文档库 最新最全的文档下载
当前位置:文档库 › 波动方程推导过程

波动方程推导过程

波动方程推导过程
波动方程推导过程

一维波动方程的达郎贝尔公式

第四章 行波法 一 一维波动方程的达郎贝尔公式 1达郎贝尔公式 在常微分方程的定解问题中,通常是先求方程的通解,然后利用定解条件确定通解所含的任意常数,从而得到定解问题的解。考虑无限长弦的自由振动问题 ?????? ?=??=>+∞<<∞-??=??==) (|),(|0, ,0 022 2 22x t u x u t x x u a t u t t φ? ① 作自变量的代换 ?? ?-=+=at x at x ηξ 利用复合函数的微分法有: η ξ??-??=??u a u a t u )2(22 2222 22η ηξξ??+???-??=??u u u a t u 同理有:2 2222222ηηξξ??+???+??=??u u u x u 将①化为:02=???η ξu 并将它两端对η进行积分得:

)(0ξξ f u =?? 其中)(0ξf 是ξ的任意函数,再将此式对ξ积分 )()()()(),(2120ηξηξξf f f d f t x u +=+=? = )()(21at x f at x f -++ ② 其中21f f 、是任意两次连线可微函数,式②即为方程①的含有两个任意函数的通解。 由初始条件可得: )()()(21x x f x f ?=+ )()()(2'' 1x x f x af φ=+ 通过积分可得: ?+-+-++=at x at x d a at x at x t x u ξξ?φ?)(21)]()([21),( 称此式为一维波动方程的达郎贝尔公式。 2解的物理意义 由于波动方程的通解是两部分)(1at x f +与)(2at x f -。 )(22at x f u -=表示了以速度a 向x 轴正方向传播的行波,称 为右行波。同理,)(11at x f u +=表示了以速度a 向x 轴负方向传播的行波,称为左行波。 由达郎贝尔公式,解在点),(t x 的值由初始条件在区间],[at x at x +-内的值决定,称区间],[at x at x +-为点),(t x 的 依赖区域,在t x -平面上,它可看作是过点),(t x ,斜率分

第七章 一维波动方程的解题方法及习题答案

第二篇 数学物理方程 ——物理问题中的二阶线性偏微分方程及其解法 Abstracts:1、根据物理问题导出数理方程—偏微分方程; 2、给定数理方程的附加条件:初始条件、边界条件、物理条件 (自然条件,连接条件),从而与数理方程一起构成定解问题; 3、方程齐次化; 4、数理方程的线性导致解的叠加。 一、数理方程的来源和分类(状态描述、变化规律) 1、来源 I .质点力学:牛顿第二定律F mr =r r && 连续体力学222 2() (,)(,)0(()0; v 1()0(Euler eq.).u r t a u r t t v t v v p f t ρρρ ?????-?=??????? ?? +??=????-?+??=+=????? r r r r r r r r &弹性定律弦弹性体力学杆 振动:波动方程);膜 流体力学:质量守恒律:热力学物态方程: II.麦克斯韦方程 ;;00;().,,,D D E l B s E B B B H l j D s H j D E u B A u A σρτρσ??=???=?=????=????=???=?=+????=+??=-?=????????????????????r r r r r r r r r &&r r r r r r r r r r r &&r r r r 已已d d d d d d d 满足波动方程。Lorenz 力公式力学方程;Maxwell eqs.+电导定律电报方程。 III. 热力学统计物理 220;0.T k T t D t ρρ?? -?=??????-?=??? 热传导方程:扩 散方程:特别: 稳态(0t ρ?=?):20ρ?= (Laplace equation). IV. 量子力学的薛定谔方程: 22 .2u i u Vu t m ?=-?+?h h 2. 分类

悬链线方程的推导

悬链线方程的推导 一根无比柔软的绳子,两固定,自然静止状态下,它的形状是悬链线。其实曲线是以绳子命名的。如何根据绳子的受力来推导出悬链线方程呢用高等数学所学的知识就够了。 第一步:背景知识 ㈠我们熟悉如何将)2sin(π α?+n 转化成余弦的形式,口诀是奇变偶不变,符号看象限。 现在扩展一下,研究正切、余切,正割、余割的转化口诀。 tanx cotx 转换:奇变号变偶不变。也就是说,n 为奇数时,要转化成相反形式,且要补一个负号,n 为偶数时就不用变了。 secx cscx 转换:奇变偶不变,符号看象限。我正弦、余弦非常相似。 ㈡不定积分 C x x C x x x x d x dx xdx C x x C x x x d x x d x x x dx x dx xdx ++=++-+=++==+-=+=====????????tan sec ln )2cot()2csc(ln )2 sin()2(cos sec cot csc ln 2tan ln 2tan 2tan 2tan 22sec 2 cos 2sin 2sin csc 2 ππππ

求?+22a x dx ,令t a x tan =,2 2π π<<-t a C C C a x x C a x a a x C t t tdt a t a tdt a ln )ln(ln tan sec ln sec tan sec 11 2 22 22222-=+++=+++=++==+=?? ㈢ 双曲余弦 chx e e y x x =+=-2 双曲正弦 shx e e y x x =-=-2 反双曲余弦 x>0时,archy y y x =-+=)1ln(2; 反双曲正弦 arshy y y x =++=)1ln(2; 求导:shx chx chx shx ='=')()( 第二步:微分方程

伯努利方程推导

根据流体运动方程P F dt V d ??+=ρ1 上式两端同时乘以速度矢量 ()V P V F V dt d ???+?=???? ??ρ 1 22 右端第二项展开—— () ()V P V P V F V dt d ???-???+?=???? ? ?ρρ1122 利用广义牛顿粘性假设张量P ,得出单位质量流体微团的动能方程 () E V div p V P div V F V dt d -+?+?=??? ? ?? ρρ1 22 右第三项是膨胀以及收缩在压力作用下引起的能量转化项(膨胀:动能增加<--内能减少) 右第四项是粘性耗散项:动能减少-->内能增加 热流量方程:用能量方程减去动能方程 反映内能变化率的热流量方程 ()() dt dq V P div V F V T c dt d +?+?=+ ρυ12/2 () E V div p V P div V F V dt d -+?+?=???? ? ? ρρ122 得到 ()()E V div p T c dt d dt dq dt dq E V div p T c dt d -+=++-= ρ ρυυ / 对于理想流体,热流量方程简化为: ()V d i v p T c dt d dt dq ρυ+= 这就是通常在大气科学中所用的“热力学第一定律”的形式。 由动能方程推导伯努利方程: 对于理想流体,动能方程简化为:() V div p V P div V F V dt d ρρ+?+?=??? ? ??122无热流量项。 又因为() V pdiv p V z pw y pv x pu V P div -??-=??? ???++-=???????)()()(故最终理想流体的动能方 程可以写成: p V V F V dt d ??-?=???? ? ?ρ 22 【理想流体动能的变化,仅仅是由质量力和压力梯度力对流体微团作功造成的,而与热能不 发生任何转换。】 假设质量力是有势力,且质量力位势为Φ,即满足:Φ-?=F 考虑Φ为一定常场,则有: dt d V V F Φ- =Φ??-=?

最新悬链线方程培训资料

通常任何材料包括导线在内,都具有一定的刚性,但由于悬挂在杆塔上的一档导线相 对较长,因此导线材料的刚性对其几何形状的影响很小,故在计算中假定: (1)导线为理想的柔索。因此,导线只承受轴向张力(或拉力),任意一点的弯矩为 零。这样导线力学计算可应用理论力学中的柔索理论进行计算。 (2)作用在导线上的荷载均指同一方向,且沿导线均匀分布。 一、悬链线方程及曲线弧长 1.悬链线方程 为了分析方便,我们先从悬挂点等高,即相邻杆塔导线悬挂点无高差的情况讨论导线的应力及几何关系。实际上,导线悬在空中的曲线形态,从数学角度用什么方程来描述是进行导线力学分析的前题。由于假定视导线为柔索,则可按照理论力学中的悬链线关系来进行分析,即将导线架设在空中的几何形态视为悬链形态,而由此导出的方程式为悬链线方程。 如图2-5所示,给出了悬挂于A、B两点间的一档导线,假定为悬挂点等高的孤立档,设以导线的最低点O点为原点建立直角坐标系。 图2-5导线悬链线及坐标系 同时假定导线固定在导线所在的平面,可随导线一起摆动,显然这是一个平面力系。根据这个坐标进行导线的受力分析,可建立导线的悬链线方程。 我们先从局部受力分析开始,再找出其一般规律。首先在导线上任取一点D(x,y),然后分析OD段导线的受力关系,由图2-5所示,此OD段导线受三个力而保持平衡,其中D点承受拉力为T x=σx S,它

与导线曲线相切,与x轴夹角为α;O点承受拉力为T0=σ0S,T0为导线O点的切线方向,恰与x轴平行,故又称水平张力;此外还有OD段导线自身的荷载为G=gSL x,其中L x为OD段导线的弧长。 将OD段导线的受力关系画为一个三角形表示,如图2-6所示, 图2-6导线受力情况 由静力学平衡条件可知,在平面坐标系中,其水平分力,垂直分力的代数和分别等于零。或沿x轴或y轴上分力代数和分别等于零。 垂直方向分力G=T x sinα=gSL x;水平方向分为T0=T x cosα=σ0S。其中σ0、T0为导线最低点的应力和张力,σx、T x为导线任一点的应力和张力,S、g为导线截面和比载。将上述二式相比,则可求得导线任意一点D 的斜率为: (2-10) 由微分学知识可知,曲线上任一点的导数即为切线的斜率。 式(2-10)是悬链曲线的微分方程。我们要用坐标关系表示出导线受力的一般规律,还需要将不定量L x消去,因此,将式对x微分得: (微分学中弧长微分公式为dS2=(dx)2+(dy)2)将上式移项整理后,两端进行积分 这是个隐函数,因此,再进行分离变量积分,查积分公式有: (2-11)

悬链线方程复习过程

悬链线方程

通常任何材料包括导线在内,都具有一定的刚性,但由于悬挂在杆塔上的一档导线相 对较长,因此导线材料的刚性对其几何形状的影响很小,故在计算中假定: (1)导线为理想的柔索。因此,导线只承受轴向张力(或拉力),任意一点的弯矩为 零。这样导线力学计算可应用理论力学中的柔索理论进行计算。 (2)作用在导线上的荷载均指同一方向,且沿导线均匀分布。 一、悬链线方程及曲线弧长 1.悬链线方程 为了分析方便,我们先从悬挂点等高,即相邻杆塔导线悬挂点无高差的情况讨论导线的应力及几何关系。实际上,导线悬在空中的曲线形态,从数学角度用什么方程来描述是进行导线力学分析的前题。由于假定视导线为柔索,则可按照理论力学中的悬链线关系来进行分析,即将导线架设在空中的几何形态视为悬链形态,而由此导出的方程式为悬链线方程。 如图2-5所示,给出了悬挂于A、B两点间的一档导线,假定为悬挂点等高的孤立档,设以导线的最低点O点为原点建立直角坐标系。 图2-5导线悬链线及坐标系 同时假定导线固定在导线所在的平面,可随导线一起摆动,显然这是一个平面力系。根据这个坐标进行导线的受力分析,可建立导线的悬链线方程。 我们先从局部受力分析开始,再找出其一般规律。首先在导线上任取一点D(x,y),然后分析OD段导线的受力关系,由图2-5所示,此OD段导线受三个力而保持平衡,其中D点承受拉力为T x=σx S,它

与导线曲线相切,与x轴夹角为α; O点承受拉力为T0=σ0S,T0为导线O点的切线方向,恰与x轴平行,故又称水平张力;此外还有OD段导线自身的荷载为G=gSL x,其中L x为OD段导线的弧长。 将OD段导线的受力关系画为一个三角形表示,如图2-6所示, 图2-6导线受力情况 由静力学平衡条件可知,在平面坐标系中,其水平分力,垂直分力的代数和分别等于零。或沿x轴或y轴上分力代数和分别等于零。 垂直方向分力G=T x sinα=gSL x;水平方向分为T0=T x cosα=σ0S。其中σ0、T0为导线最低点的应力和张力,σx、T x为导线任一点的应力和张力,S、g为导线截面和比载。将上述二式相比,则可求得导线任意一点D的斜率为: (2-10) 由微分学知识可知,曲线上任一点的导数即为切线的斜率。 式(2-10)是悬链曲线的微分方程。我们要用坐标关系表示出导线受力的一般规律,还需要将不定量L x消去,因此,将式对x微分得: (微分学中弧长微分公式为dS2=(dx)2+(dy)2)将上式移项整理后,两端进行积分 这是个隐函数,因此,再进行分离变量积分,查积分公式有: (2-11)

悬链线方程的推导

1 悬链线方程的推导 锚链一端受到水平预张力()0T KN ,并在其均匀分布的自重力作用下产生下垂。设锚链水中 单位重力为()/W KN m ,建立如图1所示的直角坐标系,并设锚链曲线对应的函数为()y f x =。 对于横坐标上0至x 这段锚链,长度为L ,则G wL =,顶端拉力为T ,该力倾角为θ,水平张力0T ,根据力学原理可知,T ,G 和0T 三力平衡。可知0tan /G T θ=(图2). 图1图2 假定该水平张力在锚链上处处相等,对于任意一段锚链L ,该平衡均成立,0tan wL T θ=,而tan dy dx θ=,对该式取微分,则有()() 00tan x w d d L T θ===(1) 弧长微分ds =1 )分离变量后并积分: 0 tan d w dx T =?(2) 对式(2)积分后得到: 10tan w sh x c T θ??=+ ???(3) 对式(3)再次分离变量后,得 10w dy sh x c dx T ??=+ ??? (4) 并积分, 10w y sh x c dx T ??=+ ????(5) 查积分公式可得: 0120T w y ch x c c w T ??=++ ??? (6) 式(6)即为锚链悬链线的一般方程。

假设锚链末端拖地,并设拖地点为原点,则 对于拖地点有,0,0,tan 0x y θ===,代入式(3)和(6),联立方程后,可解得:10c =,2T c w =,代入式(6)得: 001T w y ch x w T ??=- ??? (7) 式(5)即为拖地点为原点的悬链线一般方程。 而对于悬挂点为原点的悬链线方程,仅系数有所变化,如下式表示,推导过程不再叙述。该方程对于有悬锤的悬链线更适用。0,0,tan wL x y T θ=== ,代入式(3),(6)可解得: 002cosh sinh wL T a T c w ?????? ?????=(8) 式(8)即是以悬挂点为原点的悬链线一般方程。 L 为悬链线长度,在y 已知的情况下,根据式(7)可求出x 值,并对曲线积分,即可求出悬链线长度L 。 2 带悬锤的悬链线方程 有悬锤的悬链线,受力模式和求解过程均与一般悬链线相似。区别的是其初值不同,因此只是1c 和2c 不同而已。 从图3可以看出,以悬锤点为界,上段悬链线中的竖向力多了悬锤重C G 和2L ,水平力均相同,悬锤以下段,悬链线与一般悬链线相同。 图 3 带悬锤的悬链线受力图 悬挂点处初始值:0,0x y ==,且 ()120 tan C w L L G T θ++=(9) 式中;C G 为悬锤水下重力,实际重力应作换算。

光纤通信_波动方程推导

光纤通信报告 1.麦克斯韦方程组 光是电磁波,用波动理论来分析电磁场的分布,获得更准确的光纤的传输特性必须从麦克斯韦方程组出发: 0B E t D H J t D B ρ ???=- ????=+???=??= 光纤不是电的导体,不存在电流,电流,电流密度0J = 光纤中不存在自由电荷,所以电荷体密度0v ρ= 0B E t D H t D B ???=- ????=???=??= 2.波动方程 设光纤无损耗,在光线中传播角频率为ω的单色光,电磁场与时间t 的关系为j t e ω,则波动方程为: 222222 0o o E n k E H n k H ?+=?+= 0k 为真空中的波数: 02k c ωπλ= = 3.柱坐标下的波动方程 利用光纤的圆柱对称性,将波动方程写成圆柱坐标的形式: 电场的z 分量z E 的波动方程为: 2 22222222110z z z z z E E E E n E r r r z c ωφφ??????++++= ???????

4.边界条件及贝塞尔函数的求解 ()() 22222102222222202210010d R dR m n k R r a dr r dr r d R dR m n k R r a dr r dr r ββ???++--=≤≤? ????????++--=> ????? 上式是贝塞尔函数的微分方程,可以有多种()R r 与β的组合满足方程,每一个组合称为一个模式。 在纤芯中名要求具有振荡特性,即 22210100,n k n k ββ->< 在包层中,要求具有衰减特性,即 22220200,n k n k ββ->< 所以传播传播常数必须满足的条件是 2010n k n k β<< 对于突变型光纤,贝塞尔方程的解得形式为: ()(),()()(), m m m m AJ r A Y r r a R r BK r B I r r a χχγγ'+≤?=?'+>? A 、A '、 B 、B '为常数; m J 为第一类贝塞尔函数; m Y 为第二类贝塞尔函数; m K 为第二类变形贝塞尔函数; m I 为第一类变形贝塞尔函数; χ、γ定义为

伯努利方程的推导

第八节伯努利方程 ●本节教材分析 本节属于选学内容,但对于一些生活现象的解释,伯努利方程是相当重要的.本节主要讲述了理想流体,理想流体的定常流动,然后结合功和能的关系推导出伯努利方程,最后运用伯努利方程来解释有关现象. ●教学目标 一、知识目标 1知道什么是理想流体,知道什么是流体的定常流动. 2知道伯努利方程,知道它是怎样推导出来的. 二、能力目标 学会用伯努利方程来解释现象. 三、德育目标 通过演示,渗透实践是检验真理的惟一标准的思想. ●教学重点 1.伯努利方程的推导. 2.用伯努利方程来解释现象. ●教学难点 用伯努利方程来解释现象. ●教学方法 实验演示法、归纳法、阅读法、电教法 ●教学用具 投影片、多媒体课件、漏斗、乒乓球、两张纸 ●教学过程 用投影片出示本节课的学习目标: 1.知道什么是理想气体. 2.知道什么是流体的定常流动. 3.知道伯努利方程,知道它是怎样推导出来的,会用它解释一些现象. 学习目标完成过程: 一、导入新课 1.用多媒体介绍实验装置 把一个乒乓球放在倒置的漏斗中间 2.问:如果向漏斗口和两张纸中间吹气,会出现什么现象? 学生猜想: ①乒乓球会被吹跑; ②两张纸会被吹得分开. 3.实际演示: ①把乒乓球放在倒置的漏斗中间,向漏斗口吹气,乒乓球没被吹跑,反而会贴在漏斗上

不掉下来; ②平行地放两张纸,向它们中间吹气,两张纸不但没被吹开,反而会贴近 4.导入:为什么会出现与我们想象不同的现象,这种现象又如何解释呢?本节课我们就来学习这个问题. 二、新课教学 1.理想流体 (1)用投影片出示思考题: ①什么是流体? ②什么是理想流体? ③对于理想流体,在流动过程中,有机械能转化为内能吗? (2)学生阅读课文,并解答思考题: (3)教师总结并板书 ①流体指液体和气体; ②液体和气体在下列情况下可认为是不可压缩的. a:液体不容易被压缩,在不十分精确的研究中可以认为液体是不可压缩的. b:在研究流动的气体时,如果气体的密度没有发生显著的变化,也可以认为气体是不可压缩的. ③a:流体流动时,速度不同的各层流体之间有摩擦力,这叫流体具有粘滞性. b:不同的流体,粘滞性不同. c:对于粘滞性小的流体,有些情况下可以认为流体没有粘滞性. ④不可压缩的,没有粘滞性的流体,称为理想流体.对于理想流体,没有机械能向内能的转化. 2 定常流动 (1)用多媒体展示一段河床比较平缓的河水的流动. (2)学生观察,教师讲解. 通过画面,我们可以看到河水平静地流着,过一会儿再看,河水还是那样平静地流着,各处的流速没有什么变化,河水不断地流走,可是这段河水的流动状态没有改变,河水的这种流动就是定常流动. (3)学生叙述什么是定常流动 流体质点经过空间各点的流速虽然可以不同,但如果空间每一点的流速不随时间而改变,这样的流动就叫定常流动. (4)举例:自来水管中的水流,石油管道中石油的流动,都可以看作定常流动. (5)学生阅读课文,并回答下列思考题: ①流线是为了表示什么而引入的? ②在定常流动中,流线用来表示什么? ③通过流线图如何判断流速的大小? (6)学生答: ①为了形象地描绘流体的流动,引入了流线; ②在定常流动中,流线表示流体质点的运动轨迹; ③流线疏的地方,流速小;流线密的地方,流速大. 3.伯努利方程 (1)设在右图的细管中有理想流体在做定常流动,且流动 方向从左向右,我们在管的a1处和a2处用横截面截出一段流 体,即a1处和a2处之间的流体,作为研究对象.设a1处的横截面积为S1,流速为V1,高度

波动方程或称波方程

波动方程或称波方程(英语:wave equation)是一种重要的偏微分方程,主要描述自然界中的各种的波动现象,包括横波和纵波,例如声波、光波、无线电波和水波。波动方程抽象自声学、物理光学、电磁学、电动力学、流体力学等领域。 历史上许多科学家,如达朗贝尔、欧拉、丹尼尔·伯努利和拉格朗日等在研究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。 波动方程是双曲形偏微分方程的最典型代表,其最简形式可表示为:关于位置x 和时间t的标量函数u(代表各点偏离平衡位置的距离)满足: 这里c通常是一个固定常数,代表波的传播速率。在常压、20°C的空气中c为343米/秒(参见音速)。在弦振动问题中,c依不同弦的密度大小和轴向张力不同可能相差非常大。而在半环螺旋弹簧(一种玩具,英文商标为 Slinky)上,波速可以慢到1米/秒。 在针对实际问题的波动方程中,一般都将波速表示成可随波的频率变化的量,这种处理对应真实物理世界中的色散现象。此时,c应该用波的相速度代替: 实际问题中对标准波动方程的另一修正是考虑波速随振幅的变化,修正后的方程变成下面的非线性波动方程: 另需注意的是物体中的波可能是叠加在其他运动(譬如介质的平动,以气流中传播的声波为例)上的。这种情况下,标量u的表达式将包含一个马赫因子(对沿流动方向传播的波为正,对反射波为负)。 三维波动方程描述了波在均匀各向同性弹性体中的传播。绝大多数固体都是弹性体,所以波动方程对地球内部的地震波和用于检测固体材料中缺陷的超声波的传播能给出满意的描述。在只考虑线性行为时,三维波动方程的形式比前面更为复杂,它必须同时考虑固体中的纵波和横波: 式中:

1悬链线方程的推导

1 悬链线方程的推导 锚链一端受到水平预张力()0T KN ,并在其均匀分布的自重力作用下产生下垂。设锚链水中 单位重力为()/W KN m ,建立如图1所示的直角坐标系,并设锚链曲线对应的函数为()y f x =。 对于横坐标上0至x 这段锚链,长度为L ,则G wL =,顶端拉力为T ,该力倾角为θ,水平张力0T ,根据力学原理可知,T ,G 和0T 三力平衡。可知0tan /G T θ=(图2). 图1图2 假定该水平张力在锚链上处处相等,对于任意一段锚链L ,该平衡均成立,0 tan wL T θ=,而tan dy dx θ=,对该式取微分,则 有()() 00tan x w d d L T θ===(1) 弧长微分ds =1 )分离变量后并积分: 0 tan d w dx T θ=?(2) 对式(2)积分后得到: ()110 tan w sh x c T θ-=+ 10tan w sh x c T θ??=+ ??? (3) 10tan dy w sh x c dx T θ??==+ ??? 对式(3)再次分离变量后,得 10w dy sh x c dx T ??=+ ??? (4) 并积分, 10w y sh x c dx T ??=+ ? ?? ?(5) 查积分公式可得:

0120T w y ch x c c w T ??=++ ??? (6) 式(6)即为锚链悬链线的一般方程。 假设锚链末端拖地,并设拖地点为原点,则 对于拖地点有,0,0,tan 0x y θ===,代入式(3)和(6),联立方程后,可解得:10c =,2T c w =,代入式(6)得: 001T w y ch x w T ??=- ??? (7) 式(5)即为拖地点为原点的悬链线一般方程。 而对于悬挂点为原点的悬链线方程,仅系数有所变化,如下式表示,推导过程不再叙述。该方程对于有悬锤的悬链线更适用。0,0,tan wL x y T θ=== ,代入式(3),(6)可解得: 001sinh wL T a T c w ?? ???= 002cosh sinh wL T a T c w ?????? ?????=(8) 0000000cosh sinh sinh wL wL T a T a T T T w y ch x w T w w ?????????????? ??? ???????????=--????????????? ??? 式(8)即是以悬挂点为原点的悬链线一般方程。 L 为悬链线长度,在y 已知的情况下,根据式(7)可求出x 值,并对曲线积分,即可求出悬链线长度L 。 2 带悬锤的悬链线方程 有悬锤的悬链线,受力模式和求解过程均与一般悬链线相似。区别的是其初值不同,因此只是1c 和2c 不同而已。 从图3可以看出,以悬锤点为界,上段悬链线中的竖向力多了悬锤重C G 和2L ,水平力均相同,悬锤以下段,悬链线与一般悬链线相同。 图

悬链线方程及曲线弧长

第二章导线应力弧垂分析 第三节悬点等高时导线弧垂、线长和应力关系 一、悬链线方程及曲线弧长 1.悬链线方程 为了分析方便,我们先从悬挂点等高,即相邻杆塔导线悬挂点无高差的情况讨论导线的应力及几何关系。实际上,导线悬在空中的曲线形态,从数学角度用什么方程来描述是进行导线力学分析的前题。由于假定视导线为柔索,则可按照理论力学中的悬链线关系来进行分析,即将导线架设在空中的几何形态视为悬链形态,而由此导出的方程式为悬链线方程。 如图2-5所示,给出了悬挂于A、B两点间的一档导线,假定为悬挂点等高的孤立档,设以导线的最低点O点为原点建立直角坐标系。 图2-5导线悬链线及坐标系 同时假定导线固定在导线所在的平面,可随导线一起摆动,显然这是一个平面力系。根据这个坐标进行导线的受力分析,可建立导线的悬链线方程。 我们先从局部受力分析开始,再找出其一般规律。首先在导线上任取一点D(x,y),然后分析OD段导线的受力关系,由图2-5所示,此OD段导线受三个力而保持平衡,其中D 点承受拉力为T x=σx S,它与导线曲线相切,与x轴夹角为α;O点承受拉力为T0=σ0S,T0为导线O点的切线方向,恰与x轴平行,故又称水平张力;此外还有OD段导线自身的荷载为G=gSL x,其中L x为OD段导线的弧长。 将OD段导线的受力关系画为一个三角形表示,如图2-6所示, 图2-6导线受力情况 由静力学平衡条件可知,在平面坐标系中,其水平分力,垂直分力的代数和分别等于零。

或沿x轴或y轴上分力代数和分别等于零。 垂直方向分力G=T x sinα=gSL x;水平方向分为T0=T x cosα=σ0S。其中σ0、T0为导线最低点的应力和张力,σx、T x为导线任一点的应力和张力,S、g为导线截面和比载。将上述二式相比,则可求得导线任意一点D的斜率为: (2-10) 由微分学知识可知,曲线上任一点的导数即为切线的斜率。 式(2-10)是悬链曲线的微分方程。我们要用坐标关系表示出导线受力的一般规律,还需要将不定量L x消去,因此,将式对x微分得: (微分学中弧长微分公式为dS2=(dx)2+(dy)2)将上式移项整理后,两端进行积分 这是个隐函数,因此,再进行分离变量积分,查积分公式有: (2-11) 再进行分离变量积分,有 于是,导线任一点D的纵坐标为: (2-12) 式(2-12)是悬链方程的普通形式,其中C1和C2为积分常数,其值可根据取坐标原点的位置及初始条件而定。如果将坐标原点于导线最低点处,则有下述初始条件:x=0, dy/dx=tgα=0 代入式(2-11)则C1=0,将x=0,y=0,C1=0 代入式(2-12),,如此,求得坐标原点最低点O处的悬链方程为: (2-13) 式中σ0—水平应力(即导线最低点应力),MPa; g—导线的比载,N/m.mm2。 当坐标原点选在其它点(例如选在悬挂点处)时,悬链线方程的常数项将有所不同,可

伯努利方程的推导及其实际应用

伯努利方程的推导及其实际应用总结 楼主:西北荒城时间:2015-03-03 14:08:00 点击:1091 回复:0 一,伯努利方程的推导 1726年,荷兰科学家丹尼尔·伯努利提出了描述理想流体在稳流状态下运动规律伯努利原理,并用数学语言将之精确表达出来,即为伯努利方程。伯努利方程是流体力学领域里最重要的方程之一,学习伯努利方程有助于我们更深刻的理解流体的运动规律,并可以利用它对生活中的一些现象作出解释。同时,作为土建专业的学生,我们将来在实际工作中,很可能要与水、油、气等流体物质打交道,因此,学习伯努利方程也有一定的实际意义。作为将近300岁高龄的物理定律,伯努利方程的理论是非常成熟的,因此不大可能在它身上研究出新的成果。在本文中,笔者只是想结合自己的理解,用自己的方式推导出伯努利方程,并应用伯努利方程解释或解决现实生活中的一些问题。 既然要推导伯努利方程,那么就首先要理解一个概念:理想流体。所谓理想流体,是指满足以下两个条件的流体:1,流体内部各部分之间无黏着性。2,流体体积不可压缩。需要指出的是,现实世界中的各种流体,其内部或多或少都存在黏着性,并且所有流体的体积都是可以压缩的,只是压缩的困难程度不同而已。因此,理想流体只是一种理想化的模型,其在现实世界中是不存在的。但为了对问题做简化处理,我们可以讲一些非常接近理想流体性质的流体视为理想流体。 假设有某理想流体在某细管中做稳定流动。如图,在细管中任取一面积为s1的截面,其与地面的相对高度h1,,流体在该截面上的流速为v1,并且该截面上的液压为p1。某一时刻,有流体流经s1截面,并在dt时间内发生位移dx1运动到新截面s2。由于细管中的水是整体移动的,现假设细管高度为h2处有一截面s3,其上流体在相同的时间内同步运动到了截面s4,流速为v2,共发生位移dx2。则有如下三个事实: 1:截面s1、s2之间流体的体积等于截面s3、s4之间流体的体积,即s1dx1=s2dx2 2:截面s1、s3之间流体的体积等于截面s2、s4之间流体的体积(由事实1可以推知) 3:细管中相应液体的机械能发生了变化。 事实1和事实2实际上是质量守恒的体现,事实3则须用能量守恒来解释,即外力对该段流体做功的总和等于该段流体机械能的变化。因截面s2、s3之间流体的运动状态没有变化,故全部流体机械能的变化实质上是截面s1、s2之间

架空线悬链方程的积分普遍形式

在高压架空线路的设计中,不同气象条件下架空线的弧垂、应力、和线长占有十分重要的位置,是输电线路力学研究的主要内容。这是因为架空线的弧垂和应力直接影响着线路的正常安全运行,而架空线线长微小的变化和误差都会引起弧垂和应力相当大的改变。设计弧垂小,架空线的拉应力就大,振动现象加剧,安全系数减少,同时杆塔荷载增大因而要求强度提高。设计弧垂过大,满足对地距离所需杆塔高度增加,线路投资增大,而且架空线的风摆、舞动和跳跃会造成线路停电事故,若加大塔头尺寸,必然会使投资再度提高。因此设计合适的弧垂是十分重要的。 架空线悬链方程的积分普遍形式 假设一:架空线是没有刚度的柔性索链,只承受拉力而不承受弯矩。 假设二:作用在架空线上的荷载沿其线长均布;悬挂在两基杆塔间的架空线呈悬链线形状。 由力的平衡原理可得到一下结论: 1、架空线上任意一点C 处的轴向应力σx 的水平分量等于弧垂最低点处的轴向应力σ0,即架空线上轴向应力的水平分量处处相等。 σx cos θ=σ0 2、架空线上任意一点轴向应力的垂直分量等于该点到弧垂最低点间线长L oc 与比载γ之积。 σx sin θ=γL oc 推导出: 0 t g L o c γ θσ= dy Loc dx γ σ= 即 0'y L o c γσ= (4-3) 由(4-3)推导出 10 ()dy sh x C dx γ σ=+ (4-4) 结论:当比值γ/σ0一定时,架空线上任一点处的斜率于该点至弧垂最低点之间的线长成正比。最 后推到得到架空线悬链方程的普遍积分形式。C1、C2为积分常数,其值取决于坐标系的原点位置。 0(1)20 y ch x C C σγ γσ= ++ (4-5)

对波动方程的一些理解

1如果你从头到尾仔细查看声音的波动方程的推导过程,你会发现,这是一个介质中的密度变化从而导致压强变化(声压)的过程,如果静止介质中的声速是 Cs ,那么很容易就可以推导出来,对于一个以速度 v 运动的介质,声速是(Cs+v ),也就是说,声速Cs 是相对于介质而言的。 而对于电磁波的速度,麦克斯韦方程组里面只有一个 常数C 来描述,这个C 与光源的运动状态是完全没有关系的。那么这个 C 究竟是相对于哪一个参考系的速度呢?麦克斯韦当时自己认为他的方程组是基于 “绝对静止系”成立的(因为显然麦氏方程不满足伽利略相对性),这个C 因而也就是“绝对速度”。然而麦莫实验并没有找到以太存在的证据,这使得当时经典物理的天空多了一块阴云。 既然不能找到一个绝对静止系, 那么就有两个比较明显的结论,要么是麦氏方程从根本上就错了,要么是这个 C 本来就是一个常数,对哪一个惯性系都一样。爱因斯坦选择了后者:久经考验的麦氏方程依然成立, 它也不是仅仅是建立在一个不存在的绝对静止系之上的,而是对一切惯性系都成立,只要考虑相对论效应一切矛盾就消失了。2有时间看看,《什么是数学》 3.看书发现有很多波动方程:对波动方程总是有着模糊的概念: 看了以下内容发现各种波之间有相似的联系. 机械振动方程: 一维弹簧振子的振动方程由牛顿第二定律推导得: 方程的通解是: ψ = C 1 co s ωt + C 2sin ωt 正弦形式为ψ= A sin (ωt + ? ) 简谐振动它是各种波的起因和微观模型。 振动和波动的关系:振动是质点模型,波动是介质模型;振动是因,波动是果。 机械波动方程 机械波的传播公式: ψ= A sin[ω (t -x / u )+ ? ] 描述波的物理量:波速u 、波长λ、频率f 、周期 T 、圆频率ω、圆波数k=ω/u ,ψ= Asin[(ωt -kx) +?] 与下面的等价 ψ = C 1 co s(ω t - k x ) + C 2 s i n (ω t - k x )分别对x 和t 求二阶偏导数,可得 2 22sin[()]2 22A t kx x u u 1.1 222 sin[()]2A t kx t 1.2 整理得到机械波的波动方程为: 这是一维机械波的波动方程。 推广到空间因此可以得到三维机械波的波动方程:

悬链线方程

通常任何材料包括导线在内,都具有一定的刚性,但由于悬挂在杆塔上的一档导线相 对较长,因此导线材料的刚性对其几何形状的影响很小,故在计算中假定: (1)导线为理想的柔索。因此,导线只承受轴向张力(或拉力),任意一点的弯矩为 零。这样导线力学计算可应用理论力学中的柔索理论进行计算。 (2)作用在导线上的荷载均指同一方向,且沿导线均匀分布。 一、悬链线方程及曲线弧长 1、悬链线方程 为了分析方便,我们先从悬挂点等高,即相邻杆塔导线悬挂点无高差的情况讨论导线的应力及几何关系。实际上,导线悬在空中的曲线形态,从数学角度用什么方程来描述就是进行导线力学分析的前题。由于假定视导线为柔索,则可按照理论力学中的悬链线关系来进行分析,即将导线架设在空中的几何形态视为悬链形态,而由此导出的方程式为悬链线方程。 如图2-5所示,给出了悬挂于A、B两点间的一档导线,假定为悬挂点等高的孤立档,设以导线的最低点O点为原点建立直角坐标系。 图2-5导线悬链线及坐标系 同时假定导线固定在导线所在的平面,可随导线一起摆动,显然这就是一个平面力系。根据这个坐标进行导线的受力分析,可建立导线的悬链线方程。 我们先从局部受力分析开始,再找出其一般规律。首先在导线上任取一点D(x,y),然后分析OD段导线的受力关系,由图2-5所示,此OD段导线受三个力而保持平衡,其中D点承受拉力为T x=σx S,它与导线曲线相切,与x轴夹角为α; O点承受拉力为T0=σ0S,T0为导线O点的切线方向,恰与x轴平行,故又称水平张力;此外

还有OD段导线自身的荷载为G=gSL x, 其中L x为OD段导线的弧长。 将OD段导线的受力关系画为一个三角形表示,如图2-6所示, 图2-6导线受力情况 由静力学平衡条件可知,在平面坐标系中,其水平分力,垂直分力的代数与分别等于零。或沿x轴或y轴上分力代数与分别等于零。 垂直方向分力G=T x sinα=gSL x;水平方向分为T0=T x cosα=σ0S。其中σ0、T0为导线最低点的应力与张力,σx、T x为导线任一点的应力与张力,S、g为导线截面与比载。将上述二式相比,则可求得导线任意一点D的斜率为: (2-10) 由微分学知识可知,曲线上任一点的导数即为切线的斜率。 式(2-10)就是悬链曲线的微分方程。我们要用坐标关系表示出导线受力的一般规律,还需要将不定量 L x消去,因此,将式对x微分得: (微分学中弧长微分公式为dS2=(dx)2+(dy)2)将上式移项整理后,两端进行积分 这就是个隐函数,因此,再进行分离变量积分,查积分公式有: (2-11) 再进行分离变量积分,有

第七章一维波动方程的解题方法与习题答案

第七章一维波动方程的傅里叶解小结及习题答案 第二篇数学物理方程 ——物理问题中的二阶线性偏微分方程及其解法Abstracts:1、根据物理问题导出数理方程—偏微分方程; 2、给定数理方程的附加条件:初始条件、边界条件、物理条件 (自然条件,连接条件),从而与数理方程一起构成定解问题; 3、方程齐次化; 4、数理方程的线性导致解的叠加。 一、数理方程的来源和分类(状态描述、变化规律) 1、来源 I.质点力学:牛顿第二定律Fmr 连续体力学 弦 2 u(r,t) 弹性体力学杆振动:22波动方程); au(r,t)0( 2 t (弹性定律) 膜 流体力学:质量守恒律:(v)0; t 热力学物态方 程: v1 (v)vpf0(Eulereq.). t II.麦克斯韦方程 DddD;EdlBdsEB; Bd0B0;Hdl(jD)dsHjD. Eu,BA,u,A 满足波动方程。 Lorenz力公式力学方程;Maxwelleqs.+电导定律电报方程。III.热力学统计物理 热传导方程: 扩散方程:T t t 2 kT 2 D 0; 0. 特别:稳态(0 t ) : 20(Laplaceequation). IV.量子力学的薛定谔方程: 2 u 2.iuVu t2m 2.分类 物理过程方程数学分类

振动与波波动方程2 u 1 2 u 22 at 双曲线 输运方程能量:热传导 质量:扩散u t 20 ku 抛物线 1

稳态方程Laplaceequation 2u0椭圆型 二、数理方程的导出 推导泛定方程的原则性步骤: (1)定变量:找出表征物理过程的物理量作为未知数(特征量),并确定影响未知函数的自变量。 (2)立假设:抓主要因素,舍弃次要因素,将问题“理想化” ---“无理取闹”(物理趣乐)。 (3)取局部:从对象中找出微小的局部(微元),相对于此局部一切高阶无穷小均可忽略---线性化。 (4)找作用:根据已知物理规律或定律,找出局部和邻近部分的作用关系。 (5)列方程:根据物理规律在局部上的表现,联系局部作用列出微分方程。 Chapter7一维波动方程的傅里叶解 第一节一维波动方程-弦振动方程的建立 1.弦横振动方程的建立 (一根张紧的柔软弦的微小振动问题) (1)定变量:取弦的平衡位置为x轴。表征振动的物理量为各点的横向位移u(x,t),从而速度为u t,加速度为u tt. (2)立假设:①弦振动是微小的,1,因此,sintan,cos1,又 u x tan u;②弦是柔软的,即在它的横截面内不产生应,1 x 力,则在拉紧的情况下弦上相互间的拉力即张力T(x,t)始终是沿弦的切向 2

能量方程(伯努利方程)实验

- 1 - 第3章 能量方程(伯努利方程)实验 3.1 实验目的 1) 掌握用测压管测量流体静压强的技能。 2) 验证不可压缩流体静力学基本方程, 通过对诸多流体静力学现象的实验分析,进一步加深对基本概念的理解,提高解决静力学实际问题的能力。 3) 掌握流速、流量等动水力学水力要素的实验量测技能。 3.2 实验装置 能量方程(伯努利方程)实验装置见图3.1。 图3.1 能量方程(伯努利方程)实验装置图 说明:本实验装置由供水水箱及恒压水箱、实验管道(共有三种不同内径的管道)、测压计、实验台等组成,流体在管道内流动时通过分布在实验管道各处的7根皮托管测压管测量总水头或12根普通测压管测量测压管水头,其中测点1、6、8、12、14、16和18均为皮托管测压管(示意图见 图3.2),用于测量皮托管探头对准点的总水头H ’(=2g u 2 ++r p Z ),其余为普通测压管(示意图 见图3.3),用于测量测压管水头。

- 2 - 图3.2 安装在管道中的皮托管测压管示意图 图3.3安装在管道中的普通测压管示意图 3.3 实验原理 当流量调节阀旋到一定位置后,实验管道内的水流以恒定流速流动,在实验管道中沿管内水流方向取n 个过水断面,从进口断面(1)至另一个断面(i )的能量方程式为: 2g v 2111++r p Z =f i i h r p Z +++2g v 2 i =常数 (3.1) 式中:i=2,3,······ ,n ; Z ──位置水头; r p ──压强水头; 2g v 2 ──速度水头; f h ──进口断面(1)至另一个断面(i )的损失水头。 从测压计中读出各断面的测压管水头(r p Z + ),通过体积时间法或重量时间法测出管道流量,计算不同管道内径时过水断面平均速度v 及速度水头2g v 2 ,从而得到各断面的测压管水头和总水头。 3.4 实验方法与步骤 1) 观察实验管道上分布的19根测压管,哪些是普通测压管,哪些是皮托管测压管。观察管道内径的大小,并记录各测点管径至表3.1。 2) 打开供水水箱开关,当实验管道充满水时反复开或关流量调节阀,排除管内气体或测压管内的气泡,并观察流量调节阀全部关闭时所有测压管水面是否平齐(水箱溢流时)。如不平,则用吸气球将测压管中气泡排出或检查连通管内是否有异物堵塞。确保所有测压管水面平齐后才能进行实验,否则实验数据不准确。 3) 打开流量调节阀并观察测压管液面变化,当最后一根测压管液面下降幅度超过50%时停止调节阀门。待测压管液面保持不变后,观察皮托管测点1、6、8、12、14、16和18的读数(即总水头,取标尺零点为基准面,下同)变化趋势:沿管道流动方向,总水头只降不升。而普通测压管2、3、4、5、7、9、10、11、13、15、17、19的读数(即测压管水头)沿程可升可降。观察直管均匀流同一断面上两个测点2、3测压管水头是否相同?验证均匀流断面上静水压强按动水压强规律分布。弯管急变流断面上两个测点10、11测压管水头是否相同?分析急变流断面是否满足能力方程应用条件?记录测压管液面读数,并测记实验流量至表3.2、表3.3。 4) 继续增大流量,待流量稳定后测记第二组数据(普通测压管液面读数和测记实验流量)。 5) 重复第4步骤,测记第三组数据,要求19号测压管液面接近标尺零点。 6) 实验结束。关闭水箱开关,使实验管道水流逐渐排出。 7) 根据表3.1和表3.2数据计算各管道断面速度水头2g v 2和总水头(2g v 2 ++r p Z ) (分别记录于表3.4和表3.5)。

相关文档