文档库 最新最全的文档下载
当前位置:文档库 › 电磁感应中的各种题型(习题,答案)

电磁感应中的各种题型(习题,答案)

电磁感应中的各种题型(习题,答案)
电磁感应中的各种题型(习题,答案)

电磁感应中的各种题型

一.电磁感应中的“双杆问题”

电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等

1.“双杆”向相反方向做匀速运动:当两杆分别向相反方向运动时,相当于两个电池正向串联。

[例1] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。(1)求作用于每条金属细杆的拉力的大小。

(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。

2.“双杆”同向运动,但一杆加速另一杆减速:当两杆分别沿相同方向运动时,相当于两个电池反向串联。

[例2] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行。开始时,棒cd静止,棒ab有指向棒cd 的初速度v0。若两导体棒在运动中始终不接触,求:

(1)在运动中产生的焦耳热最多是多少。

(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?

3. “双杆”中两杆都做同方向上的加速运动。:“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。

[例3](2003年全国理综卷)如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离l=0.20m。两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0时刻,两杆都处于静止状态。现有一与导轨平行、大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。经过t=5.0s,金属杆甲的加速度为a=1.37m/s2,问此时两金属杆的速度各为多少?

4.“双杆”在不等宽导轨上同向运动。

“双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。

[例4](2004年全国理综卷)图中a1b1c1d1和a2b2c2d2为在同一竖直平面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直于导轨所在平面(纸面)向里。导轨的a1b1段与a2b2段是竖直的,距离为l1;c1d1段与c2d2段也是竖直的,距离为l2。x1 y1与x2 y2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m1和m2,它们都垂直于导轨并与导轨保持光滑接触。两杆与导轨构成的回路的总电阻为R 。F 为作用于金属杆x1y1上的竖直向上的恒力。已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。

二.电磁感应中的一个重要推论——安培力的冲量公式

感应电流通过直导线时,直导线在磁场中要受到安培力的作

用,当导线与磁场垂直时,安培力的大小为F=BLI 。在时间△t

内安培力的冲量

,式中q 是通过导体截面的电量。利用该公式

解答问题十分简便,下面举例说明这一点。

[例5] 如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L 的区域内,有一个边长为a (a

磁场后速度变为v (v

A. 完全进入磁场中时线圈的速度大于(v0+v )/2

B. 安全进入磁场中时线圈的速度等于(v0+v )/2

C. 完全进入磁场中时线圈的速度小于(v0+v )/2

D. 以上情况A 、B 均有可能,而

C

[例6] 光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属

棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒的最终速度。

三.电磁感应中电流方向问题

[例7](06广东物理卷) 如图所示,用一根长为L 质量不计的细杆与一个上弧长为,下弧长为

的金属线框的中点联结并悬挂于O 点,悬点正下方存在一个上弧长为、下弧长为的方向垂直纸面向里的匀强磁场,且<<先将线框拉开到如图所示位置,松手

后让线框进入磁场,忽略空气阻力和摩擦。下列说法正确的是()

A. 金属线框进入磁场时感应电流的方向为:a→b→c→d→a

B. 金属线框离开磁场时感应电流的方向为:a→d→c→b→a

C. 金属线框dc边进入磁场与ab边离开磁场的速度大小总是相等

D. 金属线框最终将在磁场内做简谐运动

[例7.1] 如图所示,接有灯泡L的平行金属导轨水平放置在匀强磁场中,一导体杆与两导轨良好接触并做往复运动,其运动情况与弹簧振子做简谐运动的情况相同。图中O位置对应于弹簧振子的平衡位置,P、Q两位置对应于弹簧振子的最大位移处。若两导轨的电阻不计,则()

A. 杆由O到P的过程中,电路中电流变大

B. 杆由P到Q的过程中,电路中电流一直变大

C. 杆通过O处时,电路中电流方向将发生改变

D. 杆通过O处时,电路中电流最大

四.电磁感应中的多级感应问题

[例8] 如图所示,ab、cd金属棒均处于匀强磁场中,cd 原静止,当ab向右运动时,cd如何运动(导体电阻不计)()A. 若ab向右匀速运动,cd静止;

B. 若ab向右匀加速运动,cd向右运动;

C. 若ab向右匀减速运动,cd向左运动

[例8.1]:在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大线圈相接,如图所示导轨上放一根导线ab,磁力线垂直于导轨所在平面。欲使所包围的小闭合线圈产生顺时

针方向的感应电流,则导线的运动可能是()

A. 向右运动

B. 加速向右运动

C. 减速向右运动

D. 加速向左运动

五.电磁感应中的动力学问题

[例9](2005年上海)如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1m,导轨平面与水平面成θ=370角,下端连接阻值为R的电阻。匀强磁场的方向与导轨平面垂直。质量为0.2kg、电阻不计的导体棒放在两导轨上,棒与导轨垂直并且接触良好,它们间的动摩擦因数为0.25。(1)金属棒沿导轨由静止开始下滑时的加速度大小。

(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小。

(3)在上问中,若R=2Ω,金属棒中电流方向由a到b,求磁感应强度的大小与方向。(g=10m/s2,sin370=0.6,cos370=0.8)

[例9.1]:(06重庆卷)两根相距为L的足够长的金属直角导轨如题下图所示放置,它们各有一边在同一水平面内,另一边垂直于水平面。质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数为μ,导轨电阻不计,回路总电阻为2R。整个装置处于磁感应强度大小为B,方向竖直向上的匀强磁场中。当ab杆在平行于水平导轨的拉力F作用下以速度V1沿导轨匀速运动时,cd杆也正好以速率向下V2匀速运动。重力加速度为g。以下说法正确的是()

A.ab杆所受拉力F的大小为μmg +

B.B. cd杆所受摩擦力为零

C.回路中的电流强度为

D.D. μ与V1大小的关系为μ=

六。电磁感应中的电路问题

[例10] 如图所示,在磁感强度为的匀强磁场中有一半径为的金属圆环。已知构成圆环的电线电阻为,以O 为轴可以在圆环上滑动的金属棒电阻为,电阻。

如果

棒以某一角速度匀速转动时,电阻的电功率最小值为,那么棒匀速转动

的角速度应该多大?(其它电阻不计)

答案:

[例1]解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E1=E2=Bdv

由闭合电路的欧姆定律,回路中的电流强度大小为:

因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F1=F2=IBd。

由以上各式并代入数据得N

(2)设两金属杆之间增加的距离为△L,则两金属杆共产生的热量为,代

入数据得Q=1.28×10-2J。

[例2] 解析:ab棒向cd棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流。ab棒受到与运动方向相反的安培力作用作减速运动,cd棒则在安培力作用下作加速运动。在ab棒的速度大于cd棒的速度时,回路总有感应电流,ab棒继续减速,cd棒继续加速。两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v作匀速运动。

(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有根据能量守

恒,整个过程中产生的总热量

(2)设ab棒的速度变为初速度的3/4时,cd棒的速度为v1,则由动量守恒可知:

此时回路中的感应电动势和感应电流分别为:,

此时棒所受的安培力:,所以棒的加速度为

由以上各式,可得。

[例3]解析:设任一时刻t两金属杆甲、乙之间的距离为x,速度分别为v1和v2,经过很短的时间△t,杆甲移动距离v1△t,杆乙移动距离v2△t,回路面积改变

由法拉第电磁感应定律,回路中的感应电动势,回路中的电流,

杆甲的运动方程。由于作用于杆甲和杆乙的安培力总是大小相等,方向相

反,所以两杆的动量时为0)等于外力F的冲量。联立以上各式解

得,代入数据得

点评:题中感应电动势的计算也可以直接利用导体切割磁感线时产生的感应电动势公式和右手定则求解:设甲、乙速度分别为v1和v2,两杆切割磁感线产生的感应电动势分别为E1=Blv1 ,E2=Blv2 由右手定则知两电动势方向相反,故总电动势为E=E2―E1=Bl(v2-v1)。

分析甲、乙两杆的运动,还可以求出甲、乙两杆的最大速度差:开始时,金属杆甲在

恒力F作用下做加速运动,回路中产生感应电流,金属杆乙在安培力作用下也将做加速运动,但此时甲的加速度肯定大于乙的加速度,因此甲、乙的速度差将增大。根据法拉第电磁感应定律,感应电流将增大,同时甲、乙两杆所受安培力增大,导致乙的加速度增大,甲的加速度减小。但只要a甲>a乙,甲、乙的速度差就会继续增大,所以当甲、乙两杆的加速度相等时,速度差最大。此后,甲、乙两杆做加速度相等的匀加速直线运动。

设金属杆甲、乙的共同加速度为a,回路中感应电流最大值Im。对系统和乙杆分别应用牛顿第二定律有:F=2ma;BLIm=ma。

由闭合电路欧姆定律有E=2ImR,而由以上各式可解得

[例4]解析:设杆向上的速度为v,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少。由法拉第电磁感应定律,回路中的感应电动势的大小

①回路中的电流②

电流沿顺时针方向。两金属杆都要受到安培力作用,作用于杆x1y1的安培力为

方向向上,作用于杆x2y2的安培力为④

方向向下,当杆作匀速运动时,根据牛顿第二定律有⑤

解以上各式得⑥⑦

作用于两杆的重力的功率的大小⑧电阻上的热功率⑨

由⑥⑦⑧⑨式,可得

[例5] 解析:设线圈完全进入磁场中时的速度为vx。线圈在穿过磁场的过程中所受合外力为安培力。对于线圈进入磁场的过程,据动量定理可得:

对于线圈穿出磁场的过程,据动量定理可得:

由上述二式可得,即B选项正确。

[例6]解析:当金属棒ab做切割磁力线运动时,要产生感应电动势,这样,电容器C将被充电,ab棒中有充电电流存在,ab棒受到安培力的作用而减速,当ab棒以稳定速度v匀速运动时,有:BLv=UC=q/C

而对导体棒ab利用动量定理可得:-BLq=mv-mv0

由上述二式可求得:

[例7]分析:金属线框进入磁场时,由于电磁感应,产生电流,根据楞次定律判断电流的方向为:a→d→c→b→a。金属线框离开磁场时由于电磁感应,产生电流,根据楞次定律判断电流的方向为a→b→c→d→a 。根据能量转化和守恒,可知,金属线框dc边进入磁场与ab 边离开磁场的速度大小不相等。如此往复摆动,最终金属线框在匀强磁场内摆动,由于

<<,单摆做简谐运动的条件是摆角小于等于10度,故最终在磁场内做简谐运动。答案为D。

小结:本题考查了感应电动势的产生条件,感应电流方向的判定,物体做简谐运动的条件,这些是高中学生必须掌握的基础知识。感应电动势产生的条件只要穿过回路的磁通量发生变化,回路中就产生感应电动势,若电路闭合则有感应电流产生。因此弄清引起磁通量的变化因素是关键,感应电流的方向判定可用楞次定律与右手定则,在应用楞次定律时要把握好步骤:先明确回路中原磁场的方向及磁通量的变化情况,再依楞次定律确定感应电流的磁场方向,然后根据安培定则确定感应电流的方向。线圈在运动过程中的能量分析及线框最终的运动状态的确定为此题增大了难度。

[例7.1]解答:D

[例8]分析:这是多级电磁感应问题,ab相当于一个电源,右线圈相当于负载;左线圈相当于电源,cd相当于负载。ab运动为因,切割磁感线产生感应电流为果,电流流过右线圈为因,右线圈中形成磁场为果,右线圈磁场的磁感线通过左线圈,磁场变化时为因,左线圈中产生感应电流为果,感应电流流过cd为因,cd在左磁场中受安培力作用而运动为果。故A、B、C均正确。

小结:分析电磁感应现象中的多级感应问题,要正确处理好因果关系,步步为营,紧扣闭合回路及回路中的磁通量的变化这一关键,对于线圈问题还应注意线圈的绕向。

[例8.1]分析:此题可用逆向思维的方法分析。欲使N产生顺时针方向的感应电流,感应电流在中的磁场方向垂直纸面向里,由楞次定律可知,有两种情况:一是中有顺时针方

向的逐渐减小的电流,其在中的磁场方向亦向里,且磁通量在减小;二是中有逆时针方向的逐渐增大的电流,其在中的磁场方向为向外,且磁通量在增大,对于前者,应使ab减速向右运动;对于后者,应使ab加速向左运动,故CD正确。

[例9]分析:

(1)金属棒开始下滑时初速度为零,根据牛顿第二定律有:

代入数据得:

(2)设金属棒达到稳定时,速度为v,所受安培力为F,棒在沿导轨方向受力平衡,则

此时金属棒克服安培力做功的功率等于电路中电阻R消耗的电功率

V=

(3)设电路中电流强度为I,两导轨间金属棒的长度为L,磁场的感应强度为B,则I=,

P=I2R,由以上两式得B=

磁场的方向垂直导轨平面向上。

小结:此题为电磁感应知识与力学、电路知识的综合问题,此类题目常以导轨运动为背景,解决此类题的关键是对金属导体作出正确的受力分析,并通过运动状态的动态分析来寻找过程的临界状态,得出速度、加速度的极值条件,找到解题的突破口,然后综合运用力学及电学规律分析和解决实际问题。

[例9.1]答案:AD

[例10]分析:棒的感应电动势e=BL2w/2,等效电路如图所示,当棒端处于圆环

最上端时,即时,圆环的等效电阻最大,其值干路中的最小电流

电阻R1的最小功率P0=

小结:电磁感应现象常与恒定电路相结合构建综合题,分析此类问题时一般遵循“三步曲”即:用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向,找准等效电源;正确

画好等效电路,区分内、外电路,路端电压与电动势;灵活运用闭合电路欧姆定律,串、并联电路的性质及电功、电功率、电热等计算公式求解相关物理量。

电磁感应计算题总结(易错题型)

电磁感应易错题 1.如图所示,边长L=0.20m 的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R 0=1.0Ω,金属棒MN 与正方形导线框的对角线长度恰好相等,金属棒MN 的电阻r=0.20Ω。导线框放置在匀强磁场中,磁场的磁感应强度B =0.50T ,方向垂直导线框所在平面向里。金属棒MN 与导线框接触良好,且与导线框对角线BD 垂直放置在导线框上,金属棒的中点始终在BD 连线上。若金属棒以v =4.0m/s 的速度向右匀速运动,当金属棒运动至AC 的位置时,求:(计算结果保留两位有效数字) (1)金属棒产生的电动势大小; (2)金属棒MN 上通过的电流大小和方向; (3)导线框消耗的电功率。 2.如图所示,正方形导线框abcd 的质量为m 、边长为l ,导线框的总电阻为R 。导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直平面内,cd 边保持水平。磁场的磁感应强度大小为B ,方向垂直纸面向里,磁场上、下两个界面水平距离为l 。已知cd 边刚进入磁场时线框恰好做匀速运动。重力加速度为g 。 (1)求cd 边刚进入磁场时导线框的速度大小。 (2)请证明:导线框的cd 边在磁场中运动的任意瞬间,导线框克服安培力做功的功率等于导线框消耗的电功率。 (3)求从线框cd 边刚进入磁场到ab 边刚离开磁场的过程中,线框克服安培力所做的功。 3.如图所示,在高度差h =0.50m 的平行虚线范围内,有磁感强度B =0.50T 、方向水平向里的匀强磁场,正方形线框abcd 的质量m =0.10kg 、边长L =0.50m 、电阻R =0.50Ω,线框平面与竖直平面平行,静止在位置“I”时,cd 边跟磁场下边缘有一段距离。现用一竖直向上的恒力F =4.0N 向上提线框,该框由位置“Ⅰ”无初速度开始向上运动,穿过磁场区,最后到达位置“Ⅱ”(ab 边恰好出磁场),线框平面在运动中保持在竖直平面内,且cd 边保持水平。设cd 边刚进入磁场时,线框恰好开始做匀速运动。(g 取10m /s 2) 求:(1)线框进入磁场前距磁场下边界的距离H 。 (2)线框由位置“Ⅰ”到位置“Ⅱ”的过程中,恒力F 做的功是多少?线框内产生的热量又是多少 ? a b d c l l

电磁感应现象中的常见题型汇总(精华版)

电磁感应现象的常见题型分析汇总 一、反映感应电流强度随时间的变化规律 例1如图1—1,一宽40cm 的匀强磁场区域,磁场方向垂直纸面向里。一边长为20cm 的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v=20cm/s 通过磁场区域,在运动过程中,线框有一边始终与磁场区域的边界平行。取它刚进入磁场的时刻t=0,在图1-2所示的下列图线中,正确反 映感应电流强度随时间变化规律的是( ) 分析与解 本题要求能正确分解线框的运动过程(包括部分进入、全部进入、部分离开、全部离开),分析运动过程中的电磁感应现象,确定感应电流的大小和方向。 线框在进入磁场的过程中,线框的右边作切割磁感线运动,产生感应电动势,从而在整个回路中产生感应电流,由于线框作匀速直线运动,其感应电流的大小是恒定的,由右手定则,可判断感应电流的方向是逆时针的,该过程的持续时间为t=(20/20)s=1s 。 线框全部进入磁场以后,左右两条边同时作切割磁感线运动,产生反向的感应电动势,相当于两个相同的电池反向连接,以致回路的总感应电动势为零,电流为零,该过程的时间也为1s 。而当线框部分离开磁场时,只有线框的左边作切割磁感线运动,感应电流的大小与部分进入时相同,但方向变为顺时针,历时也为1s 。正确答案:C 评注 (1)线框运动过程分析和电磁感应的过程是密切关联的,应借助于运动过程的分析来深化对电磁感应过程的分析;(2)运用E=Blv 求得的是闭合回路一部分产生的感应电动势,而整个电路的总感应电动势则是回路各部分所产生的感应电动势的代数和。 例2在磁棒自远处匀速沿一圆形线圈的轴线运动,并穿过线圈向远处而去,如图2—1所示,则下列图2—2中较正确反映线圈中电流i 与时间t 关系的是(线圈中电流以图示箭头为正方向)( ) 分析与解 本题要求通过图像对感应电流进行描述,具体思路为:先运用楞次定律判断磁铁穿过线圈时,线圈中的感应电流的情况,再提取图像中的关键信息进行判断。 条形磁铁从左侧进入线圈时,原磁场的方向向右且增大,根据楞次定律,感应电流的磁场与之相反,再由安培定则可判断,感应电流的方向与规定的正方向一致。当条形磁铁继续向右运动,被 ← → 图1—1 图1—2 图2—1 图2—2

高中物理-电磁感应知识点汇总

电磁感应 1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.★楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割

磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化; ②阻碍物体间的相对运动; ③阻碍原电流的变化(自感)。 ★★★★4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=nΔΦ/Δt 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。当B、L、v三者两两垂直时,感应电动势E=BLv。 (1)两个公式的选用方法E=nΔΦ/Δt计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsinθ中的v 若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。

电磁感应现象中的常见题型汇总(很全很细)---精华版

电磁感应现象的常见题型分析汇总(很全) 命题演变 “轨道+导棒”模型类试题命题的“基本道具”:导轨、金属棒、磁场,其变化点有: 1.图像 2.导轨 (1)轨道的形状:常见轨道的形状为U 形,还可以为圆形、三角形、三角函数图形等; (2)轨道的闭合性:轨道本身可以不闭合,也可闭合; (3)轨道电阻:不计、均匀分布或部分有电阻、串上外电阻; (4)轨道的放置:水平、竖直、倾斜放置等等. 理图像是一种形象直观的“语言”,它能很好地考查考生的推理能力和分析、解决问题的能力,下面我们一起来看一看图像在电磁感应中常见的几种应用。 一、反映感应电流强度随时间的变化规律 例1如图1—1,一宽40cm 的匀强磁场区域,磁场方向垂直纸面向里。一边长为20cm 的正方形导线框位于纸面内,以垂直于磁场边界的恒定 速度v=20cm/s 通过磁场区域,在运动过程中,线框有一边始 终与磁场区域的边界平行。取它刚进入磁场的时刻t=0,在图 1-2所示的下列图线中,正确反映感应电流强度随时间变化规 律的是( ) 分析与解 本题要求能正确分解线框的运动过程(包括部分进入、全部进入、部分离开、全部离开),分析运动过程中的电磁感应现象,确定感应电流的大小和方向。 线框在进入磁场的过程中,线框的右边作切割磁感线运动,产生感应电动势,从而在整个回路中产生感应电流,由于线框作匀速直线运动,其感应电流的大小是恒定的,由右手定则,可判断感应电流的方向是逆时针的,该过程的持续时间为t=(20/20)s=1s 。 线框全部进入磁场以后,左右两条边同时作切割磁感线运动,产生反向的感应电动势,相当于两个相同的电池反向连接,以致回路的总感应电动势为零,电流为零,该过程的时间也为1s 。而当线框部分离开磁场时,只有线框的左边作切割磁感线运动,感应电流的大小与部分进入时相同,但方向变为顺时针,历时也为1s 。正确答案:C ← → 图1—1 图1—2

物理电磁感应知识点的归纳

物理电磁感应知识点的归纳 物理电磁感应知识点的归纳 1.电磁感应现象 利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B 乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb (2)求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右

手定则只适用于导线切割磁感线运动的`情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式:E=n/t 当导体做切割磁感线运动时,其感应电动势的计算公式为 E=BLvsin。当B、L、v三者两两垂直时,感应电动势E=BLv。 (1)两个公式的选用方法E=n/t计算的是在t时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsin中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。 (2)公式的变形 ①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSB/t。 ②如果磁感强度不变,而线圈面积均匀变化时,感应电动势 E=Nbs/t。

电磁感应典型例题和练习

电磁感应 课标导航 课程容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析 知识:安培力的大小与方向 例1. (09年物理)13.如图,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef有一半径很小的金属圆环L,圆环与导轨在同一平面当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩)趋势,圆环产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电

电磁感应典型题型归类

电磁感应期中复习材料 知识结构: 常见题型 一、磁通量 【例1】如图所示,两个同心放置的共面单匝金属环a和b,一条形磁铁穿过圆心且与环面垂直放置.设穿过圆环a 的磁通量为Φa ,穿过圆环b 的磁通量为Φb ,已知两圆环的横截面积分别为S a 和Sb,且S a Φb C.Φa<Φb ? D.无法确定 二、电磁感应现象 【例2】图为“研究电磁感应现象”的实验装置. (1)将图中所缺的导线补接完整. (2)如果在闭合电键时发现灵敏电流计的指针向右偏了一下,那么合上电键后( ) A.将原线圈迅速插入副线圈时,电流计指针向右偏转一下 B.将原线圈插入副线圈后,电流计指针一直偏在零点右侧 C.原线圈插入副线圈后,将滑动变阻器触头迅速向左拉时,电流计指针向右偏转一下 D.原线圈插入副线圈后,将滑动变阻器触头迅速向左拉时,电流计指针向左偏转一下 三、感应电流产生的条件 (1)文字概念性 【例3】关于感应电流,下列说法中正确的是( ) A.只要闭合电路里有磁通量,闭合电路里就有感应电流 B .穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生 C .线框不闭合时,即使穿过线框的磁通量发生变化,线框也没有感应电流 电磁感应产生的条件 感应电流的方向判定 感应电动势的大小 回路中的磁通量变化 楞次定律 法拉第电磁感应定律E=ΔΦ/Δt 电磁感应的实际应用:自感现象(自感系数L ),涡流 特殊情况:导体切 割磁感线E=BLV 特殊情况:右手定则

D.只要电路的一部分切割磁感线运动电路中就一定有感应电流 (2)图象分析性 【例4】金属矩形线圈abcd在匀强磁场中做如图6所示的运动,线圈中有感应电流的是: 【例5】如图所示,在条形磁铁的外面套着一个闭合弹簧线圈,若把线圈四周 向外拉,使线圈包围的面积变大,这时: A、线圈中有感应电流 B、线圈中无感应电流 C、穿过线圈的磁通量增大 D、穿过线圈的磁通量减小 二、感应电流的方向 1、楞次定律 【例6】在电磁感应现象中,下列说法中正确的是( ) A.感应电流的磁场总是跟原来的磁场方向相反 B.闭合线框放在变化的磁场中一定能产生感应电流 C.闭合线框放在匀强磁场中做切割磁感线运动时一定能产生感应电流 D.感应电流的磁场总是阻碍原磁通量的变化 【例7】如图,粗糙水平桌面上有一质量为m的铜质矩形线圈.当一竖直放置的条形磁铁从线圈 中线AB正上方等高快速经过时,若线圈始终不动,则关于线圈受到 的支持力FN及在水平方向运动趋势的正确判断是( ) A.FN先小于mg后大于mg,运动趋势向左 B.F N先大于mg后小于mg,运动趋势向左 C.F N先大于mg后大于mg,运动趋势向右 D.F N先大于mg后小于mg,运动趋势向右 【例8】如图1所示,当变阻器R的滑动触头向右滑动时,流过电阻R′的电流方向是_______. 图1 图2图3 【例9】如图2所示,光滑固定导轨MN水平放置,两根导体棒PQ平行放在导轨上,形成闭合

电磁感应知识点总结

《电磁感应》知识点总结 1、 磁通量Φ、磁通量变化?Φ、磁通量变化率 t ??Φ 对比表 234、 感应电动势 在电磁感应现象中产生的电动势叫感应电动势,产生感应电流比存在感应电动势,产生感应电动势的那部分导体相当于电源,电路断开时没有电流,但感应电动势仍然存在。 (1) 电路不论闭合与否,只要有一部分导体切割磁感线,则这部分导体就会产生感应电动势,它相 当于一个电源 (2) 不论电路闭合与否,只要电路中的磁通量发生变化,电路中就产生感应电动势,磁通量发生变 化的那部分相当于电源。

5、 公式 n E ?Φ =与E=BLvsin θ 的区别与联系 6、 楞次定律 (2) 楞次定律中“阻碍”的含义

(3)对楞次定律中“阻碍”的含义还可以推广为感应电流的效果总是要阻碍产生感应电流的原因1)阻碍原磁通量的变化或原磁场的变化,即“增反减同”; 2)阻碍相对运动,可理解为“来拒去留”; 3)使线圈面积有扩大或缩小趋势,可理解为“增缩减扩”; 4)阻碍原电流的变化,即产生自感现象。 7、电磁感应中的图像问题 (3)解决这类问题的基本方法 1)明确图像的种类,是B-t图像还是Φ-t图像、或者E-t图像和I-t图像 2)分析电磁感应的具体过程 3)结合法拉第电磁感应定律、欧姆定律、牛顿定律等规律列出函数方程。 4)根据函数方程,进行数学分析,如斜率及其变化,两轴的截距等。 5)画图像或判断图像。 8、自感涡流

(2 ) 自感电动势和自感系数 1) 自感电动势:t I L E ??=,式中t I ??为电流的变化率,L 为自感系数。 2) 自感系数:自感系数的大小由线圈本身的特性决定,线圈越长,单位长度的匝数越多,横截面 积越大,自感系数越大,若线圈中加有铁芯,自感系数会更大。 (3) 日关灯的电路结构及镇流器、启动器的作用 1) 启动器:利用氖管的辉光放电,起着自动把电路接通和断开的作用。 2) 镇流器:在日光灯点燃时,利用自感现象,产生瞬时高压;在日关灯正常发光时,利用自感现 象起降压限流作用。

电磁感应题型汇总

电磁感应题型汇总

电磁感应专题复习汇总2(基础练) 专题一:等效电路的问题 1. 产生感应电流的部分导体相当于整个电路中的电源,可画出等效电路图 2. 电源的电动势可用E n t φ?=?或,,===E E BLv I F BIL R 计算 3. 判断电源正负极或比较电路中电势可根据等效电路中外电路的电流方向判断 (电流在电源外部是从 极流向 极,从 电势流向 电势) 4. 根据闭合电路的欧姆定律E I R =总 算出电流,由此还可算出电功率或热量 5. 通过闭合回路电量的公式:总 φ?=q n R 1、(北京市西城区2014届高三上学期期末考 试) (1)如图1所示,两根足够长的平行导 轨,间距L =0.3 m ,在导轨间有垂直纸面向 里的匀强磁场,磁感应强度B 1 = 0.5 T 。一根 直金属杆MN 以v= 2 m/s 的速度向右匀速运动,杆MN 始终与导轨垂直且接触良好。杆 MN 的电阻r 1,导轨的电阻可忽略。求 杆MN 中产生的感应电动势E 1。 (2)如图2所示,一个匝数n=100的圆形线圈,面积 S 1=0.4m 2,电阻r 2=1Ω。在线圈中存在面积S 2=0.3m 2垂 直线圈平面(指向纸外)的匀强磁场区域,磁感应强度B 2随时间t 变化的关系如图3所示。求圆形线圈中产生的感应电动势E 2。 (3)有一个R=2Ω的电阻,将其两端a 、b 分别与图1中的导轨和图2中的圆形线圈相连接,b 端接地。试判

断以上两种情况中,哪种情况a端的电势较高?求这种情况中a端的电势φa。 2、有人设计了一种可测速的跑步机,测速原理如图所示. 该机底面固定有间距为L、长度 为d的平行金属电极,电极间充 满磁感应强度为B、方向垂直纸 面向里的匀强磁场,且接有电压 表和电阻R. 绝缘橡胶带上镀有间距为d的平行细金属条,磁场中始终仅有一根金属条,且与电极接触良好,不计金属电阻. 若橡胶带匀速运动时,电压表读数为U,求: (1)橡胶带匀速运动的速率; (2)电阻R消耗的电功率; (3)一根金属条每次经过磁场区域克服安培力做的功. 巩固题:

电磁感应中“单杆、双杆、线圈”问题归类例析

电磁感应中“单杆、双杆、线圈”问题归类例析 余姚八中陈新生 导体杆在磁场中运动切割磁感线产生电磁感应现象,是历年高考的一个热点问题。因此在高三复习阶段有必要对此类问题进行归类总结,使学生更好的掌握、理解它的内涵。通过研究各种题目,可以分类为“单杆、双杆、线圈”三类电磁感应的问题,最后要探讨的问题不外乎以下几种: 1、运动状态分析:稳定运动状态的性质(可能为静止、匀速运动、匀加速运动)、求出稳定状态下的速度或加速度、感应电流或安培力。 2、运动过程分析:分析运动过程中发生的位移或相对位移,运动时间、某状态的速度等 3、能量转化分析:分析运动过程中各力做功和能量转化的问题:如产生的电热、摩擦力做功等 4、求通过回路的电量 解题的方法、思路通常是首先进行受力分析和运动过程分析。然后运用动量守恒或动量定理以及能量守恒建立方程。按照不同的情景模型,现举例分析。 一、“单杆”切割磁感线型 1、杆与电阻连接组成回路 例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强 度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一 阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势 差。 (2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。 例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m, 上、下两端各有一个电阻R0=1 Ω,框架的其他部分电阻不计,框 架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab为金属杆,其长度为L=0.4 m,质量m=0.8 kg,电阻r= 0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度 达到最大的过程中,上端电阻R0产生的热量Q0=0.375J(已知 sin37°=0.6,cos37°=0.8;g取10m/s2)求: (1)杆ab的最大速度; (2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;在该过程中通过ab的电荷量. 2、杆与电容器连接组成回路 例3、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个 电容器, 电容为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金 属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考 虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度 为多大? 例4、光滑U型金属框架宽为L,足够长,其上放一质量为m 的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初 速v0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒

高三物理电磁感应知识点

届高三物理电磁感应知识点 物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍 原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

电磁感应典型例题和练习进步

电磁感应 课标导航 课程内容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章内容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析

知识:安培力的大小与方向 例1. (09年上海物理)13.如图,金属棒ab置于水平 放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B, 磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef 内有一半径很小的金属圆环L,圆环与导轨在同一平面内当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。 答案:收缩,变小 点评:深刻领会楞次定律的内涵 热点关注 知识:电磁感应中的感应再感应问题 例8、如图所示水平放置的两条光滑轨道上有可自由移动的金属棒 PQ、MN,当PQ在外力作用下运动时,MN在磁场力作用下向右运动. 则PQ所做的运动可能是 A.向右匀速运动 B.向右加速运动 C.向左加速运动 D.向左减速运动

电磁感应中几种重要题型

电磁感应中的几种重要题型 一、四种感应电动势的表达式及应用 1、法拉第电磁感应定律 2、导体平动产生的电动势(两两垂直) 3、导体转动产生的电动势 4、线圈平动产生的电动势 5、线圈转动产生的电动势 二、1、导体电流受力分析及动态运动过程的处理 2、电磁感应中图像问题 3、电磁感应中能量问题(动能定理及能量守恒) 4、怎样求电量 5、怎样求电磁感应中非匀变速运动中的位移 6、怎样处理双轨问题及动量定理及守恒的应用 7、自感现象的处理 对应练习: 1、如图所示,有一闭合的矩形导体框,框上M、N两点间连有一电压表,整个装置处于磁感应强度为B 的匀强磁场中,且框面与磁场方向垂直.当整个装置以速度v向右匀速平动时,M、N之间有无电势 __________. 差?__________(填“有”或“无”),电压表的示数为 2、匀强磁场中放一电阻不计的平行金属导轨,导轨跟大线圈M相接,如图所示,导轨上放一根导 线ab,磁感线垂直导轨所在的平面,欲使M所包围的小闭合线圈Array N产生顺时针方向的感应电流,则导线的运动可能是() A、匀速向右运动 B、加速向右运动 C、减速向右运动 D、加速向左运动

3、如图所示,质量为m 的跨接杆可以无摩擦地沿水平的平行导轨滑行,两轨间宽为L ,导轨与电阻R 连接.放在竖直向上的匀强磁场中,磁场的磁感应强度为B ,杆的初速度为v 0,试求杆到停下来所滑行的距离及电阻R 消耗的最大电能为多少? 【2 20L B mRv ;2 0mv 2 1】 4、两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻。将质量为m 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂直,如图所示。除电阻R 外其余电阻不计。现将金属棒从弹簧原长位置由静止释放.则( ) A .释放瞬间金属棒的加速度等于重力加速度g B .金属棒向下运动时,流过电阻R 的电流方向为a →b C .金属棒的速度为v 时.所受的安培力大小为22B L v F R D .电阻R 上产生的总热量等于金属棒重力势能的减少 5、如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上磁感应强度大小为B 的匀强磁场中。一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为u 。现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g 。则此过程 ( ) A.杆的速度最大值为 B.流过电阻R 的电量为 C.恒力F 做的功与摩擦力做的功之和等于杆动能的变化量 D.恒力F 做的功与安倍力做的功之和大于杆动能的变化量

2018年高考物理试题分类解析电磁感应

2018年高考物理试题分类解析:电磁感应 全国1卷 17.如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中心,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆。M端位于PQS上,O M与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B,现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B'(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则 B B ' 等于 A. 5 4 B. 3 2 C. 7 4 D.2 【解析】在过程Ⅰ中 R r B R t R E t I q 2 __4 1 π ? = ?Φ = = =,在过程Ⅱ中 2 2 1 ) ' (r B B R q π ? - = ?Φ =二者相等,解得 B B ' = 3 2 。 【答案】17.B 全国1卷 19.如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是 A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动 B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向 C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向

D .开关闭合并保持一段时间再断开后的瞬间,小磁针的N 极朝垂直纸面向外的方向转动 【解析】A .开关闭合后的瞬间,铁芯内磁通量向右并增加,根据楞次定律,左线圈感应电流方向在直导线从南向北,其磁场在其上方向里,所以小磁针的N 极朝垂直纸面向里的方向转动,A 正确; B 、 C 直导线无电流,小磁针恢复图中方向。 D .开关闭合并保持一段时间再断开后的瞬间,电流方向与A 相反,小磁针的N 极朝垂直纸面向外的方向转动,D 正确。 【答案】19.AD 全国2卷 18.如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域, 区域宽度均为l ,磁感应强度大小相等、方向交替向上向下。一边长为 3 2 l 的正方形金属线框在导轨上向左匀速运动,线框中感应电流i 随时间t 变化的正确图线可能是 【解析】如图情况下,电流方向为顺时针,当前边在向里的磁场时,电流方向为逆时针,但因为两导体棒之间距离为磁场宽度的 2 3 倍,所以有一段时间两个导体棒都在同一方向的磁场中,感应电流方向相反,总电流为0,所以选D. 【答案】18.D 全国3卷 20.如图(a ),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧。导线 PQ 中通有正弦交流电流i ,i 的变化如图(b )所示,规定从Q 到P 为电流的正方向。导线框R 中的感应电动势

高中物理电磁感应核心知识点归纳

高中物理《电磁感应》核心知识点归 纳 一、电磁感应现象 1、产生感应电流的条件 感应电流产生的条件是:穿过闭合电路的磁通量发生变化。 以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。 2、感应电动势产生的条件。 感应电动势产生的条件是:穿过电路的磁通量发生变化。 这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路是否闭合,电动势总是存在的。但只有当外电路闭合时,电路中才会有电流。 3、关于磁通量变化 在匀强磁场中,磁通量,磁通量的变化有多种形式,主要有: ①S、α不变,B改变,这时

②B、α不变,S改变,这时 ③B、S不变,α改变,这时 二、楞次定律 1、内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。 在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。 (1)从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。 (2)从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。 (3)从“阻碍自身电流变化”的角度来看,就是自感现象。自感现象中产生的自感电动势总是阻碍自身电流的变化。 2、实质:能量的转化与守恒 3、应用:对阻碍的理解: (1)顺口溜“你增我反,你减我同”

电磁感应练习题

电磁感应练习题 一、单选择试题 1、如图1所示,一个矩形线圈与通有相同大小电流的两平行直导线位于同一平面内,而且矩形线圈处在两导线的中央,则( ) A .两电流同向时,穿过线圈的磁通量为零 B .两电流反向时,穿过线圈的磁通量为零 C .两电流同向或反向,穿过线圈的磁通量都相等 D .因两电流产生的磁场是不均匀的,因此不能判定穿过线圈的磁通量是否为零 2、如图2,粗糙水平桌面上有一质量为m 的铜质矩形线圈.当一竖直放置的条形磁铁从线圈中线AB 正上方等高快速经过时,若线圈始终不动,则关于线圈受到的支持力F N 及在水平方向运动趋势的正确判断是( ) A.F N 先小于mg 后大于mg,运动趋势向左 B.F N 先大于mg 后小于mg,运动趋势向左 C.F N 先大于mg 后大于mg,运动趋势向右 D.F N 先大于mg 后小于mg,运动趋势向右 3、如图3a 所示,平行导轨间有一矩形的匀强磁场区域,细金属棒PQ 沿导轨从MN 处匀速运动到M'N'的过程中,棒上感应电动势E 随时间t 变化的规律,在图3b 中,正确的是( ) 图1 N ` M ` M N v B Q P (a ) (b ) 图3 A B S N 图2

4、用均匀导线做成的单匝正方形线框,每边长为0.2米,正方形的一半放在垂直纸面向里的匀强磁场中,如图4所示,当磁场以每秒10T 的变化率增强时, 线框中点a 、b 两点电势差是( ) A.U ab =0.1V B.U ab =-0.1V C.U ab =0.2V D.U ab =-0.2V 5、穿过某线圈的磁通量随时间变化的关系如图5所示,在下列几段时间内,线圈中感应电动势最小的是( ) A.0~2s B.2~4s C.4~5s D.5~10s 二、双项选择试题 6、如图6所示的电路中,三个相同的灯泡a 、b 、c 和电感L 1、L 2与直流电源连接,电感的电阻忽略不计.电键K 从闭合状态突然断开时,下列判断正确的有( ) A.a 先变亮,然后逐渐变暗 B.b 先变亮,然后逐渐变暗 C.c 先变亮,然后逐渐变暗 D.b 、c 都逐渐变暗 7、两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻.将质量为m 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂直,如图7所示.除电阻R 外其余电阻不计,现将金属棒从弹簧原长位置由静止释放.则 ( ) A .释放瞬间金属棒的加速度等于重力加速度g B .金属棒向下运动时,流过电阻R 的电流方向为a →b C .金属棒的速度为v 时.所受的安培力大小为 R v L B F 22 D .电阻R 上产生的总热量等于金属棒重力势能的减少 8、边长为L 的正方形金属框在水平恒力F 的作用下,穿过如图8所示的有界匀强磁场,磁场宽度为d (d >L ),已知ab 边进入磁场时,线框的加速度为零,线框进入磁场过程和从 b a 图4 F a L L d B 图5 R B a b F r 图7 图6

最新高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析word版本

高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析 一、单棒问题: 1.单棒与电阻连接构成回路: 例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。 (2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。 2、杆与电容器连接组成回路 例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 为多大? 3、杆与电源连接组成回路 例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析: (1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化? (2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明). 二、双杆问题: 1、双杆所在轨道宽度相同——常用动量守恒求稳定速度 例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根 导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd B v 0 L a d b

高三物理电磁感应知识点

2019届高三物理电磁感应知识点物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

相关文档
相关文档 最新文档