文档库 最新最全的文档下载
当前位置:文档库 › 迈氏干涉仪精密丝杠修正系数的研究论文

迈氏干涉仪精密丝杠修正系数的研究论文

迈氏干涉仪精密丝杠修正系数的研究论文
迈氏干涉仪精密丝杠修正系数的研究论文

迈氏干涉仪精密丝杠修正系数的研究

XXX

(XXXXXX学院,XXXXXX班,120123XXXXXX)

摘要:介绍了利用逐差法对迈克尔逊干涉仪的修正系数的实验及求解过程。

关键词:迈克尔逊干涉仪;逐差法;修正系数

1.引言

迈克尔逊干涉仪是一种利用分振幅法实现干涉的精密光学仪器。它可用来观察许多干涉现象,研究光源的时间相干性,进行各种精密的测量(1)(2)。迈克尔逊干涉仪经长期使用后,有机械磨损其读数已经不再精确,其精密的丝杠的螺间距已经不再精确到1mm,因此对其读数进行修正是必要的(3)。

2.理论依据

如果迈克尔逊干涉仪的直接读数是X',而精确读数是X,它们之间的关系为:

X=X’(1+α)

在精密丝杠的较小长度内可以认为α是定值,所以有△X=△X’(1+α)即:

α=△X/△X’-1 (1)

3.实验步骤

3.1准备工作

布置好光路,按干涉仪调整方法,调好干涉仪在激光器与调好的干涉仪之间加一短焦距凸透镜,得一点光源,均匀M1,M2的中央部分,这时在屏幕上可看到干涉条纹,调节固定反射镜M2后的拉簧丝杆是条纹中心出现在视场中央,这时当屏与广垂直时可看到图形条纹。3.2测量操作

3.2.1移动凸透镜反射镜,接收屏等,观察干涉条纹的变化情况。

3.2.2调节微调鼓轮的准线对正零刻度线时,再调节粗调古伦使读数窗口内的准线正对某一刻度线转动微调鼓轮使圆环在中央连续吞或吐后,停止转动,记下M1位置,然后再转动微调鼓轮,使圆环连续吞或吐100环,再记下M1位置,连续测8次。

4.数据记录及处理

4.1数据记录

X1’X2’X3’X4’X5’X6’X7’X8’

4.2数据处理

△X/K算出理论值△X,△X=1/2*400*632.8nm=0.12656mm。

△X1’=| X5’- X1’|……△X4’=| X8’- X4’|

△X1’△X2’△X3’△X4’0.13247 0.13125 0.13066 0.12898

5.1结论

△X带入(1)式中可得该迈克尔逊干涉仪的修正系数为-0.03271。

5.2误差分析

5.2.1实验中空程没能完全消除。

5.2.2百条条纹的开始计数点和计数结束点的判定存在误差。

5.2.3时存在随机误差。

5.2.4环境中的振动等因素的干扰产生偏差。

参考文献

(1)李学慧,大学物理实验,2005.

(2)张兆奎,大学物理实验,2005.

(3)郇维亮,关于迈克耳逊干涉仪修正系数的讨论,大学物理实验,2008.2.

THE RESEARCH OF MICHELSON INTERFEROMETER CORRECTION COEFFICIENT

XXXX (XXXXXXXXXXXXX ,XXXXXXXX,12 0123XXXXXXXXX)

Abstract: The article introduced the experiment about the correction coefficient of Michelson Interferometer with the method of successive difference and the process of working it out. Keyword: Michelson interferometer; the method of successive difference; correction coefficient

迈克尔逊干涉仪及其应用

迈克尔逊干涉仪及其应用 迈克尔逊干涉仪的应用 迈克尔逊干涉仪是一种利用分振幅法实现干涉的精密光学仪器.自1881 年问世以来,迈克尔逊曾用它完成了三个著名的实验:否定“ 以太” 的迈克尔逊—莫雷实验;光谱精细结构和利用光波波长标定长度单位.迈克尔逊干涉仪结构简单、光路直观、精度高,其调整和使用具有典型性.根据迈克尔逊干涉仪的基本 原理发展的各种精密仪器已广泛应用于生产和科研领域. 【预习要求】 1. 阅读实验十六,理解光的干涉、等倾干涉与等厚干涉 . 2. 了解定域干涉与非定域干涉概念 . 3. 了解迈克尔逊干涉仪的结构和使用 . 【实验目的】 1. 研究迈克尔逊干涉仪上各种光的干涉现象 . 2. 了解迈克尔逊干涉仪的应用 . 【实验仪器】 迈克尔逊干涉仪,法布里-珀罗干涉仪,氦氖激光器,钠光灯,白炽灯, 扩束镜 【实验要求】 1. 定域干涉与非定域干涉的研究 (1)观察激光产生的定域干涉与非定域干涉; (2)粗略测定激光定域等倾干涉条纹和等厚干涉条纹的定域位置(精确到 mm ); (3)观察钠光产生的定域干涉与非定域干涉 . 2. 钠光双线波长差与相干长度的测定 (1)用迈克耳孙干涉仪测定钠光双线波长差; (2)用迈克耳孙干涉仪测定钠光相干长度;

(3)用迈克耳孙干涉仪考察氦-氖激光的相干长度 . 3. 钠光双线波长差的测定与考察补偿板的作用 (1)用迈克耳孙干涉仪测定钠光双线波长差; (2)用法布里-珀罗干涉仪测定钠光双线波长差; (3)观察无补偿板的迈克耳孙干涉仪中条纹的特点 . 【实验提示】 1. 如何获得点光源和面光源?如何测定干涉条纹的定域位置? 2. 钠光包含中心波长分别为589.0nm 和589.6nm 的两条谱线,在迈克耳逊干涉仪中它的干涉条纹有什么特点? 测波长差的公式;能用测出的波长差计算相干长度吗?测定光源相干长度的方法,实际可能达到的精度 . 3. 钠光包含中心波长分别为589.0nm 和589.6nm 的两条谱线,在迈克耳逊干涉仪和法布里-珀罗干涉仪中它的干涉条纹各有什么特点? 4. 迈克耳逊干涉仪中补偿板有哪些作用? 5.考虑实际可能达到的精度,确定是否要用微动手轮,应如何安排测量次数,如何处理数据 . 【设计报告要求】 1 . 写明实验的目的和意义 2 . 阐明实验原理和设计思路 3 . 说明实验方法和测量方法的选择 4 . 列出所用仪器和材料 5 . 确定实验步骤 6 . 设计数据记录表格 7 . 确定实验数据的处理方法 【思考题】

迈克尔逊干涉仪实验报告87789

迈克耳逊干涉仪 一.实验目的 1.了解迈克尔逊干涉仪的结构和原理,掌握调节方法; 2.用迈克尔逊干涉仪测量钠光波长和精细结构。 二.实验仪器 迈克尔逊干涉仪、钠光灯、透镜等。 三.实验原理 迈克耳孙干涉仪原理如图所示。两平面反射镜M1、M2、光源 S和观察点E (或接收屏)四者北东西南各据一方。M1、M2相互垂直,M2是固定的,M1可沿导轨做精密移动。G1和G2是两块材料相同薄厚均匀相等的平行玻璃片。G1的一个表面上镀有半透明的薄银层或铝层,形成半反半透膜,可使入射光分成强度基本相等的两束光,称G1为分光板。G2与G1平行,以保证两束光在玻璃中所走的光程完全相等且与入射光的波长无关,保证仪器能够观察单、复色光的干涉。可见G2作为补偿光程用,故称之为补偿板。G1、G2与平面镜M1、M2倾斜成45°角。

如上图所示一束光入射到G1上,被G1分为反射光和透射光,这两束光分别经M1和M2反射后又沿原路返回,在分化板后表面分别被透射和反射,于E处相遇后成为相干光,可以产生干涉现象。图中M′2是平面镜M2由半反膜形成的虚像。观察者从E处去看,经M2反射的光好像是从M′2来的。因此干涉仪所产生的干涉和由平面M1与M′2之间的空气薄膜所产生的干涉是完全一样的,在讨论干涉条纹的形成时,只需考察M1和M2两个面所形成的空气薄膜即可。两面相互平行可到面光源在无穷远处产生的等倾干涉,两面有小的夹角可得到面光源在空气膜近处形成的等厚干涉。若光源是点光源,则上述两种情况均可在空间形成非定域干涉。设M1和M′2之间的距离为d,则它们所形成的空气薄膜造成的相干光的光程差近似用下式表示 若M1与M′2平行,则各处d相同,可得等倾干涉。系统具有轴对称不变性,故屏E上的干涉条纹应为一组同心圆环,圆心处对应的光程差最大且等于2d,d 越大圆环越密。反之中心圆斑变大圆环变疏。若d增加则中心“冒出”一个条纹,反之d减小则中心“缩进”一个条纹。故干涉条纹在中心处“冒出”或“缩进”的个数N与d的变化量△d之间有下列关系 根据该关系式就可测量光波波长λ或长度△d。 钠黄双线的精细结构测量原理简介: 干涉条纹可见度定义为:当,时V=1, 此时干涉条纹最清晰,可见度最大;时V=0,可见度最小。 从一视见度最低的位置开始算起,测量一次视见度最低处的位置,者其间的光程差 为,且由关系算出谱线的精细结构。 四.实验结果计与分析 次数初读数 d1(mm) 末读数 d2(mm) △ d=|d1-d2| (mm) (nm)(nm ) 137.7247937.754420.02963592.6592.6

迈克尔逊干涉仪实验作业

迈克尔逊干涉仪的等倾干涉的特点 麦克尔逊干涉仪观察的等倾干涉条纹是同心圆环状。 而且移动眼睛时不会有条纹移出和移入视场。这样才能确保是等倾,即两板平行。 迈克尔逊干涉仪发明历史是什么? 迈克尔逊干涉仪,是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。迈克尔逊和爱德华·威廉姆斯·莫雷使用这种干涉仪于1887年进行了著名的迈克耳孙-莫雷实验,并证实了以太的不存在。迈克尔逊干涉仪的最著名应用即是它在迈克尔逊-莫雷实验中对以太风观测中所得到的零结果,这朵十九世纪末经典物理学天空中的乌云为狭义相对论的基本假设提供了实验依据。 迈克尔逊干涉仪还可测哪些物理量? 一、传统迈克尔逊干涉仪的测量应用 1. 微小位移量和微振动的测量; 采用迈克尔逊干涉技术,通过测量KDP晶体生长的法向速率和台阶斜率来研究其台阶生长的动力学系数、台阶自由能、溶质在边界层内的扩散特征以及激发晶体生长台阶的位错活性2. 角度测量: 仪器的两个反射镜由三棱镜代替,反射镜组安装在标准被测转动器件的转动台上。被测转角依照正弦原理转化成反射镜组两个立体棱镜的相应线位移,而后进行干涉测量,小角度干涉仪测角分辨率达到10-3角秒量级。 3.薄透明体的厚度及折射率的同时测量 在不放薄膜时调出白光干涉条纹,而后插入透明薄膜,在薄膜与光线垂直时调出白光干涉条纹后,记录此时动镜移动的距离,再将薄膜偏转α角(45°比较方便),再调出白光干涉条纹,再记录动镜移动的距离。通过动镜这两次移动的距离和薄膜的偏转角,就可以同时计算出待测薄膜的厚度和折射率。 4.气体浓度的测量: 在迈克尔逊干涉仪的参考光路中,放入一个透明气体室,利用白炽灯做光源,在光程差为零的附近观察到对称的几条彩色条纹,中间的黑色条纹是等光程(Δ=0)精确位置。利用通入气体前后等光程位置的改变量,计算出气体的折射率,再利用气体的折射率与气体浓度的关系,计算出气体浓度。 4.引力波探测(超大型迈克尔逊干涉仪) 引力波存在是广义相对论最重要的预言,对爱因斯坦引力波的探测是近一个世纪以来最重大的基础探索项目之一。 2.光纤迈克尔逊干涉仪的应用: (1).混凝土内部应变的测量 把组成光纤迈克尔逊干涉仪的一个臂预埋到混凝土中,当混凝土内部发生膨胀、收缩或变形时,光纤迈克尔逊的白光干涉条纹发生变化,这样可以混凝土内部的一维和二维很小的应变状态进行测量,可以及时了解材料内部应变信息以及内部应变状态分布。由于光纤传感器体积小,重量轻,柔软易于布置,可埋入性好,抗拉性好,耐腐蚀性强;不改变材料结构的受力状态;测量的成本低等特点。 (2). 地震波加速度的测量 以全光纤迈克尔逊干涉仪为基础,研制出由地震敏感元件组成的单分量双光路加速度地震检

迈克尔逊干涉仪的异常现象及分析

伊犁师范学院 本科生毕业论文(设计) 开题报告 论文题目:迈克尔逊干涉仪在实验中异常现象 分析和处理 学生姓名:程晓虎 系专业:物理科学与技术学院物理学专业学号: 2011070201003 指导教师:阿尔达克 开题报告时间:年月日 伊犁师范学院教务处制

填表说明和要求 1、开题报告作为毕业论文(设计)答辩小组对学生答辩资格审查的主要依据材料之一。此报告应在指导老师指导下,学生在毕业论文(设计)工作前期内完成,经指导老师签署意见,同意后生效。 2、学生阅读论文、资料的篇数一般不少于10篇,开题报告中应包括文献综述、选题依据、可行性分析及预期成果。字数不少于2000字。 3、开题报告内容字号为宋体字小四号,行间距为1.5倍行距。 此表一式一份,随同学生毕业(设计)论文一起有各系存档。

一、文献阅读

二、开题报告 一、文献综述 迈克尔逊干涉仪,是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹。主要用于长度和折射率的测量。在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。利用该仪器的原理,研制出多种专用干涉仪。 (一)迈克尔逊干涉仪工作原理 干涉条纹是等光程差点的轨迹,因此,要分析某种干涉产生的图样,必求出相干光的光程差位置分布的函数。若干涉条纹发生移动,一定是场点对应的光程差发生了变化,引起光程差变化的原因,可能是光线长度L发生变化,或是光路中某段介质的折射率n发生了变化,或是薄膜的厚度e发生了变化。 G2是一面镀上半透半反膜,M1、M2为平面反射镜,M1是固定的,M2和G1精密丝相连,使其可以向前后移动,最小读数为10-4mm,可估计到10-5mm, M1和M2后各有几个小螺丝可调节其方位。当M2和M1’严格平行时,M2会移动,表现为等倾干涉的圆环形条纹不断从中心“吐出”或向中心“吞进”。两平面镜之间的“空气间隙”距离增大时,中心就会“吐出”一个个条纹;反之则“吞进”。M2和M1’不严格平行时,则表现为等厚干涉条纹,在M2移动时,条纹不断移过视场中某一标记位置,M2平移距离 d 与条纹移动数 N 的关系满足。 迈克尔逊干涉仪示意

迈克尔逊干涉仪实验报告

迈克尔逊和法布里-珀罗干涉仪 摘要:迈克尔逊干涉仪是一种精密光学仪器,在近代物理和近代计量技术中都有着重要的应用。通过迈克尔逊干涉的实验,我们可以熟悉迈克尔逊干涉仪的结构并掌握其调整方法,了解电光源非定域干涉条纹的形成与特点和变化规律,并利用干涉条纹的变化测定光源的波长,测量空气折射率。本实验报告简述了迈克尔逊干涉仪实验原理,阐述了具体实验过程与结果以及实验过程中的心得体会,并尝试对实验过程中遇到的一些问题进行解释。 关键词: 迈克尔逊干涉仪;法布里-珀罗干涉仪;干涉;空气折射率; 一、引言 【实验背景】 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹,主要用于长度和折射率的测量。法布里-珀罗干涉仪是珀罗于1897年所发明的一种能现多光束干涉的仪器,是长度计量和研究光谱超精细结构的有效工具; 它还是激光共振腔的基本构型,其理论也是研究干涉光片的基础,在光学中一直起着重要的作用。在光谱学中,应用精确的迈克尔逊干涉仪或法布里-珀罗干涉仪,可以准确而详细地测定谱线的波长及其精细结构。 【实验目的】 1.掌握迈克尔逊干涉仪和法布里-珀罗干涉仪的工作原理和调节方法; 2.了解各类型干涉条纹的形成条件、条纹特点和变化规律; 3.测量空气的折射率。 【实验原理】 (一) 迈克尔逊干涉仪 1M 、2M 是一对平面反射镜,1G 、2G 是厚度和折射率都完全相同的一对平行玻璃板,1G 称 为分光板,在其表面 A 镀有半反射半透射膜,2G 称为补偿片,与1G 平行。 当光照到1G 上时,在半透膜上分成两束光,透射光1射到1M ,经1M 反射后,透过2G ,在1G 的半透膜上反射到达E ;反射光2射到2M ,经2M 反射后,透过1G 射向E 。两束光在玻璃中的 光程相等。当观察者从E 处向1G 看去时,除直接看到2M 外还可以看到1M 的像1 M 。于是1、2

物理实验论文——迈克尔逊干涉仪

物理实验论文——迈克尔逊干涉仪 引言: 在物理学史上,迈克尔逊曾用自己发明的光学干涉仪器进行实验,精确地测量微小长度,否定了“以太”的存在,这个著名的实验为近代物理学的诞生和兴起开辟了道路,1907年获诺贝尔奖。迈克尔逊干涉仪原理简明,构思巧妙,堪称精密光学仪器的典范。随着对仪器的不断改进,还能用于光谱线精细结构的研究和利用光波标定标准米尺等实验。目前,根据迈克尔逊干涉仪的基本原理,研制的各种精密仪器已广泛地应用于生产、生活和科技领域。 光的干涉是重要的光学现象之一,是光的波动性的重要实验依据。两列频率相同、振动方向相同和位相差恒定的相干光在空间相交区域将会发生相互加强或减弱现象,即光的干涉现象。光的波长虽然很短,但干涉条纹的间距和条纹数却很容易用光学仪器测得。根据干涉条纹数目和间距的变化与光程差、波长等的关系式,可以推出微小长度变化(光波波长数量级)和微小角度变化等,因此干涉现象在照相技术、测量技术、平面角检测技术、材料应力及形变研究等领域有着广泛地应用。 相干光源的获取除用激光外,在实验室中一般是将同一光源采用分波阵面或分振幅2种方法获得,并使其在空间经不同路径会合后产生干涉。 迈克尔逊干涉仪(如图1)是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。利用该仪器的原理,研制出多种专用干涉仪。 实验原理: 1.迈克尔逊干涉仪 图1是迈克尔逊干涉仪实物图。图2是迈克尔逊干涉仪的光路示意图,图中M1和M2是在相互垂直的两臂上放置的两个平面反射镜,其中M1是固定的;M2由精密丝杆控制,可沿臂轴前、后移动,移动的距离由刻度转盘(由粗读和细读2组刻度盘组合而成)读出。在两臂轴线相交处,有一与两轴成45°角的平行平面玻璃板G1,它的第二个平面上镀有半透(半反射)的银膜,以便将入射光分成振幅接近相等的反射光⑴和透射光⑵,故G1又称为分光板。G2也是平行平面玻璃板,与G1平行放置,厚度和折射率均与G1相同。由于它补偿了光线⑴和⑵因穿越G1次数不同而产生的光程差,故称为补偿板。

迈克尔逊干涉仪实验报告精品

1 2 1 2 1 2 1 2 1 2 实验目的: 1) 学会使用迈克尔逊干涉仪 2) 观察等倾、等厚和非定域干涉现象 3) 测量氦氖激光的波长和钠光双线的波长差。 实验仪器: 氦氖激光光源、钠光灯、迈克尔逊干涉仪、毛玻璃屏实验原理: 1:迈克尔逊干涉仪的原理: 迈克尔逊干涉仪的光路图如图所示,光源 S 出 发的光经过称 45。 放置的背面镀银的半透玻璃板 P 1 被分成互相垂直的强度几乎相等的两束光, 光 路 1 通过 M 1 镜反射并再次通过 P 1 照射在观察平 面 E 上,光路 2 通过厚度、折射率与 P 1 相同的玻 璃板 P 2 后由 M 2 镜反射再次通过 P 2 并由 P 1 背面的 反射层反射照射在观察平面 E 上。图中平行于 M 的M ' 是M 经 P 反射所成的虚 1 2 2 1 像,即 P 到 M 与 P 到 M ' 的光程距离相等,故从 P 到M 的光路可用 P 到M ' 等 价替代。这样可以认为 M 与 M ' 之间形成了一个空气间隙, 这个空气间隙的厚度 可以通过移动 M 1 完成,空气间隙的夹角可以通过改变 M 1 镜或 M 2 镜的角度实现。 当 M 与M ' 平行时可以在观察平面 E 处观察到等倾干涉现象,当 M 与M ' 有一 1 2 1 2 定的夹角时可以在观察平面 E 处观察到等厚干涉现象。 2:激光器激光波长测量原理: 由等倾干涉条纹的特点,当 θ =0 时的光程差 δ 最大,即圆心所对应的

1 2 1 2 干 涉级别最高。转动手轮移动 M1,当 d 增加时,相当 于增大了和 k 相应的θ 角 ,可以看到圆 环一个个从中心 “冒出” ;若 d 减小时,圆环逐渐 缩小, 最后“淹没”在中心处。 每“冒” 出或“ 缩”进一个干涉环,相应的光程差改变了一个波长, 也就是 M 与 M ’ 之间距离 变化了半个波长。 若将 M 与 M ’ 之间距离改变了 △d 时,观察到 N 个干涉环变化,则 △d=N 由此可测单色光 的波长。 3:钠光双线波长差的测定: 在使用迈克尔逊干涉仪观察低压钠黄灯双线的等倾干涉条纹时,可以看到 随着动镜 M 1 的移动,条纹本身出现了由清晰到模糊再到清晰的周期性变化,即 反衬度从最大到最小再到最大的周期性变化, 利用这一特性, 可测量钠光双线波长差,对于等倾干涉而言,波长差的计算公式为: 实验内容与数据处理: (1) )观察非定域干涉条纹 1) 通过粗调手轮打开激光光源, 调节激光器使其光束大致垂直于平面反光镜 M 2 入射,取掉投影屏 E ,可以看到两排激光点 2) 粗调手轮移动 M 1 镜的位置,使得通过分光板分开的两路光光程大致相等 3) 调节M 1 、M 2 镜后面的两个旋钮, 使两排激光点重合为一排,并使两个最 亮的光点重合在一起。此时再放上投影屏 E ,就可以看到干涉条纹。 4) 仔细调节 M 、 M 镜后面的两个旋钮,使 M 与 M ' 平行,这时在屏上可 以看到同心圆条纹,这些条纹为非定域条纹。 5) 转动微调手轮,观察干涉条纹的形状、疏密及中心“吞” 、“吐”条纹随光程差 改变的变化情况。

迈氏干涉仪教程文件

迈氏干涉仪

实验题目:迈氏干涉仪 实验目的: 了解迈克尔孙干涉仪的原理、结构和调节方法,观察非定域干涉条纹,测量氦氖激光的波长,并增强对条纹可见度和时间相干性的认识。 实验仪器: 迈克尔逊干涉仪、氦氖激光器、透明薄片样品、白炽灯、遮光器等。 实验原理:(点击跳过实验原理) 迈克尔孙干涉仪的结构和原理: 迈克尔孙干涉仪的原理图如图3.1.1-1所示,A和B为材料、厚度完全相同的平行板,A的一面镀上半反射膜,M1、M2为平面反射镜,M2是固定的,M1和精密丝杆相连,使其可前后移动,最小读数为10-4mm,可估计到10-5mm,M1和M2后各有几个小螺丝可调节其方位。 光源S发出的光射向A板而分成(1)、(2)两束光,这两束光又经M1和M2反射,分别通过A的两表面射向观察处O,相遇而发生干涉,B作为补偿板的作用是使(1)、(2)两束光的光程差仅由M1、M2与A板的距离决定。

由此可见,这种装置使相干的两束光在相遇之前走过的路程相当长,而且其路径是互相垂直的,分的很开,这正是它的主要优点之一。从O处向A处观察,除看到M1镜外,还可通过A的半反射膜看到M2的虚像M’2,M1与M2镜所引起的干涉,显然与M1、M’2引起的干涉等效,M1和M’2形成了空气“薄膜”,因M’2不是实物,故可方便地改变薄膜的厚度(即M1和M’2的距离),甚至可以使M1和M’2重叠和相交,在某一镜面前还可根据需要放置其他被研究的物体,这些都为其广泛的应用提供了方便。 点光源产生的非定域干涉: 一个点光源S发出的光束经干涉仪的等效薄膜表面M1和M’2反射后,相当于由两个虚光源S1、S2发出的相干光束(图3.1.1-2)。若原来空气膜厚度(即M1和M’2之间的距离)为h,则两个虚光源S1和S2之间的距离为2h,显然只要M1和M’2(即M2)足够大,在点光源同侧的任一点P上,总能有S1和S2的相干光线相交,从而在P点处可观察到干涉现象,因而这种干涉是非定域的。 若P点在某一条纹上,则由S1和S2到达该条纹任意点(包括P点)的光程差?是一个常量,故P点所在的曲面是旋转双曲面,旋转轴是S1、S2的连线,显然,干涉图样的形状和观察屏的位置有关。当观察屏垂直于S1、S2的连线时,干涉图是一组同心圆。下面我们利用图3.1.1-3推导?的具体形式。光程差

大学物理实验-迈克尔逊干涉仪

(1312实验室)迈克尔逊干涉仪实验 一.实验目的 (1)了解迈克尔逊干涉仪的光学结构及干涉原理,学习其调节和使用方法 (2)学习一种测定光波波长的方法,加深对等倾的理解 (3)用逐差法处理实验数据 二.实验仪器 迈克尔逊干涉仪、He-Ne激光器、扩束镜等。 三.实验原理 迈克尔逊干涉仪是l883年美国物理学家迈克尔逊(A.A.Michelson)和莫雷(E.W.Morley)合作,为研究“以太漂移实验而设计制造出来的精密光学仪器。用它可以高度准确地测定微小长度、光的波长、透明体的折射率等。后人利用该仪器的原理,研究出了多种专用干涉仪,这些干涉仪在近代物理和近代计量技术中被广泛应用。 1.干涉仪的光学结构 迈克尔逊干涉仪的光路和结构如图1与2 所示。M1、M2是一对精密磨光的平面反射镜, M1的位置是固定的,M2可沿导轨前后移动。G1、 G2是厚度和折射率都完全相同的一对平行玻璃 板,与M1、M2均成45°角。G1的一个表面镀 有半反射、半透射膜A,使射到其上的光线分为 光强度差不多相等的反射光和透射光;G1称为 分光板。当光照到G1上时,在半透膜上分成相 互垂直的两束光,透射光(1)射到M1,经M1 反射后,透过G2,在G1的半透膜上反射后射向 E;反射光(2)射到M2,经M2反射后,透过 G1射向E。由于光线(2)前后共通过G1三次, 而光线(1)只通过G1一次,有了G2,它们在 玻璃中的光程便相等了,于是计算这两束光的光程差时,只需计算两束光在空气中的光程差就可以了,所以G2称为补偿板。当观察者从E处向G1看去时,除直接看到M2外还看到M1的像M1ˊ。于是(1)、(2)两束光如同从M2与M1ˊ反射来的,因此迈克尔逊干涉仪中所产生的干涉和M1′~M2间“形成”的空气薄膜的干涉等效。 反射镜M2的移动采用蜗轮蜗杆传动系统,转动粗调手轮(2)可以实现粗调。M2移动距离的毫米数可在机体侧面的毫米刻度尺(5)上读得。通过读数窗口,在刻度盘(3)上可读到0.01mm;转动微调手轮(1)可实现微调,微调手轮的分度值为1×10-4mm。可估读到10-5mm。M1、M2背面各有3个螺钉可以用来粗调M1和M2的倾度,倾度的微调是通过调节水平微调(15)和竖直微调螺丝(16)来实现的。 2. 单色点光源的非定域干涉 本实验用He-Ne激光器作为光源(见图3),激光通过扩束镜L汇聚成一个强度很高的点光源S,射向迈克尔逊干涉仪,点光源经平面镜M2、M2反射后,相当于由两个点光源S1ˊ和S2ˊ发出的相干光束。Sˊ是S的等效光源,是经半反射面A所成的虚像。S1′是S′经M1′所成的虚像。S2′是S′经M2所成的虚像。由图3可知,只要观察屏放在两点光源

马赫曾德干涉仪实验讲义

马赫曾德干涉仪 马赫——曾德干涉仪。马赫——曾德干涉仪(Mach-Zehnder; inter-ferometer)是一种 以实现干涉,被广泛用作传感器和光调制器。 一、实验目的 1.掌握马赫曾德干涉仪的原理和结构; 2. 组装并调节马赫曾德干涉仪,观察干涉条纹。 3. 学会调节两束相干光的干涉; 二、实验原理与仪器 He-Ne 激光器、平面反射镜1和平面反射镜2 、分束器、合束器、扩束滤波准直系统、可变光阑、光强衰减片、白屏。 图1 实验装置及光路图 图1为马赫曾德的实验装置图,:由He-Ne激光器发出的激光由扩束镜(显微物镜)、针孔滤波和透镜准直后形成宽口径平面波,经可变光阑后,光斑直径变为1厘米后,再经分束器形成两路:透射光和反射光。透射光被反射镜2反射后垂直入射到原始物平面Po上的物体上,经衍射后的物光经过合束器到达距离z=20厘米处的CCD记录面P H上。经过分束器后的反射光作为参考光被反射镜1和合束器反射到P H面上与物光干涉产生干涉条纹,被CCD 记录下来传输到计算机中。 三、实验内容和步骤 1 光学器件的共轴调节 调节激光器水平,调整各器件的高度的俯仰,使其共轴。在调节透镜时要注意反射光点重合。

2 平行光调节 利用调平的激光器,通过调节扩束准直系统,得到平行光。加入可变光阑,使平行光中心通过光阑的中心。通过针孔滤波和透镜准直获得宽口径平面波后搭建MZ干涉仪,保证两束光在合束器后完全重合并产生平行直条纹的干涉图样。 3.首先在激光束的传播方法放置分束器,将He-Ne激光器的主光束平分得到两个分光束。调整分束器角度,得到两条严格垂直的分光束。在光路1中放置反射镜1,将分光束1的传播方向改变,该反射镜与分光器位于同一列螺纹孔。反复调节反射镜的位置和反射角度,得到严格平行并且等高的两束光线。在光路2中放置反射镜2,如果调节的方法正确,主分光束的反射光和另外一条分光束可以刚好在空间相交,该交点基本可以刚好满足严格的等过程。 4.大致调整好分束镜和反射镜的光路,使两路光在合束器上汇合,并出射在白屏上(确定光斑是否落在各镜面中心,可用擦镜纸轻轻挡在镜面前观察光斑的位置)。 5.固定一路激光,测量记录光路的长度。调整另一路光路,使这路光的长度与刚刚记下的光路一致,固定光路。 6.将白屏移远(至少2m),观察白屏上的两个激光斑,若不重合,调节分束镜的控制钮,使两个光斑完美重合。 7.把白屏移回适合观察的位置,细调分束镜的控制钮并观察白屏上的激光干涉现象,直到现象最明显为止,得到清晰的竖直干涉条纹。 五、思考题 1.如果分束器后两路光光强不同,应该使用什么元件改善? 2.马赫曾德干涉仪和迈克尔逊干涉仪的区别是什么?各有什么特点?

迈克尔逊干涉仪

图 3-16-1 光路图 迈克尔逊干涉仪 姓名:祝文 学院:第一临床医学院 班级:麻醉131班 学号:6301613030 一.实验目的 (1)了解迈克尔逊干涉仪的光学结构及干涉原理,学习其调节和使用方法; (2)学习一种测定光波波长的方法,加深对等倾、等厚干涉的理解。 二. 实验仪器 迈克尔逊干涉仪、He-Ne 激光器。 三.实验原理 迈克尔逊干涉仪是l883年美国物理学家迈克尔逊(A.A.Michelson )和莫雷(E.W.Morley )合作,为研究“以太漂移实验而设计制造出来的精密光学仪器。用它可以高度准确地测定微小长度、光的波长、透明体的折射率等。后人利用该仪器的原理,研究出了多种专用干涉仪,这些干涉仪在近代物理和近代计量技术中被广泛应用。 1.干涉仪的光学结构 迈克尔逊干涉仪的光路和结构如图3-16-1与3-16-2所示。M 1、M 2是一对精密磨光的平面反射镜,M 1的位置是固定的,M 2可沿导轨前后移动。G 1、G 2是厚度和折射率都完全相同的一对平行玻璃板,与M 1、M 2均成45°角。G 1的一个表面镀有半反射、半透射膜A ,使射到其上的光线分为光强度差不多相等的反射光和透射光;G 1 称为分光板。当光照到G 1上时,在半透膜上分成相互垂直的两束 光,透射光(1)射到M 1,经M 1反射后,透过G 2,在G 1的半透 膜上反射后射向E ;反射光(2)射到M 2,经M 2反射后,透过 G 1射向E 。由于光线(2)前后共通过G 1三次,而光线(1)只通 过G 1一次,有了G 2,它们在玻璃中的光程便相等了,于是计算 这两束光的光程差时,只需计算两束光在空气中的光程差就可以 了,所以G 2称为补偿板。当观察者从E 处向G 1看去时,除直接 看到M 2外还看到M 1的像M 1ˊ。于是(1)、(2)两束光如同 从M 2与M 1ˊ反射来的,因此迈克尔逊干涉仪中所产生的干涉和 M 1′~M 2间“形成”的空气薄膜的干涉等效。 反射镜M 2的移动采用蜗轮蜗杆传动系统,转动粗调手轮(2) 可以实现粗调。M 2移动距离的毫米数可在机体侧面的毫米刻度尺 (5)上读得。通过读数窗口,在刻度盘(3)上可读到0.01mm ;转动微调手轮(1)可实现微调,微调手轮的分度值为1×10-4mm 。可估读到10-5mm 。M 1、M 2背面各有3个螺钉可以用来粗调M 1 和M 2的倾度,倾度的微调是通过调节水平微调(15)和竖直微调螺丝(16)来实现的。

组合干涉仪实验

组合干涉仪实验 内容(一) 干涉测量技术是一种利用光的干涉现象来测量某些物理量的微小变化的技术,一般情况下,它是将一束光通过光学元件分为两束,一束作为参考光,另一束作为测量光,测量光落在被测物体上或通过被测样品,然后再将这两束光重新拟合,利用干涉图形的变化,检查出目标某个物理量的微小变化. 这种测量方法由于大多采用高稳定度的、长相干的激光作为光源,因此一般都具有大量程、高分辨率、高精度、对目标影响小的特点,被广泛应用在国民经济的各个领域。 该技术在实际应用中,根据使用环境和要求的不同,往往采用不同的光路结构。本实验主要搭构三种较为常见的光路结构,组成①迈克尔逊干涉仪,②马赫-曾德尔干涉仪,③萨格奈克干涉仪,以熟悉它们的结构和特点。 实验目的 1.熟悉三种干涉仪结构; 2.研究空气折射率与压强的关系。 实验原理 1.迈克尔逊干涉仪 迈克尔逊(Michelson)干涉仪作为一种十分古老的干 涉仪,于1880年由迈克尔逊发明,并主要由此于1907年 获得诺贝尔奖金。迈克尔逊干涉仪基本光路结构如图1, 常被用来测量物体的微小位移变化。从光源1发出的一束 相干光经分束镜2一分为二,分为两束。一束透射光落在 反射镜M1上,另一束反射光落在发射镜M2上,M1、M2分别将这两束光沿原路反射回来,在分束镜1上重合后射入扩束镜3,投影在白屏4上,如果我们对光路调整的合适,将在白屏上看到一系列的明暗相间的干涉条纹,这些干涉条纹会随着M1或M2的移动而移动,且非常敏感,只要反射镜移动半个波长,干涉条纹就移动一个周期,而光波长一般都在微米量级,因此它具有很高的灵敏度和分辨率。 2.马赫-曾德尔干涉仪 马赫-曾德尔(Mach-Zehnder)干涉仪的光路 结构如图2所示, 从光源1发出的一束相干光经 分束镜2一分为二,分为两束。一束透射光落在 反射镜M1上,另一束反射光落在发射镜M2上, M1、M2分别将这两束光反射至分束镜3上,并使 这两束光重合,进入扩束镜4,如果调整合适,我 们可在扩束镜后的白屏5上看见一系列明暗相间 的干涉条纹。这种干涉仪主要用于测量透明物质 的折射率的变化,光纤传感器中的干涉仪大多采用这种光路结构, 3.萨格奈克干涉仪 萨格奈克(Sagnac)干涉仪的光路结构如图3所示,光路由一个分束镜2和三个反射镜M组成,它的光路比较特殊,两束光沿着相同的路径反向传播。由 3 图3萨格奈克干涉仪 5 图2马赫-曾德尔干涉仪 1 图1迈克尔逊干涉仪

迈克尔逊干涉仪

迈克尔逊干涉仪是利用干涉条纹精确测定长度或长度改变的仪器.它是迈克尔逊在1881年设计成功的。迈克尔逊和莫雷应用该仪器进行了测定以太风的著名实验.后人根据此种干涉仪研制出各种具有实用价值的干涉仪。 预备知识 ?光程:光波实际传播的路径与折射率的乘积, 光程差:,在杨氏干涉的例子里,它的光程差就可以表示 ? ?光程差与相位差的变换关系为: ?相干条件:两束光满足频率相同,振动方向相同,相位差恒定时即可成 为相干光源,这时的光强应表达为: 令;对应的位相差为

?获得相干光光源的两种常见方法 1.分波阵面法:从同一波阵面上获取对等的两部分作为子光源成 为相干光源;如杨氏实验等。 2.分振幅法:当一束光投射到两种介质的分界面时,它的所有的 反射光线或所有的透射光线会聚在一起时即可发生相干;如薄膜 干涉等。 ?迈克尔逊干涉仪的结构和工作原理 G2是一面镀上半透半反膜,M1、M2为平面反射镜,M1是固定的,M2和精密丝相连,使其可前后移动,最小读数为10-4mm,可估计到10-5mm, M1和M2后各有几个小螺丝可调节其方位。当M2和M1’严格平行时,M2移动,表现为等倾干涉的圆环形条纹不断从中心“吐出”或向中心“消失”。两平面镜之间的“空气间隙”距离增大时,中心就会“吐出”一个个条纹;反之则“吞进”一个个条纹。M2和M1’不严格平行时,则表现为等厚干涉条纹,M2移动时,条纹不断移过视场中某一标记位置,M2平移距离d 与条纹移动数N 的关系满足。

迈克尔逊干涉仪示意 经M2反射的光三次穿过分光板,而经M1反射的光只通过分光板一次.补偿板就是为了消除这种不对称而设置的.在使用单色光源时,补偿板并非必要,可以利用空气光程来补偿;但在复色光源时,因玻璃和空气的色散不同,补偿板则是不可缺少的。 若要观察白光的干涉条纹,两相干光的光程差要非常小,即两臂基本上完全对称,此时可以看到彩色条纹;若M1或M2稍作倾斜,则可以得到等厚的交线处(d=0)的干涉条纹为中心对称彩色直条纹,中央条纹由于半波损失为暗条纹。 实验内容 ?观察非定域干涉条纹,干涉条纹的形状、疏密及中心“吞”、“吐”条纹 随光程差的改变而变化情况; ?测量He-Ne激光的波长,利用公式计算,用适当的数据处理 方法求出值; ?测钠黄光波长及钠黄光双线的波长差,观察条纹的可见度的变化; ?测量钠黄光的相干长度,观察氦氖激光的相干情况; ?调节观察白光干涉条纹,测定透明薄片的折射率.

迈克尔逊干涉仪实验报告

迈克耳逊干涉仪 一. 实验目的 1.了解迈克尔逊干涉仪的结构和原理,掌握调节方法; 2.用迈克尔逊干涉仪测量钠光波长和精细结构。 二. 实验仪器 迈克尔逊干涉仪、钠光灯、透镜等。 三. 实验原理 迈克耳孙干涉仪原理如图所示。两平面反射镜M1、M2、光源 S和观察点E(或接收屏)四者北东西南各据一方。M1、M2相互垂直,M2是固定的,M1可沿导轨做精密移动。G1和G2是两块材料相同薄厚均匀相等的平行玻璃片。G1的一个表面上镀有半透明的薄银层或铝层,形成半反半透膜,可使入射光分成强度基本相等的两束光,称G1为分光板。G2与G1平行,以保证两束光在玻璃中所走的光程完全相等且与入射光的波长无关,保证仪器能够观察单、复色光的干涉。可见G2作为补偿光程用,故称之为补偿板。G1、G2与平面镜M1、M2倾斜成45°角。 如上图所示一束光入射到G1上,被G1分为反射光和透射光,这两束光分别经M1和M2反射后又沿原路返回,在分化板后表面分别被透射和反射,于E处相遇后成为相干光,可以产生干涉现象。图中M′2是平面镜M2由半反膜形成的虚像。观察者从E 处去看,经M2反射的光好像是从M′2来的。因此干涉仪所产生的干涉和由平面M1与M′2之间的空气薄膜所产生的干涉是完全一样的,在讨论干涉条纹的形成时,只需考察M1和M2两个面所形成的空气薄膜即可。两面相互平行可到面光源在无穷远处产生的等倾干涉,两面有小的夹角可得到面光源在空气膜近处形成的等厚干涉。若光源是点光源,则上述两种情况均可在空间形成非定域干涉。设M1和M′2之间的距离

为d ,则它们所形成的空气薄膜造成的相干光的光程差近似用下式表示 若M1与M ′2平行,则各处d 相同,可得等倾干涉。系统具有轴对称不变性,故屏E 上的干涉条纹应为一组同心圆环,圆心处对应的光程差最大且等于2d,d 越大圆环越密。反之中心圆斑变大圆环变疏。若d 增加 则中心“冒出”一个条纹,反之d 减小 则中心“缩进”一个条纹。故干涉条纹在中心处“冒出”或“缩进”的个数N 与d 的变化量△d 之间有下列关系 根据该关系式就可测量光波波长λ或长度△d 。 钠黄双线的精细结构测量原理简介: 干涉条纹可见度定义为:当,时V=1,此时干涉条纹最清晰,可见度最大;时V=0,可见度最小。 从一视见度最低的位置开始算起,测量一次视见度最低处的位置,者其间的光程差为,且由关系算出谱线的精细结构。 四. 实验结果计与分析 钠光的平均波长 次数 初读数 d 1(mm ) 末读数 d 2(mm ) △d=|d 1-d 2| (mm) (nm) (nm) 1 其中λ=2*Δd/100,根据λ0=; = E=% 钠光的精细结构:

“迈克尔逊干涉仪”实验报告

“迈克尔逊干涉仪”实验报告 【引言】 迈克尔逊干涉仪是美国物理学家迈克尔逊(A.A.Michelson)发明的。1887年迈克尔逊和莫雷(Morley)否定了“以太”的存在,为爱因斯坦的狭义相对论提供了实验依据。迈克尔逊用镉红光波长作为干涉仪光源来测量标准米尺的长度,建立了以光波长为基准的绝对长度标准,即1m=1 553 164.13个镉红线的波长。在光谱学方面,迈克尔逊发现了氢光谱的精细结构以及水银和铊光谱的超精细结构,这一发现在现代原子理论中起了重大作用。迈克尔逊还用该干涉仪测量出太阳系以外星球的大小。 因创造精密的光学仪器,和用以进行光谱学和度量学的研究,并精密测出光速,迈克尔逊于1907年获得了诺贝尔物理学奖。 【实验目的】 (1)了解迈克尔逊干涉仪的原理和调整方法。 (2)测量光波的波长和钠双线波长差。 【实验仪器】 迈克尔逊干涉仪、He-Ne激光器、钠光灯、扩束镜 【实验原理】 1.迈克尔逊干涉仪结构原理 图1是迈克尔逊干涉仪光路图,点光源 S发出的光射在分光镜G1,G1右表面镀有半 透半反射膜,使入射光分成强度相等的两束。 反射光和透射光分别垂直入射到全反射镜M1 和M2,它们经反射后再回到G1的半透半反射 膜处,再分别经过透射和反射后,来到观察区 域E。如到达E处的两束光满足相干条件,可 发生干涉现象。 G2为补偿扳,它与G1为相同材料,有 相同的厚度,且平行安装,目的是要使参加干 涉的两光束经过玻璃板的次数相等,波阵面不会发生横向平移。 M1为可动全反射镜,背部有三个粗调螺丝。 M2为固定全反射镜,背部有三个粗调螺丝,侧面和下面有两个微调螺丝。 2.可动全反镜移动及读数 可动全反镜在导轨上可由粗动手轮和微动手轮的转动而前后移动。可动全反镜位置的读数为: ××.□□△△△ (mm) (1)××在mm刻度尺上读出。

实验6-5 迈克尔逊干涉仪的原理与使用

实验6—5 迈克尔逊干涉仪的原理与使用 一.实验目的 (1).了解迈克尔逊干涉仪的基本构造,学习其调节和使用方法。 (2).观察各种干涉条纹,加深对薄膜干涉原理的理解。 (3).学会用迈克尔逊干涉仪测量物理量。 二.实验原理 1.迈克尔逊干涉仪光路 如图所示,从光源S 发出的光线经半射镜 的反射和透射后分为两束光线,一束向上 一束向右,向上的光线又经M1 反射回来, 向右的光线经补偿板后被反射镜M2反射回来 在半反射镜处被再次反射向下,最后两束光线在 观察屏上相遇,产生干涉。 2.干涉条纹 (1).点光源照射——非定域干涉 如图所示,为非定域干涉的原理图。点S1是光源 相对于M1的虚像,点S2’是光源相对于M2所成 的虚像。则S1、S2`所发出的光线会在观察屏上形 成干涉。 当M1和M2相互垂直时,有S1各S2`到点A 的 光程差可近似为: i d L cos 2=? ① 当A 点的光程差满足下式时 λk i d L ==?c o s 2 ② A 点为第k 级亮条纹。 由公式②知当i 增大时cosi 减小,则k 也减小,即条纹级数变高,所以中心的干涉条纹的级次是最高的 (2)扩展光源照明——定域干涉在点光源之前加一毛玻璃,则形成扩展光源,此时形 成的干涉为定域干涉,定域干涉只有在特定的位置才能看到。 ①.M1与M2严格垂直时,这时由于d 是恒定的,条纹只与入射角i 在关,故是等倾干涉 ②.M1与M2并不严格垂直时,即有一微小夹角,这种干涉为等厚干涉。当M1与M2夹角很小,且入射角也很小时,光程差可近似为 )21(2)2sin 1(2cos 222 i d i d i d L -≈-=≈?③ 在M1与M2`的相交处,d =0,应出现直线条纹,称中央条纹。 3.定量测量 (1).长度及波长的测量 由公式②可知,在圆心处i=0 0, cosi=1,这时 λk d L ==?2 ④ 从数量上看如d 减小或增大N 个半波长时,光程差L ?就减小或增大N 个整波长,对

大学物理实验之迈克尔逊干涉仪的调整与应用方法及步骤详解

迈克尔逊干涉实验 实验前请认真阅读本要点: (1)听完课后,同学们结合仪器请仔细阅读教材的相关内容,特别是P189的干涉仪光路图(图5-61)、P191公式(5-123、5-124)的由来及应用、P193至P194的仪器说明与练习一。 测量固体试件的线膨胀系数还要阅读教材的P136与P138的实验内容1。 注:迈克尔逊干涉仪有仿真实验,同学们可以在实验之前用其进行预习。 仿真实验位于: 桌面\大学物理仿真实验\大学物理仿真实验(第二部分),其中 大学物理仿真实验(第二部分).exe为正式版,大学物理仿真实验示教版(第二部分).exe为示教版,同学们在使用之前可先看示教版。 (2)实验内容 1)掌握迈克尔逊干涉仪的调节方法,并记录位置改变时干涉条纹的变化,如条纹的“冒出”和“缩进”、条纹的疏密、条纹间距与“空气薄膜”的关系等。 2)根据逐差法的要求确定如何合理测量数据,规范记录实验数据及已知参数等。 3)拟定利用迈克尔逊干涉仪测量透明薄片的折射率(厚度)的实验方案,并利用仿真实验来验证实验方案。 4)(选做)利用仿真实验测量测量钠光的波长、钠黄光双线的波长差、钠光的相干长度等。 (3)阅读F盘上的数据处理文件(迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数)),了解需测量的数据要求(处理需用逐差法),确定如何进行数据测量。根

据需测量的数据,在实验仪器上进行预测量与观察相应的实验现象,即先测量一小部份数据,弄清测量的重点与难点,确定测量方法,然后进行正式测量。 (4)测波长与测线膨胀系数的主要调节方法是一样的,需掌握迈克尔逊干涉光路的调节方法,并了解干涉条纹的变化情况,如条纹的“冒出”和“缩进”、条纹的疏密、条纹间距与“空气薄膜”的关系等。(一些问题详见附录4 疑难解答) 测量He-Ne激光的波长的同学还要掌握如何正确使用读数结构(包括如何读数、校零、消空程等)。 @ 测量固体试件的线膨胀系数的同学还要掌握如何正确进行控温(详见38的实验内容1)。 (5)测波长的同学(后十位同学)需每冒出(或缩进)50环,读一次 M镜 1 的位置,至少连续测8组,将数据填入表格,并观察其实验现象。 测线膨胀系数的同学(前十位同学)可以采用按升高(降低)一定的温度(例如2℃)测量试件伸长量的方法(采用逐差法)进行测量,要求连续测量8组;也可以采用按试件一定的伸长量(例如由20个干涉环变化算出的光程差),测出所需升高(降低)温度的方法进行测量,要求连续测量8组。 注:测波长或测线膨胀系数只需做其中之一,但两个实验都需要掌握;请注意数据处理文件(迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数))。 (6)将所测量数据输入相应的数据处理文件(位于F盘,共有迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数)三个文件),不要关闭文件,让老师检查数据是否合格。 (7)数据合格后重新用新报告纸按要求记录所测数据(并记录其标准值或参考值,详见附录1 数据记录要求),将原始数据与仪器使用登记本一并让老师签字,并了解如何处理所测数据(详见附录 2 数据处理要求)及逐差法相关知识(附录3 逐差法处理实验数据);

相关文档