文档库 最新最全的文档下载
当前位置:文档库 › 高考数学百大经典例题 算术平均数与几何平均数

高考数学百大经典例题 算术平均数与几何平均数

高考数学百大经典例题 算术平均数与几何平均数
高考数学百大经典例题 算术平均数与几何平均数

典型例题一

例1 已知R c b a ∈,,,求证.2

2

2

ca bc ab c b a ++≥++ 证明:∵ ab b a 22

2

≥+, bc c b 222

≥+,

ca a c 22

2

≥+, 三式相加,得

)(2)(2222ca bc ab c b a ++≥++,即.222ca bc ab c b a ++≥++

说明:这是一个重要的不等式,要熟练掌握.

典型例题二

例2 已知c b a 、、是互不相等的正数,

求证:abc b a c c a b c b a 6)()()(2

2

2

2

2

2

>+++++ 证明:∵022

2>>+a bc c b ,, ∴abc c b a 2)(22

>+

同理可得:abc b a c abc c a b 2)(2)(2

2

2

2

>+>+,. 三个同向不等式相加,得

abc b a c c a b c b a 6)()()(222222>+++++ ①

说明:此题中c b a 、、互不相等,故应用基本不等式时,等号不成立.特别地,b a =,c b ≠时,所得不等式①仍不取等号.

典型例题三

例3 求证)(2222222c b a a c c b b a ++≥+++++.

分析:此问题的关键是“灵活运用重要基本不等式ab b a 22

2≥+,并能由)

(2c b a ++这一特征,思索如何将ab b a 22

2≥+进行变形,进行创造”.

证明:∵ab b a 22

2≥+,

两边同加2

2b a +得2

2

2

)()(2b a b a +≥+.

即2

)(2

2

2

b a b a +≥+.

∴)(222

122b a b a b a +≥+≥

+.

同理可得:)(2

2

2

2

c b c b +≥

+,

)(2

2

22a c a c +≥

+. 三式相加即得)(2222222c b a a c c b b a ++≥+++++.

典型例题四

例4 若正数a 、b 满足3++=b a ab ,则ab 的取值范围是 .

解:∵+

∈R b a ,, ∴323+≥++=ab b a ab ,令ab y =

,得0322≥--y y ,

∴3≥y ,或1-≤y (舍去).

∴92

≥=ab y ,∴ ab 的取值范围是[).,9+∞

说明:本题的常见错误有二.一是没有舍去1-≤y ;二是忘了还原,得出[)+∞∈,3ab .前

者和后者的问题根源都是对ab 的理解,前者忽视了.0≥ab 后者错误地将2

y 视为ab .

因此,解题过程中若用换元法,一定要对所设“元”的取值范围有所了解,并注意还原

之.

典型例题五

例5 (1)求4

1

622++=x x y 的最大值.

(2)求函数1

4

2

2

++

=x x y 的最小值,并求出取得最小值时的x 值. (3)若0,0>>y x ,且2=+y x ,求2

2

y x +的最小值.

解:(1)41622++=x x y 1

3163

)1(1

622

22++

+=

+++=x x x x .33

26=≤

即y 的最大值为.3

当且仅当1

3122

+=

+x x 时,即22

=x 2±=x 时,取得此最大值.

(2)11

41142

2

22

-+++=++

=x x x x y 3142=-?≥ ∴ y 的最小值为3,当且仅当11

4

22+=+x x ,即4)1(22=+x ,212=+x ,1

±=x 时取得此最小值.

(3)∴ xy y x 22

2

≥+ ∴2

2

2

)()(2y x y x +≥+即2

)(2

2

2y x y x +≥+

∵2=+y x ∴222≥+y x 即2

2y x +的最小值为2. 当且仅当4==y x 时取得此最小值.

说明:解这类最值,要选好常用不等式,特别注意等号成立的条件.

典型例题六

例6 求函数x

x y 3

21-

-=的最值. 分析:本例的各小题都可用最值定理求函数的最值,但是应注意满足相应条件.如:

0≠x ,应分别对0,0<>x x 两种情况讨论,如果忽视+∈R x 的条件,就会发生如下错误:

∵ 6213

221)32(1321-=?-≤+-=-

-=x

x x x x x y ,.621max -=y 解:当0>x 时,03,

02>>x x ,又63

2=?x

x , 当且仅当x x 32=

,即26=x 时,函数x

x 3

2+有最小值.62

∴ .621max -=y 当0-

>-x x ,又6)3

()2(=-?-x

x , 当且仅当x x 32-

=-,即26+=x 时,函数)32(x

x +-最小值.62

∴ .621min +=y

典型例题七

例7 求函数9

102

2++=

x x y 的最值.

分析:29

199

1)9(2

22

2≥++

+=+++=

x x x x y .

但等号成立时82

-=x ,这是矛盾的!于是我们运用函数x

x y 1

+=在1≥x 时单调递增这一性质,求函数)3(1≥+=t t

t y 的最值.

解:设392≥+=x t ,

∴t t x x y 19

10

22+=++=

当3≥t 时,函数t

t y 1+=递增. 故原函数的最小值为3

10

313=+,无最大值.

典型例题八

例8 求函数4

52

2++=

x x y 的最小值.

分析:用换元法,设242≥+=

x t ,原函数变形为)2(1

≥+=t t

t y ,再利用函数

)2(1

≥+=t t

t y 的单调性可得结果.或用函数方程思想求解.

解:解法一: 设242

≥+=

x t ,故).2(1

4

5

22≥+=++=

t t t x x y

2

12121212121121)()1

1()(2t t t t t t t t t t y y t t --=-+-=-≥>,设.

由202121><-t t t t ,

,得:0121>-t t ,故:21y y <. ∴函数)2(1

≥+=t t t y 为增函数,从而2

5212=+≥y . 解法二: 设

242≥=+t x ,知)2(1

≥+=t t

t y ,可得关于t 的二次方程012=+-yt t ,由根

与系数的关系,得:121=t t .

又2≥t ,故有一个根大于或等于2,

设函数1)(2

+-=yt t t f ,则0)2(≤f ,即0124≤+-y ,故2

5≥

y .

说明:本题易出现如下错解:24

144

52

22

2≥++

+=++=

x x x x y .要知道,

4

142

2+=

+x x 无实数解,即2≠y ,所以原函数的最小值不是2.错误原因是忽视了

等号成立的条件.

当a 、b 为常数,且ab 为定值,b a ≠时,ab b

a >+2

,不能直接求最大(小)值,可以利用恒等变形ab b a b a 4)(2+-=+,当b a -之差最小时,再求原函数的最大(小)

值.

典型例题九

例9 ,4,0,0=+>>b a b a 求2

211??? ??++??? ?

?

+b b a a 的最小值.

分析:此题出现加的形式和平方,考虑利用重要不等式求最小值. 解:由,4=+b a ,得.2162)(2

2

2

ab ab b a b a -=-+=+ 又,22

2

ab b a ≥+得ab ab 2216≥-,即4≤ab .

2111122

2??? ??

+++≥??? ??++??? ?

?+∴b b a a b b a a .22524444442

2=??? ??+≥??? ??+=ab 故2

211??? ??++??? ?

?

+b b a a 的最小值是225.

说明:本题易出现如下错解:

8441212112

2

2

2

=+=???

? ???+???? ???≥??? ??

++??? ??+∴b b a a b b a a ,故2

211??? ??++??? ??+b b a a 的最小值是8.

错误的原因是,在两次用到重要不等式当等号成立时,有1=a 和1=b ,但在4=+b a 的

条件下,这两个式子不会同时取等号(31==b a 时,).排除错误的办法是看都取等号时,

与题设是否有矛盾.

典型例题十

例10 已知:+

∈R c b a ,,,求证:

c b a c

ab b ac a bc ++≥++. 分析:根据题设,可想到利用重要不等式进行证明.

证明:.2,222c b

ac a bc c ab abc b ac a bc ≥+=≥+即

同理:

a c

ab b ac b c ab a bc 2,2≥+≥+ ).(22c b a c ab b ac a bc ++≥???

?

?++∴

.c b a c

ab b ac a bc ++≥++∴

说明:证明本题易出现的思维障碍是:(1)想利用三元重要不等式解决问题;(2)不会利用重要不等式

ab b

a ≥+2

的变式;(3)不熟练证明轮换对称不等式的常用方法.因此,在证明不等式时,应根据求证式两边的结构,合理地选择重要不等式.另外,本题的证明方法在证轮换对称不等式时具有一定的普遍性.

典型例题十一

例11设R e d c b a ∈、、、、,且8=++++e d c b a ,

162

2222=++++e d c b a ,求e 的最大值.

分析:如何将2

2

b a +与b a +用不等式的形式联系起来,是本题获解的关键.算术平均数与几何平均数定理ab b a 22

2

≥+两边同加2

2

b a +之后得22

2)(2

1

b a b a +≥

+. 解:由22

2

)(21

b a b a +≥

+,则有 ,)(4

1

])()[(212222222d c b a d c b a d c b a +++≥+++≥+++

.5

16

0)8(411622≤≤?-≥-∴e e e

.5

16

56=时,当最大值e d c b a ====

说明:常有以下错解:

abcd cd ab d c b a e 4)(21622222≥+≥+++=-,

448abcd d c b a e ≥+++=-.

故abcd e abcd e ≥-≥-42

22)48(,4)16(. 两式相除且开方得516014

)8(162

2≤≤?≥--e e e .

错因是两不等式相除,如2

1

1,12>>,相除则有22>. 不等式22

2

)(2

1

b a b a +≥

+是解决从“和”到“积”的形式.从“和”到“积”怎么办呢?有以下变形:2

2

2

)(21b a b a +≥+或)(2

1222b a b a +≥+.

典型例题十二

例12 已知:0>y x >,且:1=xy ,求证:222

2≥-+y

x y x ,并且求等号成立的条

件.

分析:由已知条件+∈R y x ,,可以考虑使用均值不等式,但所求证的式子中有y x -,无法利用xy y x 2≥+,故猜想先将所求证的式子进行变形,看能否出现)

(1)(y x y x -+-型,再行论证.

证明:,1.

0,0=>-∴>>xy y x y x ΘΘ又

y

x xy

y x y x y x -+-=

-+∴2)(222 y

x y x -+

-=2

)( .22)

(2

)(2=-?

-≥y x y x

等号成立,当且仅当)

(2

)(y x y x -=

-时.

.4,2,2)(222=+=-=-∴y x y x y x

,6)(,12=+∴=y x xy Θ .6=+∴y x

由以上得2

2

6,226-=+=

y x 即当2

26,226-=+=

y x 时等号成立.

说明:本题是基本题型的变形题.在基本题型中,大量的是整式中直接使用的均值不等式,这容易形成思维定式.本题中是利用条件将所求证的式子化成分式后再使用均值不等式.要注意灵活运用均值不等式.

典型例题十三

例13 已知00>>y x ,,且302=++xy y x ,求xy 的最大值. 分析:由302=++xy y x ,可得,)300(230<<+-=

x x

x

y , 故)300(2302<<+-=x x x x xy ,令x

x x t +-=2302

利用判别式法可求得t (即xy )的最大值,但因为x 有范围300<

解.

解法一:由302=++xy y x ,可得,)300(230<<+-=

x x

x

y . x

x x x x x xy +-+++-=+-=264)2(34)2(23022

??

?

???++

+-=264)2(34x x 注意到162

64)2(2264)2(=+?+≥++

+x x x x . 可得,18≤xy . 当且仅当2

64

2+=+x x ,即6=x 时等号成立,代入302=++xy y x 中得3=y ,故xy 的最大值为18.

解法二:+

∈R y x ,Θ,xy xy y x ?=≥+∴22222, 代入302=++xy y x 中得:3022≤+?

xy xy

解此不等式得180≤≤xy .下面解法见解法一,下略.

说明:解法一的变形是具有通用效能的方法,值得注意:而解法二则是抓住了问题的本质,所以解得更为简捷.

典型例题十四

例14 若+

∈R c b a 、、,且1=++c b a ,求证:8111111≥??

? ??-??? ??-??? ??-c b a .

分析:不等式右边的数字“8”使我们联想到可能是左边三个因式分别使用基本不等式所得三个“2”连乘而来,而

a

bc a c b a a a 2111≥+=-=-. 证明:a

c

b a a a +=

-=-111Θ

,又0>a ,0>b ,0>c , a bc a c b 2≥+∴

,即a bc a a 21≥-. 同理

b ca b 211≥-,c

ab c 211≥-, 8111111≥??

?

??-??? ??-??? ??-∴c b a .

当且仅当3

1

===c b a 时,等号成立. 说明:本题巧妙利用1=++c b a 的条件,同时要注意此不等式是关于c b a 、、的轮换式.

典型例题十五

例15 设+

∈R c b a 、、,求证:)(2222222c b a a c c b b a ++≥

+++++.

分析:本题的难点在于222222a c c b b a +++、、不易处理,如能找出2

2

b a +与

b a +之间的关系,问题可得到解决,注意到:

b a b a b a b a ab b a +≥+?+≥+?≥+)(2)()(222222222,

则容易得到证明.

证明:2

2

2

2

2

2

2

)(2)(22b a ab b a b a ab b a +≥++≥+∴≥+,Θ,

于是.)(2

2

2222

b a b a b a +=+≥

+ 同理:)(2

2

2

2c b c b +≥

+,)(2222a c a c +≥+. 三式相加即得:)(2222222c b a a c c b b a ++≥

+++++.

说明:注意观察所给不等式的结构,此不等式是关于c b a 、、的轮换式.因此只需抓

住一个根号进行研究,其余同理可得,然后利用同向不等式的可加性.

典型例题十六

例16 已知:+

∈R b a 、(其中+

R 表示正实数)

求证:.b

a a

b b a b a b a 112

2222

2

2

+

≥≥???? ??+≥+≥+ 分析:要证明的这一串不等式非常重要,2

2

2b a +称为平方根,2b a +称为算术平均

数,ab 称为几何平均数,

b

a 1

12+称为调和平均数.

证明:().

04122222

2

2≥-=??? ??+-???

?

??+b a b a b a .2

2

2

222??? ??+≥???

? ?

?+∴b a b a +∈R b a 、Θ

∴2

222b

a b a +≥

+,当且仅当“b a =”时等号成立. .0)(41

2222

≥-=???? ??+-+b a b a b a Θ

222????

??+≥+b a b a ,等号成立条件是“b a =” ,0)(41

222

≥-=-???? ??+b a ab b a Θ

∴ab b a ≥???

?

??+22,等号成立条件是“b a =”.

b

a ab

ab b a b a ab ab b

a a

b +-+=

+-

=+-

2)(21

12Θ .0)()2(2

≥+-=+-+=b

a b a ab b a ab b a ab

∴b

a a

b 112+≥

,等号成立条件是“b a =”.

说明:本题可以作为均值不等式推论,熟记以上结论有利于处理某些复杂不等式的证明问题.本例证明过程说明,不等式性质中的比较法是证明不等式的最基本、最重要的方法.

典型例题十七

例17 设实数1a ,1b ,1c ,2a ,2b ,2c 满足021>a a ,2

111b c a ≥,2

222b c a ≥,求证2

212121)())((b b c c a a +≥++.

分析:由条件可得到1a ,2a ,1c , 2c 同号.为方便,不妨都设为正.将求证式子的左边展开后可看出有交叉项21c a 和12c a 无法利用条件,但使用均值不等式变成乘积后,重新搭配,可利用条件求证.

证明:同号.2121,,0a a a a ∴>Θ

同理,由2

2222

111b c a b c a ≥≥,知1a 与1c 同号,2a 与2c 同号 ∴1a ,1c ,2a ,2c 同号.不妨都设为正.

122122112121))((c a c a c a c a c c a a +++=++∴

12212

2212c a c a b b ?++≥ 22112

2212c a c a b b ?++=

2

22122212b b b b ?++≥

||2212

22

1b b b b ++=

221212

22

1)(2b b b b b b +=++≥,

即2

212121)())((b b c c a a +≥++.

说明:本题是根据题意分析得1a ,1c ,2a ,2c 同号,然后利用均值不等式变形得证.换一个角度,由条件的特点我们还会联想到使用二次方程根的判别式,可能会有另一类证法.

实际上,由条件可知1a ,1c ,2a ,2c 为同号,不妨设同为正.又∵2111b c a ≥,

2

222b c a ≥,∴2

11144b c a ≥,2

22244b c a ≥.

不等式02112

1≥++c x b x a ,02222

2≥++c x b x a 对任意实数x 恒成立(根据二次三

项式恒为正的充要条件),两式相加得0)()(2)(21212

21≥+++++c c x b b x a a ,它对任意

实数x 恒成立.同上可得:2

212121)())((b b c c a a +≥++.

典型例题十八

例18 如下图所示,某畜牧基地要围成相同面积的羊圈4间,一面可利用原有的墙壁,其余各面用篱笆围成,篱笆总长为36m .问每间羊圈的长和宽各为多少时,羊圈面积最大?

分析:可先设出羊圈的长和宽分别为x ,y ,即求xy 的最大值.注意条件3664=+y x 的利用.

解:设每间羊圈的长、宽分别为x ,y ,则有3664=+y x ,即1832=+y x .设xy S =

,623223218xy y x y x =?≥+=Θ 2

27

,227≤

∴S xy 即 上式当且仅当y x 32=时取“=”.

此时??

?===,

1832,

32y x y x ?????==∴.3,29y x ∴羊圈长、宽分别为

2

9

m ,3m 时面积最大. 说明:(1)首先应设出变量(此处是长和宽),将题中条件数学化(即建立数学模型)才能利用数学知识求解;(2)注意在条件1832=+y x 之下求积xy 的最大值的方法:直接用不等式y x y x 3223218?≥+=,即可出现积xy .当然,也可用“减少变量”的方法:

2

2218261)218(261)218(31)218(31??

? ??-+?≤-??=-?==→-=x x x x x x xy S x y ,当

且仅当x x 2182-=时取“=”.

典型例题十九

例19 某单位建造一间地面面积为12m 2

的背面靠墙的矩形小房,房屋正面的造价为1200元/m 2,房屋侧面的造价为800 元/m 2

,屋顶的造价为5800元.如果墙高为3m ,且不计房屋背面的费用,问怎样设计房屋能使总造价最低,最低总造价是多少元?

分析:这是一个求函数最小值的问题,关键的问题是设未知数,建立函数关系.从已知

条件看,矩形地面面积为12m 2

,但长和宽不知道,故考虑设宽为x m ,则长为x

12

m ,再设总造价为y .由题意就可以建立函数关系了.

解:设矩形地面的正面宽为x m ,则长为

x

12

m ;设房屋的总造价为y .根据题意,可得: 5800280012

312003+???

+?=x x y 580057600

3600++=x

x

580016236005800)16(3600+??≥++

=x

x x x )(34600580028800元=+=

当x

x 16

=

,即4=x 时,y 有最小值34600元. 因此,当矩形地面宽为4m 时,房屋的总造价最低,最低总造价是34600元.

说明:本题是函数最小值的应用题,这类题在我们的日常生活中经常遇到,有求最小值的问题,也有求最大值的问题,这类题都是利用函数式搭桥,用均值不等式解决,解决的关键是等号是否成立,因此,在解这类题时,要注意验证等号的成立.

典型例题二十

例20 某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙

不花钱,正面用铁栅,每1m 长造价40元,两侧墙砌砖,每1m 长造价45元,顶部每1m 2

造价20元.计算:

(1)仓库底面积S的最大允许值是多少?

(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长? 分析:用字母分别表示铁栅长和一堵砖墙长,再由题意翻译数量关系.

解:设铁栅长为x m ,一堵砖墙长为y m ,则有xy S =. 由题意得(*).32002045240=+?+xy y x

应用算术平均数与几何平均数定理,得

,

201202012020904023200S S xy xy xy

y x +=+=+?≥

,1606≤+∴S S

即:.0)10)(10(≤--S S

,010,016≤-∴>+S S Θ

从而:.100≤S

因此S 的最大允许值是2

100m ,取得此最大值的条件是y x 9040=,而100=xy ,由此求得15=x ,即铁栅的长应是m 15. 说明:本题也可将x

S

y =

代入(*)式,导出关于x 的二次方程,利用判别式法求解. 典型例题二十一

例21 甲、乙两地相距km s ,汽车从甲地匀速行驶到乙地,速度不超过km/h c ,已知汽车每小时的运输成本........

(以元为单位)由可变部分和固定部分组成:可变部分与速度km/h v 的平方成正比,且比例系数为b ;固定部分为a 元.

(1)把全程运输成本y 元表示为速度km/h v 的函数,并指出这个函数的定义域; (2)为了使全程运输成本最小,汽车应以多大速度行驶?

分析:这是1997年的全国高考试题,主要考查建立函数关系式、不等式性质(公式)的应用.也是综合应用数学知识、思想和方法解决实际问题的一道优秀试题.

解:(1)依题意知汽车从甲地匀速行驶到乙地所用的时间为h v

s

,全程运输成本为

)(2bv v

a

s v s bv v s a y +=?+?=.

故所求函数为)(bv b

a

s y +=,定义域为)0(c v ,∈.

(2)由于v b a s 、、、都为正数,

故有bv b

a

s bv v a s ??≥+2

)(, 即ab s bv v

a s 2)(≥+.

当且仅当

bv v

a

=,即b a v =时上式中等号成立. 若

c b

a

≤时,则b

a

v =时,全程运输成本y 最小; 当

c b a ≤,易证c v <<0,函数)()(bv v

a

s v f y +==单调递减,即c v =时,)(min bc c

a

s y +=.

综上可知,为使全程运输成本y 最小,

c b a

≤时,行驶速度应为b

a v =; 在c b

a

≤时,行驶速度应为c v =.

统计学计算题例题

第四章 1. 某企业1982年12月工人工资的资料如下: 要求:(1)计算平均工资;(79元) (2)用简捷法计算平均工资。 2. 某企业劳动生产率1995年比1990年增长7%,超额完成计划2%,试确定劳动生产率计划增长数。7%-2%=5% 3. 某厂按计划规定,第一季度的单位产品成本比去年同期降低8%。实际 执行结果,单位产品成本较去年同期降低4%。问该厂第一季度产品单位成本计划的完成程度如何?104.35%( (1-4%)/(1-8%)*100%=96%/92%*100%=104.35%结果表明:超额完成4.35%( 104.35%-100%)) 4. 某公社农户年收入额的分组资料如下:

要求:试确定其中位数及众数。中位数为774.3(元)众数为755.9(元) 求中位数: 先求比例:(1500-720)/(1770-720)=0.74286 分割中位数组的组距:(800-700)*0.74286=74.286 加下限700+74.286=774.286 求众数: D1=1050-480=570 D2=1050-600=450 求比例:d1/(d1+d2)=570/(570+450)=0.55882 分割众数组的组距:0.55882*(800-700)=55.882 加下限:700+55.882=755.882 5.1996年某月份某企业按工人劳动生产率高底分组的生产班组数和产量资料如下: 64.43(件/人) (55*300+65*200+75*140+85*60)/(300+200+140+60) 6.某地区家庭按人均月收入水平分组资料如下:

根据表中资料计算中位数和众数。中位数为733.33(元) 众数为711.11(元) 求中位数: 先求比例:(50-20)/(65-20)=0.6667 分割中位数组的组距:(800-600)*0.6667=66.67 加下限:600+66.67=666.67 7.某企业产值计划完成103%,比去年增长5%。试问计划规定比去年增长 多少?1.94% (上年实际完成1.03/1.05=0.981 本年实际计划比上年增长 (1-0.981)/0.981=0.019/0.981=1.937%) 8.甲、乙两单位工人的生产资料如下: 试分析:(1)哪个单位工人的生产水平高? (2)哪个单位工人的生产水平整齐? % 3.33V %7.44V /8 .1x /5.1x ====乙甲乙甲人)(件人)(件9.在 计算平均数里,从每个标志变量中减去75个单位,然后将每个差数 缩小10倍,利用这个变形后的标志变量计算加权算术平均数,其中各个变量的权数扩大7倍,结果这个平均数等于0.4个单位。试计算这个平均标志变量的实际平均数,并说明理由。79 10.某地区1998~1999年国内生产总值资料如下表:(单位:亿元)

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

高考数学大题经典习题

1. 对于函数()3 2 1(2)(2)3 f x a x bx a x =-+-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 22sin cos t t t -+t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()3 2 1 (2)(2)3 f x a x bx a x =-+-+-,则()2'(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02 (2)323(2)0a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得224a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3 )((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B 分别为函数)(x f 的极大值点和极小值点,且|AB|=2,αββα-=-)()(f f .

统计学计算题例题及计算分析

计算分析题解答参考 1.1.某厂三个车间一季度生产情况如下: 计算一季度三个车间产量平均计划完成百分比和平均单位产品成本。 解:平均计划完成百分比=实际产量/计划产量=733/(198/0.9+315/1.05+220/1.1) =101.81% 平均单位产量成本 X=∑xf/∑f=(15*198+10*315+8*220)/733 =10.75(元/件) 1.2.某企业产品的有关资料如下: 试分别计算该企业产品98年、99年的平均单位产品成本。 解:该企业98年平均单位产品成本 x=∑xf/∑f=(25*1500+28*1020+32*980)/3500 =27.83(元/件) 该企业99年平均单位产品成本x=∑xf /∑(m/x)=101060/(24500/25+28560/28+48000/32) =28.87(元/件) 年某月甲、乙两市场三种商品价格、销售量和销售额资料如下: 1.3.1999 解:三种商品在甲市场上的平均价格x=∑xf/∑f=(105*700+120*900+137*1100)/2700 =123.04(元/件) 三种商品在乙市场上的平均价格x=∑m/∑(m/x)=317900/(126000/105+96000/120+95900/137) =117.74(元/件) 2.1.某车间有甲、乙两个生产小组,甲组平均每个工人的日产量为22件,标准差为 3.5件;乙组工人日产量资料:

试比较甲、乙两生产小组中的哪个组的日产量更有代表性? 解:∵X 甲=22件 σ甲=3.5件 ∴V 甲=σ甲/ X 甲=3.5/22=15.91% 列表计算乙组的数据资料如下: ∵x 乙=∑xf/∑f=(11*10+14*20+17*30+20*40)/100 =17(件) σ乙= √[∑(x-x)2 f]/∑f =√900/100 =3(件) ∴V 乙=σ乙/ x 乙=3/17=17.65% 由于V 甲<V 乙,故甲生产小组的日产量更有代表性。 2.2.有甲、乙两个品种的粮食作物,经播种实验后得知甲品种的平均产量为998斤,标准差为162.7斤;乙品种实验的资料如下: 试研究两个品种的平均亩产量,确定哪一个品种具有较大稳定性,更有推广价值? 解:∵x 甲=998斤 σ甲=162.7斤 ∴V 甲=σ甲/ x 甲=162.7/998=16.30% 列表计算乙品种的数据资料如下:

统计学计算例题及答案

计算题例题及答案: 1、某校社会学专业同学统计课成绩如下表所示。 社会学专业同学统计课成绩表 学号成绩学号成绩学号成绩101023 76 101037 75 101052 70 101024 91 101038 70 101053 88 101025 87 101039 76 101054 93 101026 78 101040 90 101055 62 101027 85 101041 76 101056 95 101028 96 101042 86 101057 95 101029 87 101043 97 101058 66 101030 86 101044 93 101059 82 101031 90 101045 92 101060 79 101032 91 101046 82 101061 76 101033 80 101047 80 101062 76 101034 81 101048 90 101063 68 101035 80 101049 88 101064 94 101036 83 101050 77 101065 83 要求: (1)对考试成绩按由低到高进行排序,求出众数、中位数和平均数。

(2)对考试成绩进行适当分组,编制频数分布表,并计算累计频数和累计频率。答案: (1)考试成绩由低到高排序: 62,66,68,70,70,75,76,76,76,76,76,77,78,79, 80,80,80,81,82,82,83,83,85,86,86,87,87,88, 88,90,90,90,91,91,92,93,93,94,95,95,96,97, 众数:76 中位数:83 平均数: =(62+66+……+96+97)÷42 =3490÷42 =83.095 (2) 按成绩 分组频数频率(%) 向上累积向下累积 频数频率(%) 频数频率(%) 60-69 3 7.143 3 7.143 42 100.000 70-79 11 26.190 14 33.333 39 92.857 80-89 15 35.714 29 69.048 28 66.667

[高考数学]高考数学函数典型例题

?0x时,总有 00 ?01}的四组函数如下: ①f(x)=x2,g(x)=x;②f(x)=10-x+2,g(x)=2x-3 x;

③ f(x)= , g(x)= ; ④ f(x)= , g(x)=2(x-1-e -x ) . 年 高 考 江 苏 卷 试 题 11 ) 已 知 函 数 f ( x ) = ? x + 1, x ≥ 0 , 则 满 足 不 等 式 ) 剪成两块,其中一块是梯形,记 S = ,则 S 的最小值是____▲____。 2 x 2 +1 xlnx+1 2x 2 x lnx x+1 其中, 曲线 y=f(x) 和 y=g(x) 存在“分渐近线”的是( ) A. ①④ B. ②③ C.②④ D.③④ 33. (20XX 年 高 考 天 津 卷 理 科 16) 设 函 数 f ( x ) = x 2 - 1 , 对 任 意 3 x x ∈[ , +∞) , f ( ) - 4m 2 f ( x ) ≤ f ( x - 1) + 4 f (m ) 2 m 恒成立,则实数 m 的取值范围是 。 34 .( 20XX ? 2 ?1, x < 0 f (1- x 2 )> f ( 2x 的 x 的范围是__▲___。 35.(20XX 年高考江苏卷试题 14)将边长为 1m 正三角形薄片,沿一条平行于底边的直线 (梯形的周长) 梯形的面积 36 已知函数 f ( x ) = ( x + 1)ln x - x + 1 . (Ⅰ)若 xf '(x) ≤ x 2 + ax + 1 ,求 a 的取值范围; (Ⅱ)证明: ( x - 1) f ( x ) ≥ 0 .

统计学练习题——计算题

统计学练习题——计算题 1、某企业工人按日产量分组如下: 单位:(件) 试计算7、8月份平均每人日产量,并简要说明8月份比7月份平均每人日产量变化的原因。 7月份平均每人日产量为:37360 13320 == = ∑∑f Xf X (件) 8月份平均每人日产量为:44360 15840 == = ∑∑ f Xf X (件) 根据计算结果得知8月份比7月份平均每人日产量多7件。其原因是不同组日产量水平的工人所占比重发生变化所致。7月份工人日产量在40件以上的工人只占全部工人数的40%,而8月份这部分工人所占比重则为66.67%。

2、某纺织厂生产某种棉布,经测定两年中各级产品的产量资料如下: 解: 2009年棉布的平均等级= 250 10 3 40 2 200 1? + ? + ? =1.24(级) 2010年棉布的平均等级= 300 6 3 24 2 270 1? + ? + ? =1.12(级) 可见该厂棉布产品质量2010年比2009年有所提高,其平均等级由1.24级上升为1.12级。质量提高的原因是棉布一级品由80%上升为90%,同时二级品和三级品分别由16%及4%下降为8%及2%。

试比较和分析哪个企业的单位成本高,为什么? 解: 甲企业的平均单位产品成本=1.0×10%+1.1×20%+1.2×70%=1.16(元) 乙企业的平均单位产品成本=1.2×30%+1.1×30%+1.0×40%=1.09(元) 可见甲企业的单位产品成本较高,其原因是甲企业生产的3批产品中,单位成本较高(1.2元)的产品数量占70%,而乙企业只占30%。

统计学计算题答案..

第 1 页/共 12 页 1、下表是某保险公司160名推销员月销售额的分组数据。书p26 按销售额分组(千元) 人数(人) 向上累计频数 向下累计频数 12以下 6 6 160 12—14 13 19 154 14—16 29 48 141 16—18 36 84 112 18—20 25 109 76 20—22 17 126 51 22—24 14 140 34 24—26 9 149 20 26—28 7 156 11 28以上 4 160 4 合计 160 —— —— (1) 计算并填写表格中各行对应的向上累计频数; (2) 计算并填写表格中各行对应的向下累计频数; (3)确定该公司月销售额的中位数。 按上限公式计算:Me=U- =18-0.22=17,78 2、某厂工人按年龄分组资料如下:p41 工人按年龄分组(岁) 工人数(人) 20以下 160 20—25 150 25—30 105 30—35 45 35—40 40 40—45 30 45以上 20 合 计 550 要求:采用简捷法计算标准差。《简捷法》 3、试根据表中的资料计算某旅游胜地2004年平均旅游人数。P50 表:某旅游胜地旅游人数 时间 2004年1月1日 4月1日 7月1日 10月1日 2005年1月1 日 旅游人数(人) 5200 5000 5200 5400 5600 4、某大学2004年在册学生人数资料如表3-6所示,试计算该大学2004年平均在册学生人数. 时间 1月1日 3月1日 7月1日 9月1日 12月31日 在册学生人数(人) 3408 3528 3250 3590 3575

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

应用统计学练习题(含答案)

应用统计学练习题 第一章绪论 一、填空题 1.统计工作与统计学的关系是__统计实践____和___统计理论__的关系。 2.总体是由许多具有_共同性质_的个别事物组成的整体;总体单位是__总体_的组成单位。 3.统计单体具有3个基本特征,即__同质性_、__变异性_、和__大量性__。 4.要了解一个企业的产品质量情况,总体是_企业全部产品__,个体是__每一件产品__。 5.样本是从__总体__中抽出来的,作为代表_这一总体_的部分单位组成的集合体。 6.标志是说明单体单位特征的名称,按表现形式不同分为__数量标志_和_品质标志_两种。 7. 8.统计指标按其数值表现形式不同可分为__总量指标__、__相对指标_和__平均指标__。 9.指标与标志的主要区别在于: (1)指标是说明__总体__特征的,而标志则是说明__总体单位__特征的。 (2)标志有不能用__数量__表示的_品质标志_与能用_数量_表示的_数量标志_,而指标都是能用_数量_表示的。 10.一个完整的统计工作过程可以划分为_统计设计_、_统计调查_、_统计整理_和__统计分析__4个阶段。 二、单项选择题 1.统计总体的同质性是指(A)。 A.总体各单位具有某一共同的品质标志或数量标志 B.总体各单位具有某一共同的品质标志属性或数量标志值 C.总体各单位具有若干互不相同的品质标志或数量标志 D.总体各单位具有若干互不相同的品质标志属性或数量标志值 2.设某地区有800家独立核算的工业企业,要研究这些企业的产品生产情况,总体是( D)。

A.全部工业企业 B.800家工业企业 C.每一件产品 D.800家工业企业的全部工业产品 3.有200家公司每位职工的工资资料,如果要调查这200家公司的工资水平情况,则统计总体为(A)。 A.200家公司的全部职工 B.200家公司 C.200家公司职工的全部工资 D.200家公司每个职工的工资 4.一个统计总体( D)。 A.只能有一个标志 B.可以有多个标志 C.只能有一个指标 D.可以有多个指标 5.以产品等级来反映某种产品的质量,则该产品等级是(C)。 A.数量标志 B.数量指标 C.品质标志 D.质量指标 6.某工人月工资为1550元,工资是( B )。 A.品质标志 B.数量标志 C.变量值 D.指标 7.某班4名学生金融考试成绩分别为70分、80分、86分和95分,这4个数字是( D)。 A.标志 B.指标值 C.指标 D.变量值 8.工业企业的职工人数、职工工资是(D)。 A.连续变量 B.离散变量 C.前者是连续变量,后者是离散变量 D.前者是离散变量,后者是连续变量 9.统计工作的成果是(C)。 A.统计学 B.统计工作 C.统计资料 D.统计分析和预测 10.统计学自身的发展,沿着两个不同的方向,形成(C)。 A.描述统计学与理论统计学 B.理论统计学与推断统计学 C.理论统计学与应用统计学 D.描述统计学与推断统计学

统计学期末考试试题(含答案)

西安交大统计学考试试卷 一、单项选择题(每小题2分,共20分) 1.在企业统计中,下列统计标志中属于数量标志的是( C) A、文化程度 B、职业 C、月工资 D、行业 2.下列属于相对数的综合指标有(B ) A、国民收入 B、人均国民收入 C、国内生产净值 D、设备台数 3.有三个企业的年利润额分别是5000万元、8000万元和3900万元,则这句话中有( B)个变量 A、0个 B、两个 C、1个 D、3个 4.下列变量中属于连续型变量的是(A ) A、身高 B、产品件数 C、企业人数 D、产品品种 5.下列各项中,属于时点指标的有(A ) A、库存额 B、总收入 C、平均收入 D、人均收入 6.典型调查是(B )确定调查单位的 A、随机 B、主观 C、随意 D盲目 7.总体标准差未知时总体均值的假设检验要用到( A ): A、Z统计量 B、t统计量 C、统计量 D、X统计量 8. 把样本总体中全部单位数的集合称为(A ) A、样本 B、小总体 C、样本容量 D、总体容量 9.概率的取值范围是p(D ) A、大于1 B、大于-1 C、小于1 D、在0与1之间 10. 算术平均数的离差之和等于(A ) A、零 B、 1 C、-1 D、2 二、多项选择题(每小题2分,共10分。每题全部答对才给分,否则不计分) 1.数据的计量尺度包括( ABCD ): A、定类尺度 B、定序尺度 C、定距尺度 D、定比尺度 E、测量尺度 2.下列属于连续型变量的有( BE ): A、工人人数 B、商品销售额 C、商品库存额 D、商品库存量 E、总产值 3.测量变量离中趋势的指标有( ABE ) A、极差 B、平均差 C、几何平均数 D、众数 E、标准差 4.在工业企业的设备调查中( BDE ) A、工业企业是调查对象 B、工业企业的所有设备是调查对象 C、每台设备是 填报单位 D、每台设备是调查单位 E、每个工业企业是填报单位 5.下列平均数中,容易受数列中极端值影响的平均数有( ABC ) A、算术平均数 B、调和平均数 C、几何平均数 D、中位数 E、众数 三、判断题(在正确答案后写“对”,在错误答案后写“错”。每小题1分,共10分) 1、“性别”是品质标志。(对) 2、方差是离差平方和与相应的自由度之比。(错) 3、标准差系数是标准差与均值之比。(对) 4、算术平均数的离差平方和是一个最大值。(错) 5、区间估计就是直接用样本统计量代表总体参数。(错) 6、在假设检验中,方差已知的正态总体均值的检验要计算Z统计量。(错)

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

统计学计算题例题学习资料

统计学计算题例题

第四章 1. 某企业1982年12月工人工资的资料如下: 要求:(1)计算平均工资;(79元) (2)用简捷法计算平均工资。 2. 某企业劳动生产率1995年比1990年增长7%,超额完成计划2%,试确定劳动生产率计划增长数。 7%-2%=5% 3. 某厂按计划规定,第一季度的单位产品成本比去年同期降低8%。实际 执行结果,单位产品成本较去年同期降低4%。问该厂第一季度产品单位成本计划的完成程度如何?104.35%( (1-4%)/(1-8%)*100%=96%/92%*100%=104.35%结果表明:超额完成4.35%(104.35%-100%)) 4. 某公社农户年收入额的分组资料如下:

要求:试确定其中位数及众数。中位数为774.3(元)众数为755.9(元) 求中位数: 先求比例:(1500-720)/(1770-720)=0.74286 分割中位数组的组距:(800-700)*0.74286=74.286 加下限700+74.286=774.286 求众数: D1=1050-480=570 D2=1050-600=450 求比例:d1/(d1+d2)=570/(570+450)=0.55882 分割众数组的组距:0.55882*(800-700)=55.882 加下限:700+55.882=755.882 5.1996年某月份某企业按工人劳动生产率高底分组的生产班组数和产量资料如 下: 率。64.43(件/人)

(55*300+65*200+75*140+85*60)/(300+200+140+60) 6.某地区家庭按人均月收入水平分组资料如下: 根据表中资料计算中位数和众数。中位数为733.33(元) 众数为711.11(元) 求中位数: 先求比例:(50-20)/(65-20)=0.6667 分割中位数组的组距:(800-600)*0.6667=66.67 加下限:600+66.67=666.67 7.某企业产值计划完成 103%,比去年增长5%。试问计划规定比去年增长 多少?1.94% (上年实际完成1.03/1.05=0.981 本年实际计划比上年增长 (1-0.981)/0.981=0.019/0.981=1.937%) 8.甲、乙两单位工人的生产资料如下:

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

高考数学大题经典习题

1. 对于函数()32 1(2)(2)3 f x a x bx a x =- +-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 2 2sin cos t t t -+ t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()32 1(2)(2)3 f x a x bx a x =- +-+-,则 ()2 '(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02(2)323(2)0 a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-+ ∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -+ ≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得22 4a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3)((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B

统计学计算习题

第四章 六、计算题 月工资(元) 甲单位人数(人) 乙单位人数比重(%) 400以下 400~600 600~800 800~1000 1000以上 4 25 84 126 28 2 8 30 42 18 合 计 267 100 工资更具有代表性。 1、(1) 430025500267 x f x f ?+?+ == = ∑∑甲工资总额 总人数 3002%5008%7003%f x x f =? =?+?+?+ ∑∑乙 (2) 计算变异系数比较 ()2 x x f f σ-=∑∑甲甲 甲甲 () 2 x x f f σ-∑∑乙乙 乙乙 V x σσ= 甲 甲 甲 V x σσ= 乙乙乙 根据V σ甲 、V σ乙 大小判断,数值越大,代表性越小。 甲品种 乙品种 田块面积(亩) 产量(公斤) 田块面积(亩) 产量(公斤) 1.2 0.8 1.5 1.3 600 405 725 700 1.0 1.3 0.7 1.5 500 675 375 700 4.8 2430 4.5 2250 假定生产条件相同,试研究这两个品种的收获率,确定那一个品种具有稳定性和推广价值。 2、(1) 收获率(平均亩产) 2430 528.254.8 x = ==甲总产量总面积 2250 5004.5 x = =乙 (2) 稳定性推广价值(求变异指标) 2 2 2 2 600405725700506 1.25060.8506 1.5506 1.31.20.8 1.5 1.34.8 σ???????? -?+-?+-?+-? ? ? ? ?? ???????=甲

2 2 2 2 500675375700500 1.0500 1.35000.7500 1.51.0 1.30.7 1.54.5 σ???????? -?+-?+-?+-? ? ? ? ?? ???????=乙 求V σ甲 、V σ乙 ,据此判断。 8.某地20个商店,1994年第四季度的统计资料如下表4-6。 表4-6 按商品销售计划完成情 况分组(%) 商店 数目 实际商品销售额 (万元) 流通费用率 (%) 80-90 90-100 100-110 110-120 3 4 8 5 45.9 68.4 34.4 94.3 14.8 13.2 12.0 11.0 试计算 (1)该地20个商店平均完成销售计划指标 (2)该地20个商店总的流通费用率 (提示:流通费用率=流通费用/实际销售额) 8、(1) () 101%1 % f f x = = =?∑∑ 20实际销售额计划销售额 实际销售额 计划完成 (2) 据提示计算:2012.7%x = 品 种 价格 (元/公斤) 销售额(万元) 甲市场 乙市场 甲 乙 丙 0.30 0.32 0.36 75.0 40.0 45.0 37.5 80.0 45.0 13、提示:= 销售额 平均价格销售量 企业序号 计划产量(件) 计划完成程度(%) 实际一级品率 (%) 1 2 3 4 5 350 500 450 400 470 102 105 110 97 100 98 96 90 85 91

应用统计学试题及答案

北京工业大学经济与管理学院2007-2008年度 第一学期期末应用统计学 主考教师 专业:学号:姓名:成绩: 1 C 2 B 3 A 4 C 5 B 6 B 7 A 8 A 9 C 10 C 一.单选题(每题2分,共20分) 1.在对工业企业的生产设备进行普查时,调查对象是 A 所有工业企业 B 每一个工业企业 C 工业企业的所有生产设备 D 工业企业的每台生产设 备 2.一组数据的均值为20, 离散系数为, 则该组数据的标准差为 A 50 B 8 C D 4 3.某连续变量数列,其末组为“500以上”。又知其邻组的组中值为480,则末组的组中值为

A 520 B 510 C 530 D 540 4. 已知一个数列的各环比增长速度依次为5%、7%、9%,则最后一期的定基增长速度为 A .5%×7%×9% B. 105%×107%×109% C .(105%×107%×109%)-1 D. 1%109%107%1053- 5.某地区今年同去年相比,用同样多的人民币可多购买5%的商品,则物价增(减)变化的百分比为 A. –5% B. –% C. –% D. % 6.对不同年份的产品成本配合的直线方程为x y 75.1280? -=, 回归系数b= -表示 A. 时间每增加一个单位,产品成本平均增加个单位 B. 时间每增加一个单位,产品成本平均下降个单位 C. 产品成本每变动一个单位,平均需要年时间 D. 时间每减少一个单位,产品成本平均下降个单位 7.某乡播种早稻5000亩,其中20%使用改良品种,亩产为600 公

斤,其余亩产为500 公斤,则该乡全部早稻亩产为 A. 520公斤 B. 530公斤 C. 540公斤 D. 550公斤 8.甲乙两个车间工人日加工零件数的均值和标准差如下: 甲车间:x=70件,σ=件乙车间: x=90件, σ=件哪个车间日加工零件的离散程度较大: A甲车间 B. 乙车间 C.两个车间相同 D. 无法作比较 9. 根据各年的环比增长速度计算年平均增长速度的方法是 A 用各年的环比增长速度连乘然后开方 B 用各年的环比增长速度连加然后除以年数 C 先计算年平均发展速度然后减“1” D 以上三种方法都是错误的 10. 如果相关系数r=0,则表明两个变量之间 A. 相关程度很低 B.不存在任何

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

相关文档
相关文档 最新文档