文档库 最新最全的文档下载
当前位置:文档库 › 离散数学作业答案完整版

离散数学作业答案完整版

离散数学作业答案完整版
离散数学作业答案完整版

离散数学作业答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

离散数学集合论部分形成性考核书面作

本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数

理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题

目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识

点,重点复习,争取尽快掌握。本次形考书面作业是第一次作业,大家要认真及时地

完成集合论部分的综合练习作业。

要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答

过程,要求本学期第11周末前完成并上交任课教师(不收电子稿)。并在03任务界

面下方点击“保存”和“交卷”按钮,完成并上交任课教师。

一、填空题

1.设集合{1,2,3},{1,2}

==,则P(A)-

A B

P(B )={{3},{1,3},{2,3},{1,2,3}},A?

B={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .

2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为 1024 .

3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,

则R的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>} .

4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系

R=}

y

x∈

y

<

>

=

{B

,

,

x

,

2

y

A

x

那么R-1={<6,3>,<8,4>}

5.设集合A={a, b, c, d},A上的二元关系R={, , , },则R具有的性质是没有任何性质.

6.设集合A={a, b, c, d},A上的二元关系R={, , ,

},若在R中再增加两个元素{,} ,则新得到的关系就具有对

称性.

7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.

8.设A={1, 2}上的二元关系为R={|x?A,y?A, x+y =10},则R的自反闭

包为 {<1,1>,<2,2>} .

9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含

<1,1>,<2,2>,<3,3> 等元素.

10.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是 {<1,a>,<2,b>}或{<1,b>,<2,a>} .

二、判断说明题(判断下列各题,并说明理由.)

1.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则 (1) R 是自反的关系; (2) R 是对称的关系. 解:(1)错误。R 不具有自反的关系,因为<3,3>不属于R 。

(2)错误。R 不具有对称的关系,因为<2,1>不属于R 。

2.如果R 1和R 2是A 上的自反关系,判断结论:“R -11、R 1∪R 2、R 1∩R 2是自反的” 是否成立?并说明理由. 解:成立。

因为R 1和 R 2是A 上的自反关系,即I A ?R 1,I A ?R 2。 由逆关系定义和I A ?R 1,得I A ? R 1-1;

由I A ?R 1,I A ?R 2,得I A ? R 1∪R 2,I A ? R 1?R 2。

所以,R 1-1、R 1∪R 2、R 1?R 2是自反的。

3.若偏序集的哈斯图如图一所示,

则集合A 的最大元为a ,最小元不存在. 解:错误。

集合A 的最大元不存在,a 是极大元。 4.设集合A ={1, 2, 3, 4},B ={2, 4, 6, 8},,判断下列关系f 是否构成函数

f :B A →,并说明理由.

(1) f ={<1, 4>, <2, 2,>, <4, 6>, <1, 8>}; (2)f ={<1, 6>, <3, 4>, <2, 2>};

(3) f ={<1, 8>, <2, 6>, <3, 4>, <4, 2,>}.

解:(1)不构成函数。因为对于3属于A ,在B 中没有元素与之对应。

(2)不构成函数。因为对于4属于A ,在B 中没有元素与之对应。 (3)构成函数。因为A 中任意一个元素都有A 中唯一的元素相对应。 三、计算题

1.设}4,2{},5,2,1{},4,1{},5,4,3,2,1{====C B A E ,求: (1) (A ?B )?~C ; (2) (A ?B )- (B ?A ) (3) P (A )-P (C ); (4) A ?B . 解:(1)(A?B)?~C={1}?}5,3,1{}5,3,1{=

(2)(A ?B )- (B ?A )={1,2,4,5}-{1}={2,4,5}

(3)}}4,2{},4{},2{,{}}4,1{},4{},1{,{)()(φφ-=-C P A P }}4,1{},1{{= (4)A?B =(A?B)-(A?B )=}5,4,2{}1{}5,4,2,1{=-

2.设A ={{1},{2},1,2},B ={1,2,{1,2}},试计算 (1)(A ?B ); (2)(A ∩B ); (3)A ×B . 解:(1)A?B ={{1},{2}}

(2)A ∩B ={1,2}

(3)A ×B={<{1},1>,<{1},2>,<{1},{1,2}>,<{2},1>,<{2},2>,<{2},{1,2}>,<1,1>,<1,2>,<1, {1,2}>,<2,1>,<2,2>,<2, {1,2}>}

3.设A ={1,2,3,4,5},R ={|x ?A ,y ?A 且x +y ?4},S ={|x ?A ,y ?A 且x +y <0},试求R ,S ,R ?S ,S ?R ,R -1,S -1,r (S ),s (R ). 解:R={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}

S=空集 R?S=空集

? ? ? ? a b c d 图一 ? ? ? g

e f h

?

S?R=空集

R-1={<1,1>,<2,1>,<3,1>,<1,2>,<2,2>,<1,3>}

S-1 =空集

r(S)={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}

s(R)={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}

4.设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6}.

(1) 写出关系R的表示式; (2 )画出关系R的哈斯图;

(3) 求出集合B的最大元、最小元.

(1)R={<1,1>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<1,7>,<1,8>,<2,2>,<2,4>,<2,

6>,<2,8>,<3,3>,<3,6>,<4,4>,<4,8>,<5,5>,<6,6>,<7,7>,<8,8>}

(3)集合B没有最大元,最小元是2

四、证明题

1.试证明集合等式:A? (B?C)=(A?B) ? (A?C).

证明:设,若x∈A? (B?C),则x∈A或x∈B?C,

即 x∈A或x∈B 且 x∈A或x∈C.

即x∈A?B 且 x∈A?C ,

即 x∈T=(A?B) ? (A?C),

所以A? (B?C)? (A?B) ? (A?C).

反之,若x∈(A?B) ? (A?C),则x∈A?B 且 x∈A?C,

即x∈A或x∈B 且 x∈A或x∈C,

即x∈A或x∈B?C,

即x∈A? (B?C),

所以(A?B) ? (A?C)? A? (B?C).

因此.A? (B?C)=(A?B) ? (A?C).

2.试证明集合等式A? (B?C)=(A?B) ? (A?C).

证明:设S=A∩(B∪C),T=(A∩B)∪(A∩C),若x∈S,则x∈A且x∈B∪C,即x∈A且x∈B 或 x∈A且x∈C,

也即x∈A∩B 或 x∈A∩C ,即 x∈T,所以S?T.

反之,若x∈T,则x∈A∩B 或 x∈A∩C,

即x∈A且x∈B 或 x∈A且x∈C

也即x∈A且x∈B∪C,即x∈S,所以T?S.

因此T=S.

3.对任意三个集合A, B和C,试证明:若A?B = A?C,且A≠?,则B = C.证明:(1)对于任意∈A×B,其中a∈A,b∈B,因为A×B= A×C,

必有∈A×C,其中b ∈C因此B?C

(2)同理,对于任意∈A×C,其中,a∈A,c∈C,因为A×B= A×C

必有∈A×B,其中c∈B,因此C?B

由(1)(2)得B=C

4.试证明:若R与S是集合A上的自反关系,则R∩S也是集合A上的自反关系.

证明:若R与S是集合A上的自反关系,则任意x∈A,<x,x>∈R,<x,x>∈S,

从而<x,x>∈R∩S,注意x是A的任意元素,所以R∩S也是集合A上的自反关系.

相关文档