文档库 最新最全的文档下载
当前位置:文档库 › 高考物理:电磁感应综合应用特色专题训练

高考物理:电磁感应综合应用特色专题训练

高考物理:电磁感应综合应用特色专题训练
高考物理:电磁感应综合应用特色专题训练

特色专题训练(一)

电磁感应综合应用

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分,考试时间90分钟.

第Ⅰ卷(选择题共40分)

一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的只有一个选项符合题意,有的有多个选项符合题意,全部选对的得4分,选对但不全的得2分,选错或不答的得0分)

1.如图Z-1-1所示,将一个矩形线圈ABCD放在一个匀强磁场中,线圈平面平行于磁感线,则下列情况中,线圈中有感应电流产生的是( )

图Z-1-1

A.当矩形线圈做平行于磁感线的平动时

B.当矩形线圈做垂直于磁感线的平动时

C.当矩形线圈绕AB边转动时

D.当矩形线圈绕BC边转动时

2.(多选)在如图Z-1-2所示的电路中,电源电动势为E,内阻r不能忽略.R1和R2是两个定值电阻,L是一个自感系数较大的线圈.开关S原来是断开的,从闭合开关S到电路中电流达到稳定的时间内,通过R1的电流I1和通过R2的电流I2的变化情况分别是( )

图Z-1-2

A.I1开始较大,而后逐渐变小

B.I1开始很小,而后逐渐变大

C.I2开始很小,而后逐渐变大

D.I2开始较大,而后逐渐变小

3.如图Z-1-3所示,光滑绝缘水平面上有一个矩形线圈沿水平方向进入匀强磁场,线圈全部进入磁场区域时,其动能恰好等于它在磁场外面时的一半,设磁场宽度大于线圈宽度,那么( )

图Z-1-3

A.线圈恰好在刚离开磁场的地方停下

B.线圈在磁场中某位置停下

C.线圈在未完全离开磁场时即已停下

D.线圈完全离开磁场以后仍能继续运动,不会停下来

4.(多选)如图Z-1-4所示,先后以恒定的速度v1和v2把一个正方形线圈水平拉出有界

匀强磁场区域,且v 1=2v 2,则在先后两种情况下( )

图Z -1-4

A .线圈中的感应电动势之比E 1∶E 2=2∶1

B .线圈中的感应电流之比I 1∶I 2=1∶2

C .线圈中产生的热量之比Q 1∶Q 2=1∶4

D .通过线圈某截面的电荷量之比q 1∶q 2=1∶1

5.(多选)如图Z -1-5所示,在垂直于纸面向里、磁感应强度为B 的匀强磁场区域中有一个用均匀导线制成的单匝直角三角形线框.现用外力使线框以恒定的速度v 沿垂直于磁场的方向向右运动,运动中线框的AB 边始终与磁场的右边界平行.已知AB =BC =l ,线框的总电阻为R.则线框离开磁场的过程中( )

图Z -1-5

A .线框中的感应电动势随时间均匀增大

B .通过线框截面的电荷量为Bl 22R

C .线框所受外力的最大值为2B 2l 2v R

D .线框的热功率与时间成正比

6.(多选)如图Z -1-6所示,竖直平面内的虚线上方有一个匀强磁场,从虚线下方竖直上抛一个正方形线圈,线圈越过虚线进入磁场,最后又落回原处,运动过程中线圈平面保持在竖直平面内,不计空气阻力,则( )

图Z -1-6

A .上升过程中克服安培力做的功大于下降过程中克服安培力做的功

B .上升过程中克服安培力做的功等于下降过程中克服安培力做的功

C .上升过程中克服重力做功的平均功率大于下降过程中重力做功的平均功率

D .上升过程中克服重力做功的平均功率等于下降过程中重力做功的平均功率

7.(多选)如图Z -1-7所示,不计电阻的平行金属导轨ab 、cd 竖直放置,上端接有电阻R ,ef 是一根电阻可不计的水平放置的导体棒,质量为m ,棒的两端分别与ab 、cd 保持良好

接触,且能沿导轨无摩擦下滑,整个装置放在与导轨垂直的匀强磁场中,当导体棒ef由静止下滑一段时间后闭合开关S,则S闭合后( )

图Z-1-7

A.导体棒ef的加速度可能大于g

B.导体棒ef的加速度一定小于g

C.导体棒ef最终的速度随S闭合时刻的不同而不同

D.导体棒ef的机械能与回路内产生的热量之和一定守恒

8.图Z-1-8中电感线圈L的直流电阻为R L,小灯泡的电阻为R,小量程电流表G1、G2的内阻不计.当开关S闭合且电流达到稳定后,电流表G1、G2的指针均偏向右侧(电流表的零刻度在表盘的中央),则当开关S断开时,下列说法中正确的是( )

图Z-1-8

A.G1、G2的指针都立即回到零点

B.G1缓慢回到零点,G2立即左偏,然后缓慢回到零点

C.G1立即回到零点,G2缓慢回到零点

D.G2立即回到零点,G1缓慢回到零点

9.闭合矩形导线框的质量可以忽略不计,将它从如图Z-1-9所示的位置向右匀速拉出匀强磁场.若第一次用0.3 s将其拉出,外力所做的功为W1,通过导线框横截面的电荷量为q1;第二次用0.9 s将其拉出,外力所做的功为W2,通过导线框横截面的电荷量为q2.则( )

图Z-1-9

A.W1

C.W1>W2,q1=q2D.W1>W2,q1>q2

10.如图Z-1-10所示,在虚线空间内有一对彼此平行的金属导轨,间距为L,与水平面的夹角为θ,导轨电阻不计,在虚线空间内同时分布着垂直于导轨平面向上的磁感应强度为B的匀强磁场.导轨的下端接定值电阻R,上端通过导线与一对竖直放置的平行金属板相连接,两板间距为d,其间固定着一根光滑绝缘直杆,它与水平面的夹角也为θ,杆上套着一个带电小球.当一根电阻也为R的光滑导体棒ab沿导轨以速度v匀速下滑时,小球恰好静止在绝缘直杆上.则小球的电性及其比荷分别为( )

图Z -1-10

A .带正电,2dg tan θBLv cos θ

B .带正电,2dg tan θBLv

C .带负电,2dg tan θBLv cos θ

D .带负电,

2dg tan θBLv

请将选择题答案填入下表:

题号

1 2 3 4 5 6 7 8 9 10 总分 答案

第Ⅱ卷(非选择题 共60分)

二、实验题(本题共15分)

11.图Z -1-11是探究法拉第电磁感应定律的实验装置,在传送带上固定一块条形磁铁,让传送带匀速运动.

图Z -1-11

实验器材:可成倍数控制速度的同步电动机;同步带(上表面固定一块条形磁铁);线圈(连接到微电压传感器上);处理数据的计算机(已连接传感器)等.

实验方案:用同一个线圈进行实验(即匝数n 一定、线圈面积一定),使同步电动机的速度成倍数地变化;每次磁铁穿过线圈时,传感器将采集的数据传送至计算机进行图像处理.

(1)使同步电动机的速度成倍数地变化,目的是成倍数地改变________________________________________________________________________.

A .磁通量的变化量ΔΦ

B .磁铁穿过线圈的时间Δt

(2)若传送带以速度v 匀速运动时,计算机上显示的电压波形如图Z -1-12甲所示,则计算机上显示的电压波形为图乙时,传送带的速度为______;计算机上显示的电压波形为丙图时,传送带的速度为________.

乙丙

图Z-1-12

(3)本实验直接得到的结论是:感应电动势的大小跟磁铁穿过线圈的时间Δt__________.考虑到线圈的匝数n、线圈面积以及磁铁的磁性不变,由此得到更一般的结论是__________________________________.

三、计算题(本题共4小题,12题10分,13题11分,14题11分,15题13分,共45分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分) 12.面积S=0.2 m2、匝数n=100匝的圆形线圈,处在如图Z-1-13所示的匀强磁场内,磁感应强度B随时间t变化的规律是B=0.02t (T).电阻R与电容器并联后接在线圈两端,电阻R=3 Ω,电容C=30 μF,线圈电阻r=1 Ω.求:

(1)通过R的电流的大小和方向;

(2)电容器所带的电荷量.

图Z-1-13

13.如图Z-1-14所示,水平放置的长直平行金属导轨PQ、MN相距l=0.4 m,导轨左边接有阻值为R =3 Ω的定值电阻,在导轨上放置一根金属棒ab,其质量为0.01 kg,电阻为0.2 Ω,导轨电阻不计.整个装置处于磁感应强度B =0.5 T的竖直向上的匀强磁场中,不计摩擦,当金属棒在外力作用下以v=4 m/s的速度匀速向右运动时,求:

(1)金属棒ab中感应电流的大小和方向;

(2)外力的功率;

(3)撤去外力后,金属棒最终会停下来,求此过程中电阻R上产生的热量.

图Z -1-14

14.如图Z -1-15所示,两条平行的光滑固定金属轨道MN 、PQ 与水平面的夹角为θ,间距为d.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B ,P 、M 间所接电阻的阻值为R.质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻为r.现将ab 由静止释放,当它沿轨道下滑距离x 时,达到最大速度.若轨道足够长且电阻不计,重力加速度为g.求:

(1)金属杆ab 运动的最大速度;

(2)金属杆ab 运动的加速度为12

g sin θ时,电阻R 上的电功率; (3)金属杆ab 从静止到具有最大速度的过程中,克服安培力所做的功.

图Z -1-15

15.如图Z -1-16甲所示,在光滑、绝缘的水平面上,虚线MN 的右侧存在磁感应强度大小为B =2 T 、方向竖直向下的匀强磁场,MN 的左侧有一个质量m =0.1 kg 、bc 边的长度L 1=0.2 m 、总电阻R =2 Ω的矩形线圈abcd.t =0时,用恒定拉力F 拉线圈,使其由静止开始向右做匀加速直线运动,经过1 s ,线圈的bc 边到达磁场边界MN ,此时立即将拉力F 改为变力,又经过1 s ,线圈恰好完全进入磁场.整个运动的过程中,线圈中的感应电流I 随时间t 变化的图像如图乙所示.求:

(1)线圈bc 边刚进入磁场时的速度v 0和线圈在第1 s 内运动的距离x ;

(2)线圈ab 边的长度L 2;

(3)线圈ad 边刚进入磁场时拉力的功率.

图Z -1-16

答案:特色专题训练(一)

1.C [解析] 当线圈平行于磁感线或垂直于磁感线平移时,线圈中的磁通量为零且无变化,没有感应电流产生;当线圈绕BC 边转动时,通过线圈的磁通量没有发生变化,没有感应电流产生;只有当线圈绕AB 边转动时,通过线圈的磁通量才会发生变化,线圈中才会有感应电流产生.所以,只有选项C 正确.

2.AC [解析] 闭合开关S 时,由于L 是一个自感系数较大的线圈,产生反向的自感电动势阻碍电流的变化,所以开始时I 2很小而I 1较大,随着电流逐渐达到稳定,I 2开始逐渐

变大,I 1逐渐减小.故选项A 、C 正确.

3.D [解析] 线圈进入匀强磁场时,产生感应电流,线圈受安培力作用做减速运动,动能减少.同理,线圈离开匀强磁场时,动能也减少,进、出时减少的动能都等于克服安培力做的功.由于进入磁场时线圈的速度大,故感应电流大,安培力大,克服安培力做的功也多,减少的动能也多.线圈离开磁场的过程中,损失的动能少于它未进入磁场时动能的一半,因此线圈离开磁场后仍能继续运动.选项D 正确.

4.AD [解析] 根据E =BLv ∝v 以及v 1=2v 2可知,选项A 正确;因为I =E R

∝E ,所以I 1∶I 2=2∶1,选项B 错误;线圈中产生的热量Q =I 2Rt =E 2R t =B 2L 2v 2R ·L v =B 2L 3

v R ∝v ,所以Q 1∶Q 2=2∶1,选项C 错误;根据q =ΔΦR

可知,选项D 正确. 5.AB [解析] 三角形线框向外匀速运动的过程中,由于切割磁感线的有效长度L =vt ,

所以线框中感应电动势的大小E =BLv =Bv 2t ,故选项A 正确;线框离开磁场的过程中,通过

线框的电荷量Q =I ·Δt =ΔΦΔt ·R ·Δt =Bl 22R

,选项B 正确;当线框恰好刚要完全离开磁场时,线框切割磁感线的有效长度最大,为l ,则F =BIl =B 2l 2v R

,选项C 错误;线框的热功率为P =Fv =BIvt ·v =B 2v 4t 2R

,选项D 错误. 6.AC [解析] 线圈上升过程中在减速,下降过程中,运动情况比较复杂,有加速、减速或匀速等,把上升过程看作反向的加速,可以发现当运动到同一位置时,线圈的速度都比下降过程中相应的速度要大,可以得出结论:上升过程中克服安培力做功多,选项A 正确;上升过程时间短,故克服重力做功的平均功率大于下降过程中重力做功的平均功率,选项C 正确.

7.AD [解析] 开关S 闭合前,导体棒只受重力而加速下滑.闭合开关时有一定的初速度v 0,若此时F 安>mg ,则F 安-mg =ma.若F 安

8.B [解析] S 闭合且电流达到稳定时,通过电流表G 1、G 2两条支路的电流均由左向右.断开S ,L 中产生自感电动势,由“增反减同”可知,自感电动势E 自的方向一定与原电流方向相同,等效电路如图所示.显然,断开S 后,在E 自的作用下,回路中将形成沿顺时针方向的电流,这时流经电流表G 2的电流方向变为由右向左.由于这段时间内E 自是逐渐减小的,故电流也是逐渐减小的.综上可知,选项B 正确.

9.C [解析] 设导线框长为L 1,宽为L 2,第一次拉出的速度为v 1,第二次拉出的速度为v 2,则v 1=3v 2.匀速拉出磁场时,外力所做的功恰等于克服安培力所做的功,有W 1=F 1L 1

=BI 1L 2L 1=B 2L 22L 1v 1R ,同理W 2=B 2L 2

2L 1v 2R

,故W 1>W 2;又由于导线框两次被拉出的过程中,磁通量的变化量相等,即ΔΦ1=ΔΦ2,由q =It =BL 2v R t =BL 1L 2Rt t =BL 1L 2R =ΔΦR

得q 1=q 2.故选项

C 正确.

10.B [解析] 导体棒切割磁感线产生的感应电动势为BLv ,所以U =12

BLv ,对小球由平衡条件有qU d =mg tan θ,联立解得q m =2dg tan θBLv

,由右手定则可知,通过导体棒的电流方向为b →a ,故左侧金属板带正电,小球带正电,选项B 正确.

11.(1)B (2)2v 4v (3)成反比 感应电动势的大小跟磁铁穿过线圈的磁通量的变化率成正比

[解析] (1)传送带的速度越大,磁铁穿过线圈的时间越短,所以改变电动机的速度就改变了磁铁穿过线圈的时间Δt ;由于线圈面积不变,条形磁铁的磁感应强度不变,所以磁通量的改变量ΔΦ不变.

(2)从图中可以看出,甲的最高电压是0.5 V ,乙的最高电压是1.0 V ,丙的最高电压是2.0 V ,所以,传送带的速度应该分别是v 、2v 和4v.

(3)本实验通过控制电动机的速度,直接改变的是磁铁穿过线圈的时间Δt ,所以直接的结论是感应电动势的大小跟磁铁穿过线圈的时间Δt 成反比.由于线圈面积不变,条形磁铁的磁感应强度不变,即ΔΦ不变,所以可得出感应电动势E 的大小跟磁铁穿过线圈的磁通量

的变化率ΔΦΔt

成正比的结论. 12.(1)0.1 A 方向为b →a (2)9×10-6

C

[解析] (1)通过圆形线圈的磁通量Φ变大,由楞次定律和安培定则知,线圈中感应电流的方向为逆时针方向,所以通过R 的电流方向为由b 到a.

由法拉第电磁感应定律可知,线圈产生的感应电动势为

E =n ΔΦΔt =nS ΔB Δt

=100×0.2×0.02 V =0.4 V , 由闭合电路的欧姆定律可知,通过R 的电流为

I =E R +r =0.43+1

A =0.1 A . (2)电容器两端的电压等于电阻R 两端的电压,即

U C =U R =IR =0.1×3 V =0.3 V ,

电容器所带的电荷量为

Q =CU C =30×10-6×0.3 C =9×10-6 C .

13.(1)0.25 A 方向为a →b (2)0.2 W (3)0.075 J

[解析] (1)由右手定则可知,金属棒中的电流方向为a →b

感应电动势

E =Blv =0.5×0.4×4 V =0.8 V

由闭合电路的欧姆定律得

I =E r +R =0.80.2+3

A =0.25 A . (2)匀速运动时金属棒受到的安培力

F 安=BIl =0.5×0.25×0.4 N =0.05 N ,

则F 外=F 安=0.05 N ,

功率P =F 外v =0.05×4 W =0.2 W .

(3)由能量守恒定律可知,金属棒的动能全部转化为电路中产生的热量,即

Q =ΔE k =12

mv 2=0.08 J , 故电阻R 上产生的热量为

Q R =R r +R

Q =0.075 J . 14.(1)mg (R +r )sin θB 2d 2 (2)? ????mg sin θ2Bd

2

R (3)mgx sin θ-m 3g 2(R +r )2sin 2θ2B 4d 4 [解析] (1)当杆达到最大速度时安培力F =mg sin θ,

安培力F =BId ,

其中感应电流I =E R +r

, 感应电动势E =Bdv m ,

联立解得最大速度v m =mg (R +r )sin θB 2d 2. (2)当ab 运动的加速度为12

g sin θ时,根据牛顿第二定律,有 mg sin θ-BI ′d =m ·12

g sin θ, 电阻R 上的电功率P =I ′2R , 解得P =? ??

??mg sin θ2Bd 2

R. (3)金属杆从静止到具有最大速度的过程中根据动能定理得

mgx sin θ-W F =12

mv 2m -0, 解得W F =mgx sin θ-m 3g 2(R +r )2sin 2θ2B 4d 4. 15.(1)0.5 m /s 0.25 m (2)1 m (3)0.33 W

[解析] (1)t 1=1 s 时,线圈的bc 边刚进入磁场,感应电动势

E 1=BL 1v 0

感应电流

I 1=E 1R

由图中可读出I 1=0.1 A

联立解得v 0=0.5 m /s

故线圈在第1 s 内的位移

x =v 02

t 1=0.25 m . (2)线圈在磁场中运动时,感应电流I =BL 1v R

,由图乙可知,电流随时间均匀增大,故线

圈在磁场中做匀加速运动.

t 2=2 s 时,感应电流

I 2=BL 1v 2R

=0.3 A 解得线圈的速度v 2=1.5 m /s

故线圈ab 边的长度L 2=v 0+v 22

·(t 2-t 1)=1 m . (3)线圈在磁场中运动的加速度

a =v 2-v 0t 2-t 1

=1 m /s 2 线圈ad 边刚进入磁场时,有

F -BI 2L 1=ma

解得拉力F =0.22 N

故拉力的功率P =Fv 2=0.33 W .

完整版电磁感应图像问题练习

压U ab 、线框所受安培力 F 、穿过线圈的磁通量 ①随位移x 的变化图像正确的是 B . 电磁感应图像问题 1如图所示,由粗细均匀的电阻丝制成的边长为 I 的正方形线框abed ,其总电阻为 R 现 使线框以水平向右的速度 v 匀速穿过一宽度为 2I 、磁感应强度为 B 的匀强磁场区域,整个 过程中ab 、cd 两边始终保持与磁场边界平行。 令线框的ed 边刚好与磁场左边界重合时 t =o , 电流沿abeda 流动的方向为正,u o =Blv 。线框中a 、b 两点间电势差u ab 随线框cd 边的位移x X X X X X X ; X K X X X X ; X X X X X X ; x \ X X A I X X X X X X ; II ? 为坐标原点建立x 轴.一边长为L 的正方形金属线框 abed ,在外力作用下以速度 v 匀速穿过 匀强磁场.从线框cd 边刚进磁场开始计时,线框中产生的感应电流 i 、线框ab 边两端的电 2.如图所示,空间存在垂直纸面向里的有界匀强磁场,磁场区域宽度为 D 2L ,以磁场左边界 变化的图象正确的是( /减 X X j I £■74 t ) -坯的 K X X I

3.如图所示,两相邻的宽均为0.8m的匀强磁场区域,磁场方向分别垂直纸面向里和垂直纸 面向外。一边长为0.4m的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v=0.2m/s 通过磁场区域,在运动过程中,线框有一边始终与磁场区域的边界平行。取它刚进入磁场的时刻t=O,规定线框中感应电流逆时针方向为正方向。在下列图线中,正确反映感应电流强 度随时间变化规律的是() 4 .如图所示,为三个有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向外、向 里和向外,磁场宽度均为L,在磁场区域的左侧边界处,有一边长为L的正方形导体线框, 总电阻为R,且线框平面与磁场方向垂直,现用外力F使线框以速度v匀速穿过磁场区域, 以初始位置为计时起点,规定电流沿逆时针方向时的电动势E为正,磁感线垂直纸面向里 时的磁通量①为正值,外力F向右为正。则以下反映线框中的磁通量①、感应电动势E、 外力F和电功率P随时间变化规律图象错误的是 * ? * 1 ??■V ? ?4 ■ ?■ ? ?■ ------ ?

高考物理电磁感应现象的两类情况(大题培优)及答案

高考物理电磁感应现象的两类情况(大题培优)及答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

电磁感应专题练习

电磁感应专题练习 【四川省成都外国语学校2019-2020学年高二(下)5月物理试题】如图所示,竖直平面 内有一半径为r、电阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与距离为2r、电 阻不计的平行光滑金属导轨ME、NF相接,E、F之间接有电阻R2,已知R1=12R,R2=4R。在MN上方及CD下方有水平方向的匀强磁场Ⅰ和Ⅱ,磁感应强度大小均为B。现有质量 为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒 始终保持水平,与半圆形金属环及轨道接触良好,设平行导轨足够长。已知导体棒下落r 2时的速度大小为v1,下落到MN处时的速度大小为v2。 (1)求导体棒ab从A处下落r 2时的加速度大小a; (2)若导体棒ab进入磁场Ⅱ后棒中电流大小始终不变,求磁场Ⅰ和Ⅱ之间的距离h; (3)当ab棒通过MN以后将半圆形金属环断开,同时将磁场Ⅱ的CD边界略微上移,导体棒ab刚进入磁场Ⅱ时的速度大小为v3,设导体棒ab在磁场Ⅱ下落高度H刚好达到匀速,则导体棒ab在磁场Ⅱ下落高度H的过程中电路所产生的热量是多少? 【安徽省舒城中学2019-2020学年高二(下)第三次月考物理试题】如图所示,固定在水平面上间距为l的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒MN和PQ长度也为l、电阻均为R,两棒与导轨始终接触良好。MN两端通过开关S与电阻为R的单匝金属线圈相连,面积为S0,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量k。

图中两根金属棒MN和PQ均处于垂直于导轨平面向下的匀强磁场,磁感应强度大小为B。MN、PQ的质量都为m,金属导轨足够长,电阻忽略不计。 (1)闭合S,若使MN、PQ保持静止,需在其上各加多大的水平恒力F,并指出其方向; (2)断开S,去除MN上的恒力,PQ在上述恒力F作用下,经时间t,PQ的加速度为a, 求此时MN、PQ棒的速度各为多少; (3)断开S,固定MN,PQ在上述恒力作用下,由静止开始到速度大小为v的加速过程中安 培力做的功为W,求流过PQ的电荷量q。 【重庆市主城区七校2019-2020学年高二(下)期末联考物理试题】如图所示,两条固定 的光滑平行金属导轨,导轨宽度为L=1m,所在平面与水平面夹角为θ=30°,导轨电阻忽略不计。虚线ab、cd均与导轨垂直其间距为l=1.6m,在ab与cd之间的区域存在垂直于 导轨所在平面的匀强磁场B=2T。将两根质量均为m=1kg电阻均为R=2Ω的导体棒PQ、MN先后自导轨上同一位置由静止释放,其时间间隔为Δt=0.1s。两者始终与导轨垂直且 接触良好。已知PQ进入磁场时加速度恰好为0。当MN到达虚线ab处时PQ仍在磁场区 域内。求: (1)导体棒PQ到达虚线ab处的速度v; (2)当导体棒PQ到达虚线cd的过程中导体棒MN上产生的热量Q; (3)当导体棒PQ刚离开虚线cd的瞬间,导体棒PQ两端的电势差U PQ。

2020高考物理 专题9电磁感应热点分析与预测 精品

2020高考物理热点分析与预测专题9·电磁感应 一、2020大纲解读 本专题涉及的考点有:电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、导体切割磁感线时的感应电动势、右手定则、自感现象、日光灯等.《2020考试大纲》对自感现象等考点为Ⅰ类要求,而对电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、导体切割磁感线时的感应电动势、右手定则等考点为Ⅱ类要求. 电磁感应是每年高考考查的重点内容之一,电磁学与电磁感应的综合应用是高考热点之一,往往由于其综合性较强,在选择题与计算题都可能出现较为复杂的试题.电磁感应的综合应用主要体现在与电学知识的综合,以导轨+导体棒模型为主,充分利用电磁感应定律、楞次定律、安培力、直流电路知识、磁场知识等多个知识点,可能以图象的形式进行考查,也可能是求解有关电学的一些物理量(如电量、电功率或电热等).同时在求解过程中通常也会涉及力学知识,如物体的平衡条件(运动最大速度求解)、牛顿运动定律、动能定理、动量守恒定理(双导体棒)及能量守恒等知识点.电磁感应的综合应用突出考查了考生理解能力、分析综合能力,尤其是考查了从实际问题中抽象概括构建物理模型的创新能力. 二、重点剖析 电磁感应综合应用的中心是法拉第电磁感应定律,近年来的高考中,电磁感应的考查主要是通过法拉第电磁感应定律再综合力、热、静电场、直流电路、磁场等知识内容,有机地把力与电磁结合起来,具体反映在以下几个方面: 1.以电磁感应现象为核心,综合应用力学各种不同的规律(如牛顿运动定律、动量守恒定律、动能定理)等内容形成的综合类问题.通常以导体棒或线圈为载体,分析导体棒在磁场中因电磁感应现象对运动情况的影响,解决此类问题的关键在于运动情况的分析,特别是最终稳定状态的确定,利用物体的平衡条件可求最大速度之类的问题,利用动量观点可分析双导体棒运动情况. 2.电磁感应与电路的综合问题,关键在于电路结构的分析,能正确画出等效电路图,并结合电学知识进行分析、求解.求解过程中首先要注意电源的确定.通常将切割磁感线的导体或磁通量发生变化的回路作为等效电源.若产生感应电动势是由几个相互联系部分构成时,可视为电源的串联与并联.其次是要能正确区分内、外电路,通常把产生感应电动势那部分电路视为内电路.最后应用全电路欧姆定律及串并联电路的基本性质列方程求解. 3.电磁感应中的能量转化问题 电磁感应过程实质是不同形式的能量转化的过程,而能量的转化则是通过安培力做功的形式而实现的,安培力做功的过程,是电能转化为其他形式的能的过程,“外力”克服安培力做功,则是其他形式的能转化为电能的过程.求解过程中主要从以下三种思路进行分析:①利用安培力做功求解,电磁感应中产生的电能等于克服安培力所做的功.注意安培力应为恒力.②利用能量守恒求解,开始的机械能总和与最后的机械能总和之差等于产生的电能.适用于安培力为变力.③利用电路特征来求解,通过电路中所产生的电能来计算. 4.电磁感应中的图象问题 电磁感应的图象主要包括B-t图象、Φ-t图象、E-t图象和I-t图象,还可能涉及感应电动势E和感应电流I随线圈位移x变化的图象,即E-x图象和I-x图象.一般又可把图象问题分为两类:①由给定的电磁感应过程选出或画出正确的图象.②由给定的有关图象分析电磁感应过程,求解相应的物理量.解答电磁感应中的图象问题的基本方法是利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解答. 三、高考考点透视 1.电磁感应中的力和运动 例1.磁悬浮列车是一种高速低耗的新型交通工具。它的驱动系统简化为如下模型,固定在列车下端的动力绕组可视为一个矩形纯电阻金属框,电阻为R,金属框置于xOy平面内,长边MN长为l,平行于y轴,宽为d的NP边平行于x轴,如图1所示。列车轨道沿Ox方向,轨道区域内存在垂直于金属框平面的磁场,磁

电磁感应习题

电磁感应练习 一 选择题 1. 在无限长载流导线附近有一个球形闭合曲面S ,当S 面垂直于导线电流方向向长直导线靠近时,穿过S 面的磁通量Φm 和面上各点的磁感应强度的大小将: (A )Φm 增大,B 也增大; (B )Φm 不变,B 也不变; (C )Φm 增大,B 不变; (D )Φm 不变,B 增大。 [ ] 2. 在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流 (A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大. (C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. [ ] 题一(2)图 3. 铜圆盘水平放置在均匀磁场中,B 的方向垂直向上。当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时, (A )铜盘上有感应电流产生,沿着铜盘转动的相反方向流动。 (B )铜盘上有感应电流产生,沿着铜盘转动的方向流动。 (C )铜盘上有感应电动势产生,铜盘边缘处电势高。 (D )铜盘上有感应电动势产生,铜盘中心处电势高。 [ ] B ω 题一(3)图 4.如图,导体棒AB=L 在均匀磁场B 中绕通过C 点的垂直于棒长且沿磁场方向的轴OO`转动(角速度ω与B 同方向),BC 的长度为棒长的1/3。则(1) (A )A 点比B 点电势高. (B )A 点与B 点电势相等. (C )A 点比B 点电势低. (D )无法判断. [ ] (2)求:U A U B B O A B C O` 题一(4)图 a b c d a b c d a b c d v v v ⅠⅢⅡ I

近十年年高考物理电磁感应压轴题

θ v 0 y M a B 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =2.0m ,b =0.15m 、c =0.10m 。工作时,在通道内沿z 轴正方 向加B =8.0T 的匀强磁场;沿x 轴正方向加匀强电场,使两金属板间的电压U =99.6V ;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=0.22Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =5.0m /s 的速度匀速前进。若以船为参照物,海水以5.0m /s 的速率涌入进 水口由于通道的截面积小球进水口的截面积,在通道内海水速率增加到v d =8.0m /s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U /=U -U 感计算,海水受到电磁力的80%可以 转化为对船的推力。当船以v s =5.0m /s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b=9.6 V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2R = 23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2R 由于I 恒定 R /=v 0rt ∝t

天津市静海区物理第十三章 电磁感应与电磁波精选测试卷专题练习

天津市静海区物理第十三章电磁感应与电磁波精选测试卷专题练习 一、第十三章电磁感应与电磁波初步选择题易错题培优(难) 1.分子运动看不见、摸不着,不好研究,但科学家可以通过研究墨水的扩散现象认识它,这种方法在科学上叫做“转换法”,下面是小红同学在学习中遇到的四个研究实例,其中采取的方法与刚才研究分子运动的方法相同的是() A.研究电流、电压和电阻关系时,先使电阻不变去研究电流与电压的关系;然后再让电压不变去研究电流与电阻的关系 B.用磁感线去研究磁场问题 C.研究电流时,将它比做水流 D.电流看不见、摸不着,判断电路中是否有电流时,我们可通过电路中的灯泡是否发光去确定 【答案】D 【解析】 【分析】 【详解】 A.这种研究方法叫控制变量法,让一个量发生变化,其它量不变,A错误; B.用磁感线去研究磁场问题的方法是建立模型法,使抽象的问题具体化,B错误 C.将电流比做水流,这是类比法,C错误 D.判断电路中是否有电流时,我们可通过电路中的灯泡是否发光去确定,即将电流的有无转化为灯泡是否发光,故是转化法,D正确。 故选D。 2.如图,在直角三角形ACD区域的C、D两点分别固定着两根垂直纸面的长直导线,导线中通有大小相等、方向相反的恒定电流,∠A=90?,∠C=30?,E是CD边的中点,此时E 点的磁感应强度大小为B,若仅将D处的导线平移至A处,则E点的磁感应强度() A.大小仍为B,方向垂直于AC向上 B.大小为 3 2 B,方向垂直于AC向下 C 3 ,方向垂直于AC向上 D3,方向垂直于AC向下【答案】B 【解析】

【分析】 【详解】 根据对称性C 、D 两点分别固定着两根垂直纸面的长直导线在E 点产生的磁感应强度 02B B = 由几何关系可知 AE =CE =DE 所以若仅将D 处的导线平移至A 处在E 处产生的磁感应强度仍为B 0,如图所示 仅将D 处的导线平移至A 处,则E 点的磁感应强度为 032cos302 B B B '=?= 方向垂直于AC 向下。 A .大小仍为B ,方向垂直于AC 向上 与上述结论不相符,故A 错误; B 3,方向垂直于A C 向下 与上述结论相符,故B 正确; C .大小为32 B ,方向垂直于A C 向上 与上述结论不相符,故C 错误; D 3,方向垂直于AC 向下 与上述结论不相符,故D 错误; 故选B 。 3.正三角形ABC 在纸面内,在顶点B 、C 处分别有垂直纸面的长直导线,通有方向如图所示、大小相等的电流,正方形abcd 也在纸面内,A 点为正方形对角线的交点,ac 连线与BC 平行,要使A 点处的磁感应强度为零,可行的措施是

精选高考物理易错题专题复习法拉第电磁感应定律含答案

一、法拉第电磁感应定律 1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。一根电阻为r 、质量为m 的导体棒置于导轨上,0?t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。求: (1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00 mB S BLt 【解析】 【详解】 (1)由法拉第电磁感应定律得 : 010 B S BS E t t t ?Φ?= ==?? 所以此时回路中的电流为: () 1 00B S E I R r R r t = =++ 根据右手螺旋定则知电流方向为a 到b. 因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即: () 00==BB SL F F BIL R t r = +安 由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为: 2E BLv = 由题意知: 12E E = 所以联立解得:

00 B S v BLt = 所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为: 00 0mB S I mv BLt =-= 答:(1)0~t 0时间内导体棒ab 所受水平外力为() 00= BB SL t F R r +,方向水平向左. (2)t 0时刻给导体棒的瞬时冲量的大小 00 mB S BLt 2.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求: (1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l v Q R =(3)43cd Blv U = 【解析】 【详解】 (1)线框离开磁场的过程中,则有: 2E B lv = E I R = q It = l t v = 联立可得:2 2Bl q R = (2)线框中的产生的热量: 2Q I Rt =

电磁感应基础练习题

电磁感应基础练习题: 1、面积是0.5m 2的导线环,放在某一匀强磁场中,环面与磁场垂直,穿过导线的磁通量是Wb 2100.1-?,则该磁场的磁感应强度是( ) A、T 2105.0-? B、T 2105.1-? C、T 2101-? D、T 2102-? 2、关于电磁感应现象,下列说法正确的是( ) A、只要磁通量穿过电路,电路中就有感应电流 B、只要穿过闭合导体回路的磁通量足够大,电路中就有感应电流 C、只要闭合导体回路在切割磁感线运动,电路中就有感应电流 D、只要穿过闭合导体回路的磁通量发生变化,电路中就有感应电流 3、如图所示,套在条形磁铁外的三个线圈,其面积321S S S =>,穿过各线圈的磁通量依次为1Φ、2Φ、3Φ,则它们的大小关系是( ) A 、32 1 Φ>Φ>Φ B 、321Φ=Φ>Φ C 、321Φ=Φ<Φ D 、321Φ<Φ<Φ 4、关于电磁感应,下列说法正确的是( ) A 、穿过线圈的磁通量越大,感应电动势就越大 B 、穿过线圈的磁通量为零,感应电动势一定为零 C 、穿过线圈的磁通量变化越快,感应电动势越大 D 、穿过线圈的磁通量变化越大,感应电动势越大 5、如图所示,在《探究产生感应电流的条件》的实验中,开关断开时,条形 磁铁插入或拔出线圈的过程中,电流表指针不动;开关闭合时,磁铁静止在 线圈中,电流表指针也不动;开关闭合时,将磁铁插入或拔出线圈的过程中, 电流表指针发生偏转.由此得出,产生感应电流的条件是:电路必须 , 穿过电路的磁通量发生 . 6、如图所示是探究感应电流与磁通量变化关系的实验.下列操作会产生感应 电流的有 . ①闭合开关的瞬间; ②断开开关的瞬间; ③闭合开关,条形磁铁穿过线圈; ④条形磁铁静止在线圈中 此实验表明:只要穿过闭合导体回路的磁通量发生 闭合导体回路中就有感应电流产生. 1、关于电磁感应,下列说法正确的是( ) A 、穿过线圈的磁通量越大,感应电动势越大 B 、穿过线圈的磁通量为零,感应电动势为零 C 、穿过线圈的磁通量变化越快,感应电动势越大 D 、穿过线圈的磁通量变化越大,感应电动势越大 2、关于感应电动势的大小,下列说法正确的是( ) A 、跟穿过闭合导体回路的磁通量有关 S

2018年高考物理试题分类解析电磁感应

2018年高考物理试题分类解析:电磁感应 全国1卷 17.如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中心,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆。M端位于PQS上,O M与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B,现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B'(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则 B B ' 等于 A. 5 4 B. 3 2 C. 7 4 D.2 【解析】在过程Ⅰ中 R r B R t R E t I q 2 __4 1 π ? = ?Φ = = =,在过程Ⅱ中 2 2 1 ) ' (r B B R q π ? - = ?Φ =二者相等,解得 B B ' = 3 2 。 【答案】17.B 全国1卷 19.如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是 A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动 B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向 C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向

D .开关闭合并保持一段时间再断开后的瞬间,小磁针的N 极朝垂直纸面向外的方向转动 【解析】A .开关闭合后的瞬间,铁芯内磁通量向右并增加,根据楞次定律,左线圈感应电流方向在直导线从南向北,其磁场在其上方向里,所以小磁针的N 极朝垂直纸面向里的方向转动,A 正确; B 、 C 直导线无电流,小磁针恢复图中方向。 D .开关闭合并保持一段时间再断开后的瞬间,电流方向与A 相反,小磁针的N 极朝垂直纸面向外的方向转动,D 正确。 【答案】19.AD 全国2卷 18.如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域, 区域宽度均为l ,磁感应强度大小相等、方向交替向上向下。一边长为 3 2 l 的正方形金属线框在导轨上向左匀速运动,线框中感应电流i 随时间t 变化的正确图线可能是 【解析】如图情况下,电流方向为顺时针,当前边在向里的磁场时,电流方向为逆时针,但因为两导体棒之间距离为磁场宽度的 2 3 倍,所以有一段时间两个导体棒都在同一方向的磁场中,感应电流方向相反,总电流为0,所以选D. 【答案】18.D 全国3卷 20.如图(a ),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧。导线 PQ 中通有正弦交流电流i ,i 的变化如图(b )所示,规定从Q 到P 为电流的正方向。导线框R 中的感应电动势

电磁感应解题技巧及练习

电磁感应专题复习(重要) 基础回顾 (一)法拉弟电磁感应定律 1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比 E=nΔΦ/Δt(普适公式) 当导体切割磁感线运动时,其感应电动势计算公式为E=BLVsinα 2、E=nΔΦ/Δt与E=BLVsinα的选用 ①E=nΔΦ/Δt计算的是Δt时间内的平均电动势,一般有两种特殊求法 ΔΦ/Δt=BΔS/Δt即B不变ΔΦ/Δt=SΔB/Δt即S不变 ② E=BLVsinα可计算平均动势,也可计算瞬时电动势。 ③直导线在磁场中转动时,导体上各点速度不一样,可用 V平=ω(R1+R2)/2代入也可用E=nΔΦ/Δt 间接求得出 E=BL2ω/2(L为导体长度, ω为角速度。) (二)电磁感应的综合问题 一般思路:先电后力即:先作“源”的分析--------找出电路中由电磁感应所产生的 电源,求出电源参数E和r。再进行“路”的分析-------分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便安培力的求解。然后进行“力”的分析--------要分析 力学研究对象(如金属杆、导体线圈等)的受力情况尤其注意其所受的安培力。按着进行“运动”状态的分析---------根据力和运动的关系,判断出正确的运动模型。最后是“能量”的分析-------寻找电磁感应过程和力学研究对象的运动过程中能量转化和守恒的关系。【常见题型分析】 题型一楞次定律、右手定则的简单应用 例题(2006、广东)如图所示,用一根长为L、质量不计的细杆与一个上弧长为L0 、下弧 长为d0的金属线框的中点连接并悬挂于o点,悬点正下方存在一个弧长为2 L0、下弧长为 2 d0、方向垂直纸面向里的匀强磁场,且d0 远小于L先将线框拉开到图示位置,松手后让线 框进入磁场,忽略空气阻力和摩擦,下列说法中正确的是 A、金属线框进入磁场时感应电流的方向为a→b→c→d→ B、金属线框离开磁场时感应电流的方向a→d→c→b→ C、金属线框d c边进入磁场与ab边离开磁场的速度大小总是相等 D、金属线框最终将在磁场内做简谐运动。 题型二法拉第电磁感应定律的简单应用 例题(2000、上海卷)如图所示,固定于水平桌面上的金属框架cdef,处在坚直向下的匀 强磁场中,金属棒ab搁在框架上,可无摩擦滑动,此时abcd构成一个边长为L的正方形,棒的电阻力为r,其余部分电阻不计,开始时磁感强度为B。 (1)若从t=0时刻起,磁感强度均匀增加,每秒增量为K,同时保持棒静止,求棒中的感 应电流,在图上标出感应电流的方向。 (2)在(1)情况中,始终保持棒静止,当t=t1 秒未时需加的垂直于棒的水平拉力为多大?(3)若从t=0时刻起,磁感强度逐渐减小,当棒以速度v向右做匀速运动时,若使棒中不 产生感应电流,则磁感强度怎样随时间变化(写出B与t的关系式)? d a c B0

(完整版)电磁感应综合练习题(基本题型,含答案)

电磁感应综合练习题(基本题型) 一、选择题: 1.下面说法正确的是 ( ) A .自感电动势总是阻碍电路中原来电流增加 B .自感电动势总是阻碍电路中原来电流变化 C .电路中的电流越大,自感电动势越大 D .电路中的电流变化量越大,自感电动势越大 【答案】B 2.如图9-1所示,M 1N 1与M 2N 2是位于同一水平面内的两条平行金属导轨,导轨间距为L 磁感应强度为B 的匀强磁场与导轨所 在平面垂直,ab 与ef 为两根金属杆,与导轨垂直且可在导轨上滑 动,金属杆ab 上有一伏特表,除伏特表外,其他部分电阻可以不计,则下列说法正确的是 ( ) A .若ab 固定ef 以速度v 滑动时,伏特表读数为BLv B .若ab 固定ef 以速度v 滑动时,ef 两点间电压为零 C .当两杆以相同的速度v 同向滑动时,伏特表读数为零 D .当两杆以相同的速度v 同向滑动时,伏特表读数为2BLv 【答案】AC 3.如图9-2所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。 如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置 时的加速度关系为 ( ) A .a 1>a 2>a 3>a 4 B .a 1 = a 2 = a 3 = a 4 C .a 1 = a 2>a 3>a 4 D .a 4 = a 2>a 3>a 1 【答案】C 4.如图9-3所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S 接通一瞬间,两铜环的运动情况是( ) A .同时向两侧推开 B .同时向螺线管靠拢 C .一个被推开,一个被吸引,但因电源正负极未知,无法具体判断 D .同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断 【答案】 A 图9-2 图9-3 图9-4 图9-1

高三物理电磁感应知识点

届高三物理电磁感应知识点 物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍 原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

高中物理专项练习:电磁感应

高中物理专项练习:电磁感应 一.选择题 1. (高三考试大纲调研卷10)如图所示,空间存在一有边界的条形匀强磁场区域,磁场方向与竖直平面(纸面)垂直,磁场边界的间距为L。一个质量为m、边长也为L的正方形导线框沿竖直方向运动,线框所在平面始终与磁场方向垂直,且线框上、下边始终与磁场的边界平行。t=0时刻导线框的上边恰好与磁场的下边界重合 (图中位置Ⅰ),导线框的速度为v0。经历一段时间后,当导线框的下边恰好与磁场的上边界重合时(图中位置Ⅱ),导线框的速度刚好为零。此后,导线框下落,经过一段时间回到初始位置Ⅰ(不计空气阻力),则 A. 上升过程中合力做的功与下降过程中合力做的功相等 B. 上升过程中线框产生的热量与下降过程中线框产生的热量相等 C. 上升过程中,导线框的加速度逐渐增大 D. 上升过程克服重力做功的平均功率大于下降过程重力的平均功率 【答案】D 【解析】线框运动过程中要产生电能,根据能量守恒定律可知,线框返回原位置时速率减小,则上升过程动能的变化量大小大于下降过程动能的变化量大小,根据动能定理得知,上升过程中合力做功较大,故A错误;线框产生的焦耳热等于克服安培力做功,对应与同一位置,上升过程安培力大于下降过程安培力,上升与下降过程位移相等,则上升过程克服安培力做功等于下降过程克服安培力做功,上升过程中线框产生的热量比下降过程中线框产生的热量的多,故B错误;上升过程中,线框所受的重力和安培力都向下,线框做减速运动。设加速度大小为a,根据牛顿第二定律得:,,由此可知,线框速度v减小时,加速度a也减小, 故C错误;下降过程中,线框做加速运动,则有:,,,由此可知,下降过程加速度小于上升过程加速度,上升过程位移与下降过程位移相等,则上升时间短,下降时

高考物理专题电磁感应中的动力学和能量综合问题及参考复习资料

高考专题:电磁感应中的动力学和能量综合问题 一.选择题。(本题共6小题,每小题6分,共36分。1—3为单选题,4—6为多选题) 1.如图所示,“U ”形金属框架固定在水平面上,处于竖直向下的匀强磁场中棒以水平初速度v 0向右运动,下列说 法正确的是( ) 棒做匀减速运动 B.回路中电流均匀减小 点电势比b 点电势低 棒受到水平向左的安培力 2.如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。已知在0到1的时间间隔内,直导线中电流i 发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。设电流i 正方向与图中箭头方向相同,则i 随时间t 变化的图线可能是( ) 3.如图所示,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界 与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v -t 图象中,可能正确描述上述过程的是( ) A B C D 4.如图1所示,两根足够长、电阻不计且相距L =0.2 m 的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一盏额定电压U =4 V 的小灯泡,两导轨间有一磁感应强度大小B =5 T 、方向垂直斜面向上的匀强磁场.今将一根长为L 、质量为m =0.2 、电阻r =1.0 Ω的金属棒垂直于导轨放置在顶端附近无初速度释放,金属棒与导轨接触良好,金属棒 与导轨间的动摩擦因数μ=0.25,已知金属棒下滑到速度稳定时,小灯泡恰能正常发光,重力加速度g 取10 2, 37°=0.6, 37°=0.8,则( ) 班级 姓名 出题者 徐利兵 审题者 得分 密 封 线

电磁感应典型例题和练习

电磁感应 课标导航 课程容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析 知识:安培力的大小与方向 例1. (09年物理)13.如图,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef有一半径很小的金属圆环L,圆环与导轨在同一平面当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩)趋势,圆环产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

电磁感应中的图像问题专题练习

电磁感应中的图像问题专题练习

电磁感应中的图像问题专题练习 1.(2016武汉模拟)如图(甲)所示,矩形导线框abcd固定在匀强磁场中,磁感线的方向与导线框所在平面垂直.规定磁场的正方向垂直纸面向里,磁感应强度B随时间变化的规律如图(乙)所示.若规定顺时针方向为感应电流i的正方向,图中正确的是( ) 2.(2016山西康杰中学高二月考)如图所示,两条平行虚线之间存在 匀强磁场,磁场方向垂直纸面向里,虚线间的距离为L.金属圆环的直径也是L.自圆环从左边界进入磁场开始计时,以垂直于磁场边界的 恒定速度v穿过磁场区域.规定逆时针方向为感应电流i的正方向,则圆环中感应电流i随其移动距离x的变化的i x图像最接近( )

3.如图(甲)所示,光滑导轨水平放置在竖直方向的匀强磁场中,匀强磁场的磁感应强度B随时间的变化规律如图(乙)所示(规定向下为正方向),导体棒ab垂直导轨放置,除电阻R的阻值外,其余电阻不计,导体棒ab在水平外力F的作用下始终处于静止状态.规定a→b的方向为电流的正方向,水平向右的方向为外力的正方向,则在0~2t0时间内,能正确反映流过导体棒ab的电流与时间或外力与时间关系的图线是( ) 4.如图所示,有一个等腰直角三角形的匀强磁场区域其直角边长为L,磁场方向垂直纸面向外,磁感应强度大小为B.边长为L、总电阻为R 的正方形导线框abcd,从图示位置开始沿x轴正方向以速度v匀速穿过磁场区域.取沿abcda的感应电流方向为正,则表示线框中电流i 随bc边的位置坐标x变化的图像正确的是( )

5.如图所示,EOF和E′O′F′为空间一匀强磁场的边界,其中EO∥E′O′,FO∥F′O′,且EO⊥OF,OO′为∠EOF的角平分线,OO′间的距离为l,磁场方向垂直于纸面向里,一边长为l的正方形导线框ABCD 沿O′O方向匀速通过磁场,t=0时刻恰好位于图示位置.规定导线框中感应电流沿逆时针方向时为正,则在图中感应电流i与时间t的关系图线可能正确的是( ) 6.如图所示,用导线制成的矩形框长2L,以速度v穿过有理想界面的宽为L的匀强磁场,那么,线框中感应电流和时间的关系可用下图中的哪个图表示( )

相关文档
相关文档 最新文档