文档库 最新最全的文档下载
当前位置:文档库 › 空间向量与立体几何知识总结

空间向量与立体几何知识总结

空间向量与立体几何知识总结
空间向量与立体几何知识总结

已知两异面直线

b

a,,,,,

A B a C D b

∈∈,则异面直线所成的角θ为:cos

AB CD

AB CD

θ?

=

u u u r u u u r

u u u r u u u r

例题

【空间向量基本定理】

例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分成定比2,N分PD成定比1,求满足的实数x、y、z的值。

分析;结合图形,从向量出发,利用向量运算法则不断进行分解,直到全部向量都用、、表示出来,即可求出x、y、z的值。

如图所示,取PC的中点E,连接NE,则。

点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量,而且a,b,c的系数是惟一的。

【利用空间向量证明平行、垂直问题】

例2.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。

(1)证明:PA方形ABCD—中,E、F分别是,的中点,求:(1)异面直线AE与CF所成角的余弦值;

(2)二面角C—AE—F的余弦值的大小。

点评:(1)两条异面直线所成的角可以借助这两条直线的方向向量的夹角求得,即。

(2)直线与平面所成的角主要可以通过直线的方向向量与平面的法向量的夹角求得,即

(3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。 【用空间向量求距离】

例4.长方体ABCD —中,AB=4,AD=6,,M 是A 1C 1的中点,P 在线段BC 上,且|CP|=2,Q 是DD 1的中点,

求:

(1)异面直线AM 与PQ 所成角的余弦值; (2)M 到直线PQ 的距离; (3)M 到平面AB 1P 的距离。

本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。现列出几类问题的解决方法。 (1)平面的法向量的求法:设,利用n 与平面内的两个向量a ,b 垂直,其数量积为零,列出两个三元

一次方程,联立后取其一组解。

(2)线面角的求法:设n 是平面的一个法向量,AB 是平面

的斜线l 的一个方向向量,则直线与平面

所成

角为n

AB n AB ??=

θθsin 则

(3)二面角的求法:①AB,CD 分别是二面角

的两个面内与棱l 垂直的异面直线,则二面角的大小为

②设分别是二面角的两个平面

的法向量,则

就是二面角的平

面角或其补角。

(4)异面直线间距离的求法:是两条异面直线,n 是

的公垂线段AB 的方向向量,又C 、D 分别是

的任意两点,则

(5)点面距离的求法:设n 是平面

的法向量,AB 是平面

的一条斜线,则点B 到平面

的距离为

(6)线面距、面面距均可转化为点面距离再用(5)中方法求解。

练习:

1.若等边ABC ?的边长为23,平面内一点M 满足1263

CM CB CA =+u u u u r u u u r u u u r ,则MA MB ?=u u u r u u u r

_________

2.在空间直角坐标系中,已知点A (1,0,2),B(1,-3,1),点M 在y 轴上,且M 到A 与到B 的距离相等,则M 的坐

标是________。

3.(本小题满分12分) 如图,在

五面体ABCDEF 中,FA

平面ABCD,

AD ⊥

1

2

⊥PAC ⊥ABC ABC ?AC ,,E F O PA PB AC 16AC =10PA PC ==G OC //FG BOE ABO ?M FM ⊥BOE M OA OB 图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.

(Ⅰ)求证:平面AEC PDB ⊥平面; (Ⅱ)当2PD AB =

且E 为PB 的中点时,求AE 与

平面PDB 所成的角的大小.

学科组长审核:教学主任审核:

平面向量知识点总结(精华)

必修4 平面向量知识点小结 一、向量的基本概念 1.向量的概念:既有大小又有方向的量,注意向量和数量的区别. 向量常用有向线段来表示 . 注意:不能说向量就是有向线段,为什么?提示:向量可以平移. 举例 1 已知A(1,2),B(4,2),则把向量u A u B ur按向量a r( 1,3)平移后得到的向量是. 结果:(3,0) 2.零向量:长度为 0 的向量叫零向量,记作:0r,规定:零向量的方向是任意的; 3.单位向量:长度为一个单位长度的向量叫做单位 向量(与u A uu B r共线uuur 的单位向量是u A u B ur ); | AB| 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量 a r、 b r叫做平行向量,记作:a r∥b r, 规定:零向量和任何向量平行 . 注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有r0); ④三点A、B、C 共线u A uu B r、u A u C ur共线. 6.相反向量:长度相等方向相反的向量叫做相反向量 . a r的相反向量记作a r. 举例 2 如下列命题:(1)若|a r | |b r | ,则a r b r. (2)两个向量相 等的充要条件是它们的起点相同,终点相同 . (3)若u A u B ur u D u C u r,则ABCD是平行四边形 . (4)若ABCD是平行四边形,则u A uu B r u D u C uur. (5)若a r b r,b r c r,则a r c r. (6)若a r / /b r,b r / /c r则a r / /c r.其中正确的是. 结果:(4)(5) 二、向量的表示方法

高中数学空间向量与立体几何测试题及答案

一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC 的表达中错误的一个是( ) A.11111AA A B A D ++ B.111AB DD D C ++ C.111AD CC D C ++ D.11111 ()2 AB CD AC ++ 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-, ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C 7.如图1,空间四边形ABCD 的四条边及对 角线长都是a ,点E F G ,,分别是AB AD CD ,,

的中点,则2a 等于( ) A.2BA AC · B.2AD BD · C.2FG CA · D.2EF CB · 答案:B 8.若123123123=++=-+=+-,,a e e e b e e e c e e e ,12323d e e e =++,且x y z =++d a b c ,则,,x y z 的值分别为( ) A.51122--,, B.51122 -,, C.51122 --,, D.51122 ,, 答案:A 9.若向量(12)λ=,,a 与(212)=-, ,b 的夹角的余弦值为8 9,则λ=( ) A.2 B.2- C.2-或 255 D.2或255 - 答案:C 10.已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则顶点D 的坐标为( ) A.7412??- ???,, B.(241),, C.(2141)-,, D.(5133)-,, 答案:D 11.在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( ) A.60° B.90° C.3arccos 3 D.3arccos 6 答案:D 12.给出下列命题: ①已知⊥a b ,则()()a b c c b a b c ++-=···; ②,,,A B M N 为空间四点,若BA BM BN ,,不构成空间的一个基底,那么A B M N ,,,共面; ③已知⊥a b ,则,a b 与任何向量都不构成空间的一个基底; ④若,a b 共线,则,a b 所在直线或者平行或者重合. 正确的结论的个数为( ) A.1 B.2 C.3 D.4 答案:C 二、填空题 13.已知(315)(123)==-,,,,,a b ,向量c 与z 轴垂直,且满足94==-,··c a c b ,则c = . 答案:2221055?? - ??? ,,

高中数学向量法解立体几何总结

向量法解立体几何 1、直线的方向向量和平面的法向量 ⑴.直线的方向向量:若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量. ⑵.平面的法向量:若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作 n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量. ⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系. ②设平面α的法向量为(,,)n x y z =. ③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==. ④根据法向量定义建立方程组0 n a n b ??=???=??. ⑤解方程组,取其中一组解,即得平面α的法向量. 2、用向量方法判定空间中的平行关系 ⑴线线平行。设直线12,l l 的方向向量分别是a b 、 ,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈.⑵线面平行。设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥ α,只需证明a u ⊥,即0a u ?=. ⑶面面平行。若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=. 3、用向量方法判定空间的垂直关系⑴线线垂直。设直线12,l l 的方向向量分别是a b 、 ,则要证明12l l ⊥,只需证明a b ⊥,即0a b ?=.⑵线面垂直 ①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l α⊥,只需证明a ∥u ,即a u λ=. ②(法二)设直线l 的方向向量是a ,平面α内的两个相交向量分别为m n 、 ,若

选修2-1 空间向量知识点归纳总结材料

第三章 空间向量与立体几何 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量 也叫做共线向量或平行向量,a 平行于b ,记作b a //。 当我们说向量a 、b 共线(或a //b )时,表示a 、b 的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数 λ,使a =λb 。 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。

空间向量知识点归纳总结归纳

空间向量知识点归纳总结 知识要点。 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2.空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 3.共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫 做共线向量或平行向量,a ρ平行于b ρ,记作b a ρ ?//。 当我们说向量a ρ、b ρ共线(或a ρ//b ρ)时,表示a ρ、b ρ 的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ 存在实数λ,使a ρ =λb ρ。 4.共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在 实数,x y 使p xa yb =+r r r 。 5.空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r ,存在 一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。 若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序 实数,,x y z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r 。 6.空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 (2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k r r r 表示。 (3)空间向量的直角坐标运算律: ①若123(,,)a a a a =r ,123(,,)b b b b =r ,则112233(,,)a b a b a b a b +=+++r r ,

空间向量与立体几何教案(强烈推荐)

空间向量与立体几何 一、知识网络: 二.考纲要求: (1)空间向量及其运算 ① 经历向量及其运算由平面向空间推广的过程; ② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③ 掌握空间向量的线性运算及其坐标表示; ④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ① 理解直线的方向向量与平面的法向量; ② 能用向量语言表述线线、线面、面面的垂直、平行关系; ③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处

理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 2.向量运算和运算率 说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量 叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当 我们说a 、b 平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数λ使b =λa (1)对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与a 同向, 当λ<0时与a 反向的所有向量。 (3)若直线l ∥a ,l A ∈,P 为l 上任一点,O 为空间任一点,下面根据上述定理来推导的表达式。

立体几何中的向量方法总结

立体几何中的向量方法基础篇一(几何证明) 一.求直线方向向量 1.已知()()4,2,2,2,1,1B A -且),,6(y x a =为直线AB 的方向向量,求y x ,。 二.平面的法向量 2.在空间中,已知()()()0,1,1,1,1,0,1,0,1C B A ,求平面ABC 的一个法向量。 3.如图,在四棱锥ABCD P -中,底面ABCD 为正方形, 2,==⊥DC PD ABCD PD 平面,E 为PC 中点 (1)分别写出平面PDC ABCD PAD ,,的一个法向量; (2)求平面EDB 的一个法向量; (3)求平面ADE 的一个法向量。 三.向量法证明空间平行与垂直 1.如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,M AF AB ,1,2== 为EF 的中点,求 证:BDE AM 平面//

2. 如图,正方体''''D C B A ABCD -中,F E ,分别为CD BB ,'的中点,求证:ADE F D 平面⊥'。 3. 如图,在四棱锥ABCD E -中,BCE CD BCE AB 平面平面⊥⊥, 0120,22=∠====BCE CD CE BC AB ,求证:平面ABE ADE 平面⊥。 巩固练习: 1. 如图,在正方体''''D C B A ABCD -中,P 是'DD 的中点,O 是底面ABCD 的中心, (1)求证:O B '为平面PAC 的一个法向量;(2)求平面CD B A ''的一个法向量。

2. 如图,在直棱柱'''C B A ABC -中,4',5,4,3====AA AB BC AC (1)求证:'BC AC ⊥ (2)在AB 上是否存在点D ,使得'//'CDB AC 平面,若存在,确定D 点位置,若不存在,说明理由。 3. 如图,已知长方体''''D C B A ABCD -中,2==BC AB ,E AA ,4'=为'CC 的上的点,C B BE '⊥, 求证:BED C A 平面⊥' 4. 在三棱柱'''C B A ABC -中,1',2,,'===⊥⊥AA BC AB BC AB ABC AA 平面,E 为'BB 的中点,求证:C C AA AEC '''平面平面⊥

高考平面向量知识点总结

高考平面向量知识点总结 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式: a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+; ②结合律:()() a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为 () 11,x y , () 22,x y ,则 ()1212,x x y y AB =--. 19、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=; ②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③() a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==. 20、向量共线定理:向量() 0a a ≠与b 共线,当且仅当有唯一一个实数λ ,使b a λ=. 设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向 b a C B A a b C C -=A -AB =B

空间向量与立体几何知识点归纳总结52783

空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1 )向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共 线向量或平行向量,a 平行于b ,记作b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a =λb 。 (3)三点共线:A 、B 、C 三点共线<=>λ= <=>)1(=++=y x OB y OA x OC 其中 (4)与共线的单位向量为a ± 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数 ,x y 使p xa yb =+。 (3)四点共面:若A 、B 、C 、P 四点共面<=>y x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一 个唯一的有序实数组,,x y z ,使p xa yb zc =++。

向量知识点归纳与常见总结

向量知识点归纳与常见题型总结 一、向量知识点归纳 1.与向量概念有关的问题 ⑴向量不同于数量,数量是只有大小的量(称标量),而向量既有大小又有方向;数量 可以比较大小,而向量不能比较大小,只有它的模才能比较大小. 记号“a>b”错了,而| a | > | b | 才有意义 . ⑵有些向量与起点有关,有些向量与起点无关. 由于一切向量有其共性(大小和方向),故我们只研究与起点无关的向量(既自由向量). 当遇到与起点有关向量时,可平移向量 . ⑶平行向量(既共线向量)不一定相等,但相等向量一定是平行向量 ⑷单位向量是模为 1 的向量,其坐标表示为(x, y ),其中 x 、y满足x2y2=1 (可用( cos ,sin)( 0≤≤2π)表示) . 特别: AB 表示与 AB 同向的单位向量。|AB| 例如:向量直线);( AB AC )(0) 所在直线过ABC 的内心(是BAC 的角平分线所在|AB||AC| 例 1、O是平面上一个定点, A、B、C不共线,P 满足OP OA(AB AC )[0,). |AB|| AC 则点 P 的轨迹一定通过三角形的内心。 →→→→ → →→ 1 AB + AC AB · AC =, 则△ABC 为() (变式 )已知非零向量 AB 与 AC 满足 (→→)·BC=0 且→→2 |AB ||AC ||AB ||AC | A. 三边均不相等的三角形 B. 直角三角形 C. 等腰非等边三角形 D. 等边三角形(06 陕西 ) ⑸ 0 的长度为0,是有方向的,并且方向是任意的,实数0 仅仅是一个无方向的实数 . ⑹有向线段是向量的一种表示方法,并不是说向量就是有向线段. ( 7)相反向量 ( 长度相等方向相反的向量叫做相反向量。 a 的相反向量是- a 。) 2.与向量运算有关的问题 ⑴向量与向量相加,其和仍是一个向量. (三角形法则和平行四边形法则) ①当两个向量 a 和 b 不共线时, a b 的方向与 a 、b 都不相同,且| a b |<| a |+| b |; ②当两个向量 a 和 b 共线且同向时, a b 、a 、b 的方向都相同,且 | a b || a || b |; ③当向量 a 和 b 反向时,若| a |>| b |, a b 与 a 方向相同,且 |a b |=| a |-| b |; 若 | a | < | b | 时 , a b 与 b方向相同,且 | a+b |=| b |-| a |. ⑵向量与向量相减,其差仍是一个向量. 向量减法的实质是加法的逆运算. 三角形法则适用于首尾相接的向量求和;平行四边形法则适用于共起点的向量求和。 AB BC AC;AB AC CB 例 2: P 是三角形 ABC 内任一点,若CB PA PB,R ,则P一定在()

空间向量与立体几何知识点

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式 cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求 两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值范围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面内找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量. (4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的范围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补. 7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距

空间向量知识点归纳(期末复习).doc

空间向量期末复习 知识要点: 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示?同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2.空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 运算律:⑴加法交换律:a + h =b +ci ⑵加法结合律:(N + T) + E = N + 0 + e) ⑶数乘分配律:= + 3.共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,&平行于5 ,记作allb o 当我们说向量N、T共线(或a//b)时,表示万、5的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量万、b(方工6), allb存在实数2,使a=kb o 4.共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量方,5不共线,"与向量刁,5共面的条件是存在实数 x^y\^p = xa-\-yb。 5.空间向量基本定理:如果三个向量a.b.c不共面,那么对空间任一向量存在一个唯一的有序实数组x,y,z ,使0 = xN + y5 + zC。 若三向量万不共面,我们把{a.b.c}叫做空间的一个基底,a,b,c叫做基向量,空间任意三个不共而的向量都可以构成空间的一个基底。 推论:设O ,A,B,C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数x, y, z ,使OP = xOA + yOB + zOC。 6.空间向量的数量积。 (1)空I'可向量的夹角及其表示:已知两非零向量a.b,在空间任取一点0,作0A = a,0B = b ,则厶叫做向量N与方的夹角,记作且规定OM a9b><7T, 显然有<丽>=<歸>;若<云伍>=仝,则称万与5互相垂直,记作:N丄方。 (2)向量的模:设0A = a,则有向线段刃的长度叫做向量万的长度或模,记作:\a\o

向量知识点归纳与常见题型总结

向量知识点归纳与常见题型总结 高三理科数学组全体成员 一、向量知识点归纳 1.与向量概念有关的问题 ⑴向量不同于数量,数量是只有大小的量(称标量),而向量既有大小又有方向;数量可以比较大小,而向量不能比较大小,只有它的模才能比较大小.记号“>”错了,而||>||才有意义. ⑵有些向量与起点有关,有些向量与起点无关.由于一切向量有其共性(大小和方向),故我们只研究与起点无关的向量(既自由向量).当遇到与起点有关向量时,可平移向量. ⑶平行向量(既共线向量)不一定相等,但相等向量一定是平行向量,既向量平行是向量相等的必要条件. ⑷单位向量是模为1的向量,其坐标表示为(,),其中x 、y 满足 +2x 2 y =1(可用(cos θ,sin θ)(0≤θ≤2π)表示).特别:||AB AB →→表示与AB → 同向的单位向量。 例如:向量()(0)|||| AC AB AB AC λλ+≠u u u r u u u r u u u r u u u r 所在直线过ABC ?的内心(是BAC ∠的角平分线所在直线); 例1、O 是平面上一个定点,A 、B 、C 不共线,P 满足()[0,).|||AB AC OP OA AB AC λλ=++?∈+∞u u u r u u u r u u u r u u u r u u u r u u u u r 则点P 的轨迹一定通过三角形的内心。 (变式)已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB →| ·AC →|AC →| =12 , 则△ABC 为( ) A.三边均不相等的三角形 B.直角三角形C.等腰非等边三角形 D.等边三角形 (06陕西) ⑸0的长度为0,是有方向的,并且方向是任意的,实数0仅仅是一个无方向的实数. ⑹有向线段是向量的一种表示方法,并不是说向量就是有向线段. (7)相反向量(长度相等方向相反的向量叫做相反向量。的相反向量是-。) 2.与向量运算有关的问题 ⑴向量与向量相加,其和仍是一个向量.(三角形法则和平行四边形法则) ①当两个向量和不共线时,+的方向与、都不相同,且|+|<||+||; ②当两个向量a 和b 共线且同向时,+a b 、a 、b 的方向都相同,且=+||||||+; ③当向量a 和b 反向时,若|a |>|b |,b a +与 a 方向相同 ,且|b a +|=|a |-|b |; 若|a |<|b |时,b a +与b 方向相同,且|a +b |=|b |-|a |. ⑵向量与向量相减,其差仍是一个向量.向量减法的实质是加法的逆运算. 三角形法则适用于首尾相接的向量求和;平行四边形法则适用于共起点的向量求和。 =+;=-

向量法解立体几何公式总结

1 向量法解立体几何公式总结 一、基本知识点 直线m l ,的方向向量分别为,,平面βα,的法向量分别为21,n n (若只涉及一个平面 α,则用表示其法向量)并在下面都不考虑线线重合、面面重合及线在面内的情况。 1、平行问题(结合图象,直观感觉) 1)线线平行b k a b a m l =??//// 2)线面平行0//=??⊥?l α 3)面面平行2121////n k n n n =??βα 2、垂直问题(结合图象,直观感觉) 1)线线垂直0=??⊥?⊥b a b a m l 2)线面垂直k l =??⊥//α 3)面面垂直0 2121=??⊥?⊥n n n n βα3、夹角问题 1)异面直线CD AB ,所成的角θ(范围: 2 0π θ≤<) c o s c o s ,.A B C D A B C D A B C D θ?= <>= 2)线面角θ(范围:2 0π θ≤ ≤),= ><=,cos sin θ 3)二面角θ(范围:πθ ≤≤0) A B > <-= n a ,2 π θ2 ,π θ- >=<> <-=21,n n πθ> =<21,n n θ1212 cos n n n n θ?=- ?1212 cos n n n n θ?= ?

2 4、距离问题 1)点A 到点B 222)()()(B A B A B A z z y y x x -+-+-= 2)点A 到线l 的距离d 在直线l 上任取点B = ><=,cos cos θ θθ2cos 1sin -=, ∴θsin =d 3)点A 到面α的距离d 在平面α上任取点B = ><=,cos cos θ d = =?=θcos 4)异面直线间m l ,间的距离d 在直线l 上任取点A ,在直线m 上任取点B 向量与异面直线m l ,的方向向量,都垂直 = ><=,cos cos θ ∴d = ==θcos 5)直线l 到平面α的距离 在直线l 上任取一点A ,转化为点A 到面α的距离d 6)平面α到平面β的距离 在平面β上任取一点A ,转化为点A 到面α的距离d

最新空间向量知识点归纳总结(经典)

精品文档 空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ???ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共 线向量或平行向量,a ρ 平行于b ρ,记作b a ρ?//。 (2)共线向量定理:空间任意两个向量a ρ、b ρ (b ρ≠0ρ),a ρ//b ρ存在实数λ,使a ρ =λb ρ。 (3)三点共线:A 、B 、C 三点共线<=>AC AB λ= <=>)1(=++=y x OB y OA x OC 其中 (4)与 a 共线的单位向量为a a ± 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在实数 ,x y 使p xa yb =+r r r 。 (3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中

机械制图知识点总结

机械识图知识点总结 图之功能各国标准尺度比例线之种类与用途角法与视图 图之功能 1. 信息传递:把设计者之构想绘制成图,传递给加工制作人员、检验人员等。 2. 国际性:图为技术界的国际语言,即须具有国际语言之性格,如图形表法,标注方法或符号定义必须完全统一规格。 3. 泛用性:随着技术的发展,目前在各种产业上的互相关连加深,因此需画出各种行业均能了解之图。 TOP 各国标准 TOP 尺度比例 尺度单位 工至机械制图用基本长度单位,通常采用 mm ,可以不用在图中表示。儒需使用其它单位时,则必须注明单位符号。英制则以 in. 为基本长度单位,而不必标注。

常用比例 机械制图再绘图时,因尽量画出较大之圆形,以便于微缩影储存。通常以 2,5,10 之倍数为常用比例或按实物大小画出。 长用比例如下所列: 实大比例:1:1 缩小比例:1:2,1:2.5,1:4,1:5,1:10,1:20,1:50,1:100,1:200,1:500,1:1000 。 放大比例:2 :1,5:1,10:1,20:1,50:1,100:1。 TOP 线之种类与用途

线之粗细与其使用 通常绘图时,粗实线之线宽须按图之大小与其复杂程度而订定,在同一张图中使用粗线之线宽必须均匀一致,中线与细线亦同理。 虚线之起讫与交会 虚线之起讫,如下图所示,虚线与其它线条交会时,除虚线无实线之延长外,其余应尽量维持相交。 1.实线与虚线相交 2.虚线与虚线相交 TOP

投影与视图 第一角法与第三角正投影法之比较 第一角投影法起于法国,盛行于欧洲大陆、德、法、义、俄等国,其中美、日及荷兰等国原先亦采用第一角投影法,后来改采用第三角法讫今。目前国内使用第一角投影法之机构约 35% ,而采用第三角投影法之机构约 65% 。因此为适应国内使用者之需求,于最新修订之 CNS3 , CNS3-1 , CNS3-2 ,…, CNS3-11 等工程制图国家标准规定“第一角法及第三角法同等适用”。唯于同一张图中,不的同时使用两种投影法,且每张图上均应于明显部位标示“投影法”,以资鉴别。 第一角投影法与第三角投影法之异同如下: (1) 对同一投影方向上而言,两者投影面之位置不同。第一角投影法之投影面在物体之后方,而第三角投影法之投影面则在物体前方。 (2) 两中投影法之各视图彼此完全相同。 (3) 两者之投影相于展开后视图排列,则因投影面之不同而有所分别,以前视图为基准而展开时,除前视图以外,其它各视图之位置相反。 (4) 判断视图为第一角或第三角时,可先假定为其中任一者,以侧视图之轮廓线判断误,表示假定正确,若虚实线相反,表示假定错误。 剖视图 对物体作假想剖切,以了结其内部形状,假想之割切面称为割面,而割面体所见之线,称为割面线,如图 1-1 所示。割面线可以转折,两端及转折处用粗实线画出,中间以细链线连接。转折处之大小如图 1-2 所示。 如有多个割面图时,应以大楷拉丁字母区别之,同一割面之两端以相同字母标示,字母写在箭头外侧,书写方向一律朝上。割面线箭头标示剖视图方向,割面线之两端需伸出视图外约10mm ,其箭头之大小形状如图 1-3 所示。 割面及剖面线 假想剖切所得剖面,须以细实线画出剖面线,剖面线虚为与主轴线或机件外形线成45 °之均匀并行线,(但应避免将剖面线画成垂直或水平)。若剖面线与轮廓线平行或近平行时,必须改变方向如图 1-4 所示。 同一机件被剖切后,其剖面线之方向与间隔必须完全相同。在组合图中,相邻两机件,其剖面线应取不同之方向或不同之间隔,如图 1-5 所示。机件剖面之面积较大时,其中间部分之剖面线可以省略,但画出之剖面线须整齐,如图 1-6 所示机件剖面之面积甚为狭小时,

空间向量与立体几何知识点.docx

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公 式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值范围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直

证明两条直线垂直,只需证明两条直线的方向向量垂直,即0 a b a b ?=?⊥. (3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面内找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量. (4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? ,

相关文档
相关文档 最新文档