文档库 最新最全的文档下载
当前位置:文档库 › 扬子地区构造演化

扬子地区构造演化

扬子地区构造演化
扬子地区构造演化

1 晋宁(雪峰)期(Pt2—Pt3)

晋宁(雪峰)期,扬子古板块硬性基底形成中一晚元古代”两弧夹一盆”的模式。

扬子古板块的基底由康滇一川中一鄂西岛弧和江南岛弧,中间夹上元古界板溪群组成的黔桂湘弧间盆地组成。中国南方中一晚元古代板块构造以沟一弧一盆演化构成的扬子古板块硬性基底,成为中国南方稳定的核心,也成为地壳向东增生的基地。

2 早加里东期(Z1—O)

早加里东期扬子古板块发育成克拉通台地和南华小洋盆的开启。

扬子古板块西缘因受康滇古陆和龙门山岛链隆升的影响,整个板块显示西高东低台地相的沉积态势,江南隆起处于扬子古板块与南华小洋盆的过渡区。南华小洋盆当时,有浊积岩充填,到早加里东期闭合,形成了宽约350km的褶皱区。向东由华夏一武夷一云开地块组成的元古宙岛弧,成为赣中和赣南震旦系一寒武系浊积岩的物源区;早加里东期卷入郁南运动,形成华南褶皱区的东缘。这个时期华南板块向东增生扩大,由南华小洋盆、华夏一武夷一云开岛弧、丽水一海丰海沟或断裂组成了又一个沟一弧一盆体系。

3 晚加里东期(S)

晚加里东期,南华小洋盆关闭,扬子古板块大隆大坳构造背景形成。志留纪末的广西运动,洋壳沿丽水一海丰海沟发生俯冲,使南华小洋盆关闭,下古生界地层褶皱变质和火成岩体侵入,仅在钦州一防城坳陷保留残余海槽。

晚加里东运动时期作用力向西传递,使扬子古板块变形,形成许多大隆大坳的构造背景,如乐山一龙女寺古隆起和湘鄂西坳陷等。

4 海西期(D-P)

海西期,扬子古板块及其周边处于拉张构造背景中。经过强烈的加里东褶皱运动后,华南板块地壳处于应力调整状态,从中泥盆世开始发生大范围的拉张运动,扬子古板块北缘出现阿尼玛卿一勉略一大别山小洋盆,西缘出现康定、木里等三联点,南缘出现南盘江裂陷槽。扬子古板块内部出现攀西裂谷带,并以此为中心有峨眉山玄武岩喷发,它代表了地壳演化的一次特殊构造事件,二十年前我们曾命名为”

峨眉地裂运动”。这次运动在中、下扬子区也有反映。

这时的华南褶皱区也发生拉张运动,如在广西、湖南等地出现的许多裂陷槽图。殷鸿福称为”赣湘桂裂陷槽”。它位于华夏古岛弧后缘,具弧后拉张盆地性质。

5 印支期(T)

华南板块在印支早期几末发生的东侧抬升和中期(T2末)发生的褶皱运动,导致四川原型陆相盆地形成。早一中三叠世有同二叠纪一样的广浅海沉积,覆盖了整个华南板块范围。中三叠世末的印支期早幕,古太平洋板块可能沿长乐一南澳断裂带发生俯冲,导致华南褶皱区大部分抬升,形成内陆隆起和坳陷。

扬子古板块北缘的阿尼玛卿一勉略一大别山小洋盆于印支期早幕关闭,最终完成华南板块与华北板块的拼接。西缘的甘孜一阿坝边缘海也于印支中期关闭,成为四川盆地上三叠统须家河组的物源区。南缘的南盘江裂陷槽也于印支中期关闭。在扬子古板块四周隆升的作用下,大型的陆相四川原型盆地形成。[1]

印支运动是中国大陆形成的关键时期,在此阶段,中国大陆发生大规模碰撞和拼合,至此,中国大陆的大部分地区(包括华南与江南隆起周邻)进入板内变形阶段。[2]

晚三叠世的印支构造事件,构成了上扬子区中生代陆相盆地的东南边界。[4]

印支期环绕上扬子区发生了强烈的构造事件:甘孜一阿坝、秦岭、广西和雪峰山以东的湘、赣等地,发生了裕皱、冲断推覆,上升为隆起,有的地区还发生了岩层变质和岩浆侵入。由此使上扬子区在晚三叠世中、晚期成为大型含煤盆地。[5]印支晚期构造事件不仅造成龙门山前缘三叠系与抹罗系间不整合一假整合接触,形成川西地区广泛缺失须家河期晚期沉积和株罗系中、下部不同层位地层的超覆,且改变了晚三叠世盆地东高西低,泄水口在西部的地形,而成为东低西高盆地泄水在东部的地貌格架。

早侏罗世末至中株罗世初,本区再次经受了一次构造事件,盆地北部和西部中抹罗统底部普遍有一砾岩层,一些地区中、下侏罗统间有侵蚀面(重庆)。在中侏罗统千佛崖组沉积之后又受一次构造事件,川南、川西南和川西等地区都有反映,在大凉山地区下沙溪庙组超覆在马鞍山段之上,缺千佛崖组和大安寨段,此侵蚀面在滇中、黔北也很明显。值得注意的是这次构造事件改变了“四川盆地”的沉积格局,

由前期的湖泊相发育期,转变为以陆上河流为主的沉积期,且在川北新出现了一个坳陷区。[5]

6 燕山期(J3—K1)

华南板块东缘的碰撞和岩浆活动,造成地壳强烈的变动,其强度由东向西减弱。很多人认为,当时的地体缝合带是在台湾东部纵谷,近来有人认为东沙隆起之南处有一北倾的岩石圈断裂为古太平洋板块碰撞带,其北的东沙群岛一澎湖列岛磁力高带为燕山期的火山弧,构成又一个沟一弧一盆体系。这次运动异常强烈,除在粤东和闽、浙海岸带局部海侵外,整个华南褶皱区多转为内陆隆起和火山岩盆地。最有特色的是在东南沿海出现大量火山岩喷发和大量花岗岩侵入,岩体侵人高峰期与J3相当。据岩浆成分富含碱质、分布宽度大、沿NNE展布的特征,认为岩浆源是因板块碰撞产生的,地壳经深部重熔后形成岩浆并沿剪切面侵入和喷发。

向西北方向,江南隆起和湘鄂西地区在燕山期地壳褶皱运动减弱,尚可见上白垩统与其下地层的不整合。再往西到四川盆地的川东和川中东部,则无白垩系沉积,更往西到川西前陆盆地,侏罗系与白垩系之间为假整合接触关系。[1]该时期主要表现为强烈的挤压冲断及大规模左旋走滑,在局部地区也形成了一些拉分盆地以及反映拉张环境的“双峰式火山岩”。扬子西缘继续发育前陆型沉积。

[2]

早白垩世晚期的燕山中幕构造运动是上扬子地区的一次重大地质事件—上扬子沉积盆地受到广泛而强烈的波及。川黔滇地区受到强烈挤压、沉积盆地萎缩的同时,湘西、湘中、鄂中等地则是拉张断陷盆地发育时期。[4]

7 喜马拉雅期(K2—E)

喜马拉雅期,华南板块受古太平洋板块活动影响,其东、西部呈现出不同的构造背景。大约从38-40Ma,太平洋板块的运动方向转为NWW向,中国东部大陆边缘从晚侏罗世一早白垩世的安第斯型转为晚白垩世一早第三纪的岛弧型。华南板块东部处于弧后拉张背景中,在古断裂复活基础上形成了许多中、小型断陷红色盆地。华南板块西部的四川盆地等,此时期较为稳定,总的处于上隆剥蚀阶段,上白垩统—下第三系的分布局限,受西面印度板块碰撞影响,形成许多局部褶断构造,对四川盆地气藏的圈闭形成和裂缝发育起着重要作用。[1]

喜马拉雅中期(渐新世末),受滨太平洋构造域影响,产生了南东—北西向的水平挤压,形成了古近系、新近系间的区域性不整合。此次构造事件不仅加强了燕山期构造变形幅度,并通过应力传递使褶皱变形进一步向四川盆地内扩展,最终在川东地区形成十分醒目的北东向隔挡式褶皱带。[4]

总结

(1)晋宁(雪峰)期(Pt2—Pt3),中国南方中—晚元古代板块构造以沟—弧—盆演

化构成的扬子古板块硬性基底,成为中国南方稳定的核心,也成为地壳向东增生

的基底。

(2)加里东期扬子古板块经过了强烈的褶皱运动。在扬子地区主要表现为整

体抬升与少量剥蚀。晚加里东运动时期形成许多大隆大坳的构造背景。

(3)海西期,经过强烈的加里东褶皱运动后,华南板块地壳处于应力调整状态,

,泥盆世开始发生大范围的拉张运动。

(4)印支期环绕上扬子区发生了强烈的地质事件,使湘、赣等地产生了褶皱

或冲断推覆,上升隆起,有的地区还产生了岩石变质与岩浆侵入。

华南板块在印支早期(T2末)发生的东侧抬升和中期(T31+2末)发生的褶

皱运动,导致四川原型陆相盆地形成。扬子古板块北缘、西缘、南缘都在印支期

关闭。

(4’)早侏罗世末至中侏罗世初,四川盆地经受了一次构造事件,在中侏罗统千佛崖组沉积之后又受一次构造事件,使很多地区形成侵蚀面。

(5)燕山期主要表现为强烈的挤压冲断及大规模左旋走滑,在局部地区也形成

了一些拉分盆地以及能反映拉张环境的“双峰式火山岩”。扬子西缘继续发育前陆型沉积。

早白垩世晚期的燕山中幕构造运动使上扬子沉积稿地受到广泛而强烈的波

及。川黔滇地区受到强烈挤压、沉积盆地萎缩的同时,湘西、湘中、鄂中等地则

是拉张断陷盆地发育时期。

(5’)印支、燕山运动是广泛影响华南的一次构造变动,它使的晚白垩世的盖层普遍发生褶皱,并伴生大量逆冲和沿软弱层的滑脱构造,极大地影响与改造了古生

代中期盆地。

(6)喜马拉雅期(K2—E),华南板块西部的四川盆地等,此时期较为稳定,总的处于

上隆剥蚀阶段.

喜马拉雅中期(渐新世木),受滨太平洋构造域影响,产生了南东—北西向的水平挤压,形成了古近系、新近系间的区域性不整合。此次构造事件不仅加强了

燕山期构造变形幅度,并通过应力传递使褶皱变形进一步向四川盆地内扩展,最

终在川东地区形成十分醒目的北东向隔档式褶皱带。

(7)加里东和印支期构造演化控制了南方中生界、古生界原生油气臧的形成与分布,原生油气藏主要分布于古隆起附近,晚侏罗世一早白垩世燕山运动的性质与强度决定了这些原生油气藏的保存与破坏;喜马拉雅期构造演化最终控制了现今保存下来的工业性油气藏的成因类型与分布。[2]

加里东运动、印支一早燕山运动、晚燕山一喜山运动是控制各盆地地层赋存、构造样式和油气分布的关键事件。[3]

参考文献

[1]罗志立.从华南板块构造演化探讨中国南方碳酸盐岩含油气远景[J].海相油气地质,2000,5(3-7):1-19.

[2]曾琴琴,张恒磊,刘天佑,等.华南燕山、印支与加里东构造面及其对油气影响的地球物理研究[J].地质科技情报,2009,28(4):96-100.

[3]何治亮,程喆,徐旭辉,等.东秦岭—大别及两侧的大地构造旋回与油气勘探领域[J].石油实验地质,2009,31(2):109-118.

[4]刘树根等著.大巴山前陆盆地—冲断带的形成演化[M].地质出版社,2006.

[5]郭正吾等著.四川盆地形成与演化[M].地质出版社,1996.

准噶尔盆地构造演化阶段及其特征

准噶尔盆地构造演化阶段及其特征 摘要:准噶尔盆地由于受到周缘造山带的多期次的逆冲推覆作用,其发育演化过程不同于一般意义的前陆盆地,而是具有类前陆盆地的特征。准噶尔盆地经历海西、印支、燕山和喜山四个构造旋回的演化,形成了早二叠纪时期的裂谷盆地,中晚二叠纪的前陆盆地,三叠纪至白垩纪的复合类前陆盆地和第三纪以来的类前陆盆地为特征的多期叠合型盆地。 关键词:准噶尔盆地构造演化类前陆盆地 引言 准噶尔盆地是我国西部发育的大型陆相盆地,对其盆地的类型及其演化,经历了很长一段研究探索过程,形成了对准噶尔盆地的形成过程的诸多认识和观点。20世纪90年代主要以二叠纪为裂谷和断陷为主,三叠-白垩坳陷,第三纪以后为上隆。一些学者分别提出了“陆内前陆盆地”(陈发景,1997) 、“再生前陆盆地”(卢华复等,1994) 及“类前陆盆地”(雷振宇,2001 ) 等概念。蔡忠贤等(2000)认为准噶尔盆地在早二叠世为裂谷,晚二叠世为热冷伸展坳陷,三叠纪—老第三纪为克拉通内盆地,新第三纪至今为陆内前陆盆地。陈新和卢华复等(2002)则将准噶尔盆地划分为地体形成、板块拼贴、前陆盆地、陆内坳陷和再生前陆盆地等6个阶段。陈业全(2004)划分盆地演化为晚泥盆世-早石炭世裂陷盆地、晚石炭世-二叠纪碰撞前陆盆地、三叠纪-古近纪陆内坳陷盆地和新近纪-第四纪再生(陆内俯冲型)前陆盆地4个阶段。 通过对准噶尔盆地区域二维地震剖面的解释,结合钻井及测井资料,我们将准噶尔的演化划分为早二叠纪时期的裂谷盆地,中晚二叠纪的前陆盆地,三叠纪至白垩纪的复合类前陆盆地和第三纪以来的类前陆盆地四个阶段。其中以中生代的复合类前陆盆地为最重要的一个阶段,与油气的关系最为密切。 一地质构造背景 中国西部各盆地位于几个大的造山带及板块缝合带之间,属于古亚洲与特提斯—喜马拉雅构造域,处于西伯利亚板块和印度板块相对挤压和相对扭动的压扭性构造环境下形成的构造格局.在南北对挤和南北对扭的联合和复合的应力条件下产生的大量平移断裂控制着盆地的展布. 中国西部盆地主要受控于三向动力体系:北部主要受古亚洲动力系所作用,受控于古亚洲域;西部主要受特提斯动力系所作用,受控于特提斯域;南部的动力来源于印度板块的北上扩张.三大动力体系在时间、空间上的叠加、复合, 形成了具有明显的旋回性和阶段性多期叠合盆地,并且在不同演化阶段中具有不同的板块构造背景,盆地类型和性质也不相同。 中国西部盆地的演化大致可以分为三个阶段: 古亚洲洋开合阶段,新元古代晚期Rodinia古陆解体,使华北、扬子、华南、塔里木等小陆块从其上裂解出来。晚奥陶世开始地壳俯冲消减,至泥盆纪晚期碰撞闭合,成为克拉通内(挤压)盆地,发育一套海相碎屑岩和碳酸盐岩沉积。古亚洲洋在晚二叠世之前消减殆尽,华北、准噶尔—吐哈、塔里木等小陆块拼合在西伯利亚块体的南缘,形成古亚洲大陆。在拼合后的

历史构造分析和全球构造体系1

第四章历史构造分析和全球构造体系 通过对地层沉积特征及与之相关的构造-岩浆-变质特征及其演变的研究,推断地层形成的大地构造背景(环境)、性质和演化。这个学科就称之为历史大地构造学(Historic Tectonics),相应的方法称之为历史大地构造分析方法。 历史构造分析的理论框架是 (1)大地构造活动论—以活动论的观点认识地史时期大陆和大洋相对于地极、赤道位置的变化以及它们之间的位置变化; (2)构造演化阶段论—地球岩石圈由简单到复杂、有节奏的分阶段的平静演化和急剧变革相交替; (3)大地构造单元论—在活动论和阶段论的思想指导下,根据古大陆形成演化历程来划分大地构造单元和分区。 一构造运动与历史构造分析 1.构造运动的主要表现形式 地壳(岩石圈)的构造运动导致地壳结构改变和物质变位,它是引起地壳(岩石圈)发展变化的内动力因素.其主要表现形式有: (1).升降运动(振荡运动)--地壳的垂向上升和下降,形成大面积的隆起和凹陷,引起大规模的海侵和海退; 特点:地层变形较为简单,主要是大型宽缓的褶曲和一些正断层或高角度的逆断层. 地壳上升引起海退而成陆地,故又名之为造陆运动. “上升遭受剥蚀,下降接受沉积”是判别升降运动的标志. (2) 褶皱运动(水平运动)由于水平方向的挤压,地层产生强烈的褶皱及一些大的低角度逆掩断层,并伴随有大规模岩浆活动和区域变质作用. 特点:褶皱运动也往往造成地壳显著上升,形成高大山系,故又称之为造山运动. 大陆上最为雄伟的现象之一是绵延数千公里的高峻山脉,山脉中的沉积岩层在地质历史中形成于深海洋盆等复杂环境,后来发生强烈的褶皱、断裂、岩浆侵入和变质作用,形成这些变形造山带的运动称为造山运动。 造山运动是岩石圈板块碰撞或陆内俯冲的结果。是地壳大规模水平运动的产物。 地层强烈变形,变质,伴生的岩浆侵入活 动以及与上覆岩层的角度不整合关系是判别褶 皱运动的标志. (3) 断裂运动--地壳的升降运动和褶皱运 动之中都有断裂运动一起存在. 深大断裂: 一种发育时间长,延伸远(长 达数百至数千公里),深度大(切穿硅铝层或切穿 整个上地幔)的“巨型”断裂带.它是地壳的原生地 壳破裂带,不是由升降运动和褶皱运动派生的. 深大断裂常是不同构造单元的分界线,其两侧地区有着不同的地质历史,表现为岩相,厚度的突变或不连续.它还是岩浆活动的通道,沿断裂带附近有各种基性超基性或酸性中酸性岩体分布. 某些张性的深大断裂,常表现为线形构造盆地(断陷盆地),称为裂谷,如红海-亚丁湾-和东非裂谷. 以上三种运动形式常互相联系在一起;在一次构造活动中,有的地区表现为升降,另外地区则可能是褶皱上升,其间则有断裂.所以不能把这些构造运动割裂开来看待. 差异升降运动的概念

大别造山带东段扬子陆块和华北陆块间缝合带的位置

第30卷第3期 地球科学———中国地质大学学报 Vol.30 No.32005年5月 Earth Science —Journal of China University of G eosciences May 2005 基金项目:国家重点基础研究发展规划项目(No.T G1999075506);国家自然科学基金项目(Nos.40472177,40072070).作者简介:江来利(1957-),男,博士,教授级高工,主要从事构造地质和岩石大地构造研究.E 2mail :lailij @https://www.wendangku.net/doc/1d12498695.html, 大别造山带东段扬子陆块和华北陆块间缝合带的位置 江来利,吴维平,储东如 安徽省地质调查院,安徽合肥230001 摘要:大别山为扬子陆块和华北陆块之间的碰撞造山带.构造-岩石单元的岩石组成、同位素年代学资料和构造关系表明,大别山东段主要由扬子陆块北缘不同变质程度的变质基底和少量浅变质盖层组成,没有代表蛇绿混杂岩和华北陆块南缘古生代活动大陆边缘的火山-侵入岩建造.各主要构造-岩石单元间的界线为超高压变质岩折返过程中形成的伸展型剪切带,大别山北部的伸展-逆冲推覆构造也是超高压变质岩折返过程中伸展构造的一部分,其中不存在具有缝合带意义的重要构造界线.因此,在大别山东段,华北陆块和扬子陆块间的缝合带既不是水吼-五河剪切带,也不是磨子潭-晓天断裂.根据地球物理资料推测,南北陆块间的缝合带应分布在信阳-舒城断裂的前缘,但现在覆于合肥盆地中新生代沉积之下.关键词:大别造山带东段;缝合带;北淮阳带;信阳-舒城断裂.中图分类号:P542 文章编号:1000-2383(2005)03-0264-11 收稿日期:2005-01-18 Location of the Suture Zone bet w een Yangtze and North China Blocks in E astern Dabie Orogen J IAN G Lai 2li ,WU Wei 2ping ,C HU Dong 2ru Geological S urvey of A nhui Province ,Hef ei 230001,China Abstract :Dabie mountains are a collision orogen between the Yangtze and the North China blocks.The rock components ,isotopic dating and tectonic relation of the tectonic 2petrological units in the eastern Dabie orogen indicate that the Dabie oro 2gen is composed mainly of the metamorphic basement suffered different 2grade metamorphism and low 2grade metamorphic cover of the north margin of the Yangtze block ,without ophiolitic m élange and Paleozoic vocanic 2intrusive rock association in the south margin of the North China block.The boundary between the tectonic 2petrological units is extensional shear zone developed in the exhumation process of the ultra 2high pressure metamorphic rocks ,and the extensional 2thrust and nappe structure in the northern part of the Dabie Mountains is also one part of the extensional structures in the exhumation process of the ultra 2high pressure metamorphic rocks.There is no key tectonic boundary indicating the occurrence of the suture zone.Therefore ,not the Shuihou 2Wuhe shear zone ,nor the Mozitan 2Xiaotian fault are the suture zone between the Y angtze and the North China https://www.wendangku.net/doc/1d12498695.html,bining the geophysical data ,the Xinyang 2Shucheng fault is the Indo 2Chinese suture between the Y an 2gtze and the North China blocks ,but now is covered under the Mesozoic and Cenozoic deposits of the Hefei basin.K ey w ords :eastern Dabie orogen ;suture zone ;North Huaiyang belt ;Xinyang 2Shucheng fault. 大别山为扬子陆块和华北陆块之间的碰撞造山带.根据超高压变质作用年龄(Ames et al .,1993;Li et al .,1993;Rowley et al .,1997;Hacker et al .,1998)及卷入前陆褶冲带变形的最新地层(徐 树桐等,1992a ,1994),扬子陆块和华北陆块最终碰撞发生在二叠纪末—三叠纪初.超高压变质岩是扬子陆块陆壳沿着缝合带向北俯冲到大于90km 的地幔深处经受超高压变质作用然后快速折返至地壳浅

板块构造

板块构造 世界板块构造图板块构造(plate tectonics)理论产生于20世纪60年代初期(Wilson,1965),该理论对生物地理学影响很大,很多情况下,不同地区上很多植物和动物分布,只有通过我们现在掌握的有关板块构造的理论才能够解释。 我们这个行星表面,是由厚度大约为100-150 km的巨大板块构成,全球岩石圈可分成六大板块,即太平洋板块、印度洋板块、亚欧板块、非洲板块、美洲板块和南极洲板块,其中只有太平洋板块几乎完全在海洋,其余板块均包括大陆和海洋,板块与板块之间的分界线是海岭、海沟、大的褶皱山脉和大断裂带。这些板块就像冰山在海洋中一样飘浮在玄武岩质基底上,进行非常缓慢的移动。大部分陆地或者全部大陆都在板块之上,所以当板块运动的时候,各个大陆之间就表现出了相对运动状况,我们称此为大陆漂移(continent drift)。 大陆板块具有三种可能的运动形式: 第一是新板块的形成,在板块交界处或者边缘,由于熔岩涌出和冷却产生新板块,这类边缘板块一般都沉积在海底,但是如果这些板块上面有陆地,那么陆地就会随之而相对运动,这种边缘可能由一块大陆中间的断裂开始。比如东非大峡谷(The great rift valley in East Africa)就是两个板块分离初期阶段的例子,当这两部分大陆彻底分开之后,海水就会淹没断层部分,进而形成一个新大陆。分离的初期,这两块陆地还具有相同的植物和动物区系,原种的灭绝和新种属的进化导致两块陆地的动植物区系发生变化。 第二种板块运动形式是板块相对趋近运动,如果一个或者两个板块边缘都是很薄的海洋岩壳,那么,一个板块就可能滑向另一个,当两个板块运动到一起时,它们之间的摩擦造成戳穿和剧烈运动,因而产生地震带。海洋下沉岩壳向更深层地壳运动,在接近热核(hot core)深层时融化,然后融化的岩浆喷出地表,形成火山喷发现象。如果这两个板块携带着大陆,那么,它们将相互接近。大陆壳比海洋岩壳密度小,所以,如果一个大陆接近一个下沉板块边缘的时候,就不会滑向另一块岩壳的下面,所以,就会防止它下面的板块继续下沉。如果两块板块各具有一片陆地,相互碰撞时都不会塌陷退让,撞击的结果形成长长的山脉。喜马拉雅山是世界上最高的山脉,就是由于4000-4500万年前,印度板块和亚洲板块相撞形成的,现在仍然在缓慢上升。 第三种是板块边缘相互碰撞滑开,加利福尼亚的San Andreas 断层(fault)显示向北滑动的太平洋板块和向南滑动的北美板块。 可见,目前的大陆都是由一块被称为泛大陆(Pangea)的超级古陆分离形成的,大约在2亿年前分成两半,一半是Laurasia,另一半是Gondwanaland。一旦大陆被分割成不同的陆块,互相之间就被浩瀚的大海彼此孤立,同时每块大陆上的动植物也被隔离,各自独立进化的结果导致目前彼此不同的生物地理格局。 因此按照目前的板块学说,约可将板块边界分类如下: (1) 建设性或分离型的边界(又称扩张边界,divergent boundary):两个相邻板块向互相分离的方向走,如大西洋著名的中洋脊。 (2) 破坏性或聚合型的边界(convergent boundary):两板块冲撞在一起时,其中一块板块受到挤压而俯冲进入地函,形成隐没带。如菲律宾海板块隐没到太平洋板块下面,产生全球最深之马尼亚那海沟。 (3) 存留、转换或剪切型的边界(transform boundary):这个边界与扩张边界都是近乎垂直的面,最典型为美国加州圣安德烈斯断层。 根据勒皮雄(Le Pichon)等人观点,全球岩石圈划分为六大板块: 美洲板块-北美洲,西北大西洋、格陵兰岛、南美洲及西南大西洋 南极洲板块-南极洲及沿海

四川盆地北部晚侏罗世和白垩纪沉积古地理演化

四川盆地北部晚侏罗世和白垩纪沉积古地理演化本文以沉积学与古地理学、层序地层学的理论和方法为指导,实地观测野外露头剖面,整理分析收集的钻井和测井数据,将研究区地层划分进行重新厘定,将研究区划分为龙门山地层小区、川中地层小区和川东地层小区。对四川盆地北部晚侏罗世和白垩纪进行了沉积古地理的研究,编制岩相古地理图。 以沉积学为基础,对研究区上侏罗统和白垩系划分出冲积扇沉积体系、河流沉积体系、湖泊沉积体系和三角洲沉积体系4沉积体系,得出上侏罗统主要为河湖碎屑沉积体系和冲积扇—扇三角洲—三角洲碎屑沉积体系,下白垩统主要为冲积扇—扇三角洲及河湖碎屑沉积体系,上白垩统主要为河湖碎屑沉积体系。利用层序地层学的原理,进一步将研究区的上侏罗统和白垩系划分出3个构造层序和10个三级层序,探讨了沉积体系的空间展布特征和盆地的充填演化规律。 综合现有的资料和成果,结合古构造分析,沉积体系、地层和古水流的研究,运用点(单个剖面或者钻井资料)——线(剖面卡或者钻井的地层连井对比图)——面(古地理图)的编图方法,以构造层序为编图单元编制研究区晚侏罗世和白垩纪的构造—岩相古地理图。对编图前的设计、准备和编图过程等工作做了详细介绍。 由划分出的3个构造层序,编制了晚侏罗世(SS1)、早白垩世(SS2)和晚白垩世(SS3)3幅岩相古地理图,具有中等比例尺、较为合理的反映了区域性的沉积古地理特征的特点。最后,分析晚侏罗世—白垩统沉积古地理特征及演化,并与中扬子地区进行对比,得出晚侏罗世和白垩纪,四川盆地北部在挤压应力环境,古地理格局上逐步向西向南萎缩的过程,沉积相带总体呈NE-SW展布,晚白垩世四川盆地北部抬升,遭受剥蚀,沉积范围进一步缩小。

地质构造的发展演化

地质构造的发展演化 中国自始太古代开始孕育陆核以来,大致可划分为古陆壳生长发展时期、古板块早期活动与中国古陆块形成时期、古板块主要活动与中国古大陆镶合时期、中生代板块活动与陆内构造时期等4个大地构造发展演化时期,特别是随着陆块的形成,于中晚元古代开始板块活动以来,出现一系列重大的地质构造事件(表5-2)。 太古代-早元古代古陆壳生长时期 始太古代鞍山白家坟深成侵入岩的形成是我国已知最古老的构造热事件,说明华北原始陆核已开始生长,塔里木陆核也在稍晚进入孕育时期。陈台沟运动(任纪舜,1997)和迁西运动至中太古代末阜平运动,华北、塔里木也可能包括上扬子有陆核形成。这时陆壳已有一定刚度,于晚太古代五台期和早古元古代滹沱纪时已开始有大规模裂陷作用发生。此后陆壳继续生长,至早元古代末,经吕梁运动中国早前寒武纪克拉通基本形成。其中华北陆块已基本固结,塔里木陆块也已初步成型。 中晚元古代古板块早期活动与中国古陆块形成时期 中晚元古代时期开始了古板块活动,经裂解-汇聚,中国古陆块基本形成,也是罗迪亚超大陆的形成时期。 四堡-晋宁期 1 中元古代早期裂谷期 华北、塔里木、扬子等早前寒武纪古克拉通离散,华北与扬子间有中元古代松树沟等蛇绿岩带发现,其间当有洋盆相隔。华夏早前寒武纪克拉通这时从扬子克拉通分离出来,出现了华南小洋盆。各克拉通内部或边缘广泛发生裂陷,华北陆块北部形成了渣尔泰-白云鄂博裂谷带,中部有太行-燕山裂谷带,南缘有汉高-熊耳裂谷带。晋冀鲁三省发育的岩墙群主要岩脉K-Ar年龄值1 680 Ma~1 775 Ma。在塔里木板块周缘如阿尔金北侧和中天山地区的中元古界为含火山岩的砂泥质复理石,均属不稳定型沉积,扬子地区在早前寒武纪古克拉通的基础上,大部分地区形成了巨厚的浊流沉积,在江南陆缘桂北、湘北有科马提岩分布。华

扬子地区构造演化

1 晋宁(雪峰)期(Pt2—Pt3) 晋宁(雪峰)期,扬子古板块硬性基底形成中一晚元古代”两弧夹一盆”的模式。 扬子古板块的基底由康滇一川中一鄂西岛弧和江南岛弧,中间夹上元古界板溪群组成的黔桂湘弧间盆地组成。中国南方中一晚元古代板块构造以沟一弧一盆演化构成的扬子古板块硬性基底,成为中国南方稳定的核心,也成为地壳向东增生的基地。 2 早加里东期(Z1—O) 早加里东期扬子古板块发育成克拉通台地和南华小洋盆的开启。 扬子古板块西缘因受康滇古陆和龙门山岛链隆升的影响,整个板块显示西高东低台地相的沉积态势,江南隆起处于扬子古板块与南华小洋盆的过渡区。南华小洋盆当时,有浊积岩充填,到早加里东期闭合,形成了宽约350km的褶皱区。向东由华夏一武夷一云开地块组成的元古宙岛弧,成为赣中和赣南震旦系一寒武系浊积岩的物源区;早加里东期卷入郁南运动,形成华南褶皱区的东缘。这个时期华南板块向东增生扩大,由南华小洋盆、华夏一武夷一云开岛弧、丽水一海丰海沟或断裂组成了又一个沟一弧一盆体系。 3 晚加里东期(S) 晚加里东期,南华小洋盆关闭,扬子古板块大隆大坳构造背景形成。志留纪末的广西运动,洋壳沿丽水一海丰海沟发生俯冲,使南华小洋盆关闭,下古生界地层褶皱变质和火成岩体侵入,仅在钦州一防城坳陷保留残余海槽。 晚加里东运动时期作用力向西传递,使扬子古板块变形,形成许多大隆大坳的构造背景,如乐山一龙女寺古隆起和湘鄂西坳陷等。 4 海西期(D-P) 海西期,扬子古板块及其周边处于拉张构造背景中。经过强烈的加里东褶皱运动后,华南板块地壳处于应力调整状态,从中泥盆世开始发生大范围的拉张运动,扬子古板块北缘出现阿尼玛卿一勉略一大别山小洋盆,西缘出现康定、木里等三联点,南缘出现南盘江裂陷槽。扬子古板块内部出现攀西裂谷带,并以此为中心有峨眉山玄武岩喷发,它代表了地壳演化的一次特殊构造事件,二十年前我们曾命名为”

郯庐断裂带中生代构造演化史_进展与新认识

收稿日期:2008-04-28;修订日期:2008-08-20 基金项目:国家自然科学基金项目(批准号:40572120)资助。作者简介:张岳桥(1963- ),男,教授,博士生导师,从事构造地质、 新构造和盆地研究、教学工作。E-mail:yueqiao-zhang@sohu.com地质通报 GEOLOGICALBULLETINOFCHINA 第27卷第9期2008年9月Vol.27,No.9Sep.,2008 郯庐断裂带中生代构造演化史:进展与新认识 张岳桥1,董树文2 ZHANGYue-qiao1,DONGShu-wen2 1.南京大学地球科学系,江苏南京210093;2.中国地质科学院地质力学研究所,北京100081 1.DepartmentofEarthSciences,NanjingUniversity,Nanjing210093,Jiangsu,China; 2.InstituteofGeologicalMechanics,ChineseAcademyofGeologicalSciences,Beijing100081,China 摘要:总结出郯庐断裂带中生代运动学演化的过程与历史,概括为“两大运动时期、五个发展阶段”。第一运动时期对应于三叠纪—早侏罗世早期的“印支运动”,以扬子陆块与华北地块之间的拼合和碰撞造山为主导,郯庐断裂带经历了:①转换走滑阶段(240 ̄220Ma),其走滑活动局限在大别和苏鲁超高压变质带之间。这个阶段的陆-陆深俯冲作用使苏鲁超高压变质带向西韧性挤出,导致徐淮弧形构造带的形成和发育。②左旋平移走滑阶段(220 ̄190Ma),徐淮弧形构造带向南错移了约145km,并被大别山以北地区的东西向逆冲系统所吸收。左旋走滑扩展使郯庐断裂带贯穿整个华北和东北地区。第二运动时期对应于中、晚侏罗世至古新世时期的“燕山运动”,郯庐断裂带的演化与东亚活动陆缘的演化紧密联系在一起,经历了③中、晚侏罗世至早白垩世早期挤压走滑活动,伴随着华北东部地区岩石圈、地壳增厚和郯庐左旋走滑断裂系的发育。④早白垩世以地壳伸展和陆内裂谷断陷作用为主,使早期增厚的华北克拉通岩石圈发生垮塌和减薄。⑤晚白垩世—古新世以右旋走滑为主,沿断裂带及其两侧发育一系列拉分盆地。系统地阐述了郯庐断裂带中生代发育过程与地质特征,及其在东亚大陆演化历史中独特的作用。关键词:郯庐断裂;郯庐断裂系;中生代;基底走滑韧性剪切带;徐淮弧形构造;走滑构造;伸展构造中图分类号:P542+.3 文献标志码:A 文章编号:1671-2552(2008)09-1371-20 ZhangYQ,DongSW.MesozoictectonicevolutionhistoryoftheTan-Lufaultzone,China:Advancesandnewunder-standing.GeologicalBulletinofChina,2008,27(9):1371-1390 Abstract:TheauthorsputforwardanewchronologicalevolutionmodeloftheMesozoickinematichistoryoftheTan-Lufaultzone,whichisboileddownto“twomovementperiodsandfivedevelopmentstages”.ThefirstmovementperiodcorrespondstotheTriassictoearliestEarlyJurassic“IndosinianMovement”,characterizedbyamalgamationbetweentheNorthChinaCratonandtheYangtzeblockandcollisionalorogeny.Duringthismovementperiod,theTan-Lufaultzoneexperiencedtwostages,i.e.thefirstandsecondstages.Thefirststage(240-220Ma)wasatransitionstrike-slipstage,whenthestrike-slipmovementofthefaultzonewasrestrictedtoatransformzonebetweentwoultra-highpressure(UHP)metamorphicbelts.TheXu-HuaioroclineonthewesternsideoftheTan-LufaultzonewasformedbywestwardductileextrusionoftheSuluUHPmetamorphicbeltasaconsequenceofthedeepsub-ductionoftheYangtzeblockbeneaththeNorthChinaCraton.Thesecondstage(220-190Ma)wasaleft-lateralstrike-slipstage.Duringthisstage,theXu-Huaioroclinewasdisplacedsouthwardabout145kmandthenwasabsorbedanE-W-strikingthrustsys-teminthehinterlandareaoftheDabieorogenicbelt.Northwardpropagationoftheleft-slipmotionmadetheTan-LufaultzonegothroughthewholeofNorthChinaandNortheastChina.ThesecondmovementperiodcorrespondedtotheMiddle-LateJurassictoPaleocene“ YanshanMovement”,andthetectonichistoryoftheTan-LufaultzonewascloselyassociatedwiththeevolutionoftheactivecontinentalmarginofEastAsia.Thefaultzoneduringthismovementperiodunderwentthreestages,i.e.thethird,fourthandfifthstages.Thethirdstage(Middle-LateJurassictoearliestEarlyCretaceous)witnessedcompressivestrike-slipmotion,accompanied

盆地的构造演化史分析—平衡剖面技术

盆地的构造演化史分析—平衡剖面技术 200613003* 摘要:盆地模拟做到了对盆地构造演化、油气生成、运移、聚集和分布等内容的定量研究。地史模型作为盆地“五史模型”之一,其模拟内容包括沉降史、埋藏史及构造演化史。而平衡剖面技术,则是目前进行盆地构造演化史分析的重要手段。本文结合《盆地模拟与资源评价》的课堂教学内容以及前人研究成果,总结了平衡剖面技术的原理、应用、尚存不足及其发展动向。 关键词:构造演化史;平衡剖面技术;应用;尚存不足;发展动向 1平衡剖面技术的原理 Dahlstrom等(1969)定义平衡剖面技术为把剖面上的变形构造通过几何学原则全部复原成合理的未变形剖面的技术。据物质守恒定律,可推导出体积守恒、面积守恒和层长守恒等系列平衡剖面恢复的几何法则。当岩层长度在变形与未变形的两种状态下等是,剖面为平衡的。其编制原则如下: (1)面积守恒原则。在地层变形前后其地层所占面积应是不变的,对比区域在变形前后是同一种岩石,若孔隙度保持不变,计算过程中构造压实作用不考虑。(2)断层法则。断层活动引起的岩层缩短在上、下岩层一致。 (3)能量最小法则。断层在能量消耗最小部位发生。 (4)伸缩量一致原则。岩层经过断裂、褶皱,其伸缩量应基本一致。 2平衡剖面技术的应用 平衡剖面技术已普遍应用于挤压构造和褶皱一冲断带中的构造分析,并能定量描述变形和形成发育过程。 李汉阳等(2013)利用平衡剖面技术对川西凹陷侏罗系剖面进行了构造恢复,编制了构造发育剖面,恢复了该区的构造演化史。 准噶尔盆地西北缘为典型的前陆冲断带,复杂的地质条件致使地震波速横向变化较大,郭峰等(2012)利用平衡剖面技术,解决了如何研究该区构造演化及动力学机制这一难点。结果表明,研究区经历了挤压、伸展、挤压三期构造运动,构成一完整的构造旋回。其中,晚二叠世存在一个小幅度的快速挤压期,而三叠纪为构造挤压最强烈期,对该区构造演化、构造格架形成、油气运聚成藏等均具重要影响和控制作用。同时文中提出,在复杂的前陆冲断带,可采取以下方法提高恢复结果的可靠性:选择合适的地震剖面线;采用变速时深转换获取可靠的地质剖面;对不同深度的地层采用不同的变形机制恢复;去压实校正过程中,按岩性分段处理,减少由岩性横向变化大引起的误差。 汤良杰等(2008)在辽东湾选取一地质剖面进行平衡剖面分析,表明渤海盆地的新生代构造演化分为3阶段:a.断陷期,孔店组至沙四段沉积时期为断陷早期,沙三段沉积时期为强烈断陷期。b.断拗期,沙二段至沙一段沉积时期为断拗早期,东三段一东二段沉积时期为强烈断拗期。c.坳陷期(东一段沉积时期至第四纪)。 邹东波等(2006)为研究柱海地区的构造演化史,选取了横贯研究区的两条地震剖面,利用平衡剖面技术恢复出了这两条剖面在各个沉积历史时期的厚始沉积剖面,将桩海地区中生代以来的构造演化历史分为四阶段:三叠纪到侏罗纪中期的印支运动褶皱发育期、晚侏罗纪到白垩纪燕山运动断陷和挤压发育期、早第三纪断陷发育期、第四纪坳陷期。 刘学峰等(2004)以平衡剖面理论为指导,利用平衡剖面反演技术,研究了松辽盆地北部深层代表性剖面的构造发育史。

2-3四川盆地

四川盆地

一、概况 四川盆地位于四川省东部。 盆地面积23?104km2; 陆相地层面积约18?104km2。 具有明显边框的构造盆地,同时也是一个地形上的盆地,呈北东向菱形分布。

盆地四周皆为高山,东北面为大巴山,东南面为大娄山,西南面为大凉山,西侧为龙门山。区域构造上,四川盆地位于扬子准地台西北部,是地台上发育起来的中新生代大型沉积盆地。世界上最早发现和利 用天然气的地区: 早在东汉末期(公元147年)就 有天然气开发的历史。 30年代,开始油气地质调查和 钻探工作; 1937年始先后在威远、巴县石 油沟、隆昌圣灯山及江油等打 了5口探井,发现了石油沟和圣灯山油田。 1953年后,大规模油气普查勘探工作,取得了丰硕的成果. 大巴山 大娄山大凉山 龙门山

已发现油田13个,气田97个。气多油少。其中探明储量大于100亿方的大中型气田10个。 探明储量大于300亿方的大型气田3个:五百梯539.88;威远408.61;卧龙河379.54亿方。 中国第一个碳酸盐岩大气田=威远气田:1940年开钻威1井,未获油气。1964年10月15日,威2井测试日产7.98-14.5万方天然气,日产水12.7-37.3方,从而发现了威远气田。 盆地探明天然气储量4848亿方,其中: 川东2777.5亿方;川东南1466.38亿方; 川西北271.99亿方;川中470.07亿方。 中国最大的天然气区,年产天然气70多亿方。 产油较少,1997年产油23.3万吨。

川中—川西地区: 二次资评总资源量7134×108m3。 资源发现率为17%。 储层以低渗低孔为主。但局部存在相对高孔段。若与裂缝匹配,则可形成工业产能。

卫宁北山地层分布及中生代以来的构造演化

科技信息 一、引言 卫宁北山位于中卫市和中宁县以北,故名卫宁北山。卫宁北山分布着大范围的石炭系地层,蕴含着大量的煤炭资源及多金属矿产资源。因此倍受资源能源及地质研究人员的关注。近年来地质研究者从多个角度多种方法来研究卫宁北山的地层分布及构造特征。张进等(2005)、李天斌(2006)及张岳桥(2007)从构造角度研究其各期构造间的关系,仲佳鑫(2010)从构造角度探究该地铁矿类型及成矿规律,魏明霞(2009)、王锋(2005)及白斌(2008)等分别从不同的角度来研究卫宁北山及周缘的构造环境及其演化,另外还有各期前人的区调工作这里就不再详述。本文根据野外实地观测,结合前人的研究,主要从形态学、地层学和构造学方面解析卫宁北山的构造演化特征。 二、卫宁北山的地层分布 整体看来,卫宁北山从古生代到新生代各期地层都有分布,但主体以晚古生代为主。 1.早古生代地层 研究区早古生代地层主要为香山群第三亚群,岩性为中细粒长石石英砂岩、绿泥绢云母板岩、千枚岩。薄层灰岩和鲕状灰岩透镜体,顶部为硅质灰岩、硅质白云岩和硅质岩。分布地区主要为红柳沟周围及孤子疙瘩以东的局部区域。 2.晚古生代地层 晚古生代地层为该区主要分布地层,遍布研究区,也是地质研究者关注的重点地层。本区的晚古生代地层为泥盆系地层和石炭系地层,而石炭系地层又是其主要地层。 a.泥盆系,主要分布中宁组第二段、第三段及第四段,皆为整合接触。第二段为中细粒长石石英砂岩、石英砂岩、钙质粉砂岩夹泥质岩透镜体和含铜砂岩;第三段为砂砾岩、厚-中厚层钙质细粒长石石英砂岩、钙质粉砂岩、页岩及灰岩;第四段为泥岩、钙质粉砂岩夹少量钙质细粒长石石英砂岩、灰岩及泥灰岩透镜体。主要分布在新井沟及新寺山-菊花台一带。 b.石炭系,主要地层为臭牛沟组、石磨沟组及单梁山组。臭牛沟组局部与泥盆系地层角度不整合,为细砾岩、细-粗粒石英砂岩、钙质粉砂岩、页岩、灰岩、白云质灰岩,局部夹劣质无烟煤或石膏。石磨沟组平行不整合于臭牛沟组之上,底部为砾岩,向上为石英岩状砂岩、细-粗粒石英砂岩、粉砂岩、页岩,含结核并含生物灰岩。单梁山组下段为厚-中厚层中-细粒、粗粒石英砂岩、夹页岩及无烟煤层,中段为中厚-薄层细粒石英砂岩、页岩、砂质页岩。 3.中生代地层 中生代地层主要分布于研究区北部,为侏罗系上统及白垩系下统庙山湖组。侏罗系主要为褐红色砾岩夹砂砾岩和少量砂岩,与寒武系香山群及庙山湖组皆角度不整合接触;庙山湖组为灰褐红色砾岩、砂砾岩、砂岩、泥岩及砂质粘土和灰岩。该区庙山湖组未见化石,但于一棵树北部的一条发育五级阶地的河谷中发现庙山湖组含大量化石(如图1)。庙山湖组角度不整合于石炭系单梁山二段之上。 4.新生代地层 新生代地层主要分布于卫宁北山的周缘部位及其中间的河谷内。 a.古近系地层。包括始新世的寺口子组和渐新世的清水营组(张进,2010)。寺口子组为橙红色砾岩夹少量砂砾岩,大佛寺谷地区寺口子组角度不整合于石炭系灰色粗粒石英砂岩之上;清水营组为橘黄色砾岩、含石膏不等粒长石石英砂岩、粘质砂土、砂质粘土及石膏。清水营组多与石炭系石磨沟组呈角度不整合接触。 b.新近系地层,包括中新世的早-中红柳沟组和晚中新世-早上新世的干河沟组。红柳沟组主要为橘黄色砾岩、长石石英砂岩及砂质粘土;干河沟组为红色砂砾岩、石英砂岩及砂泥岩。干河沟组底部砂泥岩含大量钙质结核,因此当时应为干旱沉积环境。干河沟组与泥盆系地层角度不整合,与红柳沟组平行不整合。 图1庙山湖组地层化石 三、中生代以来的构造演化 1.燕山造山期 根据张岳桥(2007)及白斌(2008)等研究,早中侏罗世为印支造山后期,贺兰山及其周缘处于拉张环境,故该区域沉积有中生代地层。中侏罗后期太平洋板块向欧亚板块NW向俯冲,燕山运动开始。根据黄汲清、张进及白斌等研究,贺兰山为燕山运动时期隆起。贺兰山石嘴山地区及其西南部发育大型褶皱(如图2),遥感影像上表现为二叠系地层与三叠系地层交互出现。在剖面图上(如图3),我们可以看出二叠系、三叠系地层总体呈宽阔褶皱,东部则发育向西倾覆的闭合褶皱。很明显这是近西向或北西向的压力使然。另外我们还可以看到,该褶皱卷入的最新地层为中侏罗地层。所以我们可以认为该褶皱是燕山运动的作用所致。 在卫宁北山,棺材山泥盆系地层向西逆冲到石炭系地层之上,且在泥盆系地层上发育右向雁列裂谷。据此我们可以推测形成该组裂谷的应力为来自南东向的挤压力,并在此应力条件下形成左行走滑,在此环境下形成右行雁列裂谷,并使其逆冲到石炭系之上,继续向西使得西侧石炭系地层掀起甚至直立,分析见下面。另外,从卫宁北山南缘第三系地层向南依次变新的地层分布也可以判断出,在中生代卫宁北山已经隆起。 图2贺兰山地区遥感影像 图3贺兰山石嘴山西南燕山期褶皱剖面 2.喜马拉雅造山期 卫宁北山广泛发育东西向褶皱和东西向断层,并且东西向断层截断燕山期形成了近南北向断层。可以认为这些构造为喜马拉雅山造山运动所引起。而卫宁北山最具特征的是鑫力源煤矿附近的W形或锯齿形直立褶皱。野外测量得出鑫力源煤矿附近的W形褶皱近东向那支走向为8°,另一支为350°。很明显,这种构造只有先南北向直立后再施加 卫宁北山地层分布及中生代以来的构造演化 郭帮杰1纪仁忠2路仁兵3程东江2宋晓燕3 (1.山东科技大学地质科学与工程学院 2.青岛地质工程勘察院 3.山东黄金矿业(玲珑)有限公司九曲分矿运营部/计划部) [摘要]卫宁北山位于黄河的宁夏中卫和中宁段以北,故名卫宁北山。由于该地区以石炭系地层为主,所以倍受地质研究人员及资 源能源采集者的关注。根据野外观测,结合区调及卫星影像资料,本文从形态学、地层学与构造学角度解释卫宁北山特有的构造形 态及卫宁北山中生代以来的构造演化。并认为,卫宁北山的形成受燕山运动和喜马拉雅山运动的影响最大,形成W/锯齿形褶皱。 [关键词]卫宁北山燕山构造运动W形褶皱 喜马拉雅山构造运动 — —191

准噶尔盆地的类型和构造演化

收稿日期:20000507;修订日期:20000911 作者简介:蔡忠贤(1963—  ),男,博士,副教授,矿产资源普查与勘探专业,现在石油大学博士后站工作。①中国科学院兰州地质研究所1准噶尔盆地构造特征及形成演化[R]119851 准噶尔盆地的类型和构造演化 蔡忠贤1,陈发景2,贾振远2 (11石油大学盆地与油藏研究中心,北京102200;21中国地质大学,北京100083) 摘 要:准噶尔盆地的早二叠世属于裂谷还是前陆盆地,存在意见分歧;晚二叠世—老第三纪 盆地的性质也不确定。文中通过对盆地构造几何学、沉降史、热史及火山岩的综合分析研究,对 盆地类型和构造演化获得了一些新的认识:(1)准噶尔盆地在早二叠世为裂谷,晚二叠世为热冷 却伸展坳陷,三叠纪—老第三纪为克拉通内盆地,新第三纪至今,由于印度板块与亚洲大陆碰撞 才形成陆内前陆盆地。(2)对石炭纪—早二叠世的岩浆活动结合区域构造资料的研究表明,准 噶尔地区古生代的板块运动和造山作用具软碰撞特点,早二叠世的裂谷盆地是在软碰撞背景下 造山带伸展塌陷的产物。(3)地幔热对流作用可能是软碰撞造山后伸展塌陷的主要深部动力学机制。 关键词:准噶尔盆地;裂谷;热冷却坳陷;克拉通盆地;软碰撞;伸展塌陷 中图分类号:P544+14; 文献标识码:A 文章编号:10052321(2000)04043110 0 引言 准噶尔盆地是新疆北部自二叠纪以来形成的大型陆内叠合盆地,目前是我国含油气前景最有希望的地区。尽管20世纪80年代以来开展了大量的地球物理和地质研究工作,但由于盆地遭受改造,在盆地类型和成因方面仍存在着诸多的分歧。中国科学院地学部①将盆地构造演化划分为4个阶段,即早二叠世断陷,晚二叠世拗陷,三叠纪—第三纪断拗和第四纪上升阶段。吴庆福[1]认为二叠纪为裂陷,三叠纪—老第三纪为拗陷,新第三纪以后为收缩上隆阶段。尤绮妹[2]的划分是:石炭纪—三叠纪为裂谷阶段,侏罗纪为中央隆升阶段,白垩纪以后为山前拗陷阶段。赵白[3]的划分是二叠纪为断陷、拗陷阶段,三叠纪为断拗阶段,侏罗纪—老第三纪为拗陷阶段,新第三纪以后为萎缩上隆阶段。肖序常[4]则认为晚石炭世—早二叠世为海相前陆盆地。杨文孝[5]也将早二叠世划为海相前陆,晚二叠世和新第三纪—第四纪划为陆相前陆,之间三叠纪—老第三纪划为振荡型陆相盆地。上述划分意见中归纳起来主要的分歧在于对盆地早二叠世的性质是张性还是压性的认识以及晚二叠纪—老第三纪拗陷盆地的性质。近来,这种分歧不仅未缩小,反而扩大。孙肇才[6]主张应该放弃早期盆地是塌陷或张性的认识,将准噶尔看作是一个在石炭纪—二叠纪前陆基础上,经过 —134—第7卷第4期 2000年10月地学前缘(中国地质大学,北京)Earth Science Frontiers (China University of G eosciences ,Beijing )Vol 17No.4Oct 12000

中国现今大地构造格局

中国地处欧亚大陆东南缘、印度板块和太平洋(菲律宾)板块交汇位置(图1), 地表起伏巨大,经历了漫长的地质演化过程,是地球上地质构造最复杂的地区之一。区内青藏高原被称为世界屋脊,喜马拉雅山脉中珠穆朗玛峰全球海拔最高,同时全球海拔最低点也十分靠近中国大陆(陆上海拔最低贝加尔湖,海底海拔最低马里亚纳海沟)。中国大陆同时又受世界两大地震带(环太平洋地震带和地中海-喜马拉雅地震带)影响,地震等地质灾害频发(最近如2008年8.0级四川大地震和2010年7.2级玉树地震)。中国大陆板块内部构造变形复杂,使之成为世界著名的板内构造和大陆动力学研究的热点地区之一。另外,西北太平洋板块在东亚(以及东南亚)地区的深俯冲作用,形成了世界上最典型的沟-弧-盆(trend-arc-basin)体系,是研究火山活动、板块俯冲、中深源地震等极好的地区。因此,了解和认识现今中国大地构造格局,具有重要的意义。 图1. 中国及临区主要的构造单元(Zhao et al.,2011)。说明:彩 色指示地形的起伏变化,白线指示板块边界,灰色线指示大断裂以及区内主要的构造板块边界,黑色三角指示主要的火山。相类似的图如

下图(Huang and Zhao,2006) 常用术语: 临区板块:Pacific Plate 太平洋板块 Philippine Sea Plate 菲律宾板块 Indian Plate 印度板块 Kazak Shield 哈萨克地盾 West Siberia Plain 西西伯利亚平原 Sino-Korean Craton 中朝板 North China Craton(NCC) 华北克拉通 Yangtze (para-)Platform(Block) 扬子(准)地台(板块) Cathaysia Block 华夏板块(注:对于华夏板块的认识目前比较有争议,这里暂且以“华夏板块”称呼) 临区海洋:the Pacific (ocean) 太平洋 Sea of Okhotsk 鄂霍次克海 Japan Sea 日本海 Bohai Bay 渤海湾 Yellow Sea 黄海 East China Sea 东海 South China Sea 南海 平原盆地:North China (rift)Basin(HBB) 华北(裂谷)盆地(平原)

相关文档
相关文档 最新文档