 的干扰信号稍小。另外,50Hz 工频干扰漂移的存在,使得包含在这个范围内的频率都应被视为工频干扰。对于谐波的干扰可以通过低通滤波器去除,但要去除49.5~50.5Hz 的干扰则需要设计出性能优越的陷波器。图6是一种名为压控电压源(VCVS)陷波器的电路结构。

图6 VCVS 陷波器电路

图6 所示电路实际上是一种典型的二阶有源带阻滤波器,其传递函数为

取R = 20kΩ,C = 1μF,使得VCVS 陷波器的中心频率刚好为50Hz。

在Multisim 中对图6 电路进行仿真。输入50Hz 的正弦信号,通过VCVS 陷波器后,在示波器上可观察到输入的正弦波已衰减为一条直线,如图7(a)所示;在波特图仪上可观察到电路频率在50Hz 处的带阻特性,如图7(b)所示。

(a)示波

(b)

波特图仪

图7 VCVS 陷波器电路的仿真结果

红外光电传感器采集到的原始心率信号经信号调理电路的放大、整形和滤波处理后,得到的信号波形如图8 所示。

图8 信号调理电路的输出波形

由图8 可知,心率信号经放大、整形和滤波处理后得到的脉冲信号波形稳定,基本上去除了各种干扰,是心脏跳动的真实反映。这样就可将此脉冲信号直接输入到中央处理单元中进行处理。

5 系统功能检测

为了验证系统的准确性,对其功能和指标进行测试。运动前和运动后的三组数据如表二所示。

表 2 测试数据

由表2 可以得到以下两条信息:(1)运动前后心率值的变化:运动前后心率值的变化是因为运动会消耗一部分能量,使得心脏加快向外输送血液的速度,导致心率值的增加。另外,在运动前,被测者的心率值也会随着其生理反应的变化而发生小幅度的改变。运动后,被测者心率值的3 组数据反映了从剧烈运动到恢复平静的变化过程。(2)人工测量值与数码管显示值之间的偏差:人工测量值与数码管显示值也存在一些偏差。人工测量是指用手指按在手腕处测得的结果,数码管显示值是指经心率检测仪测得的结果。导致两组数据存在偏差的主要原因有传感器的灵敏度不高以及模拟滤波器不能完全滤除自然界中存在的50Hz 工频干扰。

6 结论

本次设计将微电子技术与生物医学工程技术紧密地结合在一起,达到了设计要求,具有较大的创新性和实际应用价值,并且有良好的市场推广价值。

本文作者创新点

数据采集与处理技术

数据采集与处理技术 参考书目: 1.数据采集与处理技术马明建周长城西安交通大学出版社 2.数据采集技术沈兰荪中国科学技术大学出版社 3.高速数据采集系统的原理与应用沈兰荪人民邮电出版社 第一章绪论 数据采集技术(Data Acquisition)是信息科学的一个重要分支,它研究信息数据的采集、存贮、处理以及控制等作业。在智能仪器、信号处理以及工业自动控制等领域,都存在着数据的测量与控制问题。将外部世界存在的温度、压力、流量、位移以及角度等模拟量(Analog Signal)转换为数字信号(Digital Signal), 在收集到计算机并进一步予以显示、处理、传输与记录这一过程,即称为“数据采集”。相应的系统即为数据采集系统(Data Acquisition System,简称DAS)数据采集技术以在雷达、通信、水声、遥感、地质勘探、震动工程、无损检测、语声处理、智能仪器、工业自动控制以及生物医学工程等领域有着广泛的应用。 1.1 数据采集的意义和任务 数据采集是指将温度、压力、流量、位移等模拟量采集、转换为数字量后,再由计算机进行存储、处理、显示或打印的过程。相应的系统称为数据采集系统。 数据采集系统的任务:采集传感器输出的模拟信号并转换成计算机能识别的数字信号,然后送入计算机,根据不同的需要由计算机进行相应的计算和处理,得出所需的数据。与此同时,将计算得到的数据进行显示或打印,以便实现对某些物理量的监视,其中一部分数据还将被生产过程中的计算机控制系统用来控制某些物理量。 数据采集系统的好坏,主要取决于精度和速度。 1.2 数据采集系统的基本功能 1.数据采集:采样周期

信号采集与处理--MATLAB窗函数及其特征

信号采集与处理 MATLAB 窗函数及其特征 数字信号处理中通常是取其有限的时间片段进行分析,而不是对无限长的信号进行测量和运算。具体做法是从信号中截取一个时间片段,然后对信号进行傅里叶变换、相关分析等数学处理。信号的截断产生了能量泄漏,而用FFT算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的。在FFT分析中为了减少或消除频谱能量泄漏及栅栏效应,可采用不同的截取函数对信号进行截短,截短函数称为窗函数,简称为窗。 泄漏与窗函数频谱的两侧旁瓣有关,对于窗函数的选用总的原则是,要从保持最大信息和消除旁瓣的综合效果出发来考虑问题,尽可能使窗函数频谱中的主瓣宽度应尽量窄,以获得较陡的过渡带;旁瓣衰减应尽量大,以提高阻带的衰减,但通常都不能同时满足这两个要求。频谱中的如果两侧瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱。不同的窗函数对信号频谱的影响是不一样的,这主要是因为不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。信号的加窗处理,重要的问题是在于根据信号的性质和研究目的来选用窗函数。图1是几种常用的窗函数的时域和频域波形,其中矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低,如果仅要求精确读出主瓣频率,而不考虑幅值精度,则可选用矩形窗,例如测量物体的自振频率等;布莱克曼窗主瓣宽,旁瓣小,频率识别精度最低,但幅值识别精度最高;如果分析窄带信号,且有较强的干扰噪声,则应选用旁瓣幅度小的窗函数,如汉宁窗、三角窗等;对于随时间按指数衰减的函数,可采用指数窗来提高信噪比。表1 是几种常用的窗函数的比较。 如果被测信号是随机或者未知的,或者是一般使用者对窗函数不大了解,要求也不是特别高时,可以选择汉宁窗,因为它的泄漏、波动都较小,并且选择性也较高。但在用于校准时选用平顶窗较好,因为它的通带波动非常小,幅度误差也较小。 5.3 广义余弦窗 汉宁窗、海明窗和布莱克曼窗,都可以用一种通用的形式表示,这就是广义余弦窗。这些窗都是广义余弦窗的特例,汉宁窗又被称为余弦平方窗或升余弦窗,海明窗又被称为改进的升余弦窗,而布莱克曼窗又被称为二阶升余弦窗。采用这些窗可以有效地降低旁瓣的高度,但是同时会增加主瓣的宽度。这些窗都是频率为0、2π/(N–1)和4π/(N–1)的余弦曲线的合成,其中N为窗的长度。通常采用下面的命令来生成这些窗: Ind=(0:N-1)*2*pi/(N-1) Window=A-B*cos(ind)+C*cos(2*ind) 其中,A、B、C适用于自己定义的常数。根据它们取值的不同,可以形成不同的窗函数,分别是:●汉宁窗A=0.5,B=0.5,C=0;●海明窗A=0.54,B=0.54,C=0;●布莱克曼窗A=0.5,B=0.5,C=0.08;

matlab语音信号采集与初步处理要点

《matlab与信号系统》实验报告 学院: 学号: 姓名: 考核实验——语音信号采集与处理初步 一、课题要求 1.语音信号的采集 2.语音信号的频谱分析 3.设计数字滤波器和画出频率响应 4.用滤波器对信号进行滤波 5.比较滤波前后语音信号的波形及频谱 6.回放和存储语音信号 (第5、第6步我放到一起做了) 二、语音信号的采集 本段音频文件为胡夏演唱的“那些年”的前奏(采用Audition音频软件进行剪切,时长17秒)。运行matlab软件,在当前目录中打开原音频文件所在的位置,采用wavread函数对其进行采样,并用sound函数可进行试听,程序运行之后记下采样频率和采样点。 利用函数wavread对语音信号的采集的程序如下: clear; [y,fs,bits]=wavread('music.wav'); %x:语音数据;fs:采样频率;bits:采样点数sound(y,fs,bits); %话音回放 程序运行之后,在工作区间中可以看到采样频率fs=44100Hz,采样点bits=16

三、语音信号的频谱分析 先画出语音信号的时域波形,然后对语音号进行快速傅里叶变换,得到信号的频谱特性。语音信号的FFT频谱分析的完整程序如下: clear; [y,fs,bits]=wavread('music.wav'); %x:语音数据;fs:采样频率;bits:采样点数sound(y,fs,bits); %话音回放 n = length (y) ; %求出语音信号的长度 Y=fft(y,n); %傅里叶变换 subplot(2,1,1); plot(y); title('原始信号波形'); subplot(2,1,2); plot(abs(Y)); title('原始信号频谱'); 程序结果如下图: 四、设计数字滤波器和画出频率响应 根据语音信号的特点给出有关滤波器的性能指标: 1)低通滤波器性能指标,fp=1000Hz,fc=1200 Hz,As=100dB,Ap=1dB; 2)高通滤波器性能指标,fc=4800 Hz,fp=5000 Hz As=100dB,Ap=1dB。

大数据采集与信号处理

数据信息采集与处理

基本内容:基于FFT的功率谱分析程序设计与应用 1.基本要求 1)对一个人为产生的信号进行采用FFT变换方法进行功率谱分析。 已知信号x(n)=80.0*COS(2*3.14*SF*n/FS) 式中: n=0,1,2 ……N-1 SF---信号频率 FS---采样频率 其FFT变换结果X(k)可用下面提供的FFT子程序求出,计算功率谱的公式为: W(k)=2(XR(k)2 +XI(k)2)/N 式中:k=0,1,2 ……N/2-1 XR(k)--- X(k)的实部 XI(k)--- X(k)的虚部 请用VB,VC或C++Builder编译器编程,或采用MATLAB计算,或采用高级语言调用MATLAB计算。处理结果为采用窗口显示时域波形和频域波形。 此信号的时域谱、频域谱、功率谱如下面图1~图3所示: 图1

图2 图3 其MATLAB代码为: FS=200; SF=10;

N=1024; n=0:N-1; t=n/FS; x=80.0*cos(2*3.14*SF*t); figure; plot(t,x); xlabel('t'); ylabel('y'); title('x=80.0*cos(2*3.14*SF*t)时域波形'); grid; y=fft(x,N); mag=abs(y); f=(0:length(y)-1)*FS/length(y);%进行对应的频率转换 figure; plot(f(1:N/2),mag(1:N/2));%做频谱图 xlabel('频率(Hz)'); ylabel('幅值'); title('x=80.0*cos(2*3.14*SF*t)幅频谱图N=1024'); grid; Py =2*(y.*conj(y))/N; %计算功率谱密度Py figure; plot(f(1:N/2),Py(1:N/2)); xlabel('频率(Hz)'); ylabel('功率谱密度'); title('x=80.0*cos(2*3.14*sf*t)功率谱密度'); grid; 2)对实验所采集的转子振动信号进行频谱分析

心率信号的采集与处理

心率信号的采集与处理 技术分类:医疗电子 | 2009-04-08 1 概述 SoC 技术是一项很重要的电子应用技术,十分适合将其用于生物工程领域。为了满足低电压、低功耗的需要,本次系统设计选择SoC 技术用于生物信号处理。 心率是一项重要的生理指标。它是指单位时间内心脏搏动的次数,是临床常规诊断的生理指标。为了测量心率信号,有许多技术可以应用,例如:血液测量,心声测量,ECG测量等等。在混合信号SoC 的设计中,电路可以被分成两部分,模拟电路部分和数字电路部分。其中模拟电路很容易被数字电路干扰,这是因为数字电路部分本身就是一个高频的噪声源。作为一个混合信号的SoC,怎样处理模拟模块和数字模块的连接问题是一个挑战。所以文中对噪声处理技术也进行了讨论。 在这篇文章里,第二部分给出了系统的设计框图,第三部分对心率信号处理中的问题进行了讨论,第四部分设计了一个心率信号处理的滤波器,第五部分是对其功能和指标的准确性进行了测试,第六部分是总结。 2 心率检测的SoC 系统框图 用混合信号SoC 设计心率信号的处理系统,就需要低功耗和低电压的供给,所以电源电压为3.3V。系统框图如图一所示。

图1 系统框图 在图一中,传感器采用的是红外光电式传感器,用于把原始的心率信号转变为微电压信号。信号调理电路包括放大器、滤波器和比较器。调理电路的输入信号是传感器采集进来的原始心率信号,它的输出信号则是有一定电压幅度的脉冲信号。C51 处理部分是数字信号中央处理单元,它的输入信号是上面提到的脉冲信号,输出的是心率数据,最后通过CPU 核把信号显示出来。CPU 核是EZL-8051。 3 心率信号的采集 将一对红外线发射与接收探头置于动脉一侧,当指尖的血流量随心脏跳动而改变时,红外线接收探头便接收到随心脏周期性地收缩和舒张的动脉搏动光脉冲信号,从而采集到心脏搏动信号。 图2 是单光束直射取样式光电传感器。这类槽型光耦由高功率的红外光电二极管和红外光匹配性能强、透镜敏感度高、集电极电流范围大的光敏三极管组成。由于血液中的血红蛋白对近红外线具有吸收作用的生物效应,因而此类传感器灵敏度高、输出信号稳定。其性能指标如表1 所示。

基于LabVIEW的数据采集与信号处理系统的设计_杜娟

基于L a b V I E W 的数据采集与信号处理系统的设计 杜 娟1,邱晓晖1,赵 阳2,颜 伟2,缪 飞1 (1.南京邮电大学通信与信息工程学院,江苏南京210003;2.南京师范大学电气与自动化工程学院,江苏南京210042) [摘要] 介绍了虚拟仪器领域中最具代表性的图形化编程开发平台L a b V I E W,并对基于L a b V I E W 编程环境实现数据采集进 行了研究,设计实现了一种基于L a b V I E W 8.5环境,以E M I 噪声分析仪为下位机的数据采集与信号处理系统的设计方法.该设 计方法主要实现了以R S 232为代表的串口通讯,数组转换及频谱分析等功能,结果表明应用该设计方法设计出的系统具有简 洁友好的人机界面,可直接在前面板上完成各种操作与观测.该设计方案较之目前大多数的设计方法相比有效地降低了程序的 运算量,节省了运算时间,成功实现了实时无差错的采集到由下位机发来的完整数据. [关键词] L a b V I E W,串口通讯,数组转换 [中图分类号]T M 461;T N 713+.7 [文献标识码]A [文章编号]1672-1292(2010)03-0007-04 D a t a A c q u i s i t i o n a n dS i g n a l P r o c e s s i n g S y s t e m B a s e do nL a b V I E W D u J u a n 1,Q i u X i a o h u i 1,Z h a o Y a n g 2,Y a n We i 2,Mi a o F e i 1 (1.C o l l e g e o f C o m m u n i c a t i o na n dI n f o r m a t i o nE n g i n e e r i n g ,N a n j i n g U n i v e r s i t y o f P o s t a n dC o m m u n i c a t i o n s ,N a n j i n g 210003,C h i n a ; 2.S c h o o l o f E l e c t r i c a l a n dA u t o m a t i o nE n g i n e e r i n g ,N a n j i n g N o r m a l U n i v e r s i t y ,N a n j i n g 210042,C h i n a )A b s t r a c t :L a b V I E W i s i n t r o d u c e di n t h i s p a p e r a s a k i n d o f m o s t r e p r e s e n t a t i v e g r a p h i c a l p r o g r a m m i n g p l a t f o r m s i n V i r - t u a l i n s t r u m e n t f i e l d ,a n dr e a l i z i n g d a t a a c q u i s i t i o n b a s e do n L a b V I E W p r o g r a m m i n g e n v i r o n m e n t i s s t u d i e d ,t h e n a d e - s i r e m e t h o d o f D a t a a c q u i s i t i o n a n dS i g n a l p r o c e s s i n g s y s t e m u s e dE M I n o i s e a n a l y z e r a s t h en e x t b i t m a c h i n e b a s e d o n l a b v i e w 8.5i s i n t r o d u c e d .T h es y s t e m r e a l i z e dR S 232s e r i a l c o m m u n i c a t i o n ,a r r a yc o n v e r s i o na n ds p e c t r a l a n a l y s i s f u n c t i o n s .T h e r e s u l t s h o w s t h a t t h e s y s t e m d e s i g n e d b y t h i s m e t h o d h a s a s i m p l e a n df r i e n d l y i n t e r f a c e ,a n d t h a t u s e r s c a n d o e v e r y o p e r a t i o na n do b s e r v a t i o n i n t h e f r o n t p a n e l d i r e c t l y .T h i s s c h e m e r e d u c e s t h e c a l c u l a t i o n p r o c e d u r e e f f e c - t i v e l y a n d s a v e t i m e ,a c h i e v e s t h e r e a l -t i m e a n d e r r o r -f r e e c o l l e c t e d t h e d a t a i n t e g r i t i l y . K e yw o r d s :l a b v i e w ,s e r i a l c o m m u n i c a t i o n ,a r r a y c o n v e r s i o n  收稿日期:2010-06-02. 基金项目:中国博士后基金(20080431126)、毫米波国家重点实验室开放基金(K 200903)、江苏省博士后基金(0702033B )、江苏省自然科 学基金(B K 2008429). 通讯联系人:邱晓晖,博士,副教授,研究方向:现代信号处理.E -m a i l :q i u x h @n j u p t .e d u .c n L a b V I E W (L a b o r a t o r y V i r t u a l I n s t r u m e n t E n g i n e e r i n g W o r k b e n c h )是基于图形编译G (G r a p h i c s )语言的虚拟仪器软件开发平台,具有数据采集、数据分析、信号发生、信号处理、输入输出控制等功能,是公认的标准数据采集和仪器控制软件.在L a b v i e w 环境下开发的应用程序称为V I (V i r t u a l I n s t r u m e n t ).一个完整的L a b V I E W 程序主要由前面板、程序框图和图标/连接端口3部分组成[1],前面板是交互式图形化用户界面,用于设置输入数值和观察输出量;程序框图是定义V I 功能的图形化源代码,包括前面板上没有但编程必须有的对象,如函数、结构和连线等,利用图形语言对前面板的控制量和指示量进行控制;图标/连接端口是用于把程序定义成一个子程序,以便在其他程序中加以调用.L a b V I E W 中自带450多个内置函数,专门用于从采集到的数据中挖掘有用的信息,用于分析测量数据及处理信号. 1 系统硬件结构部分 传导电磁干扰综合测量与分析系统可以对被测设备进行噪声诊断与抑制,包括硬件部分和软件部分[2,3].硬件部分的原理图如图1所示.系统硬件又分为模拟部分和数字部分,模拟部分由中心控制模块、第10卷第3期2010年9月 南京师范大学学报(工程技术版)J O U R N A LO FN A N J I N GN O R M A LU N I V E R S I T Y (E N G I N E E R I N GA N DT E C H N O L O G YE D I T I O N ) V o l .10N o .3S e p t ,2010

数据采集与信号处理.

哈尔滨理工大学 研究生考试试卷 考试科目:数据采集与信号处理阅卷人: 专业: 姓名: 2013年06月21日

一、基本内容:基于FFT的功率谱分析程序设计与应用 1.基本要求 1)对一个人为产生的信号进行采用FFT变换方法进行功率谱分析。 已知信号x(n)=80.0*COS(2*3.14*SF*n/FS) 式中:n=0,1,2 ……N-1 SF---信号频率 FS---采样频率 其FFT变换结果X(k)可用下面提供的FFT子程序求出,计算功率谱的公式为: W(k)=2(XR(k)2 +XI(k)2)/N 式中:k=0,1,2 ……N/2-1 XR(k)--- X(k)的实部 XI(k)--- X(k)的虚部 请用VB,VC或C++Builder编译器编程,或采用MATLAB计算,或采用高级语言调用MATLAB计算。处理结果为采用窗口显示时域波形和频域波形。 此信号的时域谱,频域谱,功率谱如下图所示:

其MA TLAB代码为: FS=200; SF=10; N=1024; n=0:N-1; t=n/FS; x=80.0*cos(2*3.14*SF*t); subplot(221); plot(t,x); xlabel('t'); ylabel('y'); title('x=80.0*cos(2*3.14*SF*t)时域波形'); grid; y=fft(x,N); mag=abs(y); f=(0:length(y)-1)*FS/length(y);%进行对应的频率转换 subplot(222); plot(f(1:N/2),mag(1:N/2));%做频谱图 xlabel('频率(Hz)'); ylabel('幅值'); title('x=80.0*cos(2*3.14*SF*t)幅频谱图N=1024'); grid; Py =2*(y.*conj(y))/N; %计算功率谱密度Py subplot(223) plot(f(1:N/2),Py(1:N/2)); xlabel('频率(Hz)'); ylabel('功率谱密度'); title('x=80.0*cos(2*3.14*sf*t)功率谱密度'); grid;

语音信号采集与简单处理

语音信号采集与简单处理 一、实验目的、要求 (1)掌握语音信号采集的方法 (2)掌握一种语音信号基音周期提取方法 (3)掌握短时过零率计算方法 (4)了解Matlab 的编程方法 二、实验原理 基本概念: (a )短时过零率: 短时内,信号跨越横轴的情况,对于连续信号,观察语音时域波形通过横轴的情况;对于离散信号,相邻的采样值具有不同的代数符号, 也就是样点改变符号的次数。 对于语音信号,是宽带非平稳信号,应考察其短时平均过零率。 其中sgn[.]为符号函数 x(n)-1sgn(x(n))0 x(n)1sgn(x(n)) 短时平均过零的作用 1.区分清/浊音: 浊音平均过零率低,集中在低频端; 清音平均过零率高,集中在高频端。 2.从背景噪声中找出是否有语音,以及语音的起点。 (b )基音周期 基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。 由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很 10)] 1(sgn[)](sgn[21N m n n n m x m x Z

宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词 发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。基音 提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列, 在语音的头、尾部并不具有声带振动那样的周期性,有些清音和浊音的过渡帧是很难准确地判断是周期性还是非周期性的。②声道共振峰有时会严重影响激励信号的谐波结构,所以,从语音信号中直接取出仅和声带振动有关的激励信号的信息并不容易。③语音信号本身是准周期性的(即音调是有变化的),而且其波形的峰值点或过零点受共振峰的结构、噪声等的影响。④基音周期变化范围大,从老年男性的50Hz 到儿童和女性的450Hz ,接近三个倍频程,给基音检测带来了一定的困难。由于这些困难,所以迄今为止尚未找到一个完善的方法可以对于各类人群(包括男、女、儿童及不向语种)、各类应用领域和各种环境条件情况下都能获得满意的检测结果。 尽管基音检测有许多困难,但因为它的重要性,基音的检测提取一直是一个研究的课题,为此提出了各种各样的基音检测算法,如自相关函数 (ACF)法、峰值提取算法(PPA)、平均幅度差函数(AMDF)法、并行处理技术、倒谱法、SIFT 、谱图法、小波法等等。 三、使用仪器、材料 微机(带声卡)、耳机,话筒。 四、实验步骤 (1)语音信号的采集 利用Windows 语音采集工具采集语音信号,将数据保存 wav 格式。采集一组浊音信号和一组清音信号,信号的长度大于 3s 。(2)采用短时相关函数计算语音信号浊音基音周期,考虑窗长度对基音周期计算的影响。采用倒谱法求语音信号基音周期。 (3)计算短时过零率,清音和浊音的短时过零率有何区别。 五、实验过程原始记录(数据,图表,计算) 短时过零率 短时相关函数 P j j n s n s j R N j n n n n ,,1)()() (1 10)] 1(sgn[)](sgn[21N m n n n m x m x Z

信号采集与处理设计报告

《信号采集与处理》 学院:信息科学与工程学院 班级: 姓名: 学号: 指导老师:

1 绪论 随着计算机技术的发展,数据采集系统的应用也日益广泛。数据采集是工业控制系统中至关重要的一个环节,在生产过程中,往往需要随时检测各个环节的温度、湿度、流量及压力等参数。同时,还要对某个检测点的任意参数进行随机查询,将所得到的检测结果提取出来以便进行比较做出决策,调整控制方案。此外,在科研过程中,运用数据采集系统可获得大量的动态信息,也是获取科学数据的重要手段之一。 数据采集系统用于将模拟信号转换为计算机可以识别的数字信号,该系统的目的是便于对一些物理量进行监视、控制。即将现场采集到的数据进行处理、传输、显示、存储等操作。换言之,其主要功能就是把模拟信号变成数字信号,并进行分析、处理、存储和显示。 数据采集系统一般由数据输入通道,数据存储与管理,数据处理,数据输出及显示这五个部分组成。输入通道要实现对被测对象的检测,采样和信号转换等工作。数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。数据处理就是从采集到的原始数据中,删除有关干扰噪声,无关信息和必要的信息,提取出反映被测对象特征的重要信息。数据输出及显示就是把数据以适当的形式进行输出和显示。 数据采集系统性能的好坏,主要取决于它的精度和速度。在保证精度的条件下,应有尽可能高的采样速度,以满足实时采集、实时处理和实时控制的要求。 随着数字化进程的加快,工业生产和科学研究等各个领域对数据采集提出了更高的要求。数据采集作为信息处理系统的最前端,从广义上讲,主要包括以下几个方面:数据的采集、数据的存储、数据的初步处理等,并且一般需要通过PC接口总线将数据送入计算机,根据不同的需要进行相应的算法处理。简言之,数据采集系统的主要任务就是把输入的模拟信号转换成数字信号,并对其进行处理,为进一步操作做准备。 2 交流信号采集与处理 在电力系统监控系统中,对发电厂、变电站、母线、输电线路等回路的电流都应该加以测量。一般这些线路上的电流都很大,不可能直接进行测量,因此先用电流互感器(TA)将大电流转换为小电流,而交流电流变送器捷成TA 的负载。图1为电流变送器与电流互感器的连接。

基于MATLAB的语音信号采集与处理

工程设计论文 题目:基于MATLAB的语音信号采集与处理 姓名: 班级: 学号: 指导老师:

一.选题背景 1、实践意义: 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在于方便有效地提取并表示语音信号所携带的信息。所以理解并掌握语音信号的时域和频域特性是非常重要的。 通过语音相互传递信息是人类最重要的基本功能之一.语言是人类特有的功能.声音是人类常用工具,是相互传递信息的最重要的手段.虽然,人可以通过多种手段获得外界信息,但最重要,最精细的信息源只有语言,图像和文字三种.与用声音传递信息相比,显然用视觉和文字相互传递信息,其效果要差得多.这是因为语音中除包含实际发音容的话言信息外,还包括发音者是谁及喜怒哀乐等各种信息.所以,语音是人类最重要,最有效,最常用和最方便的交换信息的形式.另一方面,语言和语音与人的智力活动密切相关,与文化和社会的进步紧密相连,它具有最大的信息容量和最高的智能水平。 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,处理的目的是用于得到某些参数以便高效传输或存储;或者是用于某种应用,如人工合成出语音,辨识出讲话者,识别出讲话容,进行语音增强等. 语音信号处理是一门新兴的学科,同时又是综合性的多学科领域,

是一门涉及面很广的交叉学科.虽然从事达一领域研究的人员主要来自信息处理及计算机等学科.但是它与语音学,语言学,声学,认知科学,生理学,心理学及数理统计等许多学科也有非常密切的联系. 语音信号处理是许多信息领域应用的核心技术之一,是目前发展最为迅速的信息科学研究领域中的一个.语音处理是目前极为活跃和热门的研究领域,其研究涉及一系列前沿科研课题,巳处于迅速发展之中;其研究成果具有重要的学术及应用价值. 数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。它在语音、雷达、图像、系统控制、通信、航空航天、生物医学等众多领域都获得了极其广泛的应用。具有灵活、精确、抗干扰强、度快等优点。 数字滤波器, 是数字信号处理中及其重要的一部分。随着信息时代和数字技术的发展,受到人们越来越多的重视。数字滤波器可以通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。数字滤波器种类很多,根据其实现的网络结构或者其冲激响应函数的时域特性,可分为两种,即有限冲激响应( FIR,Finite Impulse Response)滤波器和无限冲激响应( IIR,Infinite Impulse Response)滤波器。 FIR滤波器结构上主要是非递归结构,没有输出到输入的反馈,系统函数H (z)在处收敛,极点全部在z = 0处(因果系统),因而只能

语音信号采集与处理系统的设计

音频信号采样与处理系统方案设计 姓名:杨宁 学号: 14020181051 专业:电子信息工程 学院:电子工程学院 指导老师:那彦

目录 第1章理论依据2 1.1音频信号的介绍2 1.2采样频率2 1.1 TMS320VC5402介绍2 1.2 TLC320AD50介绍 6 第2章系统方案设计8 2.1 DSP核心模块的设计8 2.2 A/D转换模块9 第3章硬件设计10 3.1 DSP芯片10 3.2 电源设计10 3.3复位电路设计11 3.4 时钟电路设计12 3.5 程序存储器扩展设计12 3.6数据存储器扩展设计13 3.7 JTAG接口设计13 3.8 A/D接口电路设计14 第4章软件设计15 第5章总结17 参考文献18 致谢19 附录20

摘要 在研究数字信号处理的基础上,提出了一个基于DSP TMS320VC5402和A/D转换芯片TLC320AD50的音频信号采集系统的设计。给出了该系统的总体设计方案,具体硬件电路,包括系统电源设计、复位电路设计、时钟电路设计、存储器设计、A/D接口电路设计、JTAG接口设计、DSP与A/D芯片的连接等,以及软件流程图。 关键词:音频信号数据采集DSP TLC320AD50 ABSTRACT On the basis of studying digital signal processing, The design of A audio signal acquisition system based on DSP TMS320VC5402 and A/D conversion chip TLC320AD50 is proposed. Overall design scheme of the system is given, and the specific hardware circuit, including the system power supply design, design of reset circuit, clock circuit design, design of memory, A/D interface circuit, JTAG interface, DSP and the connection of A/D chip, and software flow chart. Key words: audio signal data collection DSP TLC320AD50

振动信号的采集与预处理

振动信号的采集与预处理 几乎所有的物理现象都可看作是信号,但这里我们特指动态振动信号。 振动信号采集与一般性模拟信号采集虽有共同之处,但存在的差异更多,因此,在采集振动信号时应注意以下几点: 1. 振动信号采集模式取决于机组当时的工作状态,如稳态、瞬态等; 2. 变转速运行设备的振动信号采集在有条件时应采取同步整周期采集; 3. 所有工作状态下振动信号采集均应符合采样定理。 对信号预处理具有特定要求是振动信号本身的特性所致。信号预处理的功能在一定程度上说是影响后续信号分析的重要因素。预处理方法的选择也要注意以下条件: 1. 在涉及相位计算或显示时尽量不采用抗混滤波; 2. 在计算频谱时采用低通抗混滤波; 3. 在处理瞬态过程中1X矢量、2X矢量的快速处理时采用矢量滤波。 上述第3条是保障瞬态过程符合采样定理的基本条件。在瞬态振动信号采集时,机组转速变化率较高,若依靠采集动态信号(一般需要若干周期)通过后处理获得1X和2X矢量数据,除了效率低下以外,计算机(服务器)资源利用率也不高,且无法做到高分辨分析数据。机组瞬态特征(以波德图、极坐标图和三维频谱图等型式表示)是固有的,当组成这些图谱的数据间隔过大(分辨率过低)时,除许多微小的变化无法表达出来,也会得出误差很大的分析结论,影响故障诊断的准确度。一般来说,三维频谱图要求数据的组数(△rpm分辨率)较少,太多了反而影响对图形的正确识别;但对前面两种分析图谱,则要求较高的分辨率。目前公认的方式是每采集10组静态数据采集1组动态数据,可很好地解决不同图谱对数据分辨率的要求差异。 影响振动信号采集精度的因素包括采集方式、采样频率、量化精度三个因素,采样方式不同,采集信号的精度不同,其中以同步整周期采集为最佳方式;采样频率受制于信号最高频率;量化精度取决于A/D转换的位数,一般采用12位,部分系统采用16位甚至24位。 振动信号的采样过程,严格来说应包含几个方面: 1. 信号适调 由于目前采用的数据采集系统是一种数字化系统,所采用的A/D芯片对信号输入量程有严格限制,为了保证信号转换具有较高的信噪比,信号进入A/D以前,均需进行信号适调。适调包括大信号的衰减处理和弱信号的放大处理,或者对一些直流信号进行偏置处理,使其满足A/D输入量程要求。 2. A/D转换

信号采集与处理复习题

《工程信号采集与处理》思考题 张辉 二○○七年九月十日 《工程信号采集与处理》思考题 第一讲,第二讲信号、数据与工程信号采集 一、信号、数据基本概念 信息、信号、数据、状态信号 信号:生物信号(生物机能信号)、工程信号(振动、力、温度、压力、光、位移、雷达、CCD图像、音频信号)、 二、信号存在与研究的广泛性 1、信号广泛存在于自然界 2、工程信号 三、信号采集(数据采集)与数据采集系统 1、信号采集(数据采集)概念: 信号采集是指要实现连续大量数据的采集,一般采用双缓存技术.即在一片缓存还在采集的时候,将另一片已经采集好的缓存数据转移至其它地方,两者必须同时进行,如此反复就可以实现无间断的信号采集。 信号采集是指采集设备运行时的各种参数例如温度、压力.振动和噪声等为故障诊断提供原始的信息.信号处理是对采集系统所采集的信号进行处理分析提取信号中的特征量因此这方面的工作又称特征提取。 2、数据采集技术(Data Acquistion)

3、数据采集系统(Data Acquisition Sysem,简称DAS). 4、数据采集系统基本功能 5、数据采集系统的结构形式 6、数据采集系统的软件 7、数据采集系统的发展 四、信号分类——⑴按数学关系分 ⑵按其取值情况分 ⑶信号根据其自身的表现特性分:——动态信号和静态信号 五、数据采集系统的发展 第三讲数据传感器 1、传感器基本作用——信号转换 2、定义 3、理想的传感器要求 4、传感器最重要的指标有: 5、常用的数据传感器 6、传感器的校验(标定和校准)与校验主要内容、方法 第四讲工程信号预处理 1、信号处理概念与方式 2、工程信号预处理目的 3、数据预处理通常采用方法和途径。 第五讲信号处理与分类 1、信号处理分类 2、二次处理,最终处理 3、在线处理、实时处理 4、离线处理 5、模拟式分析处理 6、数字式分析处理 7、人工神经网络信号处理 第六讲数字信号处理 1、数字信号处理的起源 2、数字信号处理的基本流程 3、采样与采样定理 4、量化与量化误差 第七讲模拟信号的数字化过程 1、从数字信号处理的观点,数据采集系统的框图画成图的形式 2、ADC,DAC特点与过程 3、ADC过程理论与实际上采样频率的选取 4、数字化采样方式与特点 5、ADC过程量化噪音 6、数模转换器(Digital-to-Analog Converter, DAC)的任务与主要指标 7、模数转换器(Analog-to-Digital Converta, ADC)的任务 8、模拟多路开关的作用与意义9、测量放大器(Instrumentation Amp.)主要功能 10、采样保持的作用 11、什么叫数据采集模块 12、什么叫总线?分类及其作用? 13、串行总线含义与特点

数据采集及处理答案

第一章 1.答:数据采集的任务就是采集传感器输出的模拟信号并转换成计算机能识别的数字信号,然后送入计算机进行相应的计算和处理,得出所需数据。同时,将计算得到的数据进行显示或打印,以便实现对某些物理量的监视,其总一部分数据还将被生产过程中的计算机控制系统用来控制某些物理量。 2.答:数据采集系统主要实现以下9个方面的基本功能:数据采集;模拟信号处理;数字信号处理;开关信号处理;二次数据计算;屏幕显示;数据存储;打印输出;人机联系。 3.答:数据采集系统的基本结构形式主要有两种:一种是微型计算机数据采集系统,另一种是集散型数据采集系统。 微型计算机数据采集系统的特点是:系统结构简单,技术容易实现,满足中小规模数据采集要求;对环境要求不高;价格低廉,系统成本低;可座位集散型数据采集系统的一个基本组成部分;其相关模板和软件都比较齐全,容易构成西欧它能够,便于使用与维修。 集散型数据采集系统的主要特点是:系统适应能力强;系统可靠性高;系统实时响应性好;对系统硬件要求不高;特别适合在恶劣环境下工作。 4.答:数据采集系统软件功能模块一般由以下部分组成: 1)模拟信号采集与处理程序。其主要功能是对模拟输入信号进行采集、标度变换、滤波处理以及二次数据计算,并将数据存入磁盘。 2)数字信号采集与处理程序。其功能是对数字输入信号进行采集及码制之间的转换。3)脉冲信号处理程序。其功能是对输入的脉冲信号进行电平高低判断和计数。 4)开关信号处理程序。其功能是判断开关信号输入状态变化情况,若发生变化,则执行相应的处理程序。 5)运行参数设置程序。其功能是对数据采集系统的运行参数进行设置。 6)系统管理(主控)程序。其功能是将各个模块程序组织成一个程序系统,并管理和调用各个功能模块程序,其次是用来管理数据文件的存储和输出。 7)通信程序。其功能是设置数据传送的波特率(速率),上位机向数据采集站群发送机号,上位机接收和判断数据采集站发挥的机号,命令相应的数据采集站传送数据,上位机接受数据采集站传送来的数据。 5.答:模拟信号处理程序的主要任务是对模拟输入信号进行采集、标度变换、滤波处理以及二次数据计算,并将数据存入磁盘。 6.答:数据处理的类型一般按一下方式分类: 按处理方式划分,数据处理可分为实时(在线)处理和事后(脱机)处理。 按处理的性质花费,数据处理可分为预处理和二次处理两种。 7.答:数据处理的主要任务有以下几点: 1)对采集到的电信号做物理量解释 2)消除数据中的干扰信号 3)分析计算数据的内在特征

基于matlab的语音信号的采集与处理

目录 第1章前言 (1) 第2章语音信号分析处理的目的和要求 (2) 2.1MATLAB软件功能简介............................................................................................ - 2 - 2.2课程设计意义 ............................................................................................................. - 2 - 第3章语音信号的仿真原理. (3) 第4章语音信号的具体实现 (4) 4.1语音信号的采集........................................................................................................... - 4 - 4.2语音信号加噪与频谱分析........................................................................................... - 5 - 4.3设计巴特沃斯低通滤波器........................................................................................... - 6 - 4.4用滤波器对加噪语音滤波........................................................................................... - 7 - 4.5比较滤波前后语音信号波形及频谱........................................................................... - 8 - 第5章总结.............................................................................................................................. - 9 - 参考文献.................................................................................................................................. - 10 - 附录.......................................................................................................................................... - 11 -

相关文档