文档库 最新最全的文档下载
当前位置:文档库 › 仪器分析总结习题

仪器分析总结习题

仪器分析总结习题
仪器分析总结习题

第一章气象色谱法

1. 死时间tM

2.保留时间tR

3.调整保留时间t ' R

4.死体积VM5保留体积VR

6. 调整保留体积

7.相对保留值丫21

8.标准偏差。

9.半峰宽度Y1/210?峰底宽

度丫

1、若一个溶质的分配比为0.2,计算它在色谱柱流动相中的质量分数(83.3%)

2、在一根色谱柱上分离苯和甲苯,保留时间分别为 2.5和5.5min,死时间为1mi n,问:甲苯停留在固定相中的时间是苯的几倍?

甲苯的分配系数是苯的几倍?(3,3)

3、某色谱条件下,组分A的分配比为4,死时间为30s,求组分A的保留时

间(150s)

4、下列哪些参数改变会引起相对保留值变化?

A、柱长B相比C柱温D流动相流速

5、在气液色谱中,下列变化对溶质的保留体

积几乎没有影响的是

A、改变载气流速B改变固定液化学性质C增加柱温D增加柱长E、增加固定液的量

例1已知某组分峰Y= 40s, tR=400s。计算理论塔板数n。

例2已知一根16(!米长的色谱柱,16伽 =1600块,组份A在柱上的调整保留时间为100s,试求A峰的半峰宽和点6幵5.54(竺)2H有效—

丫1/2 n

有效

例3在一定条件下,两个组分的调整保留时间分别为85秒和100秒,要达到完全分离,即R=1.5。计算需要多少块有效塔板。若填充柱的塔板高度为0.1cm, 柱长是多少?

解:丫2,1 = 100/85=1.18

n 有效= 16R2[丫2,1/( Y 2,1-1)]2

= 16X 1.52 x (1.18/0. 18)2

= 1547 (块)

L 有效=n 有效? H有效=1547x 0.1=155cm

即柱长为1.55米时,两组分可以得到完全分离。

例2有一根1m长的柱子,分离组分1和2得到如图的色谱图。图中横坐标I

得到R=1.2 的分离

度,有效塔板数应为多少?色

谱柱要加到多长?

解:先求出组分2对组分1的相对保留值r2,1

(1)从图中可以看出,tR2=17mi n,Y 2=1mi n,

所以;n=16(tR2/Y2)2=4624

(2)t' R1= tR1-tM=14- 1=13mint' R2=tR2- tM=17-1=16min

(3)相对保留值a =t' R2/t ' R1=16/13

neff=16(t ' R2/Y)2=4096

Heff=L/neff=3/4096

根据公式:L=16R2Heff=16(1.5)2[(16/13)/(16/13- 1)]2 x (3/4096) =0.75m 另

一种算法

25、丙烯和丁烯的混合物进入气相色谱柱得到如下数据

计算:(1) 丁烯的分配比是多少? ( 2)丙烯和丁烯的分离度是多少?

解:(1)kB=t' R(B)/tM=(4.8-0.5)/0.5=8.6

(2) R二[tR(B)-tR(P)] X 2/(YB+YP)=(4.8-3.5) X2

/ (1.0+0.8)=1.44

例6已知物质A和B在一个30.0cm柱上的保留时间分别为16.40和17.63分钟。不被保留组分通过该柱的时间为 1.30分钟,峰宽为1.11和1.21mm计算:

(1) 柱的分辨本领;

(2) 柱的平均塔板数;

(3) 塔板高度;

(4) 达到1.5分离度所需的柱长度。

解:(1)R=2(17.63-16.40)/(1.11 + 1.21)=1.06

(2) nA=16(16.40/1.11)2=3493

n B=16(17.63/1.21)2=3397

nav=(3493+3397)/2=3445

(3) H=L/ n=30.0/3445=8.708 X 10-3cm

=8.71 x 10-3cm

(4) n1/n2二(R1/R2)2

n2=3445x 2.25/1.124=6.90 x 103

L二nH=6.90X 103X 8.71 x 10-3=60.1cm

7、已知某色谱柱的理论塔板数为3600,组分A和B在该柱上的保留时间为27mm 和30mm求两峰的峰底宽和分离度。

Y1=27/(3600/16)1/2=1.8mm

Y2=30/(3600/16)1/2=2.0mm

R= 2(30-27)/(1.8+2) = 6/3.8 = 1.6

例8已知一色谱柱在某温度下的速率方程的A=0.08cm;B=0.65cm2/s;C=0.003s, 求最佳线速度卩和最小塔板高H。

解:欲求u最佳和H最小,要对速率方程微分,即

dH/d 卩=d(A+B/ 卩+C^ )/d 卩

=-B/ a 2+C= 0

最佳线速:u最佳=(B/C)1/2

最小板高:H最小=A+2(BC)1/2

可得□最佳=(0.65/0.003)1/2 = 14.7cm/s

H最小=0.08+2(0.65 x 0.003)1/2 = 0.1683cm

例题:60C时在角鲨烷柱上正己烷,正庚烷和某组分的调整保留时间分别为262.1s、663.1s、359.4s ,求该组分的保留指数,并确定该组分是什么物质。解:由于tR' (6) = 262.1 , tR' (7) = 663.1 , tR' (x ) = 359.4 , n = 6

lx = 100[6 + (IgtR ' (x) —IgtR ' (6))/(lgtR ' (7) —IgtR ' (6))]

=100x [6 +(Ig359.4 —lg262.1 ) / (lg663.1-lg262.1 )

=644 与文献值比较,可知该组分为苯。

解:先利用峰高乘以半峰宽计算各峰面积,然后利用归一化法求各组分质量分数。

根据公式A=hY1/2,求得各组分峰面积分别为:

124.16;249.84;254.22;225.4

二830.13

从而求得各组分质量分数分别为:

苯酚:12.71%;邻甲酚:28.58%;间甲酚:31.54%;

对甲酚:27.15% 例将纯苯与某组分A配成混合液,进行气相色谱分析,苯的样品

量为0.435 a g时,峰面积为4.00cm2,组分A的样品量为0.653卩g时的峰面积为

6.50cm2, 求组分A以苯为标准时的相对校正因子。

例一、分析乙醛和丙酮的混合试样,取 1 a L试样进行色谱分析,乙醛的峰面

积为36.20cm2,丙酮的峰面积为28.19cm2。制备纯乙醛和丙酮的标准溶液时,称

取乙醛4.685g,丙酮3.680g,混合后取1 a L该混合物进行色谱分析,测得乙醛

和丙酮的峰面积分别为38.86cm2和32.68cm2。计算试样中乙醛和丙酮的质量分

数。

标准溶液中:乙醛:3 s=4.685/(4.685+3.680)=56%

丙酮:3 s=3.680/(4.685+3.680)=44%

所以:样品中

乙醛:3 i=(56%/38.86)X 36.20=52.2%

丙酮:3 i=(44%/32.68)X 28.19=37.9%

1、当色谱峰的半峰宽为2mm保留时间为4.5min,死时间为1min,色谱柱长为2m记录仪纸速为2cm/min,计算色谱柱的理论塔板数,塔板高度以及有效理论塔板数,有效塔板高度。解:单点校正法P55公式

2、用一根2米长色谱柱将两种药物A和B分离,实验结果如下:空气保留时

间30 秒,A 与 B 的保留时间分别为230 秒和250 秒, B 峰峰宽为25 秒。求该色谱柱

的理论塔板数,两峰的分离度。若将两峰完全分离,柱长至少为多少?第二章、高效液相色谱法

1 、梯度洗脱与程序升温的区别梯度洗提的实质是通过不断改变流动相的强度,来调整混合样品中个组分的k 值,使所有谱带都以最佳平均k 值通过色谱柱。

流动相强度包括溶质的极性、pH值和离子强度等。

它所起的作用与气相色谱中的程序升温相仿,所不同的是梯度洗提中溶质k 值的变化是通过溶剂的极性、pH 值和离子强度来实现的,而不是借改变温度来达到的。

2、液相色谱法的流动相极性顺序,流动相极性与样品洗脱顺序的关系

正相色谱——固定液极性>流动相极性(NLLC)

对于亲水性固定液,采用疏水性流动相,即流动相的极性小于固定液的极性。极性小的组分先出柱,极性大的组分后出柱适于分离极性组分。

反相色谱——固定液极性<流动相极性(RLLC)

极性大的组分先出柱,极性小的组分后出柱,适于分离非极性组分。

3、液相色谱流动相(正反相色谱定义及区别)

液相色谱的流动相又称为淋洗液,洗脱剂。流动相组成改变,极性改变,可显着改变组分分离状况;

亲水性固定液常采用疏水性流动相,即流动相的极性小于固定相的极性,称为正相液液色谱法,极性柱也称正相柱。极性组分k大。

若流动相的极性大于固定液的极性,则称为反相液液色谱法,非极性柱也称为反相柱。极性组分k小

4、液相色谱法流动相的极性顺序

常用溶剂的极性顺序:水(最大)>甲酰胺>乙腈〉甲醇〉乙醇〉丙醇〉丙酮〉二氧六环>四氢咲喃>甲乙酮〉正丁醇>乙酸乙酯>乙醚〉异丙醚>二氯甲烷>氯仿〉溴乙烷>苯>四氯化碳〉二硫化碳〉环己烷>己烷〉煤油(最小)。

5、离子对色谱法的特点

有正相离子对色谱法和反相离子对色谱法之分,后者应用广泛;

反相离子对色谱法解决了难分离混合物的分离问题;

可借助离子对的生成引入紫外吸收或发荧光的基团,提高检测灵敏度。

6、空间排阻色谱法的原理

试样进入色谱柱后,随流动相在凝胶外部间隙以及孔穴旁流过。太大分子不能进入,直接通过柱子并首先在色谱图上出现;中等大小分子有些空穴能进,有些空穴不能进;小分子可进入胶孔渗透到颗粒中,在色谱图上后出现。溶剂分子最小,在色谱图上最后出现。

洗脱次序决定于分子质量大小和形状。

适于分离分子质量较大的化合物(103~105)。

1. 一般而言,流动相选择对分离基本无影响的是液固吸附色谱;液液分配;离子交换;(空间排阻)

2. 选择合适的高效液相色谱法分离以下物质正相色谱;反相色谱;离子交换;分子排阻(1)极性较低化合物正相色谱

(2)中高极性分子型化合物反相色谱

(3)分子量大于2000 的高分子化合物空间排阻

(4)离子型或可离解化合物离子交换

3. 分离结构异构体,最适当的选择(吸附色谱);离子对色谱;空间排阻;离子交换

1、能量次序

2、为什么原子光谱为线状光谱,分子光谱为带状光谱?由于原子光谱不涉及振动和转动能级跃迁,只有电子能级跃迁,原子的各个能级是量子化的,电子的跃迁也是不连续的;而分子光谱形成过程不但存在电子能级,还包括振动能级和转动能级的跃迁。

而且三者的能量次序是:E电>E振>E转

2、原子发射光谱仪构造

?几肄光陳的址鞍

光欄慕世』度战电曹建性应用范HI

岛ffl &定性井析.rib ?轉期质*

难挥笈元索的宦■幷斷

申?XX>*7000较试拝中低含■刖分的定

火花MM 10000好金JH与合金.4*^元素

的定"析

光源种类及适用范围:ICP6000-8000m 好请櫃定魁分折

3、原子发射光谱法基本原理:根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。(发射光谱的产生):原子的外层

电子由高能级向低能级跃迁,多余能量以电磁辐射的形式发射出去,这样就

得到了发

射光谱。

4相关术语:

共振线:在所有原子谱线中,凡是由各个激发态回到基态所发射的谱线

非共振线:激发态与激发态之间跃迁所产生的谱线

灵敏线:元素的最特征谱线,一般主共振线为灵敏线。

最后线:当元素含量减小到最低时,仍然坚持到最后出现的谱线。含量低时,最后线为灵敏线,含量高时不一定。

分析线:用来进行定性定量分析的谱线

5、定性及定量分析依据:

定性原理:由于原子或离子的能级很多并且不同元素的结构是不同的,因此对特定元素的原子或离子可产生一系不同波长的特征光谱,通过识别待测元素的特征谱线存在与否进行定性分析。

定量原理:待测元素数目越多,其激发态原子的密度也越大,发射的谱线越

强,据此可进行---定量分析。

6、选择合适的激发光源

某经济作物植物体进行元素的定性全分析直流电弧

炼钢厂炉前12 种元素定量分析高压火花钢中锰的定量分析交流电弧铁矿石定量全分析交流电弧头发各元素定量分析交流电弧/ICP

水源调查6种元素(Cr、Mn Cu Fe、Zn、Pb)定量分析ICP

7、(6分)下图为乳剂特性曲线,说明AB BC CD段的曝光情况,并写出黑

度S 与曝光量H 间的线性关系方程式,指出线性方程中的斜率及其在横坐标上截距的物理意义。

?AB段曝光不足,BC段曝光正常,CD段曝光过量。(2分)

?乳剂特性曲线方程S=(lgH-lgHi ) (2分)

?为线性部分斜率,称为乳剂的反衬度,表示乳剂在曝光量改变时黑度变化的快慢;( 1 分)

?lgHi 为线性部分在横轴上的截矩,Hi 称惰延量,表示感光板的灵敏度。 (1 分)

1、在谱片板上发现某元素的清晰的10 级线,且隐约能发现一根9 级线,但未找到其它任何8 级线,译谱的结果是()

(1) 从灵敏线判断,不存在该元素

(2) 既有10级线,又有9 级线,该元素必存在

(3) 未发现8 级线,因而不可能有该元素

(4) 不能确定

2、用发射光谱进行定量分析时,乳剂特性曲线的斜率较大,说明()

(1) 惰延量大(2) 展度大(3) 反衬度大(4) 反衬度小

3、摄谱法原子光谱定量分析是根据下列哪种关系建立的?

(NO-基态原子数,S-分析线对黑度差,c-浓度,1-分析线强度,S-黑度)

(1) I -N0(2)S-lgc(3)I -lgc(4)S -lgN0

4、几种常用光源中,产生自吸现象最小的是()

(1) 交流电弧(2) 等离子体光(3) 直流电弧(4) 火花光源

5、某摄谱仪刚刚可以分辨310.0305nm及309.9970nm的两条谱线,则用该摄谱仪可以分辨出的谱线组是

(1) Si251.61 —Zn251.58nm;(2)Ni337.56 —Fe337.57nm

(3) M n325.40 —Fe325.395nm;(4)Cr301.82 —Ce301.88nm

6、用发射光谱进行定量分析时,乳剂特性曲线的斜率较大,说明

(1) 惰延量大;(2) 展度大;(3) 反衬度大;(4) 反衬度小

1 、原子吸收光谱分析基本原理

原子吸收光谱法是一种基于待测基态原子对特征谱线的吸收而建立的一种分析方法。

2、吸收线轮廓的表示方法

表征吸收线轮廓的参数:中心频率O最大吸收系数对应的频率;

半宽度△ O: K0/2处的宽度

3、影响谱线宽度的因素

(1) 自然变宽( 2)多普勒(Doppler) 变宽( 3)碰撞变宽

(4) 其他因素:场致变宽、自吸效应

4、根据爱因斯坦辐射量子理论, 谱线的积分吸收与火焰中基态原子数的关系

为:

其中:e为电子电荷;m为电子质量;c为光速;NO为基态原子密度;f为振子强度,表示的是每个原子中能被入射光激发的平均电子数。对于给定的元素, f 为一常数。

4、用峰值吸收代替积分吸收的必要条件

(1)锐线光源发射线的中心频率=原子吸收线的中心频率

(2)发射线的半宽度<<吸收线的半宽度

1. 原子吸收光谱法中,测得的吸光度为()

A.溶液对光源辐射的峰值吸收

B.原子对光源辐射的峰值吸收

C.待测元素基态原子对光源辐射的峰值吸

D.待测元素基态原子对光源辐射的

积分吸收

2.在高温下基态原子数与激发态原子数相比

A. 几乎相等

B. 激发态原子数远多于基态原子数

C.基态原子数远多于激发态原子数

D.无规律

3. 在原子吸收分光光度法中,原子蒸气对共振辐射的吸收程度与()

A.与入射光强度I0有线性关系

B.基态原子数NO成正比

C.激发态原子数Nj成正比

D.被测物质Nj/NO成正比

4. 原子吸收分光光度法需用锐线光源,这是因为

A.扣除背景吸收

B.增加测定灵敏度

C.测定被测组分的峰值吸收

D.去除谱线干扰

5. 在原子吸收光谱法中,若用连续光源代替空心阴极灯,测得的吸光度()

A. 与被测物浓度成正比

B. 与单位体积基态原子数成正比

C.与被测元素浓度成正比

D.几乎为零

6、原子吸收分光光度计的构造

构成光源、原子化器、分光系统、检测系统等。

7、锐线光源定义作用及工作原理锐线光源是发射线半宽度远小于吸收线半宽度的光源,如空心阴极灯作用:提供待测元素的特征光谱;获得较高的灵敏度和准确度。工作原理:8、原子化器种类及特点:

(1)火焰原子化器

(2)石墨炉原子化器:

?需样量少,灵敏度高。L:几卩L; S:0.1-10mg

?试样利用率高,原子化效率达90%

?可直接测定粘度较大的试样或固体试样;?整个原子化过程是在一个密闭的配有冷却装置中进行,较安全;?因采用人工加样,精密度不高,装置复杂。

1 、石墨炉原子吸收法与火焰法相比,其优点是()

A.灵敏度高

B.重现性好

C.分析速度快

D.背景吸收小

2、在原子吸收分析中,测定元素的灵敏度,在很大程度取决于()

A.空心阴极灯

B.原子化系统

C.分光系统

D.检测系统

3、火焰原子吸收光谱法中,吸光物质是()

A. 火焰中各种原子B .火焰中的基态原子

C.火焰中待测元素的原子

D.火焰中待测元素的基态原子

4、干扰及其抑制种类及其消除办法

(1)光谱干扰

(2)物理干扰(基体干扰):非选择性干扰:

消除办法:?配制与待测试液基体相似的标准溶液,这是最常用的方法。

?当配制其基体与试液相似的标准溶液确有困难时,须采用标准加入法。

?当被测元素在试液中的浓度较高时,可用稀释溶液的方法。

(2)化学干扰选择性干扰:

消除办法:?选择合适的原子化方法?加“消电离剂” ?加入释放剂?保护剂?加入缓冲剂?化学分离法

(3)有机溶剂的影响一填空、原子分光光度计采用()光源,其发射谱线的半宽度()于吸收线半宽度,且两者()一致。

引起原子吸收线变宽因素主要有自然宽度、()和()等。其中()是谱线变宽的最主要因素。

多普勒变宽(热变宽),压力变宽(碰撞变宽);

多普勒变宽(热变宽);空心阴极灯阳极一般是(),而阴极材料是(),管内通常充有()钨棒,待测元素的金属或合金,低压惰性气体

5、原子吸收过程中关于基态原子数与激发态原子数关系的说法错误的是()

A、基态原子数可近似视为原子总数

B、两者之和即为原子总数

C激发态原子数也有可能等于基态原子数D基态原子数大于激发态原子数

6、为了消除磷酸盐对钙的干扰,可加入EDTA络合剂,将Ca形成EDTA-Ca络

合物,EDTA-Ca在火焰中易原子化,从而消除了磷酸盐的干扰,这里的EDTA

称为()

A、保护剂B释放剂C消电离剂D缓冲剂

7、原子吸收分析对光源进行调制,主要是为了消除()

A、光源透射光的干扰

B、原子化器火焰的干扰C背景干扰D物理干扰

8、原子分光光度计中原子化器的作用是什么火焰原子化器和石墨炉原子化器有何区别?答:作用:提供试样离子转变成原子蒸气的能量。

二者区别:

(1)原子化原理不同。前者用火焰热原子化,后者用电热;

(2)原子化效率不同。前者只有10%左右,后者可达90%以上;

(3)灵敏度不同。前者低后者高。

(4)基体效应不同。前者小后者大。

(5)最高温度不同。前者通常低于后者。

9、何谓锐线光源?在原子吸收分光光度分析中为什么要用锐线光源?答:锐线光源是能发射出谱线半宽度很窄的发射线的光源。如空心阴极灯。在使用锐线光源时,光源发射线半宽度很小,并且发射线与吸收线的中心频率一致。这时发射线的轮廓可看作一个很窄的矩形,即峰值吸收系数Kv在此轮廓内不随频率而改变,吸收只限于发射线轮廓内。这样,一定的峰值吸收系数即可测出一定的原子浓度。

紫外可见光谱

1、电子跃迁类型:

*跃迁:指处于成键轨道上的。电子吸收光子后被激发跃迁到。*反键轨道

n—c *跃迁:指分子中处于非键轨道上的n电子吸收能量后向。*反键轨道的

跃迁

n —n *跃迁:指不饱和键中的n电子吸收光波能量后跃迁到n *反键轨道。

n—n *跃迁:指分子中处于非键轨道上的n电子吸收能量后向n *反键轨道的

跃迁。

所需能量AE大小顺序为:

n—n *< n — n *

2、吸收带种类,不同种类的吸收带特点

R带:由n—n *跃迁产生

特点:所需能量小,吸收波长一般在200nm ~400nm吸收强度很弱,£ max<

100。

K带:共轭双键中n —n *跃迁产生。

特点:跃迁所需能量较R带大,吸收峰位于210~280nm吸收强度强,摩尔吸

收系数£ max> 104。

随着共轭体系的增长,K吸收带长移,一般在210~700nm £ max增大。

B带:苯型谱带。是芳香族化合物的特征吸收带;

是苯环振动及n —n *重叠引起的。

特点:在230?270nm之间出现精细结构吸收,又称苯的多重吸收。中等强度吸收。

E带:乙烯型谱带。也是芳香族化合物的特征吸收之一。E带可分为E1及E2

两个吸收带,也属n —n *跃迁。

E1带:吸收峰在184 nm左右,是由苯环内乙烯键上的n电子被激发所致;吸收特别强,

£ max> 104;

E2带:吸收峰在203nm处,是由苯环的共轭二烯所引起;中等强度吸收,£ max=7400。

当苯环上有发色基团取代并和苯环共轭时, E 带和 B 带均发生红移,E2 带又

称为K带

3共轭多烯的K带入max估算

链状共轭二烯217nm同环共轭二烯253nm

增加一个共轭双键+30nm增加一个环外双键+5nm

每个烷基取代+5 nm-CI,-B叶5nm

4、某分光光度计使用480nm单色器和2cm吸收池,其入射光强度10=79.6。当用该分光光度计检测浓度为 2.0 x 10-4mol ? L-1的某有色物质时,其透射光强度1=17.5,试计算该有色物质的摩尔吸光系数。

A=-lgT=lgl0/l二& be

e =1645L ? mol-1 ? em-1

5、以波长为入1的光测定某浓度为C1的有色溶液吸光度为A1,透光度为T1; 同样以波长入2测定浓度为C2的溶液吸光度为A2,透光度为T2。则它们之间的关系式为:

A.A1=A2lgT1/lgT2

B.A2=A1£ 2/ e 1

C.A1=A2£ 2/ el

D.A2=A1lg(T1/T2)

E.lgT1/lgT2=C1/C2

6、用参比溶液调节仪器零点时,因无法调至透光度100%只好调到95淞, 此时测得一溶液的透光度为35%求该溶液的真实透光度。(先计算出原始吸光度A=-lg5%)

7、某溶液中有三种物质,下表列出了它们在特定波长下的吸收系数。设所用

试样池的厚度为1em拟出分光光度法测定它们的浓度方程式。

A

0 0 1.0 B

2.00 0.05 0 C 0.60 1.80 0

&某钢材中含有钛和钒的过氧化物,可以用分光光度法同时检测出来。将 1g 该钢材用强酸溶解,得到一有色溶液,将溶液稀释到 100mL 用分光光度法进

行测量。可知2.0mg 钛在400nm 和600nm 处的吸光度分别为0.534和0.256。 在相同条件下,2.0mg 钒在400nm 和600nm 处的吸光度分别为0.068和0.082。

若两个样品经过同样的处理,分光光度法进行测量的结果如下。试计算两样

品中钛和钒的质量分数。

解:设1g 样品中钒和钛的质量分别为 xmg 和ymg 则该样品400nm 和600nm

处的吸光度A400和A600分别为

利用2.0mg/100mL 的吸 光度计算各自吸收系数

依据吸光度的加和性联立方程组:

将数据代入解得: 样品 1: V%=0.052%

Ti%=0.141%

样品 2: V%=0.0726%

依据已知条件的吸收系数:

人1 ^2

Ti%=0.656%

1. 以下四种化合物,能同时产生B吸收带、K吸收带和R吸收带的是()2.在下列化合物中,* 跃迁所需能量最大的化合物是()

A.1,3 丁二烯

B.1,4 戊二烯

C.1,3 环已二烯

D.2,3 二甲基1,3 丁二烯

3. 符合朗伯特-比耳定律的有色溶液稀释时,其最大吸收峰的波长位置()

A.向短波方向移动

B.向长波方向移动

C.不移动,且吸光度值降低

D.不移动,且吸光度值升高

4. 双波长分光光度计与单波长分光光度计的主要区别在于()

A.光源的种类及个数

B.单色器的个数

C.吸收池的个数

D.检测器的个数

5. 在符合朗伯特-比尔定律的范围内,溶液的浓度、最大吸收波长、吸光度

三者的关系是()

A. 增加、增加、增加

B. 减小、不变、减小

C. 减小、增加、减小

D. 增加、不变、减小

6. 在紫外可见分光光度法测定中,使用参比溶液的作用是()

A.调节仪器透光率的零点

B.吸收入射光中测定所需要的光波

C.调节入射光的光强度

D.消除试剂等非测定物质对入射光吸收的影响

7. 某药物的摩尔吸光系数()很大,则表明()

A.该药物溶液的浓度很大

B.光通过该药物溶液的光程很长

C.该药物对某波长的光吸收很强

D.测定该药物的灵敏度高

&用标准曲线法测定某药物含量时,用参比溶液调节A=0或T=100%其目的

现代仪器分析重点总结(期末考试版)

现代仪器分析:一般的说,仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。灵敏度:指待测组分单位浓度或单位质量的变化所引起测定信号值的变化程度。灵敏度也就是标准曲线的斜率。斜率越大,灵敏度就越高 光分析法:利用光电转换或其它电子器件测定“辐射与物质相互作用”之后的辐射强度等光学特性,进行物质的定性和定量分析的方法。 光吸收:当光与物质接触时,某些频率的光被选择性吸收并使其强度减弱,这种现象称为物质对光的吸收。 原子发射光谱法:元素在受到热或电激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱,依据特征光谱进行定性、定量的分析方法。 主共振线:在共振线中从第一激发态跃迁到激发态所发射的谱线。 分析线:复杂元素的谱线可能多至数千条,只选择其中几条特征谱线检验,称其为分析线。 多普勒变宽:原子在空间作不规则的热运动所引起的谱线变宽。 洛伦兹变宽:待测原子和其它粒子碰撞而产生的变宽。 助色团:本身不吸收紫外、可见光,但与发色团相连时,可使发色团产生的吸收峰向长波方向移动,且吸收强度增强的杂原子基团。 分析仪器的主要性能指标是准确度、检出限、精密度。 根据分析原理,仪器分析方法通常可以分为光分析法、电分析化学方法、色谱法、其它仪器分析方法四大类。 原子发射光谱仪由激发源、分光系统、检测系统三部分组成。 使用石墨炉原子化器是,为防止样品及石墨管氧化应不断加入(N2)气,测定时通常分为干燥试样、灰化试样、原子化试样、清残。 光谱及光谱法是如何分类的? ⑴产生光谱的物质类型不同:原子光谱、分子光谱、固体光谱;⑵光谱的性质和形状:线光谱、带光谱、连续光谱;⑶产生光谱的物质类型不同:发射光谱、吸收光谱、散射光谱。 原子光谱与发射光谱,吸收光谱与发射光谱有什么不同 原子光谱:气态原子发生能级跃迁时,能发射或吸收一定频率的电磁波辐射,经过光谱依所得到的一条条分立的线状光谱。 分子光谱:处于气态或溶液中的分子,当发生能级跃迁时,所发射或吸收的是一定频率范围的电磁辐射组成的带状光谱。 吸收光谱:当物质受到光辐射作用时,物质中的分子或原子以及强磁场中的自选原子核吸收了特定的光子之后,由低能态被激发跃迁到高能态,此时如将吸收的光辐射记录下来,得到的就是吸收光谱。发射光谱:吸收了光能处于高能态的分子或原子,回到基态或较低能态时,有时以热的形式释放出所吸收的能量,有时重新以光辐射形式释放出来,由此获得的光谱就是发射光谱。 选择内标元素和分析线对有什么要求? a. 若内标元素是外加的,则该元素在分析试样中应该不存在,或含量极微可忽略不计,以免破坏内标元素量的一致性。 b. 被测元素和内标元素及它们所处的化合物必须有相近的蒸发性能,以避免“分馏”现象发生。 c. 分析线和内标线的激发电位和电离电位应尽量接近(激发电位和电离电位相等或很接近的谱线称为“均称线对”);分析线对应该都是原子线或都是离子线,一条原子线而另一条为离子线是不合适的。 d. 分析线和内标线的波长要靠近,以防止感光板反衬度的变化和背景不同引起的分析误差。分析线对的强度要合适。 e. 内标线和分析线应是无自吸或自吸很小的谱线,并且不受其他元素的谱线干扰。 原子荧光光谱是怎么产生的?有几种类型? 过程:当气态原子受到强特征辐射时,由基态跃迁到激发态,约在10-8s后,再由激发态跃迁回到基态,辐射出与吸收光波长相同或不同的辐射即为原子荧光。 三种类型:共振荧光、非共振荧光与敏化荧光。 为什么原子发射光谱法可采用内标法来消除实验条件的影响? 影响谱线强度因素较多,直接测定谱线绝对强度计算难以获得准确结果,实际工作多采用内标法。内标法属相对强度法,是在待测元素的谱线中选一条谱线作为分析线,然后在基体元素或在加入固定量的其他元素的谱线中选一条非自吸谱线作为内标线,两条谱线构成定量分析线对。 通常为什么不用原子吸收光谱法进行物质的定性分析? 答:原子吸收光谱法是定量测量某一物质含量的仪器,是定量分析用的,不能将物质分离,因此不能鉴定物质的性质,因此不能。。。。 原子吸收光谱法,采用峰值吸收进行定量分析的条件和依据是什么? 为了使通过原子蒸气的发射线特征(极大)频率恰好能与吸收线的特征(极大)频率相一致,通常用待测元素的纯物质作为锐线光源的阴极,使其产生发射,这样发射物质与吸收物质为同一物质,产生的发射线与吸收线特征频率完全相同,可以实现峰值吸收。 朗伯比尔定律的物理意义是什么?偏离朗伯比尔定律的原因主要有哪些? 物理意义是:当一束平行单色光通过均匀的溶液时,溶液的吸光度A与溶液中的吸光物质的浓度C及液层厚度L的乘积成正比。A=kcL 偏离的原因是:1入射光并非完全意义上的单色光而是复合光。2溶液的不均匀性,如部分入射光因为散射而损失。3溶液中发生了如解离、缔合、配位等化学变化。 影响原子吸收谱线宽度的因素有哪些?其中最主要的因素是什么? 答:影响原子吸收谱线宽度的因素有自然宽度Δf N、多普勒变宽和压力变宽。其中最主要的是多普勒变宽和洛伦兹变宽。 原子吸收光谱法,采用极大吸收进行定量的条件和依据是什么? 答:原子吸收光谱法,采用极大吸收进行定量的条件:①光源发射线的半宽度应小于吸收线半宽度;②通过原子蒸气的发射线中心频率恰好与吸收线的中心频率ν0相重合。定量的依据:A=Kc 原子吸收光谱仪主要由哪几部分组成?各有何作用? 答:原子吸收光谱仪主要由光源、原子化器、分光系统、检测系统四大部分组成。

仪器分析各个章节小结

第八章电位法和永停滴定法- 章节小结 1.基本概念 指示电极:是电极电位值随被测离子的活(浓)度变化而变化的一类电极。 参比电极:在一定条件下,电极电位基本恒定的电极。 膜电位:跨越整个玻璃膜的电位差。 不对称电位:在玻璃电极膜两侧溶液pH相等时,仍有1mV~3mV的电位差,这一电位差称为不对称电位。是由于玻璃内外两表面的结构和性能不完全相同,以及外表面玷污、机械刻划、化学腐蚀等外部因素所致的。 酸差:当溶液pH<1时,pH测得值(即读数)大于真实值,这一正误差为酸差。 碱差:当溶液pH>9时,pH测得值(即读数)小于真实值,这一负误差为碱差,也叫钠差。 转换系数:指当溶液pH每改变一个单位时,引起玻璃电极电位的变化值。 离子选择电极:一般由电极膜(敏感膜)、电极管、内充溶液和内参比电极四个部分组成。 电位选择性系数:在相同条件下,同一电极对X和Y离子响应能力之比,亦即提供相同电位响应的X和Y离子的活度比。 可逆电对:电极反应是可逆的电对。 此外还有相界电位、液接电位、原电池、残余液接电位。 2.基本理论 (1)pH玻璃电极: -浓度一定)、内参比电极(Ag-AgCl电极)、绝缘套; ①基本构造:玻璃膜、内参比溶液(H+与 Cl ②膜电位产生原理及表示式:; ③玻璃电极作为测溶液pH的理论依据。 (2)直接电位法测量溶液pH: ①测量原理。 ②两次测量法。pHs 要准,而且与pHx差值不大于3个pH单位,以消除液接电位。(3)离子选择电极: ①基本构造:电极膜、电极管、内参比溶液、内参比电极; ②分类:原电极、敏化电极; ③响应机理及电位选择性系数; ④测量方法:两次测量法、校正曲线法、标准加入法。 (4)电位滴定法:以电位变化确定滴定终点(E-V曲线法、曲线法、曲线法)。 (5)永停滴定法:以电流变化确定滴定终点,三种电流变化曲线及终点确定。 第九章光谱分析法概论- 章节小结 1.基本概念 电磁辐射:是一种以巨大速度通过空间而不需要任何物质作为传播媒介的光子流。 磁辐射性质:波动性、粒子性 电磁波谱:所有的电磁辐射在本质上是完全相同的,它们之间的区别仅在于波长或频率不同。若把电磁辐射按波长长短顺序排列起来,即为电磁波谱。 光谱和光谱法:当物质与辐射能相互作用时,物质内部发生能级跃迁,记录由能级跃迁所产生的辐射能强度随波长(或相应单位)的变化,所得的图谱称为光谱。利用物质的光谱进行定性、定量和结构分析的方法称光谱法。 非光谱法:是指那些不以光的波长为特征讯号,仅通过测量电磁辐射的某些基本性质(反射、折射、干涉、衍射和偏振)的变化的分析方法。 原子光谱法:测量气态原子或离子外层电子能级跃迁所产生的原子光谱为基础的成分分析方法。为线状光谱。 分子光谱法:以测量分子转动能级、分子中原子的振动能级(包括分子转动能级)和分子电子能级(包括振-转能级

《现代仪器分析》考试知识点总结

《现代仪器分析》考试知识点总结 一、填空易考知识点 1、仪器分析的分类:光学分析,电化学分析,色谱分析,其他仪器分析。 2、紫外可见分光光度计组成:光源,单色器,样品室接收检测放大系统,显示器或记录器。常用检测器:光电池,光电管,光电倍增管,光电二极管 3、吸收曲线的特征值及整个吸收曲线的形状是定性鉴别的重要依据。 4、定量分析的方法:标准对照法,标准曲线法。 5、标准曲线:配置一系列不同浓度的标准溶液,以被测组分的空白溶液作参比,测定溶液的标准系列吸光度,以吸光度为纵坐标,浓度为横坐标绘制吸光度,浓度关系曲线。 6、原子吸收分光光度法的特点:(优点)灵敏度高,测量精度好,选择性好,需样量少,操作简便,分析速度快,应用广泛。(缺点)由于分析不同的元素需配备该元素的元素灯,因此多元素的同时测定尚有困难;测定难熔元素,和稀土及非金属元素还不能令人满意。 7、在一定条件下,被测元素基态原子蒸汽的峰值吸收与试液中待测元素的浓度成正比,固可通过峰值吸收来定量分析。

8、原子化器种类:火焰原子化器,石墨炉原子化器,低温原子化器。 9、原子吸收分光光度计组成:空心阴极灯,原子化系统,光学系统,检测与记录系统。 10、离子选择性电极的类型:(1)PH玻璃膜电极(2)氟离子选择性电极(3)流动载体膜电极(4)气敏电极。 11、电位分析方法:直接电位法(直接比较法,标准曲线法,标准加入法)电位滴定法。 12、分离度定义:相邻两色谱峰保留时间的差值与两峰基线宽度和之间的比值 13、气象色谱仪组成:载气系统,进样系统,分离系统,检测系统,信号记录或微机数据处理系统,温度控制系统。 14、监测器分类:浓度型检测器(热导池检测器)质量型检测器(氢火焰离子化检测器) 15、基态:原子通常处于稳定的最低能量状态即基态激发:当原子受到外界电能,光能或者热能等激发源的激发时,原子核外层电子便跃迁到较高的能级上而处于激发态的过程叫激发。 16、紫外光:肉眼看不见的光波(100760nm) 17、锐光源:发射线的半宽度比吸收线的半宽度窄得多的光源(可以实现对峰值的准确测量) 18、参比电极:电位分析中电极电位不随待测溶液离子浓度变化而变化的电极(甘汞电极,银-氯化银电极)

仪器分析心得体会

仪器分析心得体会 篇一:仪器分析的感想 对仪器分析课程的认识和感想 仪器分析是高等学校等有关专业开设的一门基础课,其目的是使学生在大学学习期间掌握有关仪器分析中一些常用方法的基本原理、特点和应用,对于将来参加科学研究或具体实际工作都是很有益的。 仪器分析法是以物理和化学及其信号强度为基础建立起来的一种分析方法,使用比较复杂和特殊的仪器。仪器分析的基本原理源于分析化学。分析仪器的发展与分析化学的发展紧密相关,分析化学经历过三次重大变革,使得仪器分析也逐步升级,从仪器化、电子化、计算机化到智能化、信息化以至仿生化。 常用的仪器分析方法主要包括几类:光学分析法、电化学分析法、色谱分析法、质谱法。这些方法依据的原理不同,具有的性能指标如精密度、灵敏度、检出限、测定下限、线性范围、准确度等,在选择方法时,还要有一些考虑,如对样品结果准确度的要求,还有费用(包括仪器的购置费、运转费)、样品量、分析速度等。使用仪器分析法检测样品,具有效率高、速度快、方便、实用的特点。 仪器分析的应用范围十分广泛。仪器分析与科学四大理论(天体、地球、生命、人类起源和深化)及人类社会面临

的五大危机(资源、粮食、能源、人口、环境)问题的解决密切相关,也与工农业生产及人们日常衣食住行用的质量保证等领域密切相关,仪器分析的发展包括仪器和方法两方面的发展,仪器分析的发展趋势表现在建立原位、在体、实时、在线的动态分析检测方法建立无损以及多参数同时检测方法。现在以实现各种分析法的联用;分析仪器的智能化、自动化和微型化等几个方面。 通过对仪器分析这一课程的学习,对常用仪器的基本原理、特点、使用方法和应用都有了大致的认识和掌握。这门学科的实用性强,应用广泛。它的方法和基本思想如逻辑思维,对以后的科研和日常的工作有巨大的帮助。如果能对仪器分析这门课程有深刻认识,对以后仪器的创新和发展也能尽到一份力。 篇二:《仪器分析》问题学习法总结 《仪器分析》问题学习法心得体会 虽然只有短短的八周学习时间,但在张玲老师的指导学习下,使我对仪器分析这门学科了解颇多。通过学习是我知道仪器分析是我们学化学的必学的一门课程,是化学分析中不可缺少的方法。而且随着科技的发展,仪器分析变得越来越重要,在化学分析中的应用也越来越广泛。因此,我们必须学好仪器分析。就像张玲老师说的那样,大学毕业后我们什么书都可以卖掉,但《仪器分析》这本书一定要留下来。

最新中外合作办学总结

上海应用技术学院与新西兰奥克兰理工大学合作举办应用化学专业本科教育项目2010年度办学报告 上海应用技术学院化学与环境工程学院的应用化学(分析及监测方向)和新西兰奥克兰理工大学(Auckland University of Technology,AUT)的应用科学系于2002年达成合作办学项目协议,并于2003年开始招生应用化学专业的学生。新西兰奥克兰理工大学作为一所建校超过百年的综合性大学,是新西兰全国仅有的八所全日制国立综合性大学之一,可授予学士、硕士学位。作为中国和新西兰高校共同管理的本科层次的应用化学合作项目,也得到了新西兰最高教育行政部门的高度重视。该中外合作办学项目学生在两校所得学分互认,录取为本项目的学生既可以在国内完成四年的全部学业,也可以在第四学年申请赴新西兰AUT学习完成全部学业。对于准备第四学年赴新西兰AUT 学习完成全部学业的学生,必须通过中方本专业前三年所有课程考试,同时英语达到雅思(学术)6.0以上。 几年办学下来,在中新双方的共同努力下,该项目得到了各方面的认可,在人才培养方面也积累了一定经验,具体汇报如下: 1、教学计划、课程设置及授课教师情况 本项目由两校共同管理,两校共同设计制定人才培养计划,专业课程分别由中外教师授课。 应用化学专业(分析及监测专业方向)的专业教学目标是培养德智体美劳等方面全面发展,具有化学基本理论、基本知识和较强实验技能,具备科学研究和化工分析基本训练的高级分析化学应用人才。毕业生既能从事化工、轻工、医药、食品、环保及其相关领域的分析及研究工作,又可在科研院所、高等院校以及事业行政部门从事与本专业有关的技术管理工作。本专业学生主要学习化学方面的基本理论、基本技能以及相关的技术知识,掌握本专业必需的基本理论,掌握基本分析技能和现代化分析实验技术,具备运用所学知识和实验技能进行应用研究、技术开发和生产管理的基本技能。本专业学生在校期间,需要在学习化学与化工基本理论、基本知识的基础上,学习与分析专业相关的知识。毕业生可以获得以下几个方面的知识和能力:(1)具有勤奋刻苦和求实创新的精神风貌,较好的文化和道德素养,健康的体魄和优良的心理素质,养成良好的行为习惯,具有一定的社会、人文科学知识、法律知识和国防知识。(2)掌握数学、物理等方面的基

仪器分析实验总结

仪器分析实验总结 1014061525 虞梦娜 一、红外光谱仪实验报告 1.仪器结构 仪器设备:SHIMADZU IRPresting-21型傅立叶变换红外光谱仪 SHIMADZU IRPresting-21 仪器结构: 傅 傅立叶变换红外光谱仪的工作原理图 固定平面镜、分光器和可调凹面镜组成傅立叶变换红外光谱仪的核心部

件-迈克尔干涉仪。由光源发出的红外光经过固定平面镜反射镜后,由分光器分为两束:50%的光透射到可调凹面镜,另外50%的光反射到固定平面镜。 可调凹面镜移动至两束光光程差为半波长的偶数倍时,这两束光发生相长干涉,干涉图由红外检测器获得,经过计算机傅立叶变换处理后得到红外光谱图。 IRPresting-21型傅立叶变换红外光谱仪具300入射迈克尔逊密闭型干涉仪,单光束光学系统,空冷陶瓷光源,镀锗KBr基片分束器,温度可调的DLATGS检测器,波数范围7,800~350cm-1,S/N大于40000∶1(4cm-1,1分钟,2100cm-1附近,P—P),具有自诊断功能和状态监控器。可收集中红外、近红外、远红外范围光谱。 常用红外光谱-红外光谱仪 ①棱镜和光栅光谱仪 光栅光谱仪 属于色散型光谱仪,它的单色器为棱镜或光栅,属单通道测量,即每次只测量一个窄波段的光谱元。转动棱镜或光栅,逐点改变其方位后,可测得光源的光谱分布。随着信息技术和电子计算机的发展,出现了以多通道测量为特点的新型红外光谱仪,即在一次测量中,探测器就可同时测出光源中各个光谱元的信息。 ②傅里叶变换红外光谱仪

它是非色散型的,核心部分是一台双光束干涉仪,常用的是迈克耳孙干涉仪。当动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。 傅里叶变换红外光谱仪 傅里叶变换光谱仪的主要优点是: ①多通道测量使信噪比提高; ②没有入射和出射狭缝限制,因而光通量高,提高了仪器的灵敏度; ③以氦、氖激光波长为标准,波数值的精确度可达0.01厘米-1; ④增加动镜移动距离就可使分辨本领提高; ⑤工作波段可从可见区延伸到毫米区,使远红外光谱的测定得以实现。 上述各种红外光谱仪既可测量发射光谱,又可测量吸收或发射光谱。当测量发射光谱时,以样品本身为光源;测量吸收或反射光谱时,用卤钨灯、能斯脱灯、硅碳棒、高压汞灯(用于远红外区)为光源。所用探测器主要有热探测器和光电探测器,前者有高莱池、热电偶、硫酸三甘肽、氘化硫酸三甘肽等;后者有碲镉汞、硫化铅、锑化铟等。常用的窗片材料有氯化钠、溴化钾、氟化钡、氟化锂、氟化钙,它们适用于近、中红外区。在远红外区可用聚乙烯片或聚酯薄膜。此外,还常用金属镀膜反射镜代替透镜。

仪器分析 总结

第一章和第二章 1,电化学分析法的定义: 电化学分析法是根据物质的电学和电化学性质为分析一句来测定物质含量的一类分析方法。这类方法通常需要以化学电池,并在化学电池(被测溶液)中放置两个电极,两个电极与外接电源相连或不相连,测定通过化学电池的电阻(电导)、电流、两电极间的电位差或电极增加的质量,从而计算出被测物质的含量。 2,,电化学分析法的分类: ①电导分析法②电位分析法③电解分析法④库仑分析法⑤极谱法和伏安法 3,化学电池 化学电池是化学能与电能互相转换的装置; 组成化学电池的条件; 根据电极与电解质的接触方式不同,化学电池分为两类:液接和非液接;(等等,课本P10-11)4,盐桥:由装有电解质及凝胶状琼脂的 U型玻璃管构成。 由于其中电解质的浓度比较高,在他与电池中的两溶液链接式,界面上所形成的电位差基本上由盐桥中的电解质扩散产生。由于电解质的正、负离子扩散速率相近,产生的电位差很小,并且这两个电位差的方向正好相反,可以相互抵消。 5,能斯特方程 第三章 1,电位分析法的定义:

通过测定化学电池的电位差,根据电极电位和溶液中某种离子的活度(或浓度)之间的关系来测定待测物质活度(或浓度)的电化学分析法称为电位分析法。 2,电位分析法的原理: 测量装置:电位差计(毫伏计)、参比电极、指示电极。 测量时参比电极电极电位保持不变;指示电极电极电位随待测离子活度或浓度的变化而变,电池电动势随指示电极的电极电位而变。 3,电位分析法的分类: ①直接电位法直接测量电池电动势,根据Nernst公式计算出待测物质的含量。 a,直接比较法 b,标准曲线法 ×c,标准加入法 d,连续标准加入法—格氏作图法 ②电位滴定法通过测量滴定过程中电池电动势的突变确定滴定终点,进而求出待测物质的含量。 确定滴定终点:a,E-V曲线法三切线法 b,ΔE/ΔV-V曲线法曲线最高点所对应的体积V即为滴定终点时所消耗滴定剂的体积 c,Δ2E/ΔV2-V曲线法Δ2E/ΔV2=0时所对应的体积V就是滴定终点。4,参比电极的定义:电极电位恒定,不受溶液组成或电流流动方向变化影响的电极。 参比电极的主要要求:稳定性好 指示电极定义:电位随溶液中待测离子活度(或浓度)变化而变化,并能反映出待测离子活度(或浓度)的电极。

实用仪器分析实验报告xrf

实用仪器分析实验报告X射线荧光光谱分析实验 学号: 学生姓名: 指导老师: 学院: 专业班级: 实验日期: 中南大学冶环学院实验中心

图1 X射线荧光光谱仪(岛津XRF-1800) 四、实验步骤 (1)仪器准备 使用仪器前务必检查外部冷却水系统水压是否在,X-射线荧光光谱仪主机板面是否有error灯亮或电脑界面是否显示报错。 仪器的运行环境:室温:23±5℃ 湿度<70% ,室内无明显的震动,无灰尘。

(2)样品准备 使用压样机压制样品,样品要求: a 不受理有可能污染仪器的样品(有机样品,高挥发性物质、低熔点材料和有掉落的粉末等)和磁性样品。 b仪器元素检测范围O~U,若样品含O之前的元素(譬如C、B等),建议改用其他检测手段。 c若样品中可能含有少量贵金属,譬如Ag、Pd等,送样时需明确标注。 d粉末样品过筛200目,务必彻底干燥,送样量2g左右。 e粉末样品若出现质轻,粘样品袋等特征,需混合均匀一定比例分析纯硼酸后再送样,同时明确备注样品与硼酸的质量比。 f无需预制样的样品表面必须平整、光滑、没有瑕疵。 (3)软件操作 打开电脑桌面的“PCXRF”软件。点击“初始化”,点击主菜单上的“Maintenance”项,点击“Component Control”栏中的“X-ray Generator”。“Control”选“Normal”,“Xray”选“ON”,输入“Voltage”20KV、“Current”5MA,点击“Start”。X光指示灯和控制面板上”X-RAY”指示灯同时亮。此时可以日常分析了! (4)样品测试 点击“analysis”,“analytical”设置检测条件,输入对应样品序号。点击仪器上“START”按钮,进行样品测试。 (5)结束操作 测试完毕后,需将X光管及时降至20kV,5mA的低能耗状态。点击主菜单上的“Maintenance”项,点击“Component Control”栏中的“X-ray Generator”。“Control”选“Normal”,“Xray”选“ON”,输入“Voltage”20kV、“Current”5mA,点击“Start”。

仪器分析期末总结

仪器分析期末重点知识总结 第一章 1.化学分析是以物质化学反应为基础的分析方法。仪器分析是以物质的物理性质和物理化学性质为基础的分析方法。 2.仪器分析法的数量级。 3.仪器分析方法分为光学分析法、电化学分析法、色谱法、和其它仪器分析法。 4.定量分析普遍使用的方法:标准曲线法。标准曲线是被测物质的浓度或含量与仪器响应信号的关系曲线。 5.许多方法的灵敏度随实验条件而变化,所以现在一般不用灵敏度作为方法的评价指标。 6.精密度公式: 7.准确度常用相对误差量度。方法有较好的精密度并且消除了系统误差后,才有较好的准确 度。 8.检出限:信噪比取3。方法的灵敏度越高,精密度越好,检出限就越低。精密度、准确度和检出限三个指标作为分析方法的主要评价指标。 第二章 1.光学分析法:根据物质发射的电磁辐射或电磁辐射与物质相互作用建立起来的分析方法。 2.电磁辐射具有波粒二象性:波动性和微粒性。 3. 4.普朗克方程将电磁辐射的波动性和微粒性联系在一起。 5.电磁辐射按照波长(或频率、波数、能量)大小的顺序排列就得到电磁波谱。 6.并不是原子中任何两个能级之间都能够发生跃迁。不符合光谱选择定则的跃迁叫禁戒跃迁。 7.原子光谱又称线状光谱。物质的原子光谱依其获得的方式不同分为发射光谱、吸收光谱和荧光光谱。 8.根据光谱产生的机理不同,分子光谱又可分为分子吸收光谱和分子发光光谱。分子对辐射能的选择性吸收由基态或较低能级跃迁到较高能级产生的分子光谱叫做分子吸收光谱。目前学过的分子吸收光谱:紫外可见吸收光谱和红外吸收光谱。 第三章 1.紫外-可见吸收光谱是根据溶液中物质的分子或离子对紫外可见光谱区辐射能的吸收来研究物质的组成和结构的方法,也称作紫外和可见吸收光度法。 2.电子跃迁类型: 3.把 4.烯化合物随着共轭体系的增大其吸收峰红移,摩尔吸收系数也会随共轭体系增大而发生显著100%r s s x =

仪器分析复习总结

1.光谱范围:仪器能测量光谱的波长范围。 2.工作范围:仪器能按规定的准确度和精密度进行测量的吸光度或强度范围。 3.厚度:样品池的两个平行且透光的内表平面之间的距离。 4.光路长度:光通过吸收池内物质的入射面和出射面之间的路程。当垂直入射时,应与厚度相同。 5.仪器的准确度:在不考虑随机误差的情况下,仪器给出的读数与被测量的真值相一致的能力。考察系统误差。 6.仪器的重复性:在不考虑系统误差的情况下,仪器对某一测量值能给出相一致读数的能力 (短时间内) 。 7.仪器的稳定性:在一段时间内,仪器保持其精密度的能力 8.仪器的可靠性:仪器保持其所有性能(准确度、精密度和稳定性)的能力。 1 仪器分析:是指通过测量物质是某些物理或者物理化学性质` 参数及其变化来确定物质的组成成分含量级化学结构的分析方法。 2 定性分析:鉴定式样由哪些元素、离子、基团或化合物组成,即确定物质的组成。 3 定量分析:试样中各种组分(如元素、根或官能团等)含量的操作。 4精密度:指同一分析仪器的同一方法多次测定所得到数据间的一致程度,是表征随机误差大小的指标,亦成为重复测定结果随测定平均值的分散度,即重现性。 5 灵敏度:仪器或分析方法灵敏度是指区别具有微小浓度差异分析物能力的度量,它取决于两个因素:即校准曲线的斜率和仪器设备的重现性或精密度。 6 检出限:又称检测下限或最低检出量,指一定置信水平下检出分析物或组分的最小量或最低浓度。它取决于分析物产生信号与本底空白信号波动或噪声统计平均值之比。 7动态范围:定量测定最低浓度(LOQ)扩展到校准曲线偏离线性响应(LOL)的浓度范围。 8选择性:一种仪器方法的选择性是指避免试样中含有其它组分干扰组分测定的程度。 9 分辨率:指仪器鉴别由两相近组分产生信号的能力。不同类型仪器分辨率指标各不相同,光谱仪器指将波长相近两谱线(或谱峰)分开的能力;质谱仪器指分辨两相邻质量组分质谱峰的分辨能力;色谱指相邻两色谱峰的分离度;核磁共振波谱有它独特的分辨率指标,以临二氯甲苯中特定峰,在最大峰的半宽度为分辨率大小。 10 分析仪器的校正:仪器分析中将分析仪器产生的各种响应信号值转变成被测物质的质量或浓度的过程称为校正。一般包括分析仪器的特征性能指标和定量分析方法校正。 11 电磁辐射:电场和磁场的交互变化产生的电磁波,电磁波向空中发射或汇聚的现象,叫电磁辐射举例说,正在发射讯号的射频天线所发出的移动电荷,便会产生电磁能量。 12 电磁辐射的吸收、发射、散射、折射、干涉、衍射: (4) 折射折射是光在两种介质中的传播速度不同;(7) 衍射光绕过物体而弯曲地向他后面传播的现象; 13 分子光谱、原子光谱 分子光谱:分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱)。 原子光谱:是由原子中的电子在能量变化时所发射或吸收的一系列光所组成的光谱。

仪器分析总结

1仪器分析概述 1、1分析化学 1、1、1定义 分析化学就是指发展与应用各种方法、仪器与策略,获得有关物质在空间与时间方面组成与性质信息的一门科学,就是化学的一个重要分支。 1、1、2任务 分析化学的主要任务就是鉴定物质的化学组成(元素、离子、官能团、或化合物)、测定物质的有关组分的含量、确定物质的结构(化学结构、晶体结构、空间分布)与存在形态(价态、配位态、结晶态)及其与物质性质之间的关系等,属于定性分析、定量分析与结构分析研究的范畴。 ①确定物质的化学组成——定性分析 ②测量试样中各组份的相对含量——定量分析 ③表征物质的化学结构、形态、能态——结构分析、形态分析、能态分析 ④表征组成、含量、结构、形态、能态的动力学特征——动态分析 1、1、3 分类 根据分析任务、分析对象、测定原理、操作方法与具体要求的不同,分析方法可分为许多种类。 ①定性分析、定量分析与结构分析 ②无机分析与有机分析

③化学分析与仪器分析 ④常量分析、半微量分析与微量分析 ⑤例行分析与仲裁分析 1、1、4 特点 分析化学就是一门信息的科学,现代分析化学学科的发展趋势与特点可归纳为如下几个方面: ①提高分析方法的灵敏度; ②提高分析方法的选择性及解决复杂体系的分离问题; ③扩展物质的时间空间多维信息; ④对微型化及微环境的表征与测定; ⑤对物质形态、状态分析及表征; ⑥对生物活性及生物大分子物质的表征与测定; ⑦对物质非破坏性检测及遥测;

⑧分析自动化及智能化。 1、2 仪器分析 仪器分析就是化学学科得到一个重要分支,以物质的物理与物理化学性质为基础建立起来的一种分析方法。 1、2、1分类 仪器分析分为电化学分析、光化学分析、色谱分析、质谱分析、热分析法与放射化学分析法,详见下表。 1、2、2特点 ①灵敏度高:大多数仪器分析法适用于微量、痕量分析。如原子吸收分光光度法测定某些元素的绝对灵敏度可达10-14g,电子光谱甚至可达10-18g; ②取样量少:化学分析法需用10-1~10-4g,而仪器分析试样常在10-2~10-8g;

青岛科技大学 仪器分析实验期末总结

一、原子吸收光谱法测定钢铁中微量铜 1、原子吸收法测试的定量关系式为朗伯—比尔定律,通过测定已知浓度系列溶液的吸光度来实现。 2、本次试验原子吸收所用的火焰是空气—乙炔。 3、原子吸收光谱仪中的原子化器由燃烧皿和雾化器组成,作用是将溶液中的分子解离成离子再还原成原子,能产生被测元素的原子蒸气。 4、原子吸收测试标准加入法溶液至少配4个点。 5、原子吸收雾化器吸取溶液是利用动压和静压关系原理。 6、空心阴极灯的作用是能发射出待测元素特征谱线,其内部充的气体是氖气。 7、分光器由狭缝、反光镜、光栅组成,其中分光核心部件是光栅。 8、标准加入法中溶液的配制,首次加入标准溶液浓度与试样溶液浓度相当。 9、原子吸收分光光度计通常用于测量微量金属元素,它的光路流程是:空心阴极灯→原子化器→分光器→检测器。 10、原子吸收测定溶液中微量元素的浓度单位是ppm、μg/ml、mg/l。 11、标准加入法要求工作曲线是直线,一般用于组成未知、基体复杂、和标准溶液成分相差太大的样品,不能消除的干扰是背景干扰、电离干扰、与浓度有关的化学干扰。 12、用朗伯比尔定律公式表达差值分光光度法和示差分光光度法。 (1)差值分光光度法:ΔA=Δε*C*L; (2)示差分光光度法:ΔA=ε*ΔC*L。 13、比较标准加入法和标准曲线法定量的优缺点。 (1)标准加入法:优点:能克服一些干扰,如:物理干扰、与溶液引起的化学干扰,准确度比标准曲线法高,误差小。 缺点:相对于工作曲线法,操作复杂一些,不能消除背景吸收的影响,对于斜率太小的曲线,灵敏度差,易引入较大的误差。 (2)标准曲线法:优点:简便、快速,适于组成简单的样品。 缺点:容易受到一些干扰:如光谱干扰、物理干扰、化学干扰等,每次测量前应用标准溶液对吸光度进行校正和检查。 二、透射电镜仪器及成像原理和简单样品的制备技术 1、电子显微镜是以电子束为光源的显微镜,是研究物质(样品)的显微结构。可分为:扫描电子显微镜、透射电子显微镜两种。扫描电子显微镜是研究物质(样品)的表面形貌,得到的是样品的表面形貌像。透射电子显微镜是研究物质(样品)的内部显微结构,得到的是样品的投影像。 2、评价电镜性能好坏的三个指标是:加速电压、放大倍数、分辨率。 3、电子显微镜的样品(应用范围)分为:纳米粉体材料、金属材料、无机非金属材料、高分子材料、生物材料。 4、电子显微镜的构造简单分为:光源系统(作用:产生一定波长的电子波)、透镜系统(作用:分为聚光镜,汇聚电子书的作用。物镜、中间镜、投影镜,完成放大成像的功能)、成像系统(作用:显示和记录我们要得到的图像信息)、辅助系统(作用:控制各部分系统的完成工作,保证仪器的正常运行),其中透镜是磁透镜,利用运动的电子在磁场里受洛伦兹力的作用。 三、有机化合物红外光谱的测定 1、傅立叶变换红外光谱仪的2个基本组成是光学台和计算机,其核心部件是迈克尔逊干涉计,它所使用的激光器为氦氖激光器。

仪器分析总结习题

仪器分析总结习题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第一章气象色谱法 1. 死时间tM 2. 保留时间tR 3. 调整保留时间t’R 4. 死体积VM 5. 保留体积VR 6. 调整保留体积 7.相对保留值γ21 8.标准偏差σ 9.半峰宽度Y1/2 10.峰底宽度Y 1、若一个溶质的分配比为,计算它在色谱柱流动相中的质量分数(%) 2、在一根色谱柱上分离苯和甲苯,保留时间分别为和,死时间为1min,问:甲苯停留在固定相中的时间是苯的几倍 甲苯的分配系数是苯的几倍 (3,3) 3、某色谱条件下,组分A的分配比为4,死时间为30s,求组分A的保留时间 (150s) 4、下列哪些参数改变会引起相对保留值变化 A、柱长 B、相比 C、柱温 D、流动相流速 5、在气液色谱中,下列变化对溶质的保留体 积几乎没有影响的是 A、改变载气流速 B、改变固定液化学性质 C、增加柱温 D、增加柱长 E、增加固定液的量 例1 已知某组分峰Y=40s,tR=400s。计算理论塔板数n。

例2 已知一根1米长的色谱柱,neff =1600块,组份A 在柱上的调整保留时间为 100s ,试求A 峰的半峰宽和Heff 。 例3 在一定条件下,两个组分的调整保留时间分别为85秒和100秒,要达到完全分离,即R= 。计算需要多少块有效塔板。若填充柱的塔板高度为 cm ,柱长是多少 解: γ2,1= 100 / 85 = n 有效 = 16R2 [γ 2,1 / (γ 2,1 -1) ]2 = 16× × / ) 2 = 1547(块) L 有效 = n 有效·H 有效 = 1547× = 155 cm 即柱长为米时,两组分可以得到完全分离。 例2 有一根1m 长的柱子,分离组分1和2得到如图的色谱图。图中横坐标l 为记录 笔走纸距离。若欲得到 R=的分离 度,有效塔板数应为多少色谱柱要加到多长 解:先求出组分2对组分1的相对保留值r2,1 '21/25.54() R t L n H Y n ==有效有效有效

河科大仪器分析总结试题

选择题 3. 分子的紫外-可见吸收光谱呈带状光谱,其原因是什么? A. 分子电子能级的跃迁伴随着振动、转动能级的跃迁; 4. 分光光度计的主要部件中不包括:B. 比色皿; 5. 银-氯化银电极的电位决定于溶液中:D. 氯离子活度 6. 下列哪一项对组分的分离度影响较大?A. 柱温 7. 气相色谱分析中,增加柱温,组分保留时间如何变化?B. 缩短 8. 在气相色谱分析中,提高柱温,色谱峰如何变化?D. 峰高增加,峰变窄 9. 在下列情况下,两个组分肯定不能被分离的是:C. 两个组分分配系数比等于1; 10. 速率理论从理论上阐明了:D. 影响柱效能的因素 11. 下列不是氢火焰检测器组成部分的是:A. 热敏电阻; 12. 公式E K a 2.303 lg RTnF= + ¢但下列不包括在其中的一项是__。C. 膜电位; 14. 测定物质的吸收曲线时,每改变一次波长,需要C. 调整仪器透光度范围; 15. 在分光光度分析法中,摩尔吸光系数的大小与下列哪种因素无关?B. 参比溶液; 16. 离子选择性电极的选择性系数是:C. 估计干扰离子给测定带来误差大小的系数; 17. 电位分析中的标准加入法不要求的是:C. 加入标准溶液后,测量溶液离子强度变化小; 18. 用离子选择性电极进行测量时,需用磁力搅拌器搅拌溶液,这是为了A. 加快响应速度 19. 原子吸收分析中光源的作用是:C. 发射一种元素基态原子所吸收的特征共振辐射; 20. 气相色谱中,下列哪个组分最宜用电子捕获检测器:B. 农作物中含氯农药的残留;1、色谱定量分析方法中使用归一化法的情况是:A试样中所有组分都出峰D对进样量要求不严。2、属于浓度型检测器的是A热导检测器C电子捕获检测器。3、笵第姆特方程中,影响A项的因素有A固定相粒径大小D色谱柱填充的均匀程度。4、影响两组分相对保留值的因素是B柱温D固定液的性质。5、下列分析方法属于光学分析法的是C紫外光谱法D 原子吸收法,6、影响组分调整保留时间的主要因素有A固定液的性质D载气流速。 A水样ph、B氟离子选择、C格式作图、D电位滴定、E分光光度、F紫外光谱、G原子吸收、H气相色谱。原子光谱G分子光谱EF分离分析H吸收光谱EFG电位分析ABCD 1.可见分光光度法合适的检测波长范围是:200-800nm。可见光的波长范围是400-76.nm。 2.温度降低,荧光效率增加,荧光强度增大。 3.溶液的极性会使吸收带的最大吸收波长发生变化。HPLC法最常用紫外吸收检测器。现需分离氨基酸试样用高效液相色谱。分析苯与二甲苯用FID。 判断题: 1.甘汞电极的电位随电极内 KCl 溶液浓度的增加而增加。(×) 2. 离子选择性电极的电位与待测离子活度成正比。(×) 3. 在载气流速比较高时,分子扩散成为影响柱效的主要因素。(×) 4. 气液色谱分离机理是基于组分在两相间反复多次的吸附与脱附,气固色谱分离是基于组分在两相间反复多次的分配。(×) 5. 检测器性能好坏将对组分分离度产生直接影响。(√) 6. 色谱的塔板理论提出了衡量色谱柱效能的指标,速率理论则指出了影响柱效的因素。(√) 7. 采用色谱归一化法定量的前提条件是试样中所有组分全部出峰。(√) 8. 电子捕获检测器对含有 S、P 元素的化合物具有很高的灵敏度。(×) 9. 毛细管色谱的色谱柱前需要采取分流装置是由于毛细管色谱柱对试样负载量很小;柱后采用“尾吹”装置是为了加速样品通过检测器,减少组分的柱后扩散。(√) 10. 液相色谱指的是流动相是液体,固定相也是液体的色谱。(×)

仪器分析总结习题 1

第一章气象色谱法 1. 死时间tM 2. 保留时间tR 3. 调整保留时间t'R 4. 死体积VM 5. 保留体积VR 6. 调整保留体积 7.相对保留值γ21 8.标准偏差σ 9.半峰宽度 Y1/2 10.峰底宽度Y 1、若一个溶质的分配比为,计算它在色谱柱流动相中的质量分数(%) 2、在一根色谱柱上分离苯和甲苯,保留时间分别为和,死时间为1min,问:甲苯停留在固定相中的时间是苯的几倍? 甲苯的分配系数是苯的几倍? (3,3) )150sA的保留时间(4,死时间为30s,求组分3、某色谱条件下,组分A的分配比为4、下列哪些参数改变会引起相对保留值变化? A、柱长 B、相比 C、柱温 D、流动相流速 5、在气液色谱中,下列变化对溶质的保留体 积几乎没有影响的是 A、改变载气流速 B、改变固定液化学性质 C、增加柱温 D、增加柱长 E、增加固定液的量 例1 已知某组分峰Y=40s,tR=400s。计算理论塔板数n。 t40022R n?16()?16()?1600例2 已知一根1米长的色谱柱,neff=1600块,组份A在柱上的调整保留时间为100s,理40Y'Lt Heff峰的半峰宽和。试求A2R?n)H?5.54(有效有效nY21/有效要达到完全分离,100秒,在一定条件下,例3 两个组分的调整保留时间分别为85秒和,

柱长是多少?R= 即。计算需要多少块有效塔板。若填充柱的塔板高度为 cm2,1= 100 / 85 = γ解: 2,1 -1) ]2 2,1 / (γγ n有效 = 16R2 [ = 16×× / ) 2 (块) = 1547 = 155 cm × = 1547有效H有效· = n有效 L. 即柱长为米时,两组分可以得到完全分离。为记录得到如图的色谱图。图中横坐标l1和2 例2 有一根1m长的柱子,分离组 分 度,的分离笔走纸距离。若欲得到 R= 有效塔板数应为多少?色谱 柱要加到多长?1 的相对保留值r2,解:先求出组分2对组分 1tR2=17min, Y2=1min, (1)从图中可以看出, n = 16(tR2/Y2)2 =4624 所以; tM = 17-1 = 16min R2=tR2 –) t'R1= tR1- tM =14-1=13min t'(2R1=16/13 'α = t'R2/t (3)相对保留值neff=16(t'R2/Y)2=4096 Heff=L/neff=3/4096 ×(3/4096)[(16/13)/(16/13-1)]2 式据公:L=16R2 Heff

仪器分析复习总结

仪器分析复习总结 第八章电位分析法 P198 电分析化学法原理:主要是应用电化学的基本原理和技术,研究在化学电池内发生的特定现象,利用物质的组成及含量与该电池的电学量,如电导、电位、电流、电荷量等有一定的关系而建立起来的一类分析方法。 电位电极:如将一金属片浸入该金属离子的水溶液中,在金属和溶液界面间产生了扩散双电层,两相之间产生了一个电位差,称之为电极电位。 能斯特关系:利用电极电位值与其相应的离子活度遵守能斯特关系就可达到测 定离子活度的目的。 P199 指示电极:在原电池中,借以反映离子活度的电极。即电极电位随溶液中待测离子活度的变化而变化,并能指示待测离子活度。 参比电极:在原电池中,借以反映离子活度的电极。即电极电位随溶液中待测离子活度的变化而变化,并能指示待测离子活度。常见的参比电极有甘汞电极、银- 氯化银电极、汞=硫酸亚汞电极等。 P200 标准氢电极:是参比电极的一级标准,它的电位值规定在任何温度下都是0 V。用标准氢电极与另一电极组成构成电池,测得的电池两极的电位差值即为另一电极 的电极电位。 甘汞电极:金属汞和Hg2Cl2及KCl溶液组成的电极。其半电池组成:Hg, Hg2Cl2|KCl。 P201 银-氯化银电极:银丝镀上一层AgCl,浸在一定浓度的KCl溶液构成的电极。 其半电池组成:Ag,AgCl|KCl。

标准甘汞电极(NCE):KCl溶液的浓度mol/L 饱和甘汞电极(SCE):KCl溶液的浓度饱和溶液 3类指示电极:1)金属-金属离子电极(第一类电极):金属离子与金属直接交 换电子 2)金属-金属难溶盐电极(第二类电极):甘汞电极 3)惰性电极(零类电极):常用铂电极或石墨电极,协助电子转移。P205 离子选择性电极(ISE):用于以电位法测定试液中某些特定离子活度的指示电 极。 特征:1、电位的产生是由于在膜表面发生离子交换或迁移2、电极电位满足能斯特 方程 P206 液接电位:在两种组成不同或浓度不同的溶液接触界面上,由于溶液中正负离子扩散通过界面的迁移率不相等,产生的接界电位差。 P208 不对称电位:玻璃膜两侧存在一定的电位差,这种电位差称为不对称电位,由于薄膜内外两个表面的状态不同,如含钠量、张力以及外表面的机械和化学损伤等 不同而产生的。 酸差:在酸度过高的溶液中,测得pH偏高(pH<1),这种误差称为“酸差”。P209 碱差:在碱度过高的溶液中,由于[H+]太小,其它阳离子在溶液和界面间可能进行交换而使测得pH值偏低,以Na+的干扰较显着,这种误差称为“碱差”。

相关文档