文档库 最新最全的文档下载
当前位置:文档库 › 真菌检测鉴定通用引物-Fungal Primers

真菌检测鉴定通用引物-Fungal Primers

真菌检测鉴定通用引物-Fungal Primers
真菌检测鉴定通用引物-Fungal Primers

ITS1: 5’-CCGTAGGTGAACCTGCGG-3’

ITS4:5’-TCCTCCGCTTATTGATATGC-3’ Tm 55℃

NS17: CATGTCTAAGTTTAAGCAA

NS3: GCAAGTCTGGTGCCAGCAGCC

NS4: CTTCCGTCAATTCCTTTAAG

NS22: AATTAAGCAGACAAATCACT

NS24: AAACCTTgTTACgACTTTTA

LR0R: 5’-GTACCCGCTGAACTTAAGC-3’

LR3: 5’-CCGTGTTTCAAGACGGG

LR3R: 5’-GTCTTGAAACACGGACC (complementary to RLR3R: GGTCCGTGTTTCAAGAC)

LR5: 5’-TTAAAAAGCTCGTAGTTGAAC-3’

LR7: 5’-TACTACCACCAAGATCT

LR12: 5’-GACTTAGAGGCGTTCAG

Lr0R/LR5: Tm 50-52℃

NL1: 5’-GCATATCAATAAGCGGAGGAAAAG

NL1: 5′-TGCGTTGATTACGTCCCTGC (also called V9: TGCGTTGATTACGTCCCTGC) NL1: 5’-TGCTGGAGCCATGGATC-3

NL2: 5’-CTCTCTTTTCAAAGTTCTTTTCATCT

NL2: 5’-AACGGCTTCGACAACAGC-3

NL2: 5’-CTTGTTCGCTATCGGTCTC (also NL2A: 5′-CTTGTTCGCTATCGGTCTC)

NL2: 5’-TACTTGTTCGCTATCGGTCT-3'

NL3: 5’-GAGACCGATAGCGAACAAG (also NL3A: 5’-GAGACCGATAGCGAACAAG)

NL3: 5’-AGACCGATAGCGAACAAGTA

NL3: 5’

NL4: 5’(similar to RLR3R:5′-GGTCCGTGTTTCAAGAC) NL4: 5’-TAGATACATGGCGCAGTC-3

Conserved primer sequences for PCR amplification and sequencing from nuclear

ribosomal RNA

Vilgalys lab, Duke University

Over the years, our lab has compiled a useful list of conserved primer sequences useful for amplification and sequencing of nuclear rDNA from most major groups of fungi (primarily Eumycota), as well as other eukaryotes. All of these primers were identified and tested by our own lab based on consensus between the published large and small subunit RNA sequences from fungi, plants and other eukaryotes; sources of other useful primer sequences from published literature are also indicated. Together, these primers span most of the nuclear rDNA coding region (see figures), permitting amplification of any desired region. Standard symbols are used for the four primary nucleotides; variable positions are indicated as follows: P=A,G / Q=C,T / R=A,T /

V=A,C / W=G,T. Primers ending with "R" represent the coding strand (same as RNA). All other primers are complementary to the coding strand. This information is provided freely and may be passed on to anyone who wants to use it.

The nuclear-encoded ribosomal RNA genes (rDNA) of fungi exist as a multiple-copy gene family comprised of highly similar DNA sequences (typically from 8-12 kb each) arranged in a

head-to-toe manner. Each repeat unit has coding regions for one major transcript (containing the primary rRNAs for a single ribosome), punctuated by one or more intergenic spacer (IGS) regions. In some groups (mostly basidiomcyetes and some ascomycetous yeasts), each repeat also has a separately transcribed coding region for 5S RNA whose position and direction of transcription may vay among groups. Several restriction sites for EcoRI and BglII are conserved in the rDNA of fungi. Nearly all basidiomycetes we've studied share an EcoRI site within the 5.8S RNA gene along with a BglII site halfway into the LSU RNA sequence. Primers 5.8SR and LR7 include these restriction sites, which makes them convenient for cloning.

For those who aren't familiar with rDNA and fungal systematics, several excellent reviews are available on fungi (Hibbett, 1992) and generally for eukaryotes (Hillis and Dixon, 1991). See Gerbi (1986) for a general introduction to the molecular biology and evolution of rDNA in other eukaryotes. Another useful source of primer information may be found in Gargas & Depriest (1996) and at the Tom Bruns lab web site https://www.wendangku.net/doc/1213401647.html,/boletus/boletus.html.

Small subunit RNA (SR) primers:

SR = primers developed by Vilgalys lab

NS = primers described by White et al., 1990 Large subunit RNA (25-28S) primer sequences

Note: most molecular systematics studies only utilizethe first 600-900 bases from the LSU gene, which includes three divergent domains (D1, D2, D3) that are among the most variable regions within the entire gene (much of the LSU is invariant even across widely divergent taxa). Most of the data in our Agaricales LSU database consists of the first 900 bases from the LSU gene (we

Internal transcribed spacer (ITS) region primers

The ITS region is now perhaps the most widely sequenced DNA region in fungi. It has typically been most useful for molecular systematics at the species level, and even within species (e.g., to identify geographic races). Because of its higher degree of variation than other genic regions of rDNA (SSU and LSU), variation among individual rDNA repeats can sometimes be observed within both the ITS and IGS regions. In addition to the standard ITS1+ITS4 primers used by most labs, everal taxon-specific primers have been described that allow selective amplification of fungal sequences (e.g., see Gardes & Bruns 1993 paper describing amplification of basidiomycete ITS

Intergenic spacer (IGS) primers (including 5S RNA primer sequences for basidiomycete fungi)

The greatest amount sequence variation in rDNA exists within the IGS region (sometimes also known as the non-transcribed spacer or NTS region). The size of the IGS region may vary from 2 kb upwards. It is not unusual to find hypervariability for this region (necessitating cloning of

individual repeat haplotypes). Several patterns of organization can be found in different groups of fungi:

1. Most filamentous ascomycetes have a single uninterrupted IGS region (between the end

of the LSU and start of the next SSU sequence), which may vary in length from 2-5 kb or more. Amplification of the entire IGS region requires using primers anchored in the 3' end of the LSU gene (e.g., LR12R) and 5' end of the SSU RNA gene (e.g., invSR1R).

2. In many ascomycetous yeasts and nearly all basidiomycetes, the IGS also contains a

single coding region for the 5S RNA gene, which divides the IGS into two smaller regions that may be more easily amplified using. Depending on the orientation and position of the 5S RNA gene, the PCR may be used to sequentially amplify either aportion of the

intergenic spacer region (IGS) beyond the large subunit RNA coding region.

REFERENCES

Bruns, T. D., R. Vilgalys, S. M. Barns, D. Gonzalez, D. S. Hibbett, D. J. Lane, L. Simon, S. Stickel, T. M. Szaro, W. G. Weisburg, and M. L. Sogin. 1992. Evolutionary relationships within the fungi: analyses of nuclear small subunit rRNA sequences. Molec. Phylog. Evol. 1: 231-241.

Bruns, T. D., T. J. White, and J. W. Taylor. 1991. Fungal molecular systematics. Ann. Rev. Ecol. Syst. 22: 525-564.

DePriest, P. T., and M. D. Been. 1992. Numerous group I introns with variable distributions in the ribosomal DNA of a lichen fungus. J. Mol. Biol. 228: 315-321.

Elwood, H. J., G. J. Olsen, and M. L. Sogin. 1985. The small subunit ribosomal RNA gene sequences from the hypotrichous ciliates Oxytricha nova and Stylonychia pustula. Mol. Biol. Evol. 2: 399-410.

Gardes, M., and T. D. Bruns. 1993. ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol. Ecol. 2: 113-118.

Gargas, A., and P.T. DePriest. 1996. A nomenclature for fungal PCR primers with examples from intron-containing SSU rDNA.

Mycologia 88: 745-748

Gargas, A., and J.W. Taylor. 1992. Polymerase chain reaction (PCR) primers for amplifying and sequencing 18S rDNA from

lichenized fungi. Mycologia 84: 589-592.

Gerbi, S. A. 1986. Chapter 7 - Evolution of ribosomal DNA. Pp. 419-517 In: Molecular evolution, ed. McIntyre, R.

Hibbett, D. S. 1991. Phylogenetic relationships of the Basidiomycete genus Lentinus: evidence from ribosomal RNA and morphology. Ph.D. Thesis, Duke University, 1991.

Hibbett, D. S. 1992. Ribosomal RNA and fungal systematics. Trans. Mycol. Soc. Jpn. 33: 533-556.

Hibbett, D. S., and R. Vilgalys. 1991. Evolutionary relationships of Lentinus to the Polyporaceae: evidence from restriction analysis of enzymatically amplified ribosomal DNA. Mycologia 83:

425-439.

Hibbett, D. S., and R. Vilgalys. 1993. Phylogenetic relationships of the Basidiomycete genus Lentinus inferred from molecular and morphological characters. Syst. Bot. 18: 409-433.

Hillis, D. M., and M. T. Dixon. 1991. Ribosomal DNA: molecular evoluiton and phylogenetic inference. Quart. Rev. Biol. 66: 411-453.

Hopple, J. S., Jr., and R. Vilgalys. 1994. Phylogenetic relationship among coprinoid taxa and allies based on data from restriction site mapping of nuclear rDNA. Mycologia 86: 96-107.

Lane, D. J., B. Pace, G. J. Olsen, D. A. Stahl, M. L. Sogin, and N. R. Pace. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci., U. S. A. 82: 6955-6959.

Vilgalys, R., and D. Gonzalez. 1990. Organization of ribosomal DNA in the basidiomycete Thanatephorus praticola. Curr. Genet. 18: 277-280.

Vilgalys, R., J. S. Hopple, Jr., and D. S. Hibbett. 1994. Phylogenetic implications of generic concepts in fungal taxonomy: The impact of molecular systematic studies. Mycologica Helvetica 6: 73-91.

White, T. J., T. Bruns, S. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315-322 In: PCR Protocols: A Guide to Methods and Applications, eds. Innis, M. A., D. H. Gelfand, J. J. Sninsky, and T. J. White. Academic Press, Inc., New York. ?W°

常见病原菌

葡萄球菌属 金黄色葡萄球菌 生物学特性: 1.形态:G+,球形,葡萄状,0.4~1.2 m 2.培养:色素、耐盐 3.抗原构造:SPA 4.分类:金黄色葡萄球菌;表皮葡萄球菌;腐生葡萄球菌 5.抵抗力:强;易耐药 致病性: 1、致病物质:血浆凝固酶;溶血素;杀白细胞素;肠毒素 2、所致疾病:化脓性炎症;食物中毒;假膜性肠炎 防治原则:注意个人卫生;严格无菌操作;加强食品监督;合理使用抗生素。 链球菌 乙型溶血性链球菌 生物学特性: 1、形态:G+,球形,链状,0.5~1.0 m 2、培养:血平板 3、分类: 1) 根据溶血现象分: 甲型溶血性链球菌:草绿色溶血环。条件致病菌 乙型溶血性链球菌:透明宽大溶血环。致病性强 丙型链球菌:无溶血环。无致病性 2) 依细胞壁多糖抗原不同分:A、B、C、D等20个群,致病链球菌株90%属A群 4、抵抗力:不强 致病性: 1、致病物质: (1)菌体表面物质:M蛋白;脂磷壁酸 (2)毒素: 1)链球菌溶血素: SLO:对氧敏感,免疫原性强,感染后血中可出现溶血毒素O抗体; SLS:对氧稳定; 免疫原性弱,与溶血环有关 2)致热外毒素(红疹毒素或猩红热毒素) (3)侵袭性酶:透明质酸酶;链激酶;链道酶。 使链球菌的感染容易扩散且脓汁稀薄。 2、所致疾病 (1)乙型溶血性链球菌:化脓性疾病;中毒性疾病(猩红热);超敏反应性疾病如风湿热、急性肾小球肾炎(2)甲型溶血性链球菌: 条件致病菌,引起亚急性细菌性心内膜炎 防治原则: 1、讲究卫生,及时治疗病人和带菌者,减少传染源。 2、彻底治疗咽峡炎、扁桃体炎,以防止急性肾小球肾炎、风湿热、亚急性细菌性心内膜炎。 3、治疗链球菌感染性疾病首选青霉素G。 肺炎链球菌 生物学特性: 1、形态:G+ ,矛头状,钝端相对,成双排列,荚膜 2、培养:血平板,自溶现象 3、生化反应:胆汁溶菌试验阳性,菊糖分解试验阳性 4、抗抗力:弱 致病性: 主要致病物质:荚膜

几种真菌的分离与鉴定教学文案

常见真菌的分离与鉴定 病原真菌的一般特性 真菌(Fungi)是微生物中的一个大类,是一群数目庞大的细胞生物,估计全世界已有记载的真菌有10万种以上。它们的子实体小者用显微镜才能见到,大者可达数十厘米,它们共同特征是具有真正的细胞核,产生孢子和不含叶绿素,以寄生或腐生等方式吸取养料,仅少数类群为单细胞,其他都有分支或不分支的丝状体,能进行有性或无性繁殖,具有纤维素(或其他葡聚糖)或几丁质的微纤维或两者兼有的细胞壁的有机体。对人类和动物致病的真菌大约100余种,属于病原真菌。 一、基本性状 (一)形态结构 真菌分单细胞真菌与多细胞真菌两大类,前者属于酵母菌(yeast)一般呈球形或卵圆形,后者称为霉菌(mold)或丝状真菌,呈丝状分枝,菌丝交织象绒球状,另有一些真菌可因寄生环境及培养条件(养料、温度、氧气等)的不同可交替出现两种形态,即在室温中呈霉菌型,在37℃或体内呈单细胞的酵母型,这类真菌有双相性,所以称之为双态真菌或二相真菌。 真菌的细胞结构与一般植物细胞相似,有定型的细胞核及完善的细胞器,但胞壁与细菌胞壁不同,不含粘肽而是由角质及葡聚糖组成,也含有脂多糖蛋白质,其中酵母菌及类酵母菌皆以出芽增殖,不生长真菌丝,革兰氏染色呈阳性,丝状真菌分菌丝及孢子两部分,形态多种多样,分述如下。 1.菌丝(Hypha)真菌在合适的环境中,由孢子生出嫩芽,称为芽管。芽管逐渐延长呈丝状,称菌丝。菌丝继续生长并生长分枝,增殖的菌丝交织组成菌丝体。其中一部分菌丝深入被寄生的物体或培养基中吸取养料,称为营养菌丝体。另一部分菌丝向空间生长,称为气生菌丝体。气生菌丝体能产生孢子者称为生殖菌丝体。菌丝中各个细胞间有明显分隔者,称为有隔菌丝。主要见于病原性真菌。很多非病原真菌的菌丝无明显分隔,称为无隔菌丝。有些菌丝可呈各种特殊形式,如球拍状、破梳状、螺旋状、结节状、关节状、鹿角状、假菌丝。 2.孢子生成孢子是真菌扩大繁殖的一种方式。真菌孢子的抵抗力、形态及作用等均与细菌芽胞不同,分为无性孢子及有性孢子两大类。不经过两性细胞的结合而形成的孢子叫无性孢子,这一繁殖过程称为无性繁殖。常见的无性孢子有5种:关节孢子、厚壁孢子、孢子囊孢子、芽孢和分生孢子。病原真菌属于不完全菌纲,很少产生有性孢子,大多数是无性孢子。 (1)厚壁孢子:当真菌在不利环境中,由菌丝内胞浆缩浓和胞壁增厚而成,呈圆形。当环境好转时可生成芽管成长为菌丝。

标准菌种管理规程

标准菌种管理规程 目的:规范药品微生物学检定用菌的管理,最大限度降低变异率,确 保菌种的溯源性与稳定性,从而确保微生物学检验结果的准确可靠。 职责: QC 主管负责菌种的申购、接受、保存、分发,微生物检验员 负责菌种的确认、传代、使用及销毁。 范围:本规程适用于检定用菌种的管理,包括菌种的申购、保存、传 代、使用及销毁等。 内容: 1术语 标准菌种是指由中国药品生物制品检定所医学微生物菌种保藏管理 中心提供的冷冻干燥菌。 传代用菌种是指用标准菌种制备的采用特定保存方法长期固定保存 的菌种,用于传代及制备工作用菌种。 工作用菌种是指用标准菌种或传代用菌种接种至普通琼脂斜面培养 后,作为日常工作使用的菌种。 菌种的代是指将其接种至一新鲜培养基上或培养基内,每萌发一次即 称为一代,从菌种保藏中心获得的冷冻干燥菌种为第0 代。 2.标准: 2.1 检定菌的申购 QC主管每年根据检定菌种的使用情况(包括临时检验需要),提出购 买计划,交由质量管理部部长审批后,向中检所菌种保藏中心或省(市)药检所购买冻干菌种(标准菌种);也可以直接向省(市)药检所购

买传代用菌种,购买时,需询问与确定菌种的代数,以便传代时控制 代数。 2.2 检定菌的接收 菌种到达实验室后,由QC主管接收菌种,检查其名称和数量,以及 每一支的完整性,同时将菌种的所有信息,填写在《检定菌接收记录》(附表 1)上,内容包括:名称、数量、编号(无编号者按检定菌种 的编号原则编号)、代数、来源、接收日期、接收人等,贴好标签并 储存于 2-8?C直到需要使用时。储存期最长不超过 5 年。 2.3 检定菌的保存 2.3.1 工作用菌种的保存 工作用菌种采用斜面低温保存法。将菌种接种在适宜的固体斜面培养 基上,待菌生长充分以后,转移至2~8℃冰箱中保存。此法仅用于 工作用菌种的短期保存,并应随时检查其污染杂菌和变异等情况,发现异常情况,经应灭活处理后销毁。保存时间根据菌种种类而不同, 细菌: 1 个月;酵母菌: 2 个月;霉菌及芽胞: 3 个月。 2.3.2 传代用菌种的保存 采用甘油冷冻管保藏法或液体石蜡保存法。 2.3.2.1.甘油冷冻管保存法 用无菌接种环轻轻刮取经冷冻复溶增菌后并接种至平板或琼脂斜面 的菌苔,并通过接种环与试管壁之间的轻轻摩擦而使细菌充分扩散到 预先装入试管中的无菌纯化水中,调整菌液浓度,使其等同于10 号比浊管,向已制备好的菌悬液中加入等体积的无菌甘油(浓度 20%),

主要致病性真菌

第33章主要致病性真菌 真菌感染引起的疾病称为真菌病(mycoses)。在10万种以上的真菌中,能引起人类真菌病的真菌只有几百种,其中90%的人类真菌病仅由几十种真菌所引起,绝大多数病原性真菌自然存在于水、土壤和有机废料中,然而,发病率最高的念珠菌病和皮肤癣病则是由人体的正常菌群的真菌引起。真菌可以引起表面感染、皮肤感染、皮下组织感染、深部感染和条件致病性感染,而且,几种真菌感染可以重叠出现。真菌按其侵犯的部位和临床表现,可分为浅部感染真菌、深部感染真菌和条件致病性真菌。 第一节浅部感染真菌 一、表面感染真菌 这类真菌主要寄居于人体皮肤和毛干的最表层。因不接触组织细胞,很少引起宿主细胞反应。这类真菌在我国主要有秕糠马拉癣菌(Malassezia furfur),可引起皮肤表面出现黄褐色的花斑癣,如汗渍斑点,俗称汗斑。此菌具嗜脂性。有报道从92%正常人头皮、躯干、面部、四肢等部位分离出。诱发因素为高温多汗。由于此菌能产生对黑色素细胞有抑制作用的二羧酸,使花斑癣局部色素减退。此菌有粗短、分枝的有隔菌丝和成丛的酵母样细胞。患者皮肤用Wood灯紫外线波长365nm照射

或刮取鳞屑照射,能发出金黄色荧光,有助于诊断。 二、皮肤癣真菌 引起皮肤浅部感染的真菌主要是一些皮肤癣菌(dermatophytes)。皮肤癣菌有嗜角质蛋白的特性,是寄生与皮肤角蛋白组织的浅部真菌,使其侵犯部位只限于角化的表皮、毛发和指(趾)甲,而病理变化是由真菌的增殖及其代谢产物刺激宿主引起的反应。简称为癣(tinea),包括体癣、股癣、手癣、足癣、甲癣、头癣等。特别是手足癣是人类最多见的真菌病。皮肤癣菌大约有40多个种,分属于三个菌属:毛癣菌属(Trichophyton)、表皮癣菌属(Epidermophyton)和小孢子癣菌(Microsporum)。皮肤癣菌可在沙保培养基上生长,形成丝状菌落。根据菌落形态、颜色和所产生的大分生孢子,可对皮肤癣菌作出初步鉴定(图33-1)、(表33-1)。 表33-1 皮肤癣菌的主要特征 侵犯部位形态特征 皮肤毛发指(趾)甲大分生孢子小分生孢子菌丝 毛癣菌属 + + + 细长,棒形梨形,棒形多样 (少)壁薄,少见多见 小孢子菌属 + + —纺锤形,壁棒形,卵圆形球拍状 较厚,较多见较少见梳状 表皮癣菌属 + — + 梨形,壁较薄无单纯细菌丝

浅谈常见病原性真菌感染及实验室检查方法

浅谈常见病原性真菌感染及实验室检查方法 发表时间:2019-08-14T13:28:12.163Z 来源:《健康世界》2019年7期作者:王祥 [导读] 真菌是一类具有完整细胞结构和内含物(如典型的细胞核和完整的细胞器),不含叶绿素,没有根、茎、叶的真核细胞型微生物。王祥 达州市宣汉县第三人民医院 636150 真菌是一类具有完整细胞结构和内含物(如典型的细胞核和完整的细胞器),不含叶绿素,没有根、茎、叶的真核细胞型微生物。真菌在自然界中种类繁多,分布广泛。多数真菌对人体无害,甚至有利,如食用、发酵、酿酒及生产抗生素等,仅有少数真菌可引起人类感染性、中毒性及变态性疾病,特别是本来属于人体正常菌群的某些真菌,当机体免疫力低下或长期使用免疫抑制剂、广谱抗生素、激素及化、放疗药物时,导致真菌机会性感染的几率明显增加。真菌感染严重时,可累及全身组织器官,在ICU重症患者、气管插管患者、全静脉营养患者、白血病或其他恶性肿瘤患者的治疗过程中,真菌是医院感染病例中的重要病原菌。由于真菌感染具有治愈率低、治疗周期长、死亡率高等特点,因此越来越受到临床医生的关注和重视。 在真菌的分类方面,临床多根据真菌侵袭肌肤组织程度的不同而分为肌肤浅表感染性真菌和深部感染性真菌。深部感染性真菌主要包括白假丝酵母菌又称白色念珠菌、曲霉菌、隐球菌、耶氏肺孢子菌、马尔尼菲青霉、毛霉目真菌、组织胞浆菌病及镰刀菌8个菌属,主要侵犯人体深部组织、粘膜及脏器,引起深部真菌感染,甚至全身播散性感染。其中以白色念珠菌感染最为常见,当各种原因导致机体菌群失调或抵抗力降低时,可侵犯人体组织器官,引起多部位的念珠菌机会性感染,常见的有女性外阴炎、念珠菌性阴道炎,男性包皮炎、念珠菌性龟头炎、膀胱炎、肺炎、肠炎、心内膜炎、肾盂肾炎及婴幼儿体质虚弱时易患的鹅口疮口角糜烂等,白色念珠菌侵犯中枢神经系统时,还可引起脑膜脑炎、脑膜炎、脑脓肿等。 肌肤浅表感染性真菌主要包括皮肤癣菌、暗色真菌、角层癣菌及孢子丝菌4个菌属。皮肤癣菌有称之为皮肤丝状菌,主要侵犯人体和动物的皮肤、毛发及指(趾)甲,一般不侵犯皮下等深部组织及内脏,常可引起手癣、头癣、甲癣及足癣等多种皮肤癣病;暗色真菌常在患者外伤后感染,高发于四肢暴露部位,暗色真菌感染可引起丘疹、红斑等多种皮损,继发感染时,皮损结痂、反复发作,感染经久不愈,严重时可引起象皮肿,甚至致畸、致残或癌变,机体免疫功能低下时可侵犯中枢神经系统或经血流扩散,对机体造成严重损害;角层癣菌主要寄居于人体毛发、皮肤的最表层,很少引起宿主细胞的炎症反应或较轻微的炎症反应;孢子丝菌感染可导致皮肤、皮下组织及其附近淋巴系统发生慢性感染,引起孢子丝菌病。 感染性真菌的病原学检查是确证真菌感染的重要措施,实验室检查方法有直接镜检、染色镜检、真菌分离培养、组织病理学检查、免疫血清学检查及分子生物学检查等,其中直接镜检和分离培养是真菌病原学检查中最为常见的两种检查手段。 直接镜检是临床真菌检验最快捷、有效的常用方法。10%KOH溶液(可促进角质蛋白的溶解及杀菌作用)涂片镜检,主要适用于毛发、指甲、鳞屑等致密的难以透明的材料检查,显微镜下查见特征性菌丝及孢子体,是初步诊断皮肤癣菌感染的重要依据;用生理盐水替代KOH溶液涂片镜检,可观察真菌的出芽现象,也可用于尿液、胆汁及粪便标本的直接镜检查;无颗粒或杂质的优质墨汁(如印度墨汁)涂片镜检,主要用于新生隐球菌等有荚膜真菌的检查;水合氯醛-石碳酸-乳酸溶液的穿透力较强,仅限于不透明标本的检查。 染色标本镜检具有能够更清楚观察到真菌形态和结构的优点,有助于提高标本阳性检出率。革兰染色是最为常用的染色方法,革兰染色后各种真菌均呈深紫色,常用于假丝酵母菌、孢子丝菌、组织胞浆菌及酵母菌等染色;乳酸酚棉蓝染色适用于各种真菌的培养物涂片检查、直接涂片检查及小培养标本等,该法染色后,真菌呈现蓝色;糖原染色是真菌染色最常用的方法之一,又称过碘酸Schiff染色(简称PAS或PASH),PAS染色后的真菌菌体为红色,细胞核为蓝色,背景为淡绿色,可用于标本直接涂片及组织病理切片的染色检查;嗜银染色(GMS)的原理与糖原染色原理相似,主要区别在于嗜银染色是用铬酸代替过碘酸,GMS染色后真菌呈现黑色,菌丝呈现旧玫瑰红色,背景为淡绿色,可用于组织病理切片检查和标本直接涂片;黏蛋白卡红染色(MCS)主要适用于新生隐球菌的荚膜染色,MCS染色后细胞壁和荚膜呈红色,细胞核为黑色,背景为黄色;荧光染色法是利用荧光染液对直接涂片、培养涂片及组织切片标本染色后,借助荧光显微镜观察荧光反应结果,其区别在于直接涂片标本阳性只表示有真菌存在,不能确定菌种,而培养涂片和组织切片标本则可以根据荧光反应颜色的不同而确定菌种,如白假丝酵母菌为黄绿色,新生隐球菌为红色等。 分离培养检查法是根据绝大多数真菌可以人工培养的特性和真菌对营养要求的差异及培养目的性不同,选择不同的常用培养基(如沙保培养基、马铃薯葡萄糖琼脂及尿素琼脂等)接种培养出真菌,从而为真菌的鉴定及临床确定诊断提供重要依据。 组织病理检查是将疑似真菌感染组织经封蜡、切片、脱水、染色及镜检等一系列复杂过程,观察机体器官、组织中是否存在真菌感染的病理形态学改变或特征,能为病原性真菌感染提供确切的诊断依据。免疫血清学检查主要利用生化、免疫学手段检测真菌的抗原抗体及代谢产物,目前常通过糖(醇)如葡萄糖、甘露醇等发酵试验,免疫学手段检测隐球菌荚膜多糖抗原、Cand-Tec抗原等,可用于多种真菌的鉴别。分子生物学检查方法的原理是借助靶基因(即适当的特异性基因片段),利用PCR扩增技术扩增痰液、血清(浆)、尿液、脓液、支气管肺泡灌洗液等中的真菌成分,从而确定病原性真菌的有无及种类的一种检查方法。 随着现代医疗水平的提高和真菌感染研究的不断深入,将会促使我们对病原性真菌及感染有更多、更新的认知和掌握,相信会有更多先进、快捷的检查方法不断成熟、完善和应用,为病原性真菌感染疾病的早期诊断、治疗提供更加科学、有效的辅助依据。

菌株鉴定

菌株鉴定 姓名 摘要:pUC载体系列质粒较小,约为2.7 kb,是E.coli最常用的理想质粒克隆载体。当pUC19质粒载体导入到E.coli DH5α后,在IPTG存在下,在含有生色底物X-gal的培养基上形成蓝色菌落。另外质粒pUC19携带有氨苄青霉素抗性基因(Amp r),质粒pUC19进入E.coli DH5α后,通过α-互补作用,在MAC培养基平板上转化子利用β-半乳糖苷酶分解培养基中的乳糖产生有机酸,pH降低,培养基中的中性红指示剂变红,转化子的菌落变成红色。不含pUC19质粒的E.coli DH5α利用培养基中的有机碳源,不使培养基pH降低,在不含有氨苄青霉素的MAC培养基上形成白色菌落。本实验就是利用这些实验原理进行相应的菌株鉴定实验,其目的是更好地掌握培养基菌落生长情况及菌落颜色的原理,熟悉菌株鉴定的实验步骤,同时学会观察培养基中菌落的颜色特征。通过此次实验,我们达到了预期目的,取得了很好的实验效果。 关键词:pUC19质粒、E.coli DH5α、氨苄青霉素抗性基因(Amp r)、LB培养基、MAC培养基 1.引言 质粒是染色体外的遗传因子,广泛存在于原核生物中,在部分真核生物中也存在。细胞内自然存在的质粒通常不能作为基因工程操作的载体,需要对其进行改造,如根据载体必备的条件插入结构元件和删除质粒上非功能的DNA片段。标记基因是载体所必需的结构元件,按其用途可将标记基因分为选择标记基因和筛选标记基因。选择标记基因用于鉴别目标载体的存在,用于挑选成功转化载体的宿主细胞。筛选标记主要用来区别重组质粒与非重组质粒,将具有特殊表型的重组质粒挑选出来。α-互补是E.coli最常用的筛选标记,其原理是:β-半乳糖苷酶基因(LacZ)N端多肽和C端多肽单独存在时都无β-半乳糖苷酶活性,当两者存在于同一个细胞即可进行互补而形成完整β-半乳糖苷酶活性。在pUC系列质粒载体上插入了β-半乳糖苷酶的调控序列和β-半乳糖苷酶N端146个氨基酸的编码序列,并在这个编码区域中引人多克隆位点,但不破坏LacZ的阅读框架,即不影响其正常功能。而这类载体对应的宿主菌如E.coli DH5α的染色体上整合有β-半乳糖苷酶C端序列的遗传信息。当质粒载体导入到相应宿主菌后,载体上合成的β-半乳糖苷酶N端多肽可以与宿主细胞染色体编码的C 端多肽片段互补形成完整的蛋白质,即表现出β-半乳糖苷酶活性。在乳糖或其结构类似物IPTG存在下,可以诱导β-半乳糖苷酶的合成。在含有生色底物X-gal的培养基上形成蓝色菌落。 pUC载体系列质粒较小,约为2.7kb,是E.coli最常用的理想质粒克隆载体。它们由以下结构元件构成:①来自于E.coli质粒ColE1的松弛型复制起始点。在含有氯霉素的培养基中细胞生长停止后,该复制子仍能继续复制,由此可得到大量质粒DNA。②氨苄青霉素抗性基因(Amp r)。③E.coliβ-半乳糖苷酶基因(LacZ)的启动子及编码β-半乳糖苷酶N端的DNA 序列。④多克隆位点(MCS)区段,包含十几个单一限制性内切酶识别位点,使目的DNA 片段可定向插入。 质粒载体pUC18和pUC19的结构基本相同,只是在LacZ基因的启动子后面多克隆位点的限制性核酸内切酶以互为相反方向排列。在载体pUC18中,EcoRⅠ位点紧接于启动子Plac 下游,而载体pUC19的Hin dⅢ位点紧接于Plac下游,它们共有13个单一限制性核酸内切酶位点。 质粒pUC19携带有氨苄青霉素抗性基因(Amp r),没有导入质粒pUC19的受体细胞,在

常见细菌鉴定

常见细菌鉴定 平装: 331页 正文语种: 简体中文 开本: 16 ISBN: 9787117119610 条形码: 9787117119610 尺寸: x x cm 重量: 540 g 百分网内容简介 《临床常见细菌、真菌鉴定手册》着重对院内感染的常见细菌、真菌及其耐药性检测和研究进行了细致阐述。细菌耐药也是当前临床面临的重大难题之一,抗生素滥用是造成耐药性不断增长的主要原因。微生物是进化史上最成功的例子,存在几十亿年了,新兴的微生态学理论认为,人类和微生物之间是适应而不是对抗。院内感染菌株绝大部分是条件致病菌,当机体免疫力低下、抗生素使用不合理破坏了正常菌群,导致微生态失衡情况下,引起感染的发生、发展。我从事微生态研究多年,深刻认识到只有从生态平衡角度,将传统的单纯“杀菌”理论转变为“杀菌”加“促菌”理论,保护人体的正常菌群,维护人体微生态平衡,提高机体免疫能力,才是控制感染的根本办法。 百分网目录

上篇临床细菌学 第一章需氧及兼性厌氧,革兰染色阴性杆菌、球杆菌、球菌及弯曲菌和螺旋菌 第一节心杆菌属 第二节放线杆菌属、艾肯菌属、金氏杆菌属和色杆菌属 第三节弗朗西丝菌属 第四节布鲁菌属 第五节军团菌属 第六节假单胞菌属 第七节伯克霍尔德菌属、窄食单胞菌属、丛毛菌属和食酸菌属 第八节不动杆菌属 第九节莫拉菌属 第十节金黄杆菌属和威克斯菌属 第十一节奈瑟菌属 第十二节鲍特菌属 第十三节产碱杆菌属、无色杆菌属、苍白杆菌属和根瘤菌属 第十四节弧菌属 第十五节气单胞菌属 第十六节肠杆菌科

第十七节巴斯德菌属 第十八节弯曲杆菌属和弓形菌属 第十九节螺杆菌属 第二十节巴尔通体属 第二十一节钩端螺旋体属 第二十二节疏螺旋体属 第二十三节密螺旋体属 第二章需氧革兰染色阳性球菌及杆菌 第一节葡萄球菌属 第二节链球菌属 第三节肠球菌属 第四节气球菌属及其相关菌属 第五节李斯特菌属和丹毒丝菌属 第六节棒状杆菌属及相关菌属 第七节芽胞杆菌属和其他需氧芽胞杆菌 第八节分枝杆菌属 第九节奴卡菌属、红球菌属 第三章专性厌氧菌 第一节消化球菌属、消化链球菌属、嗜胨菌属、微金菌属和厌氧球菌属 第二节韦荣菌属、氨基酸球菌属和巨形菌属 第三节丙酸杆菌属、放线菌属、双歧杆菌属、真杆菌

标准菌种管理规程

标准菌种管理规程 目的:规药品微生物学检定用菌的管理,最大限度降低变异率,确保菌种的溯源性与稳定性,从而确保微生物学检验结果的准确可靠。职责:QC主管负责菌种的申购、接受、保存、分发,微生物检验员负责菌种的确认、传代、使用及销毁。 围:本规程适用于检定用菌种的管理,包括菌种的申购、保存、传代、使用及销毁等。 容: 1 术语 标准菌种是指由中国药品生物制品检定所医学微生物菌种保藏管理中心提供的冷冻干燥菌。 传代用菌种是指用标准菌种制备的采用特定保存方法长期固定保存的菌种,用于传代及制备工作用菌种。 工作用菌种是指用标准菌种或传代用菌种接种至普通琼脂斜面培养后,作为日常工作使用的菌种。 菌种的代是指将其接种至一新鲜培养基上或培养基,每萌发一次即称为一代,从菌种保藏中心获得的冷冻干燥菌种为第0代。 2.标准: 2.1检定菌的申购 QC主管每年根据检定菌种的使用情况(包括临时检验需要),提出购买计划,交由质量管理部部长审批后,向中检所菌种保藏中心或省(市)药检所购买冻干菌种(标准菌种);也可以直接向省(市)药

检所购买传代用菌种,购买时,需询问与确定菌种的代数,以便传代时控制代数。 2.2检定菌的接收 菌种到达实验室后,由QC主管接收菌种,检查其名称和数量,以及每一支的完整性,同时将菌种的所有信息,填写在《检定菌接收记录》(附表1)上,容包括:名称、数量、编号(无编号者按检定菌种的编号原则编号)、代数、来源、接收日期、接收人等,贴好标签并储存于2-8?C直到需要使用时。储存期最长不超过5年。 2.3 检定菌的保存 2.3.1 工作用菌种的保存 工作用菌种采用斜面低温保存法。将菌种接种在适宜的固体斜面培养基上,待菌生长充分以后,转移至2~8℃冰箱中保存。此法仅用于工作用菌种的短期保存,并应随时检查其污染杂菌和变异等情况,发现异常情况,经应灭活处理后销毁。保存时间根据菌种种类而不同,细菌:1个月;酵母菌:2个月;霉菌及芽胞:3个月。 2.3.2传代用菌种的保存 采用甘油冷冻管保藏法或液体石蜡保存法。 2.3.2.1.甘油冷冻管保存法 用无菌接种环轻轻刮取经冷冻复溶增菌后并接种至平板或琼脂斜面的菌苔,并通过接种环与试管壁之间的轻轻摩擦而使细菌充分扩散到预先装入试管中的无菌纯化水中,调整菌液浓度,使其等同于10号比浊管,向已制备好的菌悬液中加入等体积的无菌甘油(浓度20%),

不常见细菌的快速鉴别方法

不常见细菌的快速鉴别方法 一. 不常见革兰阴性菌 1. 布氏杆菌属 布氏杆菌属是一类革兰阴性细小杆菌,牛、羊、猪等动物最易感染。人类接触带菌动物或食用病畜及其乳制品,均可被感染。布氏杆菌病广泛分布世界各地,我国部分地区曾有流行。布氏杆菌属分为羊、牛、猪、鼠、绵羊及犬布氏杆菌6个种,20个生物型。中国流行的主要是羊、牛、猪三种布氏杆菌,其中以羊布氏杆菌病最为多见。 布氏杆菌属细菌为非抗酸性,无芽胞,无荚膜,无鞭毛,呈球杆状(见图1)。血琼脂(BAP)上为透明或半透明、光滑且有光泽菌落。此细菌不在麦康凯琼脂上生长。布氏杆菌属细菌尿素阳性,触酶、氧化酶阳性,而吲哚阴性。由于该菌属细菌具有强的传染性,因此一旦怀疑应送往LRN B级参考实验室进行确认。 2. 空肠弯曲菌 空肠弯曲菌是一种人畜共患病病原菌,可以引起人和动物发生多种疾病,并且是一种食物源性病原菌,认为是引起全世界人类细菌性腹泻的主要原因。其致病因素包括粘附、侵袭、产生毒素和分子模拟机制等四个方面,通过分子模拟机制可以引起最严重的并发症一格林一巴利综合征。空肠弯曲菌可以通过产生细胞紧张性肠毒素、细胞毒素和细胞致死性膨胀毒素而致病。空肠弯曲菌对红霉素、新霉素、庆大霉素、四环素、氯霉素、卡那霉素等抗生素敏感,但近年发现了不少耐药菌株及多重耐药性菌株。 空肠弯曲菌菌体轻度弯曲似逗点状(见图2)。菌体一端或两端有鞭毛,运动活泼,在暗视野镜下观察似飞蝇。有荚膜,不形成芽胞。微需氧菌,在含2.5~5%氧和10% CO2的环境中生长最好,在正常大气或无氧环境中均不能生长,最适温度为37~42℃。本菌在普通培养基上难以生长,在凝固血清和血琼脂培养基上培养36小时可见无色半透明毛玻璃样小菌落,单个菌落呈中心凸起,周边不规则,无溶血现象。空肠弯曲生化反应不活泼,不发酵糖类,不分解尿素。可还原硝酸盐,氧化酶和触酶为阳性。能产生微量或不产生硫化氢,甲基红和v-p试验阴性,枸椽酸盐培养基中不生长,在弯曲菌中马尿酸呈阳性反应具有重要鉴定价值。

手足癣致病真菌病原菌分析

手足癣致病真菌病原菌分析 手足癣是一种常见多发病。近些年来随保健意识的增强。更多人对自己的健康比较观注意,现将对1 900名初步诊断手足癣患者进行了病原菌分析。并运用大枫子皮肤舒进行局部护理。菌种来源依照临床真菌学诊断标准fl】。所有被鉴定菌种均来自于2004年12月~2005年12月间到我院就诊患者中初步诊断为手足癣总计1 900名患者,其中男性948例,女性952例,平均年龄(40.5±5.5)岁,病史从1周—40年不等,平均(6.5±3.5)年。鉴定方法将标本接穿刺接种在改良沙氏葡萄糖蛋白胨琼脂基斜面上,(26±1)℃培养7—10 d,根据菌落的生长速度、形态、色素产生情况鉴定。尿素琼脂培养用于不产色素红色毛癣菌鉴定。如有酵母样菌落生长.则进一步转种科玛嘉显色培养基30。37℃培养48 h,根据菌落色彩与形态鉴别。 手足癣患者病原菌的分析研究.红色毛癣菌仍然在本地区占据绝对优势(占所有分离菌株的89.6%)。吴绍熙等‘2报道1996年全国致病真菌分布情况.华北京津晋冀蒙地区红色毛癣菌构成比为36.7%.在手足癣中以57.1%位居第l位。本次调查结果较其报道有较大提高,显著高于1996年全国平均水平。所检出念珠菌占总数5.8%。其中白念珠菌占4.3%,位于致病真菌菌种第2位。但是相比1996年的报道26.2%【颂0明显下降。念珠菌多为条件致病真菌。一方面近些年广谱抗生素、皮质激素外用制剂,以及针对皮肤癣菌敏感的抗真菌药物使用;另一方面,糖尿病、肿瘤以及免疫缺陷类疾病病人数量的增加。都导致了以白念珠菌为主,包括其他念珠菌

在内感染数量的上升。1996年全国手足癣致病菌种调查中,白念珠菌构成比较1986年的显著上升具有肯定的客观原因,但是具体到北方城市,则可能低于全国平均水平。例如:王冬云【3l等对1999~2004年西安地区浅部真菌感染进行的流行病学研究中,自念珠菌位于第3位,占受检总数的19%;而在呼和浩特地区2002—2005年间对120例手足癣患者的调查,其中白念珠菌仅出现l例14】;金学洙等f习对吉林省15年浅部真菌病菌种进行分析,1986~2001年间手足癣感染白念珠菌(A型)例数为0。而在汕头,黄进波等【6】对1998以003年11442例真菌标本的分析中,1005例培养阳性的手足癣患者中共培养出念珠菌608例(60.5%),其中白念珠菌181例(18.0%)。综合上述调查结果,本次研究证实了天津地区白念珠菌构成比符合北方地区的流行趋势,而与南方沿海地区存在较大差异。与既往研究存在较大差异的是须癣毛癣菌构成比的明显低下。 得出如下结论:(1)红色毛癣菌感染仍然占据首要位置.近些年间报道指出以白念珠菌为主的其他菌株构成比显著上升,并用大枫子皮肤舒治护取得了良效。

微生物的分类与鉴定

第十章微生物的分类与鉴定 一、选择题 1.真菌的分类单元-门的词尾为(A ) 2.A、–mycota B、–mycetes C、–mycotina D、-mycetidae 3.下列传统分类指标中始终被用作微生物分类和鉴定的重要依据的是(A ) 4.A、形态学特征 B、生理特征 C、生态学特征 D、分子生物学特征 5.下列拉丁文哪个书写格式正确( C ) 6.A、Fusarium oxysporium B、Aspergillus japonicus Saito 7. C、Bacillus amyloliquefaciens D、Clostridium Kluyveri 8.1978年,根据16S rRNA和18S rRNA的碱基序列将生物分为“三域”的科 学家是(D ) 9.A、Ainsworth B、Bergey C、Leedale D、Woese 10.1995年,Ainsworth分类系统把菌物列入真核生物域,将其分为3个界, 下面哪项不属于其中( D ) 11.A、原生动物界 B、假菌界 C、真菌界 D、菌物界 12.有关菌株的说法,下列哪项说法不对( B ) 13.A、菌株强调的是遗传型纯的谱系 B、菌株的名称不可随意确定 14.C、菌株与克隆相同,为一个物种内遗传多态性的客观反映 15.D、菌株实际上是某一微生物达到遗传型纯的标志, 二、是非题 1.微生物的种是微生物分类的基本单元,但是目前还没有一个公认的、明确的定义。(√) 2.两个微生物菌株具有相同G+C含量表明它们之间的亲缘关系一定很相近。(×)

3.亚种是进一步细分种时所用的单元,一般指除某一明显而稳定的特征外,其余鉴定特征都与模式种相同的种,其命名方法按“三名法”处 理。(√) 4.变种是亚种的同义词,在《国际细菌命名法规》中不主张使用。(√)5.在微生物分类中,DNA(G+C)mol%的比较只能做否定判断。(√)6.微生物DNA之间的同源性越高,说明它们之间亲缘关系就越近,反之亦然。(×) 7.菌株是一个物种内遗传多态性的客观反应,是遗传型纯的谱系,其名称可以随意确定。(√) 8.模式菌株是一个种的具体活标本。(√) 9.据科学家1992年估计,地球上生存的菌物约有150万种。(√)10.微生物自动化鉴定技术一般都是利用微生物的生理生化反应特性而设计的。(√) 11.细菌分子鉴定常用16S rRNA序列分析,而真菌分子鉴定常用ITS序列分析。(√) 12.所谓“模式菌株”通常是指一个细菌的种内最具代表性的菌株。(×)13.对微生物生理生化特征的比较也是对微生物基因组的间接比较,加上测定生理生化特征比直接分析基因组要容易得多,因此生理生化特征对于微生物的系统分类仍然是有意义的。(√) 14.现代微生物分类中,任何能稳定地反映微生物种类特征的资料,都有分类学意义,都可以作为分类鉴定的依据。(×) 15.DNA-DNA杂交主要用于种、属水平上的分类研究,而进行亲缘关系更远(属以上等级)分类单元的比较,则需进行DNA-rRNA杂交。(√)

细菌常用生理生化鉴定

细菌鉴定中常用的生理生化反应 录入时间:2009-8-13 15:12:12 来源:中国生命科技论坛 1、实验原理 (1)细菌生化试验 各种细菌所具有的酶系统不尽相同,对营养基质的分解能力也不一样,因而代谢产物或多或少地各有区别,可供鉴别细菌之用。用生化试验的方法检测细菌对各种基质的代谢作用及其代谢产物,从而鉴别细菌的种属,称之为细菌的生化反应。 (2)糖(醇)类发酵试验 不同的细菌含有发酵不同糖(醇)的酶,因而发酵糖(醇)的能力各不相同。其产生的代谢产物亦不相同,如有的产酸产气,有的产酸不产气。酸的产生可利用指示剂来判定。在配制培养基时预先加入溟甲酚紫[P HS . 2 (黄色)一6 . 8 (紫色)] ,当发酵产酸时,可使培养基由紫色变为黄色。气体产生可由发酵管中倒置的杜氏小管中有无气泡来证明。 (3)甲基红(Methylred )试验(该试验简称MR 试验) 很多细菌,如大肠杆菌等分解葡萄糖产生丙酮酸,丙酮酸再被分解,产生甲酸、乙酸、乳酸等,使培养基的pH 降低到4 . 2 以下,这时若加甲基红指示剂呈现红色。因甲基红指示剂变色范围是pH4 . 4 (红色)一pH6 . 2 (黄色)。若某些细菌如产气杆菌,分解葡萄糖产生丙酮酸,但很快将丙酮酸脱梭,转化成醇等物,则培养基的pH 仍在6 . 2 以上,故此时加入甲基红指示剂,呈现黄色。 (4)大分子物质代谢实验. 靛基质(口引睬)试验 某些细菌,如大肠杆菌,能分解蛋白质中的色氨酸,产生靛基质(叫睬),靛基质与对二甲基氨基苯甲醛结合,形成玫瑰色靛基质(红色化合物)。 硫化氢试验 某些细菌能分解含硫的氨基酸(肌氨酸、半肌氨酸等),产生硫化氢,硫化氢与培养基中的铅盐或铁盐,形成黑色沉淀硫化铅或硫化铁。为硫化氢试验阳性,可借以鉴别细菌。 明胶液化实验 某些细菌具有胶原酶,使明胶被分解,失去凝固能力,呈现液体状态,是为阳性。淀粉水解试验(在紫外诱变中做,本实验不做) 细菌对大分子的淀粉不能直接利用,须靠产生的胞外酶(淀粉酶)将淀粉水解为小分子糊精或进一步水解为葡萄糖(或麦芽糖),再被细菌吸收利用,细菌水解淀粉的过程可通过底物的变化来证明,即用碘测定不再产生蓝色。 (5)有机酸盐及氨盐利用试验 柠檬酸盐利用试验 柠檬酸盐培养基系一综合性培养基,其中柠檬酸钠为碳的唯一来源。而磷酸二氢按是氮的唯一来源。有的细菌如产气杆菌,能利用柠檬酸钠为碳源,因此能在柠檬酸盐培养基上生长,并分解柠檬酸盐后产生碳酸盐,使培养基变为碱性。此时培养基中的溟廖香草酚蓝指示剂由绿色变为深蓝色。不能利用柠檬酸盐为碳源的细菌,在该培养基上不生长,培养基不变色。 2、实验仪器,材料和用具 (1)实验仪器 37OC 恒温培养箱、20OC 恒温培养箱(室温代替)。 (2)微生物材料 大肠杆菌、变形杆菌、枯草杆菌、产气杆菌这四种菌种的斜面各1 支。 (3)试剂

细菌鉴定及检测方法

细菌鉴定及检测方法 一、启动条件 1、目的样出现坏包,若批次相同,取表现性状相同的任意一包进行细菌初步鉴 定。若批次不同则分别进行细菌初步鉴定。 2、随机样出现坏包,必须进行细菌初步鉴定。 二、胀包 1、记录批次。 2、及时用72%的酒精对样品的外表进行消毒,尽量不损坏封合待以后检查。在 超净台内以无菌操作剪开包装,再避开横竖封处剪开一个圆形或三角形。3、对样品进行微生物划线培养。 3.1采用普通营养琼脂培养基做细菌的划线培养36±1℃、48小时。 3.2分别吸取10毫升样品到两个无菌的小试管中,,分别在80和100℃的水 浴中加热10分钟,冷却用营养琼脂分别做芽孢(36±1℃、72小时) 和耐热芽孢(55±1℃、72小时)的划线培养。 3.3采用普通营养琼脂培养基或快速检测培养基做嗜冷菌/低温菌的划线培 养(4—6℃ 10天或21±0.5℃ 25小时)。 3.4 必须用高盐察氏或虎红琼脂培养基做霉菌和酵母菌的划线培养 (25—28℃ 5--7天) 4、对样品做感官检测。 5、用PH计检测样品的PH值。 6、将样品倒掉,进行包装密封性检查,并进行记录。 7、记录菌落特征。 8、选区不同形态的单一菌落进行坚定。 8.1 革兰氏阴性菌和阳性菌的鉴定: 8.1.1涂片、革兰氏染色、镜检。或结晶紫染色、镜检、氢氧化钾拉 丝试验。 8.1.2革兰氏染色、结晶紫染色方法见《微生物检测》 8.1.3氢氧化钾拉丝试验 在微生物载物片上滴一滴3%氢氧化钾,用接种针从培养皿上的

菌落中挑取微生物,放在氢氧化钾溶液中用力搅拌。7—10秒后,抬 起针头,观察针头和玻片之间是否有丝状物,如果15—20 秒后二者 之间无丝状物,停止搅拌。 判定:无丝状物阳性;有丝状物阴性。 8.2 过氧化氢酶试验(或过氧化氢酶试纸)(产气试验): 试剂:10%过氧化氢溶液 步骤:在微生物载物片上滴一滴10%过氧化氢,用接种针从培养皿上的菌落中挑取微生物,放在过氧化氢溶液中看是否有气体产生。 判定:产气阳性;不产气阴性。 8.3氧化酶试验 试剂:含1%四甲基双噻二胺和99%的乙醇溶液。 步骤:用上述试剂将一张滤纸浸透(或直接采用氧化酶试纸条),然后进行细菌培养物的涂片试验。 判定:30秒内使显色物质变为深蓝色阳性,不变色阴性。 三、酸包 1、发现酸包后,及时将料液快速转入无菌瓶中。 2、记录批次 3、其它项目检测同胀包。

生活中有哪些常见的致病菌

生活中有哪些常见的致病菌 一、人体中的常见的致病菌: 1、葡萄球菌: 属革兰氏阳性球菌。是人体皮肤上寄居最多的致病菌,也见于鼻咽等处。金黄色葡萄球菌致病力最强,主要产生溶血素、杀白细胞素和血浆凝固酶等,造成许多种感染,如疖、痈、脓肿和伤口感染等。金黄色葡萄球菌感染的特点是局限性组织坏死,脓液稠厚、黄色、不臭。也能引起全身性感染。 2、链球菌: 属革兰氏染色阳性球菌。存在于口、鼻、咽和肠腔内。链球菌的种类很多,溶血性链球菌、绿色链球菌和粪链球菌是常见的致病菌。溶血性链球菌能产生溶血素和透明质酸酶、链激酶等,溶解破坏细胞间质中的透明质酸、纤维蛋白和其他蛋白质,使炎症易扩散而缺乏局限化的倾向。脓液特点是比较稀薄,淡红色,量较多。典型的感染是急性蜂窝织炎、淋巴管炎等。绿色链球菌是一些胆道感染和亚急性心内膜炎的致病菌。粪链球菌属厌氧菌,常和大肠杆菌一同引起混合感染。 3、大肠杆菌: 革兰氏染色阴性。寄居于肠道内。对维生素K的合成有重要作用。它的单独致病力不大,若和其他致病菌在一起时,可造成严重的混合感染,如大面积烧伤感染、阑尾脓肿、急性胆囊炎等,产生的脓液稠厚,有粪臭。 4、绿脓杆菌: 革兰氏染色阴性。常寄居于肠道和皮肤上,它对大多数抗菌药物不敏感,故成为继发感染中的重要致病菌,特别是大面积烧伤感染时,可引起难以控制的绿脓杆菌败血症。绿脓杆菌感染的伤口常不易愈合,其脓液呈淡绿色,有腥臭味。 5、变形杆菌: 革兰氏染色阴性。存在于肠道和前尿道,为尿路感染、急性腹膜炎和大面积烧伤感染的致病菌之一。变形杆菌对大多数抗菌药物有耐药性。脓液具有特殊的恶臭。 6、无芽胞厌氧菌: 革兰氏染色阴性的专性厌氧菌。在一般外科感染中,此类细菌为重要的病原体之一。具有临床意义的有脆弱类杆菌、核梭形菌、消化球菌和消化链球菌等多种。这些无芽胞厌氧菌寄生在人体内的腔道,特别是胃肠道(结肠内的数量最多)、口腔、阴道等处。它们与需氧菌共同构成机体的正常菌群。正常情况下保持菌群相对平衡,对人体无害。其致病条件是:当某些原因(如血液供应障碍、组织坏死、需氧菌共生等)造成局部组织的氧化还原电势降低,便有利于无芽胞厌氧菌的繁殖。在机体许多封闭部位,单纯厌氧菌可造成感染,但多数厌氧菌是与其他需氧菌共生而引起感染的。厌氧菌感染脓液有恶臭。目前有效的治疗药是甲硝哒哇(灭滴灵)。 二、食品中常见的致病菌: 1、肉毒杆菌: 偏爱高蛋白食物。肉毒杆菌是自然界广泛存在的一种细菌,在土壤、动物粪便等地方经常可以见到它。它尤其喜欢肉肠、火腿等富含蛋白质的食品,同时在豆制品和煮熟的黄豆、豆酱类食品中也可能含有。在我国的新疆、青海等少数民族地区,几乎每年都会出现因自制发酵肉制品而导致中毒甚至死亡的事件。 2、沙门氏菌: 多在动物性食品中出现。它是导致我国食物中毒的主要元凶之一,通常寄居在人或动物肠道内。它主要污染动物性食品,包括禽畜类、蛋类、奶类及其制品,如果没有彻底加热,则可能感染。美国曾多次出现大规模沙门氏菌污染事件,包括鸡蛋等。

常见细菌种属鉴定

常见细菌种属鉴定 摘要:【目的】了解细菌生理生化反应原理,掌握细菌鉴定中常见的生理生化反应方法。分析不同细菌对不同含碳、含氮化合物的分解利用情况。研究细菌在不同培养基的不同生长现象及其代谢产物在鉴别细菌中的意义。【原理】各种细菌所具有的酶系统不尽相同,对营养基质的分解能力也不一样,因而代谢产物存在差别。以此用生理生化试验的方法检测细菌对各种基质的代谢作用及其代谢产物,从而鉴别细菌的种属,称之为细菌的生理生化反应。关键词:微生物;细菌;种属;鉴定 Common bacterial species identification Abstract: [ Objective ] to understand bacterial physiological and biochemical reaction principle, master the identification of bacteria commonly found in the physiological and biochemical reaction method. Analysis of different bacteria on different carbon, nitrogen containing compounds are decomposed using the situation. Studies on bacteria in different culture medium with different growth phenomenon and its metabolites in bacterial identification and significance of. [ principle ] various bacteria with enzyme system is endless and same, on nutrition matrix decomposition ability is different, so the metabolite differences. By physiological and biochemical test methods for detection of bacteria on a variety of substrate metabolis m and its metabolites, thus differentiating bacterial species, known as bacterial physiological and biochemical reaction. Key words: microbe; bacteria; species identification 前言 在所有生活细胞中存在的全部生物化学反应称之为代谢。代谢的过程主要是酶促反应过程。具有酶功能的蛋白质多数在细胞内,称为胞内酶(endoenzymes)。许多细菌产生胞外酶(exoenzymes),这些酶从细胞中释放出来,以催化细胞外的反应。各种微生物在代谢类型上表现出很大的差异,如表现在对大分子糖类和蛋白质的分解能力以及分解代谢的最终产物的不同,反映出它们具有不同的酶系和不同的生理特性,这些特性可被用作为细菌鉴定和分类的内容。 在这部分实验中,通过细菌对大分子物质的水解、糖发酵实验、鉴定肠道菌的不同生理生化反应等几个试验,来证明不同细菌生理生化功能的多样性。 1 .材料和方法 1.1实验器材 1.1.1菌种 枯草芽孢杆菌、大肠杆菌、普通变形杆菌; 1.1.2培养基 固体淀粉培养基、葡萄糖发酵培养基、乳糖发酵培养基、葡萄糖蛋白胨水培养基等; 1.1.3试剂和溶液 甲基红,Lugol’s碘液,40%的KOH,5%的a-萘酚溶液; 1.1.4仪器或其他用具 无菌培养皿,无菌试管,杜氏小管,记号笔,移液管及无菌枪头,棉塞,皮筋,报纸,培养箱等。

相关文档