文档库 最新最全的文档下载
当前位置:文档库 › 高中数学解析几何双曲线性质与定义

高中数学解析几何双曲线性质与定义

高中数学解析几何双曲线性质与定义
高中数学解析几何双曲线性质与定义

双曲线

双曲线是圆锥曲线的一种,即双曲线是圆锥面与平行于轴的平面相截而得的曲线。 双曲线在一定的仿射变换下,也可以看成反比例函数。

双曲线有两个定义,一是与平面上两个定点的距离之差的绝对值为定值的点的轨迹,二是到定点与定直线的距离之比是一个大于1的常数的点之轨迹。 一、双曲线的定义 ①双曲线的第一定义

一动点移动于一个平面上,与该平面上两个定点F 1、F 2的距离之差的绝对值始终为一定值2a(2a 小于F 1和F 2之间的距离即2a<2c )时所成的轨迹叫做双曲线。

取过两个定点F 1、F 2的直线为x 轴,线段F 1F 2的垂直平分线为y 轴建立直角坐标系。

设M(x ,y)为双曲线上任意一点,那么F1、F2的坐标分别是(-c ,0)、(c ,0).又设点M 与F1、F2的距离的差的绝对值等于常数2a 。

将这个方程移项,两边平方得:

两边再平方,整理得:()()

22222222a c a y a x a c -=--

由双曲线定义,2c >2a 即c >a ,所以c 2-a 2>0.设222b a c =- (b >0),代入上式得:

双曲线的标准方程:122

22=-b

y a x

两个定点F 1,F 2叫做双曲线的左,右焦点。两焦点的距离叫焦距,长度为2c 。坐标轴上

的端点叫做顶点,其中2a 为双曲线的实轴长,2b 为双曲线的虚轴长。 实轴长、虚轴长、焦距间的关系:222b a c +=,

②双曲线的第二定义

与椭圆的方法类似:对于双曲线的标准方程:122

22=-b

y a x ,我们将222b a c +=代入,

可得:()a c

c

a

x c x y =±

±+2

2 所以有:双曲线的第二定义可描述为:

平面内一个动点(x,y )到定点F (±c,0)的距离与到定直线l (c

a x 2

±=)的距离之比为

常数()0c

e c a a

=>>的点的轨迹是双曲线,其中,定点F 叫做双曲线的焦点,定直线l 叫做双

曲线的准线,常数e 是双曲线的离心率。 1、离心率:

(1)定义:双曲线的焦距与实轴长的比a

c

a c e ==

22,叫做双曲线的离心率; (2)范围:1>e ;

(3)双曲线形状与e 的关系:

1122222-=-=-==e a c a a c a b k ;

因此e 越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔。由此可知,双曲线的离心率越大,它的开口就越阔;

(1)双曲线的形状张口随着渐近线的位置变化而变化; (2)渐近线的位置(倾斜)情况又受到其斜率制约; 2、准线方程:

对于12222=-b

y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 2

1:-=,相对于右焦点

)0,(2c F 对应着右准线c

a x l 2

2:=;

位置关系:02>>≥c a a x ,焦点到准线的距离c

b p 2

=(也叫焦参数); 对于12222=-b

x a y 来说,相对于下焦点),0(1c F -对应着下准线c a y l 2

1:-=;相对于上焦点),0(2c F 对

应着上准线

a y l 2

2:=。

3、双曲线的焦半径:

双曲线上任意一点M 与双曲线焦点12F F 、的连线段,叫做双曲线的焦半径。

设双曲线)0,0( 122

22>>=-b a b y a x ,21,F F 是其左右焦点,

e d MF =11

, ∴e c

a

x MF =+

201,∴10MF a ex =+;同理 20MF a ex =-; 即:焦点在x 轴上的双曲线的焦半径公式:其中12F F 、分别是双曲线的左(下)、右(上)焦点

1020

MF a ex MF a ex ?=+??=-?? 同理:焦点在y 轴上的双曲线的焦半径公式: 1020MF a ey MF a ey ?=+??=-??

二、双曲线的性质

1、轨迹上一点的取值范围:a x a x -≤≥或(焦点在x 轴上)或者a y a y -≤≥或(焦点在y 轴上)。

2、对称性:关于坐标轴和原点对称。

3、顶点:A(-a,0), A '(a,0)。同时 AA '叫做双曲线的实轴且∣AA '│=2a ; B(0,-b), B '(0,b)。同时 BB '叫做双曲线的虚轴且│BB '│=2b 。

4、渐近线:

由22

222222221x

b a b x y b y a x -=-?=-,当a b x y y x ±→∞→∞→时,,所以:双曲线的渐近线方程为:

焦点在x 轴:x a b y ±=,焦点在y 轴:y a

b

x ±=

5、双曲线焦半径公式:(圆锥曲线上任意一点P(x,y)到焦点距离) 右焦半径:r=│ex-a │ 左焦半径:r=│ex+a │

6、共轭双曲线

双曲线S: )0,0( 12222>>=-b a b y a x ,双曲线 )0,0( 1:22

2

2>>=-'b a a

x b y s 双曲线S '的实轴是双曲线S 的虚轴 且双曲线S '的虚轴是双曲线S 的实轴时,称双曲线S '与双曲线S 为共轭双曲线。 特点: (1)共渐近线 (2)焦距相等

(3)两双曲线的离心率平方后的倒数相加等于1

7. 焦点到一条渐近线的距离

特别如图2可知:双曲线的一个焦点到一条渐近线的距离等于半短轴长.这个性质很重要. 三、例题求解:

例1:已知双曲线)0,0( 122

22>>=-b a b

y a x 的渐近线是x a b y ±=,我们可以判断直线

m kx y +=与双曲线的交点个数

①当直线m kx y +=的斜率a

b

k =时,如果,显然它就是渐近线,与双曲线没有任何交点,如果

,则它与双曲线有一个只有一个交点。

②当直线m kx y +=的斜率???

??-∈a b a b k ,时,则m kx y +=与双曲线有两个交点。

③当直线m kx y +=的斜率??

?

??∞???? ??-∞-∈,a b a b k ,时,则m kx y +=与与双曲线没有交点

例2 已知直线与双曲线有两个不同的交点,试确定的范围.

解:由可得,

从而,解得

. 又因为的渐近线方程是

,所以

.故

例3 已知双曲线)0,0( 122

22>>=-b a b

y a x 的焦点到渐近线的距离是其顶点到原点距离是

2倍,则有双曲线的离心率是

解:由已知可知

,所以

例4 双曲线14

92

2=-y x 上一点P 与左右焦点21,F F 构成21PF F ?,求21PF F ?的内切圆与边2

1F F 的切点N 的坐标。

分析:设点P 在已知双曲线的右支上,要求点N 的坐标。即求ON 的长度,而

22NF OF ON -=,其中132==c OF ,只需求2NF 的长度,即2NF 是圆⊙M 的一条切线长,可用平面几何知识(切线长定理)求解。

解:设点P 在已知双曲线的右支上,由题意得2

1

2122PF F F PF NF -+=

a PF PF 212-=-,∴a c c

a NF -=+-=

2

222,又13=∴c ,3=a ,∴3132-=NF ,又132==c OF ,∴)313(1322--=-=NF OF ON

当点P 在已知双曲线的右支上时,切点N 为顶点)0,3(,当点P 在已知双曲线的左支上时,切点N 为顶点)0,3(-

例5 已知21F F 、是双曲线

11692

2=-y x 的左右焦点,P 在双曲线的左支上,α=∠12F PF ,β=∠21F PF ,求2

cot 2tan β

α?的值

分析:如右图,先做出21F PF ?的内切圆⊙M ,则⊙M 切21F F 于点A ,MA 等于内切圆的

半径。且212α

=

∠F MF ,2

=

A MF

解:做出21F PF ?的内切圆⊙M ,则⊙M 切21F F 于点A ,

212α=∠F MF ,21β=

A MF ,∴82tan 2r c a r AF AM =+==α,r

r a c AM AF 2

2cot 2=-==β,∴4

1282cot 2tan =?=?r r βα

例6 设21F F 、是曲线1C :12622=+y x 的焦点, P 为曲线2C :13

22

=-y x 与1C

的一个交点,则的值

之间的关系。

m =

n =,不妨设n m >,显然椭圆和双曲线共焦点)0,2(±,由椭圆和双曲线的定义可知62=+n m 且32=-n m

∴36+=m ,36-=n 在三角形21F PF ?中,由余弦定理可知

3

12)2(2cos 2222

12

2

12

22

121=-+=?-+=

∠m n c n m PF PF F F PF PF PF F

3

1

cos 21=

=PF F 例7 已知21F F 、是双曲线122

22=-b

y a x 的左右焦点,过1F 作倾斜角为o 30的直线交双曲线右支

于M 点,若2MF 垂直于x 轴,求双曲线的离心率.

解析:由题意的c F F 221=,c c MF 33

26

tan

22=

?=π

,c c MF 3346

cos 21==

π由定义知a c MF MF 23

3

221==

-,则3=e 。 例8 已知双曲线122

22=-b

y a x 的左右焦点分别为)0,(1c F -)0,(2c F 若双曲线上存在一点P 使得

212PF PF =,求双曲线离心率的范围。 解析:由双曲线的定义a PF PF 221=-,a PF 41=,在21F PF

?中,结合双曲线的图像2121F F PF PF ≥+,∴c a 26≥,即31≤≤e

例9 已知双曲线122

22=-b

y a x 的左右焦点分别为)0,(1c F -)0,(2c F ,以21F F 为直径的圆与双曲线

交于不同的四个点,顺次连接焦点和这四个顶点恰好组成一个正六边形,求双曲线的离心率。

解析:设P 为圆与双曲线在第二象限的交点,则221π=∠PF F ,3

21π

=∠F pF ,在

21PF F Rt ?中,a c c c PF PF 2)13(3

cos 23sin 212=+=-=-π

π

13+==∴a

c

e

例10 已知双曲线122

22=-b

y a x 的左右焦点分别为21F F 、,P 为双曲线上任意一点,21PF F ∠的

内角平分线为l ,过l F 做2的垂线2F M ,设垂足为M ,求点M 的轨迹。 解析:延长M F 2交P F 1于N 由角平分线及垂直关系得PN PF =2,有OM 是N F F 21?的中位线,从而a PF PF PN PF NF OM =-=-==

)(2

1

)(2122111

,故a OM =为定值,即点M 的轨迹是以坐标原点为圆心,a 为半径的圆(去掉与x 轴的交点) 方程为)(222a x a y x ≠=+

例11、已知⊙A :49)5(22=++y x ,⊙B :1)5(22=+-y x ,若⊙P 与⊙A 内切与⊙B 外切,求⊙P 的圆心的轨迹方程。

解析:⊙A :49)5(22=++y x ,圆心)0,5(-A ,半径71=r ,

⊙B :1)5(22=+-y x 圆心)0,5(B ,半径12=r ,由题意的1-=r PA ,1+=r PB 。

∴8)7()1(=--+=-r r PA PB ,即P 是以B A 、为焦点的双曲线的左支。

82=a ,4=a ,102=c ,5=c ,∴4222=-=a c b 。

∴P 点的轨迹为)4(19

162

2-≤=-

x y x 例12、已知21F F 、是双曲线13

22

=-y x 的左右焦点,)6,6(-M 是双曲线内部一点,P 为双曲线左支上一点,求1PF PM +的最小值

解析:双曲线的定义2221==-a PF PF ,即221-=PF PF

826)26(2222221=-+--=-≥-+=+MF PF PM PF PM

当且仅当2F 、P 、M 三点共线时“=”成立。

例13、已知双曲线方程为),0(122

22>>=-b a b

y a x 两焦点分别为,,21F F 设焦点三角形21F PF 中

,21θ=∠PF F 证明:2

cot 221θ

b S PF F =?。

证明

θcos 2)2(212

22

12

212PF PF PF PF F F c -+== )cos 1(2)(212

21θ-+-=PF PF PF PF

θ

θθcos 12)cos 1(244)

cos 1(24)(2

222

22121-=

--=----=∴b a c c PF PF PF PF 又θsin 21

2121PF PF S PF F ?=

? 综上2

cot cos 1sin sin 2122

2121θ

θθθb b PF PF S PF F =-=?=? 例14①一个动圆与两个圆x 2+y 2=1和x 2+y 2

-8x +12=0都外切,则动圆圆心的轨

迹是( )

②、已知两圆2)4(:221=++y x C ,2)4(:222=+-y x C ,动圆M 与两圆都相切,则动圆圆心M 的轨迹方程。

例15、设21,F F 是双曲线120

162

2=-y x 的左、右焦点,点P 在双曲线上,若点P 到焦点1F 的距离等于9,

求点P 到焦点2F 的距离。

分析:已知双曲线上的点到一个焦点的距离,求该点到另一个焦点的距离是双曲线第一定义的直接利用形式。

解析:由8||||||21=-PF PF 及9||1=PF ,得 1||2=PF 或17。

由82=a ,6362

=?=c c 知右支的顶点到1F 的距离为10,而已知9||1=PF ,说明点P 在左支

上,此时,10||2≥PF ,所以,点P 到焦点2F 的距离为17。

点评:此类问题可以是一解,也可以是两解,如:当10||1≥PF 时,有两解;当10||21<≤PF 时,有一解,因此,对运算结果必须做合理性分析。

例16、如图,双曲线)0,0(122

22>>=-b a b

y a x

其焦点为21,F F ,过1F 作直线交双曲线的左支于B A , 两点,且m AB =||,则2ABF ?的周长为 。

分析:本题中12,AF AF ,12,BF BF 都是焦半径,而2ABF ?的周长恰好是这

四条焦半径之和,应用第一定义便可得。

解析:由a BF AF BF AF a

BF BF a

AF AF 4|)||(|||||2||||2||||11221212=+-+???

?=-=-;

由m AB BF AF ==+||||||11,∴m a BF AF +=+4||||22; 故2ABF ?的周长为m a AB BF AF 24||||||22+=++。

点评:本题结合定义,求出||||22BF AF +,再求周长,简便易行;假如本题未给图形及条件“过1F 作直线交双曲线的左支于B A ,两点”中“左支”两字,情况又会怎样呢?

例17、已知双曲线

)(1422

2N b b

y x ∈=-的左、右两焦点分别为21,F F ,P 为双曲线上一点,若22121||||||F F PF PF =?,且8||||5221≤<

分析:欲求面积,首先要确定b 的值,由第一定义及2

2121||||||F F PF PF =?可以构成方程组,通过方程组求得1||PF 及2||PF 的值。

解析:由2

2

4b c +=,又????=-=?4||||||)2(||||21221PF PF c PF PF ????=-+=?4

||||||)4(4||||21221PF PF b PF PF

????

??=-+=+4

||||||54||||212

21PF PF b PF PF 252||22-+=b PF 或252||22++=b PF , 由于||||221PF F F <,得252||22++=b PF ,又8||2≤PF

,即28≤,从而得42

≤b ,因为N b ∈且0≠b ,得1=b 或2;

若1=b ,则542

2=+=b c ,此时5522||21<==c F F ,不合题意;

若2=b ,则842

2=+=b c ,此时5242||21>==c F F ,符合题意;

那么212121212(||||)2||||3

cos 2||||4

PF PF PF PF F PF PF PF --?∠==?

,从而12sin F PF ∠=

故12PF F ?

的面积为121211||||sin 222

S PF PF F PF =

?∠=?=

点评:本题考查的是双曲线的定义及常规的运算能力;运算过程既要用要方程思想又要注重分类讨论

思想,体现了重思维、轻运算量这一大纲要求。

例18、解方程2747422=+--++x x x x

分析:对第一个式子配方,得

。联想两点间的距离公式,可设32=y

,此时变为

解析:原方程可变为23)2(3)2(22=+--++x x ,令32

=y ,

则方程以变为2)2()2(2

222=+--++y x y x ,显然,点),(y x 在以)0,2(-,)0,2(为焦点,实

轴长为2的双曲线上,易得其方程为13

2

2

=-y x 。

由??

???==-

31322

2y y x ,得2±=x 。 双曲线学生练习和重要结论

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.

2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直

径的圆,除去长轴的两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相交.

4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P

在左支) 5.

若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)上,则过0P 的双曲线的切线方程是

00221x x y y

a b

-=. 6.

若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点

为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y

a b

-=.

7.

双曲线22

221x y a b

-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点

12F PF γ∠=,则双曲线的焦点角形的面积为122t 2

F PF S b co γ

?=.

8.

设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结

AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.

9. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,

A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.

10. AB 是双曲线22

221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,

则0202y a x b K K AB OM =?,即020

2y a x b K AB =。

11. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则被Po 所平分的中点弦的方程是

22

00002222x x y y x y a b a b

-=-. 12. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是

22002222x x y y x y a b a b

-=-.

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

(整理)届高三数学总复习平面解析几何练习题目汇总

第8章 第1节 一、选择题 1.(2010·崇文区)“m =-2”是“直线(m +1)x +y -2=0与直线mx +(2m +2)y +1=0相互垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A [解析] m =-2时,两直线-x +y -2=0、-2x -2y +1=0相互垂直;两直线相互垂直时,m(m +1)+2m +2=0,∴m =-1或-2,故选A. 2.(文)(2010·安徽文)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 [答案] A [解析] 解法1:所求直线斜率为12,过点(1,0),由点斜式得,y =12(x -1),即x -2y -1=0. 解法2:设所求直线方程为x -2y +b =0, ∵过点(1,0),∴b =-1,故选A. (理)设曲线y =ax2在点(1,a)处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12 D .-1 [答案] A [解析] y′=2ax ,在(1,a)处切线的斜率为k =2a , 因为与直线2x -y -6=0平行,所以2a =2,解得a =1. 3.点(-1,1)关于直线x -y -1=0的对称点是( ) A .(-1,1) B .(1,-1) C .(-2,2) D .(2,-2) [答案] D [解析] 一般解法:设对称点为(x ,y),则

????? x -12-y +12-1=0 y -1x +1=-1,解之得????? x =2y =-2, 特殊解法:当直线l :Ax +By +C =0的系数满足|A|=|B|=1时,点A(x0,y0)关于l 的对称 点B(x ,y)的坐标,x =-By0-C A ,y =-Ax0-C B . 4.(2010·惠州市模考)在平面直角坐标系中,矩形OABC ,O(0,0),A(2,0),C(0,1),将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围为( ) A .[0,1] B .[0,2] C .[-1,0] D .[-2,0] [答案] D [解析] 如图,要想使折叠后点O 落在线段BC 上,可取BC 上任一点D 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合,故问题转化为在线段CB 上任取一点D ,求直线OD 的斜率的取值范围问题, ∵kOD≥kOB =12,∴k =-1kOD ≥-2,且k<0, 又当折叠后O 与C 重合时,k =0,∴-2≤k≤0. 5.(文)已知点(3,1)和点(1,3)在直线3x -ay +1=0的两侧,则实数a 的取值范围是( ) A .(-∞,10) B .(10,+∞) C.??? ?-∞,43∪(10,+∞) D.??? ?43,10 [答案] D [解析] 将点的坐标分别代入直线方程左边,所得两值异号,∴(9-a +1)(3-3a +1)<0,∴43

【优秀教案】高中数学第二册上 第八章 圆锥曲线方程: 8.4双曲线的简单几何性质

课题:8.4双曲线的简单几何性质 教学目的: 1.使学生掌握双曲线的范围、对称性、顶点、渐近线等几何性质 2.掌握标准方程中c b ,的几何意义 a, 3.并使学生能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题 教学重点:双曲线的渐近线及其得出过程 教学难点:渐近线几何意义的证明 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 本节知识是讲完了双曲线及其标准方程之后,反过来利 它是教学大纲要求学生必须掌握的内容,也是高考的一个考点用坐标法研究几何问题,是数学中一个很大的课题,它包含了圆锥曲线知识的众多方面,这里对双曲线的几何性质的讨论以及利用性质来解题即是其中的一个重要部分

坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学 运动变化和对立统一的思 想观点在第8章知识中得到了突出体现,我们必须充分利用好这部分教材进行教学 利用图形启发引导学生理解渐近线的几何意义、弄通证明的关键;渐近线的位置、渐近线与双曲线张口之间的关系是学生学习离心率的概念、搞懂离心率与双曲线形状之间的关系的关键;要突破第二定义得出过程这个难点 本节内容类似于“椭圆的简单的几何性质”,教学中也可以与其类比讲解,主要应指出它们的联系与区别 对圆锥 曲线来说,渐近线是双曲线特有的性质,我们常利用它作出双曲线的草图,为说明这一点,教学时可以适当补充一些例题和习题 讲解完双曲线的渐近线后,要注意说明:反过来 以1=±b y a x 为渐近线的双曲线方程则是λ=-22 22b y a x 对双曲线离心率进行教学时要指明它的大小反映的是双曲线的张口大小,而椭圆离心率的大小反映的是椭圆的扁平程度 同椭圆一样,双曲线有两种定义,教材上以例3的 教学来引出它,我们讲课时要充分注意到此例题与后面的定义在教学上的逻辑关系,突出考虑学生认知心理的变化规律

双曲线的定义、标准方程及几何性质

高二数学学案 序号 112-113高二年级 班 教师 毕 环 学生 复习三十五 双曲线的定义、标准方程及几何性质 〖学习目的〗1、掌握双曲线的定义、标准方程及几何性质 2、会用定义和几何性质解决简单问题;会求双曲线的标准方程; 〖重点难点〗定义、几何性质的理解及应用 〖学习过程〗 一、复习归纳 1、双曲线的定义:到两定点距离之差的绝对值等于一个常数(小于两定点间距离)的动点 的轨迹为双曲线。 即:当21212F F a PF PF <=-时,P 的轨迹为双曲线;21F F 是焦距,c F F 221= 注: 1)双曲线有两支,设21,F F 分别是左、右焦点,则当a PF PF 221=-时表示右支; 当a PF PF 212=-时表示左支; 2)当21212F F a PF PF ==-时,P 的轨迹为以1F 、2F 为端点的两条射线; 3) 当21212F F a PF PF >=-时,P 的轨迹不存在; 2、双曲线的标准方程 1)当焦点在x 轴上时,双曲线的标准方程为)0,0(12222>>=-b a b y a x ,其中:焦点坐标是)0,(c ± 2)当焦点在y 轴上时,双曲线的标准方程为 )0,0(12 2 22>>=-b a b x a y ,其中:焦点坐标是),0(c ± 注意:(1)222 b a c += 注意与椭圆的区别。 (2)方程特征:左边是平方差的结构,右边是1;分母均大于0,但大小不定; (3)根据方程判断焦点的位置的方法:看系数的符号(正负); 即2x 的系数大于0则在x 轴上,且2x 的分母即是2a ; 反之,2y 的系数大于0则在y 轴上,且2y 的分母即是2a 。 3、求双曲线方程,先要判断焦点的位置,若两种均有可能,则分两种情况讨论; 有的问题也可用两种标准方程的统一形式:)0(122 <=+mn ny mx 来设方程。 4、常用小结论: 1)与双曲线 122 22 =-b y a x 共渐近线的双曲线系方程为:)0(22 22 ≠=-λλb y a x 2)、以x a b y ±= 渐近线的双曲线可设为:)0(2222≠=-λλb y a x 5、双曲线的标准方程与几何性质 二、例题讲解 例1、(1)已知两定点1(5,0)F -,2(5,0)F ,动点P 满足126PF PF -=,求动点P 的轨迹方程 (2)已知两定点1(5,0)F -,2(5,0)F ,动点P 满足1210PF PF -=,求动点P 的轨迹方程. (3)已知双曲线C 与双曲线14 162 2=-y x 有公共焦点,且过点)2,23(,求该双曲线的方程。 例2、方程 1112 2=-++k y k x 表示双曲线,则k 的取值范围是 ( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-

高中数学平面解析几何的知识点梳理

平面解析几何 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针 方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:1 21121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=. 线段21P P 的中点是),(00y x M ,则??? ????+=+=2221 0210y y y x x x .

高中数学双曲线抛物线知识点总结

双曲线 平面内到两个定点,的距离之差的绝对值是常数2a(2a< )的点的轨迹。 方程 22 22 1(0,0)x y a b a b -=>> 22 22 1(0,0)y x a b a b -=>> 简图 范围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a = > (1)c e e a = > 对称轴 关于x 轴、y 轴及原点对称 关于x轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关 系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线 22221x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M(0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,23A -。 _x _ O _y _x _ O _y

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M(0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c =26,∴c =13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -在双曲线上 ∴(2 2 331916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e、a、b 、c四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c,直线l过点(a,0)和(0,b ),且点(1, 0)到直线l的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e的取值范围。 解:直线l 的方程为 1x y a b -=,级bx +ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l的距离12 2 d a b = +, 同理得到点(-1,0)到直线l 的距离22 2 d a b = +,

高三数学《平面解析几何》

高三数学《平面解析几何》 单元练习七 (考试时间120分 分值160分) 一、填空题(本大题共14小题,每小题5分,共70分.请把正确答案填在题中横线上) 1.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是______. 2.过点A (4,a )与B (5,b )的直线与直线y =x +m 平行,则AB =________. 3.已知双曲线x 24-y 2 12=1的离心率为e ,抛物线x =2py 2的焦点为(e,0),则 p 的值为________. 4.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2 b 的最小值为______. 5.若双曲线x 2a 2-y 2 =1的一个焦点为(2,0),则它的离心率为________. 6.已知曲线上的每一点到点A (0,2)的距离减去它到x 轴的距离的差都是2,则曲线的方程为________. 7.(2010·淮安质检)抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是________. 8.已知点A 、B 是双曲线 x 2- y 2 2 =1上的两点,O 为坐OA 标原点,且满足OA · OB =0,则点O 到直线AB 的距离等于________.

9.(2009·全国Ⅱ改编)双曲线x 26-y 2 3=1的渐近线与圆(x -3)2+y 2=r 2(r >0) 相切,则r =________. 10.(2009·四川高考改编)已知双曲线x 22-y 2 b 2=1(b >0)的左、右焦点分别为 F 1、F 2,其一条渐近线方程为y =x ,点P (3,y 0)在该双曲线上,则12PF PF ?=________. 11.(2009·天津高考改编)设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A 、B 两点,与抛物线的准线相交于点C ,BF =2,则△BCF 与△ACF 的面积之比S △BCF S △ACF =________. 12.(2010·南京模拟)已知点(x 0,y 0)在直线ax +by =0(a ,b 为常数)上,则 (x 0-a )2+(y 0-b )2的最小值为________. 13.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2 -4y 2 =3的焦点为椭圆的焦点作椭圆,那么具有最短长轴的椭圆方程为 ___________________________________________________________. 14.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若 AF FB =,,AF FB BA BC =?=48,则抛物线的方程为______________.

高中数学双曲线函数的图像与性质及应用

一个十分重要的函数的图象与性质应用 新课标高一数学在“基本不等式 ab b a ≥+2”一节课中已经隐含了函数x x y 1 +=的图象、性质与重要的应用,是高考要求范围内的一个重要的基础知识.那么在高三第一轮复习 课中,对于重点中学或基础比较好一点学校的同学而言,我们务必要系统介绍学习 x b ax y + =(ab ≠0)的图象、性质与应用. 2.1 定理:函数x b ax y +=(ab ≠0)表示的图象是以y=ax 和x=0(y 轴) 的直线为渐近线的双曲线. 首先,我们根据渐近线的意义可以理解:ax 的值与x b 的值比较,当x 很大很大的时候, x b 的值几乎可以忽略不计,起决定作用的是ax 的值;当x 的值很小很小,几乎为0的时候,ax 的值几乎可以忽略不计,起决定作用的是x b 的值.从而,函数x b ax y +=(ab ≠0)表示 的图象是以y=ax 和x=0(y 轴)的直线为渐近线的曲线.另外我们可以发现这个函数是奇 函数,它的图象应该关于原点成中心对称. 由于函数形式比较抽象,系数都是字母,因此要证明曲线是双曲线是很麻烦的,我们通过一个例题来说明这一结论. 例1.若函数x x y 3 233+= 是双曲线,求实半轴a ,虚半轴b ,半焦距c ,渐近线及其焦点,并验证双曲 线的定义. 分析:画图,曲线如右所示;由此可知它的渐近线应该是x y 3 3 = 和x=0两条直线;由此,两条渐近线的夹角的平分线y=3x 就是实轴了,得出顶点为A (3,3),A 1(-3,-3); ∴ a=OA =32, 由渐近线与实轴的夹角是30o,则有a b =tan30o, 得b=2 , c=22b a +=4, ∴ F 1(2,32)F 2(-2,-32).为了验证函数的图象是双曲线,在曲线上任意取一点P (x, x x 3 233+)满足3421=-PF PF 即可;

高中数学解析几何双曲线性质与定义

双曲线 双曲线是圆锥曲线的一种,即双曲线是圆锥面与平行于轴的平面相截而得的曲线。 双曲线在一定的仿射变换下,也可以看成反比例函数。 双曲线有两个定义,一是与平面上两个定点的距离之差的绝对值为定值的点的轨迹,二是到定点与定直线的距离之比是一个大于1的常数的点之轨迹。 一、双曲线的定义 ①双曲线的第一定义 一动点移动于一个平面上,与该平面上两个定点F 1、F 2的距离之差的绝对值始终为一定值2a(2a 小于F 1和F 2之间的距离即2a<2c )时所成的轨迹叫做双曲线。 取过两个定点F 1、F 2的直线为x 轴,线段F 1F 2的垂直平分线为y 轴建立直角坐标系。 设M(x ,y)为双曲线上任意一点,那么F1、F2的坐标分别是(-c ,0)、(c ,0).又设点M 与F1、F2的距离的差的绝对值等于常数2a 。 将这个方程移项,两边平方得: 两边再平方,整理得:()() 22222222a c a y a x a c -=-- 由双曲线定义,2c >2a 即c >a ,所以c 2-a 2>0.设222b a c =- (b >0),代入上式得: 双曲线的标准方程:122 22=-b y a x 两个定点F 1,F 2叫做双曲线的左,右焦点。两焦点的距离叫焦距,长度为2c 。坐标轴上 的端点叫做顶点,其中2a 为双曲线的实轴长,2b 为双曲线的虚轴长。 实轴长、虚轴长、焦距间的关系:222b a c +=,

②双曲线的第二定义 与椭圆的方法类似:对于双曲线的标准方程:122 22=-b y a x ,我们将222b a c +=代入, 可得:()a c c a x c x y =± ±+2 2 所以有:双曲线的第二定义可描述为: 平面内一个动点(x,y )到定点F (±c,0)的距离与到定直线l (c a x 2 ±=)的距离之比为 常数()0c e c a a =>>的点的轨迹是双曲线,其中,定点F 叫做双曲线的焦点,定直线l 叫做双 曲线的准线,常数e 是双曲线的离心率。 1、离心率: (1)定义:双曲线的焦距与实轴长的比a c a c e == 22,叫做双曲线的离心率; (2)范围:1>e ; (3)双曲线形状与e 的关系: 1122222-=-=-==e a c a a c a b k ; 因此e 越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔。由此可知,双曲线的离心率越大,它的开口就越阔; (1)双曲线的形状张口随着渐近线的位置变化而变化; (2)渐近线的位置(倾斜)情况又受到其斜率制约; 2、准线方程: 对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 2 1:-=,相对于右焦点 )0,(2c F 对应着右准线c a x l 2 2:=; 位置关系:02>>≥c a a x ,焦点到准线的距离c b p 2 =(也叫焦参数); 对于12222=-b x a y 来说,相对于下焦点),0(1c F -对应着下准线c a y l 2 1:-=;相对于上焦点),0(2c F 对 应着上准线 a y l 2 2:=。

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(21121 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1 =+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直 线一般不重合.

《双曲线的简单几何性质》教学设计.

《双曲线的简单几何性质》教学设计 首都师范大学附属丽泽中学宛宇红靳卫红 一、教材分析 1.教材中的地位及作用 本节课是学生在已掌握双曲线的定义及标准方程之后,在此基础上,反过来利用双曲线的标准方程研究其几何性质。它是教学大纲要求学生必须掌握的内容,也是高考的一个考点,是深入研究双曲线,灵活运用双曲线的定义、方程、性质解题的基础,更能使学生理解、体会解析几何这门学科的研究方法,培养学生的解析几何观念,提高学生的数学素质。 2.教学目标的确定及依据 平面解析几何研究的主要问题之一就是:通过方程,研究平面曲线的性质。教学参考书中明确要求:学生要掌握圆锥曲线的性质,初步掌握根据曲线的方程,研究曲线的几何性质的方法和步骤。根据这些教学原则和要求,以及学生的学习现状,我制定了本节课的教学目标。 (1)知识目标:①使学生能运用双曲线的标准方程讨论双曲线的范围、对称性、 顶点、离心率、渐近线等几何性质; ②掌握双曲线标准方程中c ,的几何意义,理解双曲线的渐近 a, b 线的概念及证明; ③能运用双曲线的几何性质解决双曲线的一些基本问题。 (2)能力目标:①在与椭圆的性质的类比中获得双曲线的性质,培养学生的观察 能力,想象能力,数形结合能力,分析、归纳能力和逻辑推 理能力,以及类比的学习方法; ②使学生进一步掌握利用方程研究曲线性质的基本方法,加深对 直角坐标系中曲线与方程的概念的理解。

(3)德育目标:培养学生对待知识的科学态度和探索精神,而且能够运用运动的,变化的观点分析理解事物。 3.重点、难点的确定及依据 对圆锥曲线来说,渐近线是双曲线特有的性质,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。因此,在教学过程中我把渐近线的发现作为重点,充分暴露思维过程,培养学生的创造性思维,通过诱导、分析,巧妙地应用极限思想导出了双曲线的渐近线方程。这样处理将数学思想渗透于其中,学生也易接受。因此,我把渐近线的证明作为本节课的难点,根据本节的教学内容和教学大纲以及高考的要求,结合学生现有的实际水平和认知能力,我把渐近线和离心率这两个性质作为本节课的重点。 4.教学方法 这节课内容是通过双曲线方程推导、研究双曲线的性质,本节内容类似于“椭圆的简单的几何性质”,教学中可以与其类比讲解,让学生自己进行探究,得到类似的结论。在教学中,学生自己能得到的结论应该让学生自己得到,凡是难度不大,经过学习学生自己能解决的问题,应该让学生自己解决,这样有利于调动学生学习的积极性,激发他们的学习积极性,同时也有利于学习建立信心,使他们的主动性得到充分发挥,从中提高学生的思维能力和解决问题的能力。 渐近线是双曲线特有的性质,我们常利用它作出双曲线的草图,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。因此,在教学过程中着重培养学生的创造性思维,通过诱导、分析,从已有知识出发,层层设(释)疑,激活已知,启迪思维,调动学生自身探索的内驱力,进一步清晰概念(或图形)特征,培养思维的深刻性。 例题的选备,可将此题作一题多变(变条件,变结论),训练学生一题多解,开拓其解题思路,使他们在做题中总结规律、发展思维、提高知识的应用能力和发现问题、解决问题能力。

(完整)江苏省高中数学公式

高 中 数 学 公 式 (苏教版) 使用说明:本资料需要有经验老师讲解每一个公式,然后根据公式出一个题来运用、理解公式,天天坚持直到高考。这样效果极佳;另外术业教育每天出一份高考数学挑战题卡(上传到学优高考网),保证你的学生数学成绩能够从20分迅速提高到100分,这项成果经过我们十几年的教学实践总结,效果绝对好。 一、集合 1. 集合的运算符号:交集“I ”,并集“Y ”补集“C ”子集“?” 2. 非空集合的子集个数:n 2(n 是指该集合元素的个数) 3. 空集的符号为? 二、函数 1. 定义域(整式型:R x ∈;分式型:分母0≠;零次幂型:底数0≠;对数型:真数0>;根式型:被开方数0≥) 2. 偶函数:)()(x f x f -= 奇函数:0)()(=-+x f x f 在计算时:偶函数常用:)1()1(-=f f 奇函数常用:0)0(=f 或0)1()1(=-+f f 3. 单调增函数:当在x 递增,y 也递增;当x 在递减,y 也递减 单调减函数:与增函数相反 4. 指数函数计算:n m n m a a a +=?;n m n m a a a -=÷;n m n m a a ?=)(;m n m n a a =;10=a 指数函数的性质:x a y =;当1>a 时,x a y =为增函数; 当10<a 时,x a y log =为增函数

高中数学公式双曲线

双曲线 Ⅰ、定义与推论: 1.定义1的认知 设M为双曲线上任意一点,分别为双曲线两焦点,分别为双曲线实轴端点,则有: (1)明朗的等量关系: (解决双焦点半径问题的首选公式) (2)隐蔽的不等关系:,(寻求某些基本量的取值范围时建立不等式的依据) 2.定义2的推论 设为双曲线上任意上点,分别为双曲线左、右焦点,则有 ,其中,为焦点到相应准线l i的距离 推论:焦点半径公式当点M在双曲线右支上时,; 当点M在双曲线左支上时,。 Ⅱ、标准方程与几何性质 3.双曲线的标准方程 中心在原点,焦点在x轴上的双曲线标准方程为① 中心在原点,焦点在y轴上的双曲线标准方程为② (1)标准方程①、②中的a、b、c具有相同的意义与相同的联系: (2)标准方程①、②的统一形式:或 (3)椭圆与双曲线标准方程的统一形式: 4.双曲线的几何性质 (1)范围: (2)对称性:关于x轴、y轴及原点对称(两轴一中心) (3)顶点与轴长:顶点 (由此赋予a,b名称与几何意义) (4)离心率: (5)准线:左焦点对应的左准线;右焦点对应的右准线 (6)双曲线共性:准线垂直于实轴;两准线间距离为; 中心到准线的距离为;焦点到相应准线的距离为 (7)渐近线:双曲线的渐近线方程:

Ⅲ、挖掘与延伸 1.具有特殊联系的双曲线的方程 对于双曲线 (a) (1)当λ+μ为定值时,(a)为共焦点的双曲线(系)方程:c 2 =λ+μ; (2)当 为定值时,(※)为共离心率亦为共淅近线的双曲线(系)方程: ; (3)以直线 为渐近线的双曲线(系)方程为: 特别:与双曲线 共渐近线的双曲线的方程为: (左边相同,区别仅在于右边的常数) 2.弦长公式 设斜率为k 的直线l 与双曲线交于不同两点 则 1、双曲线标准方程的两种形式是:12222=-b y a x 和122 22=-b x a y )00(>>b a ,。 2、双曲线12222=-b y a x 的焦点坐标是)0(,c ±,准线方程是c a x 2± =,离心率是a c e =,通径的长是a b 22,渐近线方程是02222=-b y a x 。其中2 22b a c +=。 3、与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222b y a x )0(≠λ,即共渐近线为x a b y ±=; 与双曲线12222=-b y a x 共焦点的双曲线系方程是122 2 2=--+k b y k a x 。 4、双曲线焦半径公式:设P(x 0,y 0)为双曲线22 221-=x y a b (a>0,b>0)上任一点,焦点为F 1(-c,0),F 2(c,0),则: (1)当P 点在右支上时,1020,=+=-+PF a ex PF a ex ; (2)当P 点在左支上时,1020,=--=-PF a ex PF a ex ;(e 为离心率); 另:双曲线12222=-b y a x (a>0,b>0)的渐进线方程为02222 =-b y a x ; 5、双曲线1222 2=-b y a x 的通径(最短弦)为a b 2 2,焦准距为2=b p c ,焦点到渐进线的距离为b; 6、处理双曲线的弦中点问题常用代点相减法,设A(x 1,y 1)、B(x 2,y 2)为双曲线1222 2 =-b y a x (a>0,b>0)上不同的两点,M(x 0,y 0)是AB 的中点,则K AB .K OM =22a b 。

高三数学 平面解析几何

平面解析几何(附高考预测) 一、本章知识结构: 二、重点知识回顾 1.直线 (1).直线的倾斜角和斜率 直线的的斜率为k ,倾斜角为α,它们的关系为:k =tan α; 若A(x 1,y 1),B(x 2,y 2),则1 212x x y y K AB --= 。 (2) .直线的方程

a.点斜式:)(11x x k y y -=-; b.斜截式:b kx y +=; c.两点式:121121x x x x y y y y --=--; d.截距式:1=+b y a x ; e.一般式:0=++C By Ax ,其中A 、B 不同时为0. (3).两直线的位置关系 两条直线1l ,2l 有三种位置关系:平行(没有公共点);相交(有 且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交。 若直线1l 、2l 的斜率分别为1k 、2k ,则 1l ∥2l ?1k =2k ,1l ⊥2l ?1k ·2k =-1。 (4)点、直线之间的距离 点A (x 0,y 0)到直线0=++C By Ax 的距离为:d= 2200||B A C By Ax +++。 两点之间的距离:|AB|=212212)()y y x x -+-( 2. 圆 (1)圆方程的三种形式 标准式:222)()(r b y a x =-+-,其中点(a ,b )为圆心,r>0,r 为半径,圆的标准方程中有三个待定系数,使用该方程的最大优点是可以方便地看出圆的圆心坐标与半径的大小. 一般式:022=++++F Ey Dx y x ,其中?? ? ??--22E D ,为圆心F E D 42 122-+为半径,,圆的一般方程中也有三个待定系数,即D 、E 、F .若已知条件中没有直接给出圆心的坐标(如题目为:已知一 个圆经过三个点,求圆的方程),则往往使用圆的一般方程求圆方程. 参数式:以原点为圆心、 r 为半径的圆的参数方程是???==θθsin ,cos r y r x (其中θ为参数).

高中数学公式大全(整理版)

高中数学公式大全(最新整理版) 1、二次函数的解析式的三种形式 (1)一般式; (2)顶点式; (3)零点式. 2、四种命题的相互关系 原命题:与逆命题互逆,与否命题互否,与逆否命题互为逆否;逆命题:与原命题互逆,与逆否命题互否,与否命题互为逆否;否命题:与原命题互否,与逆命题互为逆否,与逆否命题互逆;逆否命题:与逆命题互否,与否命题互逆,与原命题互为逆否 §函数 1、若,则函数的图象关于点对称; 若,则函数为周期为的周期函数. 2、函数的图象的对称性 (1)函数的图象关于直线对称 . (2)函数的图象关于直线对称

. 3、两个函数图象的对称性 (1)函数与函数的图象关于直线(即轴)对称. (2)函数与函数的图象关于直线对称. (3)函数和的图象关于直线y=x对称. 4、若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线 的图象. 5、互为反函数的两个函数的关系:. 6、若函数存在反函数,则其反函数为,并不是 ,而函数是的反函数. 7、几个常见的函数方程 (1)正比例函数,. (2)指数函数,. (3)对数函数,. (4)幂函数,.

(5)余弦函数,正弦函数,,§数列 1、数列的同项公式与前n项的和的关系 ( 数列的前n项的和为). 2、等差数列的通项公式;其前n项和公式为. 3、等比数列的通项公式;其前n项的和公式为 或. 4、等比差数列:的通项公式为 ;其前n项和公式为 . §三角函数 1、同角三角函数的基本关系式,=,.

2、正弦、余弦的诱导公式(奇变偶不变,符号看象限) 3、和角与差角公式 ; ; . (平方正弦公式); . =(辅助角所在象限由点的象限决定, ). 4、二倍角公式 . .

【精品】高中数学 选修1-1_双曲线的简单性质 知识点讲解 讲义+巩固练习(含答案)_基础

双曲线的简单性质 【学习目标】 1.知识与技能 理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念. 2.过程与方法 锻炼学生观察分析抽象概括的逻辑思维能力和运用数形结合思想解决实际问题的能力.3.情感态度与价值观 通过数与形的辨证统一,对学生进行辩证唯物主义教育,通过对双曲线对称美的感受,激发学生对美好事物的追求. 【要点梳理】 【高清课堂:双曲线的性质356749 知识要点二】 要点一:双曲线的简单几何性质 双曲线 22 22 1 x y a b -=(a>0,b>0)的简单几何性质 范围 2 21 x a ≥,即22 x a ≥ ∴x a ≥,或x a ≤-. 双曲线上所有的点都在两条平行直线x= -a和x= a的两侧,是无限延伸的.因此双曲线上点的横坐标满足∴x a ≥,或x a ≤-.对称性 对于双曲线标准方程 22 22 1 x y a b -=(a>0,b>0),把x换成-x,或把y换成-y,或把x、y同

时换成-x 、-y ,方程都不变,所以双曲线22 221x y a b -=(a >0,b >0)是以x 轴、y 轴为对称轴的 轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心. 顶点 ①双曲线与它的对称轴的交点称为双曲线的顶点. ②双曲线22 221x y a b -=(a >0,b >0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别 为 A 1(-a ,0),A 2(a ,0),顶点是双曲线两支上的点中距离最近的点. ③两个顶点间的线段A 1A 2叫作双曲线的实轴;设B 1(0,- b ),B 2(0,b )为y 轴上的两个点,则线段B 1B 2叫做双曲线的虚轴.实轴和虚轴的长度分别为|A 1A 2|=2a ,|B 1B 2|=2b .a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长. ①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆. ②双曲线的焦点总在实轴上. ③实轴和虚轴等长的双曲线称为等轴双曲线. 离心率 ①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e 表示,记作22c c e a a ==. ②因为c >a >0,所以双曲线的离心率1c e a =>. 由c 2 = a 2 +b 2 ,可得b a ===b a 决定双曲线的开口大小,b a 越大,e 也越大,双曲线开口就越开阔.所以离心率可以用来表示双曲线开口的大小程度. ③等轴双曲线a b =,所以离心率e = 渐近线 经过点A 2、A 1作y 轴的平行线x =±a ,经过点B 1、B 2作x 轴的平行线y =±b ,四条直线围成一个矩形(如图),矩形的两条对角线所在直线的方程是b y x a =±.

高中数学平面解析几何初步经典例题(供参考)

直线和圆的方程 一、知识导学 1.两点间的距离公式:不论A(x 1,y 1),B(x 2,y 2)在坐标平面上什么位置,都有d=|AB|=221221)()(y y x x -+-,特别地,与坐标轴平行的线段的长|AB|=|x 2-x 1|或|AB|=|y 2-y 1|. 2.定比分点公式:定比分点公式是解决共线三点A(x 1,y 1),B(x 2,y 2),P(x ,y )之间数量关系的一个公式,其中λ的值是起点到分点与分点到终点的有向线段的数量之比.这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了.若以 A 为起点, B 为终点,P 为分点,则定比分点公式是???? ?? ?++=++=λ λλλ11212 1y y y x x x .当P 点为AB 的中点时,λ=1,此时中点坐标公式是??? ???? +=+=222121y y y x x x . 3.直线的倾斜角和斜率的关系 (1)每一条直线都有倾斜角,但不一定有斜率. (2)斜率存在的直线,其斜率k 与倾斜角α之间的关系是k =tan α. 4.确定直线方程需要有两个互相独立的条件。直线方程的形式很多,但必须注意各种 5.两条直线的夹角。当两直线的斜率1k ,2k 都存在且1k ·2k ≠ -1时,tan θ= 2 11 21k k k k +-, 当直线的斜率不存在时,可结合图形判断.另外还应注意到:“到角”公式与“夹角”公式的

区别. 6.怎么判断两直线是否平行或垂直?判断两直线是否平行或垂直时,若两直线的斜率都存在,可以用斜率的关系来判断;若直线的斜率不存在,则必须用一般式的平行垂直条件来判断. (1)斜率存在且不重合的两条直线l 1∶11b x k y +=, l 2∶22b x k y +=,有以下结论: ①l 1∥l 2?1k =2k ,且b1=b2 ②l 1⊥l 2?1k ·2k = -1 (2)对于直线l 1∶0111=++C y B x A ,l 2 ∶0222=++C y B x A ,当A 1,A 2,B 1, B 2都不为零时,有以下结论: ①l 1∥l 2? 21A A =21B B ≠2 1C C ②l 1⊥l 2?A 1A 2+B 1B 2 = 0 ③l 1与l 2相交? 21A A ≠21B B ④l 1与l 2重合? 21A A =21B B =2 1 C C 7.点到直线的距离公式. (1)已知一点P (00,y x )及一条直线l :0=++C By Ax ,则点P 到直线l 的距离 d = 2 2 00| |B A C By Ax +++; (2)两平行直线l 1: 01=++C By Ax , l 2: 02=++C By Ax 之间的距离 d= 2 2 21||B A C C +-. 8.确定圆方程需要有三个互相独立的条件。圆的方程有两种形式,要知道两种形式之间的相互转化及相互联系 (1)圆的标准方程:222)()(r b y a x =-+-,其中(a ,b )是圆心坐标,r 是圆的半径; (2)圆的一般方程:022=++++F Ey Dx y x (F E D 42 2-+>0),圆心坐标 为(-2D ,-2 E ),半径为r =2422 F E D -+.

相关文档
相关文档 最新文档