文档库 最新最全的文档下载
当前位置:文档库 › 换热器局部腐蚀原因分析

换热器局部腐蚀原因分析

换热器局部腐蚀原因分析
换热器局部腐蚀原因分析

换热器局部腐蚀泄漏原因分析及预防措施

陶志远

(山东华鲁恒升化工股份有限公司山东德州253000)

【摘要】对一台换热器换热管泄漏原因进行分析,并研究预防换热管泄漏措施,提高换热器运行周期,保证装置稳定运行。

【关键词】换热器泄漏局部腐蚀蒸汽加热

在化工生产中,由于工艺的需要,在流程中往往存在着各种不同的换热过程,换热器就是用来进行此项热传递过程的设备,它可以使热量从温度较高的流体传递给温度较低的流体,以满足工艺的需要。换热器的稳定运行在工艺生产中起着相当重要的作用,一旦泄漏会严重影响工艺,造成两种流体混合,导致不安全因素的产生。

某公司甲醇装置中有一换热器为该装置关键设备,该换热器在投用一年后发生泄漏。

1设备技术参数

设备技术参数及操作数据见表1

筒体材质为16MnR(热轧状态),规格为∮1500mm*14mm,总高8152mm。管板材质为16Mn。厚度88mm,锻件。换热管材质为10#钢,规格∮25mm*2.5mm,退火状态。折流板5件,厚度16mm,材质Q235-A.换热面积:669m2。

表1

2泄漏情况

该换热器于2004年投入运行,2006年7月系统停车时发现泄露。打压试漏时发现有34根换热管泄露。其中有10根比较严重。由于当时生产任务较紧,该换热器堵漏完毕后,投入运行,没有做深入的分析。

堵漏完毕后的换热器投入运行3个月后又发现泄露,再次拆开检查维修。在这次检查时,发现有的换热管在距上管板90毫米处有断开,随即技术人员仔细检查。用焊条在换热器上管板上探测换热管内壁,发现大部分换热管在距管板90毫米处用焊条滑动时内壁不光滑。于是技术人员决定将换热管抽出一根检查。换热管抽出后,将怀疑有缺陷的部位刨开,发现该处有一不规则的环状凹坑(见图1),换热管内表面其他部位良好,这说明其他换热管也存在环状凹坑。通过查看设备制造图纸,换热器管板厚度为80毫米,凹坑距管板大约10毫米。

图 1 凹坑位置

3 原因分析

该换热器是一塔设备下部即塔釜换热器,目的是加热并蒸发塔釜液体,使塔内获得介质蒸汽,介质蒸汽上升与塔顶部流下的液体接触混合,实现塔内的物理化学反应,该设备还有一个名字叫塔釜再沸器,实现塔釜液体再次沸腾的加热器。该换热器管程介质为甲醇,壳程介质为蒸汽,180度的蒸汽加热甲醇,使得甲醇沸腾。换热器工作流程见图2: 蒸气进口

换塔

图 2 换热器工作流程

从常规腐蚀机理分析,塔体采用材料为16MnR ,换热器管程管箱封头材料也为16MnR ,换热管为10#钢。在塔内和换热器的管箱封头都没有发现腐蚀现象,在换热管内,只是靠近上管板的地方发现腐蚀,说明换热管的腐蚀在原始选材有没有考虑到或以前没有发生的腐蚀。

由于腐蚀部位靠近上管板,其他部位没有腐蚀,且大部分的换热管都出现在该部位腐蚀的现象,这说明腐蚀与材质没有关系,肯定是在工艺设计或操作方面有欠缺,导致换热管局部腐蚀。

换热器管程的液位约有换热管长度的三分之一到三分之二,壳程充满蒸汽,其底部有冷凝液排出管线连接疏水器,保证壳程加热效果。当换热管内的甲醇介质被壳程蒸汽加热沸腾后,变成甲醇蒸汽上升,由于壳程蒸汽温度高于换热管内甲醇蒸汽温度,甲醇温度在换热管内上升时,一直被加热,温度上升。当甲醇蒸汽进入管板内换热管式,由于周围没有了蒸汽,

甲醇蒸汽在经过这段距离时,或甲醇蒸汽进入上管箱后,没有了加热源,甲醇蒸汽中的部分蒸汽变成液滴,附着在管板内换热管管壁上,或上管箱内的液滴落到上管板上,然后顺着换热管向下流。当液滴顺着管板内的换热管向下流出管板是随即内高温蒸汽加热,又变成甲醇蒸汽上升,如此的反复过程,使得上管板下部换热管内表面承受介质相变,在特定的温度环境下腐蚀,从而出现环状凹坑。介质蒸汽及液滴流动方向见图3:

图3介质蒸汽和液滴流动方向

双线为介质液滴流动示意,单线为介质蒸汽流动示意

4整改方法和采取措施

从上面分析的腐蚀机理,来寻找防止换热管腐蚀的方法。首先在防止液滴下流的方式有两种:一可以增加蒸汽的温度,来提高换热管内的介质蒸汽的温度,使介质蒸汽在离开换热管后,来不及凝结就进入塔体,进入塔体和即使有液滴冷凝,只会落到塔釜液面,不会造成负面影响;二可以降低塔顶压力,使得换热管内介质蒸汽的流速增加,即使有液滴冷凝,在流速较高的情况下也被带入塔内。

以上两种方式是要改变工艺操作条件,工艺操作条件改变后会影响其他设备的操作,这种方式在生产中是不会采取的。要想在不改变工艺操作条件的情况下,防止腐蚀,只有增加换热管的材料等级,将10#钢的换热管改成不锈钢,这样冷凝的液滴在换热管内反复蒸发不会造成换热管的坑状腐蚀,从而保证换热器的运行,稳定了生产。

5结语

通过对换热器进行改造,将换热管上部长约1米更换为不锈钢材质,既避免了腐蚀,又节省了制造成本。经过近两年的运行,换热器运行良好,没有发生泄漏,从而证明当初的分析是正确的。

作者简介:陶志远(1973-)工程师,现在山东华鲁恒升化工股份有限公司工作

化工换热器的常见腐蚀现象及防腐措施

化工换热器的常见腐蚀现象及防腐措施 摘要:如何采取合理的措施来减缓甚至消除金属设备的腐蚀是一个永恒的科研课题。换热器的腐蚀问题一直是石化企业面临的棘手问题,探究腐蚀机理以及提出切实可行的防腐蚀办法一直是值得研究的课题。本文介绍了化工换热器的常见腐蚀现象,并提出了针对性强的防腐措施,同时,也为国内外石化行业参考借鉴。 关键词:换热器;腐蚀;防腐 1 概述 换热器是将热流体的部分热量传递给冷流体或将冷流 体的热量传递给热流体的的设备,又称热交换器。管式换热器由于技术成熟、维修方便,因而在石油化工、钢铁、纺织、化纤、制药等各行各业中应用十分广泛。换热器由于在各行各业应用的普及性,因而出现维修的概率也越来越广泛,特别是由于换热介质的物理、化学不同,导致换热器的损坏形式也不同,而据全世界的报导所知,换热器的损坏90%是由于腐蚀而引起的,因此换热器的腐蚀问题一直是石化企业面临的棘手问题。 随着工业的迅速发展,腐蚀问题越来越严重,在各个领域,包括炼油厂化工厂等企业均见报道。从日常生活到工农

业生产,凡是使用材料的地方都存在腐蚀问题,对国计民生的危害十分严重,据不完全统计,全世界每年因腐蚀报废和损耗的钢铁约为2亿多吨,约占当年钢产量的10%-20%,目前我国的钢铁产量己高达数亿吨,但其中却有30%由于腐蚀而白白损失掉了。据此测算,我国每年因钢铁腐蚀损失约有2700多亿元人民币,远远大于自然灾害和各类事故损失的总和。国家科技部门、各工厂对这个问题也越来越重视。对于化工企业,腐蚀造成的危害更大,不仅在于金属资源受到损失,还在于正常的生产受到影响,因腐蚀造成的设备事故对于职工人身安全也会带来严重的威胁。由于腐蚀问题越来越受到重视,因此对于腐蚀的研究也越来越多。 2 化工换热器的常见腐蚀现象 引起换热器腐蚀的原因是多方面的,主要有换热器表面的腐蚀磨损、沉积物引起的电化学腐蚀、换热管水侧的腐蚀等,下面就几个主要方面加以说明。 2.1 换热器表面的腐蚀磨损 磨损腐蚀是高速流体对金属表面已经生成的腐蚀产物的机械冲刷作用和新裸露金属表面的腐蚀作用的综合。 2.2 沉积物引起的电化学腐蚀 当介质流动不均或滞留时很容易在换热管表面形成沉积物,由于沉积物是不连续不牢固且不均匀的,在某些部位形成了裂缝和间隙,由于缝内外氧的差异而形成了电化学腐

换热器的防腐蚀措施标准版本

文件编号:RHD-QB-K5840 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 换热器的防腐蚀措施标 准版本

换热器的防腐蚀措施标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 1.采用能耐介质腐蚀的金属和非金属材料 2.采取有效的防腐蚀措施 (1)防腐涂层 在换热器与腐蚀介质接触表面,覆盖一层耐腐蚀的涂料保护层,涂层要有较好的耐蚀性、防渗性和较好的附着力和柔韧性。对水冷系统,管内清洗干净后进行预膜处理。

(2)金属保护层 常用方法有衬里、复合板(管)、金属喷涂、金属堆焊等。 (3)电化学保护 阴极保护因费用太高,一般不用。阳极保护是接以外用电源的阳极保护换热器,金属表面生成钝化膜而得到保护。 (4)防应力腐蚀措施 ①胀接结构,其胀管率越大,残余应力越大,则在腐蚀介质中其电极电位越高,腐蚀倾向越大。在同

一种腐蚀介质中,与焊接结构相比较,胀接结构,特别当胀接时胀管率较大时,更容易产生应力腐蚀,因而在保证胀接强度及密封性的条件下,胀接压力不宜过高以控制胀接后残余应力的大小,减小产生应力腐蚀的可能性。必要时可改变换热管与管板的连接形式,如用强度焊加轻微贴胀的结构代替原先的胀接结构,这种结构既减小了结构的残余应力,又能防止只焊接而产生缝隙腐蚀的可能,通过改变换热管与管板的连接形式来减小结构的残余应力,对预防换热器的应力腐蚀破裂是有效、可行的。 ②胀管深度应达管板底部,以消除全部缝隙。 ③在强应力腐蚀介质下的换热器,应对管板进行消除应力处理。

浅析垃圾焚烧炉过热器腐蚀原因及解决措施(最新版)

浅析垃圾焚烧炉过热器腐蚀原因及解决措施(最新版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0148

浅析垃圾焚烧炉过热器腐蚀原因及解决措 施(最新版) 摘要:垃圾焚烧发电是实现城市垃圾无害化、减量化和资源化处理的一种有效方法,目前正得到大力的推广。焚烧发电具有工艺简单,运行可靠,垃圾处理速度快,处理量大。但是由于垃圾成份相当复杂,用于焚烧垃圾的焚烧炉存在非常严重的磨损、腐蚀现象,在腐蚀现象中以高温过热器管的腐蚀问题最为严重。本文主要就这个问题展开讨论并提出预防措施。 关键词:垃圾焚烧炉;高温过热器管腐蚀;措施 一、垃圾焚烧发电工艺原理垃圾焚烧发电是将垃圾放在焚烧炉中进行燃烧,释放出热能,余热回收加热给水变成蒸汽,蒸汽在汽轮机中推动汽轮发电机旋转做功,将蒸汽的热能转化为电能,释放热能后的烟气经净化系统处理后排放,从而将垃圾由“废物”变为

可利用的“资源”。随着各种炉型技术的实践应用广泛开展,炉排式垃圾焚烧炉以适应性强,处理比较彻底的优势正成为目前国内垃圾焚烧的主流工艺。随着技术的不断的提高和发展,我国焚烧炉的垃圾处理容量也不断的提高,从初期的150t/d提高到现在的750t/d,规模日趋增大。 二、垃圾焚烧发电的特点一般来说,垃圾经焚烧处理后残余的固体废物约占20%(炉渣约占15%,飞灰约占5%),考虑炉渣的综合利用因素,减量化效果更为显著。这相比于垃圾填埋处理要永久性占用土地来说节约了大量的土地资源。垃圾中的可燃物在焚烧中基本上变为了可利用的热能。根据城市发展程度及地理位置、生活习惯不同,垃圾的热值有所不同,一般用于焚烧的垃圾要求低位热值大于4180KJ/Kg,垃圾发电量一般在250kwh/t以上(随热值的提高而增加)。另外,由于垃圾焚烧后的尾气经过了严格的净化处理,因此对环境的污染被控制到了最低。因此,垃圾焚烧处理的特点是处理量大、减量效果好、无害化彻底,且有热能回收作用,是真正实现垃圾处理的“无害化、资源化、减量化”的技术手段。因此,对

换热器局部腐蚀原因分析

换热器局部腐蚀泄漏原因分析及预防措施 陶志远 (山东华鲁恒升化工股份有限公司山东德州253000) 【摘要】对一台换热器换热管泄漏原因进行分析,并研究预防换热管泄漏措施,提高换热器运行周期,保证装置稳定运行。 【关键词】换热器泄漏局部腐蚀蒸汽加热 在化工生产中,由于工艺的需要,在流程中往往存在着各种不同的换热过程,换热器就是用来进行此项热传递过程的设备,它可以使热量从温度较高的流体传递给温度较低的流体,以满足工艺的需要。换热器的稳定运行在工艺生产中起着相当重要的作用,一旦泄漏会严重影响工艺,造成两种流体混合,导致不安全因素的产生。 某公司甲醇装置中有一换热器为该装置关键设备,该换热器在投用一年后发生泄漏。 1设备技术参数 设备技术参数及操作数据见表1 筒体材质为16MnR(热轧状态),规格为∮1500mm*14mm,总高8152mm。管板材质为16Mn。厚度88mm,锻件。换热管材质为10#钢,规格∮25mm*2.5mm,退火状态。折流板5件,厚度16mm,材质Q235-A.换热面积:669m2。 表1 2泄漏情况 该换热器于2004年投入运行,2006年7月系统停车时发现泄露。打压试漏时发现有34根换热管泄露。其中有10根比较严重。由于当时生产任务较紧,该换热器堵漏完毕后,投入运行,没有做深入的分析。 堵漏完毕后的换热器投入运行3个月后又发现泄露,再次拆开检查维修。在这次检查时,发现有的换热管在距上管板90毫米处有断开,随即技术人员仔细检查。用焊条在换热器上管板上探测换热管内壁,发现大部分换热管在距管板90毫米处用焊条滑动时内壁不光滑。于是技术人员决定将换热管抽出一根检查。换热管抽出后,将怀疑有缺陷的部位刨开,发现该处有一不规则的环状凹坑(见图1),换热管内表面其他部位良好,这说明其他换热管也存在环状凹坑。通过查看设备制造图纸,换热器管板厚度为80毫米,凹坑距管板大约10毫米。

蒸汽过热器管断裂失效分析

蒸汽过热器管断裂失效分析 王印培陈进 (华东理工大学化机所上海200237) 摘要:某奥氏体不锈钢制蒸汽过热器管在加碱煮炉过程中发生断裂。采用力学性能测定宏微观检验及能谱分析,对该断裂管进行了分析研究。结果表明,蒸汽过热管断裂失效是由碱脆造成的。 主题词:碱脆;不锈钢;失效分析 1 概述 某炼油厂新建制氢装置的转化炉蒸汽过热器管在中压汽包加碱煮炉过程中多处发生断裂。蒸汽过热器管外径Φ89mm,壁厚6.5mm,材料为1Cr19Ni9奥氏体不锈钢。经现场检查,断裂均发生于与集汽管相连的蒸汽过热器的弯管上,裂纹大多位于焊接热影响区,为环向裂纹,在裂口周围管外有结碱。典型的裂纹宏观形貌见图1和图2。 图1 蒸汽过热器直管段裂纹宏观形貌图2 蒸汽过热器弯头裂纹宏观形貌

蒸汽过热器与中压汽包相连通,管外被转化炉炉气加热,管内为过热蒸汽。转化炉投入运行前先烘炉并对中压汽包进行加碱煮炉,煮炉碱液按每立方米各加入NaOH,Na2PO44kg的要求配制,并保证65%~75% 液位。经采样分析炉水碱度达到不小于45mg?L要求。烘炉与煮炉先后结束后(10d),转化炉对流段入口温度保持在525℃,中压汽包仍保压运行。运行一天后发现蒸汽过热器泄漏蒸汽,漏点不断扩大,迫使转化炉降温停炉。根据现场操作记录,在煮炉过程中,蒸汽过热器的蒸汽温度在200℃以上的时间达78h,其中300℃以上的达60h。 2 化学成分分析与铁素体含量测定 对蒸汽过热器直管、弯头和焊缝金属的化学成分进行分析,结果见表1。由表可见,蒸汽过热器直管与弯头的化学成分符合GB13296-1991对1Cr19Ni9钢的要求。 采用铁素体含量测定仪对蒸汽过热器中已开裂的直管、弯头及其焊缝处的铁素体含量进行测定,结果直管的铁素体含量平均为1.5%(共8点),最高为1.84%;弯头的铁素体含量平均为0.35%(共8点),最高为0.38%;焊缝处铁素体含量平均为319%,最高为6.47%。可见,蒸汽过热器管铁素体含量正常。 3 蒸汽过热器管内壁渗透液检验 为检验过热器管焊缝以外其它部位是否有裂纹,将过热器直管(部分)及弯头沿对称轴切开,进行内壁渗透液检验。结果显示,除了已穿透的裂纹及部分分叉外,未发现其它裂纹。 4 力学性能测试 力学性能试样均为两种状态,即过热器管的使用态和重新固溶热处理状态。重新固溶热处理工艺为1050℃水冷。 4.1 拉伸性能 按GB6397-1986标准,在过热器直管段取样,试样为矩形截面全厚度试样。拉伸试验按GB228-1987标准进行。试验温度为室温。试样数量为使用态和重新固溶态各两根。试验结果见表2。

换热器的腐蚀分析正式样本

文件编号:TP-AR-L2856 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 换热器的腐蚀分析正式 样本

换热器的腐蚀分析正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 (1)管子本身材料缺陷在腐蚀介质和高温条件 下,发生全面腐蚀和局部腐蚀;管内异物堆积产生点 腐蚀。 (2)管子与管板的接口采用强度焊、强度胀因苛 刻工况下产生胀力松弛而形成缝隙或应力,缝隙内介 质浓度高于壳程侧介质浓度,产生缝隙腐蚀;已胀段 和未胀管间过渡区,管子内外壁存在较大拉应力,易 产生应力腐蚀破裂;管子与折流板处产生局部应力集 中,加之间隙存在,腐蚀介质浓聚,其结合部位易产 生应力腐蚀。

(3)壳体焊缝及热影响区在高温、腐蚀介质环境下,焊接质量不好更易发生腐蚀。 (4)壳体与折流板材质的电解电位不同,折流板材质的电位高于壳体,壳侧介质为电解质,壳体内壁因此受电化学腐蚀。 (5)大多数换热器失效都发生在管子与管板的连接处。连接接头处的失效可能造成产品不合格及减产、环境污染乃至引发火灾或爆炸,造成装置被迫停产。近年来,管壳式换热器在腐蚀性介质作用下产生的低应力破坏,引起了国内外/‘大学者及工程人员的极大关注,它的严重性正是由于破坏发生在远低于材料屈服点应力的状态下,应力腐蚀裂纹就是低应力

锅炉过热器爆管原因分析及对策(正式)

编订:__________________ 审核:__________________ 单位:__________________ 锅炉过热器爆管原因分析及对策(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8363-82 锅炉过热器爆管原因分析及对策(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 摘要:锅炉承压部件的安全运行对整个电厂的安全至关重要。文章结合微水电厂实际,分析了过热器爆管泄漏的机理、原因及实际采取的一些对策,以求对锅炉过热器设备的完好运行有所裨益。 关键词:锅炉过热器爆管电网 1 前言 据统计,河北省南部电网锅炉各种事故约占发电厂事故的63.2%,而承压部件泄漏事故又占锅炉事故的86.7%。因此迫切需要大幅度降低锅炉临修次数。下面结合微水电厂实际,分析过热器爆管泄漏的机理、原因及采取的一些对策。 微水发电厂锅炉型号为HG-220/100-4,露天布置,固态排渣煤粉炉,四角切圆燃烧,过热器由辐

射式炉顶过热器、半辐射屏式过热器、对流过热器和包墙管4部分组成。减温水采用给水直接喷入,分两级减温。炉顶管、包墙管和第二级过热器管用?38×4.5的20号碳钢管组成。第一级过热器和屏过热器用?42×5的12Cr1 MoV钢管组成。 2 过热器爆管的主要原因 2.1 超温、过热和错用钢材 2.2 珠光体球化及碳化物聚集 针对12Cr1 MoV钢分析,试验表明当12Cr1 MoV 钢严重球化到5级时,钢的室温强度极限下降约11kg /mm2。微水发电厂1993年4月过热器爆管的统计资料表明:因局部长期过热,珠光体耐热钢已达到了5级球化现象,而它的塑性水平仍然比较高。发生球化现象以后,钢的蠕变极限和持久强度下降。通过580℃下对12Cr1 MoV钢的持久爆管试验,可以看出到了球化4级的钢管,其持久强度降低1/3。影响珠光体耐热钢发生球化的因素主要有温度、时间、应力和钢材的化学成份等。在钢中掺入“V”这种强碳化物元素,

(仅供参考)换热器泄漏原因分析及对策

换热器泄漏原因分析及对策 在装置运行和检修过程中,换热器泄漏是经常遇到的现象。就泄漏产生的形态而言,主要有腐蚀泄漏、磨损泄漏、静密封失效泄漏。原因有工艺方面的问题,也有设备的先天不足,还有施工习惯、质量控制等方面的缺陷。本文讨论的重点是通过加强对制造、安装、检修质量的控制来防止泄漏。 1·换热器芯子的泄漏 1.1管束与管板连接焊缝的泄漏 管束与管板间的连接有强度胀、强度焊、胀焊结合3种方式。强度胀如无过大的振动、温度变化和应力腐蚀,是比较理想的连接方式,但由于其工序复杂,对管束端部表面质量、硬度、管板的机加工精度、胀管经验要求很高,因此绝大部分芯子都是焊接方式。但该方式存在着不足:管束与管板的强度焊缝都是焊一遍,很容易出现焊接缺陷,因此,新制作的芯子在进行水压实验时从强度焊缝处泄漏是常有的事。同时,只进行强度焊接的芯子,管束与管孔之间存在着深且窄的间隙,焊缝在间隙内有很大的焊接残余应力,而且间隙中会积聚大量的Cl-,又处于贫氧状态,很容易产生缝隙腐蚀和应力腐蚀而出现腐蚀泄漏。1.2管束的腐蚀泄漏 1.2.1腐蚀泄漏的主要原因 (1)管束质量缺陷。管束表面往往存在着一些缺陷,如细小的砂眼、重皮、凹坑、局部擦伤等,这些缺陷可导致腐蚀的加强,容易产生泄漏。在制造管束的过程中,对管束的表面质量重视不够,认为只要试压不漏就行,实际上管束表面的这些缺陷往往是管束腐蚀泄漏的根源。

(2)折流板或支持板的负作用。主要表现在其管孔不合适或与管板间相互对中不好时会局部挤压管束。使受挤压处的防腐层难以涂上,如果由于外因而折流板或支持板相对于管束稍有错动,未防腐的部分就会裸露出来,从而加速管束的腐蚀。而且该处容易藏污纳垢,形成小的滞流区,导致缝隙腐蚀的产生。管孔外的锐角未去掉,穿管时会刮伤管束。另外,管孔不合适会造成管束的振动破坏。(3)吊装时钢丝绳对管束防腐层的破坏作用。在运输、安装过程中,采用的吊装工具几乎都是钢丝绳,由于其硬度高,很容易将管束的防腐层破坏,这也会造成腐蚀的产生。 (4)检修时吹扫、清洗、试压的负作用。检修时都是用蒸汽吹扫,用新鲜水清洗芯子和试压,而且试压从上水到放水经历的时间很长,结束后又不按要求吹干,这就会导致水分的增加,为腐蚀性介质的充分电离创造了条件;Cl-含量的增加,它们与管束中吸附的Cl-及H2S共同作用,会加剧腐蚀反应的进行;氧含量的增加,氧对碳钢芯子腐蚀起着很大的促进作用。水、腐蚀性介质、氧气的共同作用,使其腐蚀速度远高于水、氧含量低时的腐蚀速度。这就是“检修负效应”产生的主要原因。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式

锅炉受热面高温腐蚀原因分析及防范措施

锅炉受热面高温腐蚀原因分析及防范措施 Cause Analysis and Protective Measues to High-temperature Corrosion On Heating Surface of Boiler 张翠青 (内蒙古达拉特发电厂,内蒙古达拉特 014000) [摘要]达拉特发电厂B&WB-1025/18.44-M型锅炉在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,根据腐蚀部位、形态和产物进行分析,锅炉受热面的腐蚀属于高温腐蚀,其原因主要与炉膛结构、煤、灰、烟气特性及运行调整有关,并提出了防范调整措施。 [关键词] 锅炉受热面;高温腐蚀;机理原因分析;防范措施

达拉特发电厂#1~#4炉是北京B&WB公司设计制造的B&WB-1025/18.4-M型亚临界自然循环固态排渣煤粉炉。锅炉采用前后墙对冲燃烧方式。设计煤种为东胜、神木地区长焰煤。在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,两台炉腐蚀的产物、形状及部位相似。腐蚀区域水冷壁在标高16~38米之间及屏式过热器、高温过热器沿管排高度,腐蚀深度在0.4~1.0mm之间,最深处达1.7mm,腐蚀面积达500平方米左右。腐蚀给机组安全运行带来严重隐患。 1.腐蚀机理原因 1.1锅炉炉膛结构 锅炉炉膛结构设计参数见下表: 高40%多,同时上排燃烧器至屏过下边缘高度值比推荐范围的下限还低1.8米,这就导致燃烧器布置过于集中、燃烧器区域局部热负荷偏大、该区域内燃烧温度过高,实测炉膛温度达1370~1430℃。燃烧温度偏高直接导致水冷壁管壁温度过高,理论计算该区域水冷壁表面温度为452℃。大量的试验研究表明当水冷壁管壁温度大于400℃以后,就会产生明显的高温腐蚀。 1.2 煤、灰、烟气因素 蒙达公司实际燃煤是东胜、神木煤田的长焰煤和不粘结煤的混煤。:燃煤中碱性氧化物含量较高,灰中钠、钾盐类含量高,平均值达3.85%,含硫量偏高。 1.3 运行调整不当 为了分析运行调整因素对腐蚀的影响,在A、B侧水冷壁标高20、25、28米处安装了三排烟气取样点,每排三个,共18个。分析烟气成分后发现,燃用含硫量高的煤种时,由于燃烧配风调整不合理,省煤器后氧量偏大(实侧值 气体,加剧了高温腐蚀的产生与发展。 4.35%),导致燃烧过程中生成大量的SO 2 2.腐蚀类型 所取垢样中,硫酸酐及三氧化二铁的含量最高,具有融盐型腐蚀的特征,属于融盐型高温腐蚀。从近表层腐蚀产物的分析结果看,S和Fe元素含量最高,具有硫化物型腐蚀特征,说明存在较严重的硫化物型腐蚀。因此,达拉特发电厂的锅炉高温腐蚀是以融盐型腐蚀为主并有硫化物腐蚀的复合型腐蚀。 3.防止受热面高温腐蚀的措施 2.1.采用低氧燃烧技术组 由于供给锅炉燃烧室空气量的减少,因此燃烧后烟气体积减小,排烟温度下 的百分数和过量空气百分数之间降,锅炉效率提高。燃油和煤中的硫转化为SO 3 的转化明显下降。的关系是,随着过量空气百分数的降低,燃料中的硫转化为SO 3

浅析垃圾焚烧炉过热器腐蚀原因及解决措施(新编版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 浅析垃圾焚烧炉过热器腐蚀原因及解决措施(新编版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

浅析垃圾焚烧炉过热器腐蚀原因及解决措 施(新编版) 摘要:垃圾焚烧发电是实现城市垃圾无害化、减量化和资源化处理的一种有效方法,目前正得到大力的推广。焚烧发电具有工艺简单,运行可靠,垃圾处理速度快,处理量大。但是由于垃圾成份相当复杂,用于焚烧垃圾的焚烧炉存在非常严重的磨损、腐蚀现象,在腐蚀现象中以高温过热器管的腐蚀问题最为严重。本文主要就这个问题展开讨论并提出预防措施。 关键词:垃圾焚烧炉;高温过热器管腐蚀;措施 一、垃圾焚烧发电工艺原理垃圾焚烧发电是将垃圾放在焚烧炉中进行燃烧,释放出热能,余热回收加热给水变成蒸汽,蒸汽在汽轮机中推动汽轮发电机旋转做功,将蒸汽的热能转化为电能,释放热能后的烟气经净化系统处理后排放,从而将垃圾由“废物”变为

可利用的“资源”。随着各种炉型技术的实践应用广泛开展,炉排式垃圾焚烧炉以适应性强,处理比较彻底的优势正成为目前国内垃圾焚烧的主流工艺。随着技术的不断的提高和发展,我国焚烧炉的垃圾处理容量也不断的提高,从初期的150t/d提高到现在的750t/d,规模日趋增大。 二、垃圾焚烧发电的特点一般来说,垃圾经焚烧处理后残余的固体废物约占20%(炉渣约占15%,飞灰约占5%),考虑炉渣的综合利用因素,减量化效果更为显著。这相比于垃圾填埋处理要永久性占用土地来说节约了大量的土地资源。垃圾中的可燃物在焚烧中基本上变为了可利用的热能。根据城市发展程度及地理位置、生活习惯不同,垃圾的热值有所不同,一般用于焚烧的垃圾要求低位热值大于4180KJ/Kg,垃圾发电量一般在250kwh/t以上(随热值的提高而增加)。另外,由于垃圾焚烧后的尾气经过了严格的净化处理,因此对环境的污染被控制到了最低。因此,垃圾焚烧处理的特点是处理量大、减量效果好、无害化彻底,且有热能回收作用,是真正实现垃圾处理的“无害化、资源化、减量化”的技术手段。因此,对

换热器的结垢与清洗

换热器结垢的原因及清洗。 换热器是合理利用与节约能源、开发新能源的关键设备。随着新技术、新工艺、新材料的应用,板式换热器以占地面积小、投资少、换热效率高等特点,逐步取代原的管壳式换热器。但由于板式换热器流通截面积小,结垢后容易产生阻塞,是板式换热器的换热效率降低的主要原因。 1结垢的原因分析 1.1以离子或分子状态溶解于水中的杂质 a.钙盐类:在水中的主要构成有Ca(HCO3)2、CaCl2、CaSO4、CaSiO3等。钙盐是造成换热器结垢的主要成分。 b.镁盐:在水中的主要构成有Mg(HCO3)2、MgCl2、MgSO4等。镁溶解在水中后,在受热分解后生成Mg(OH)2沉淀,构成泥渣或水垢。 c.钠盐:主要构成有NaCl、Na2SO4、NaH-CO3等。NaCl不生成水垢,但水中有游离氧存在,会加速金属壁的腐蚀;Na2SO4的含量过高会结盐,影响安全运行;水中的NaHCO3在温度和压力的作用下会分解出NaCO3、NaOH、CO2,使金属晶粒受损。 1.2以胶体状态存在的杂质 a.铁化合物:主要成分是Fe2O3,它会生成铁垢。 b.微生物:由于循环水的水温、溶解氧等对微生物提供了有利

于繁殖的条件,微生物将大量繁殖。循环水的温度较高时,在水中投加磷酸盐等药剂,正好是微生物的养料,微生物的繁殖不但阻塞板片通道,有时还会堵塞管路,还会使金属腐蚀。 c.污泥:冷却循环水中的污泥,来源于空气中的尘土及补充水中的悬浮物,逐渐沉积在流速较低的换热器中。 d.粘垢:主要是微生物的分泌物与水中泥沙、腐蚀产物、菌藻残骸粘结而成,常常附着在换热器壁面上。 2板式换热器结垢的清洗方式 2.1清洗剂的选择 清洗剂的选择,目前采用的是酸洗,它包括有机酸和无机酸。有机酸主要有:草酸、甲酸等。无机酸主要有:盐酸、硝酸等。 换热器材质为镍钛合金,使用盐酸为清洗液.容易对板片产生强腐蚀,缩短换热器的使用寿命。多采用的是硝酸。硝酸清洗所用的缓蚀剂可为0.2%~0.3%的乌洛托平,加入0.15%~0.2%的苯胺和0.05%~0.1%的硫氟酸铵。经硝酸清洗并冲洗干净后的设备在空气中可自行钝化。 通过反复试验发现,选择甲酸作为清洗液效果最佳。在甲酸清洗液中加入缓冲剂和表面活性剂,清洗效果更好,并可降低清洗液对板片的腐蚀。通过对水垢样本的化学试验研究表明,发现甲酸能有效地清除附在板片上的水垢,同时它对换热器板片的腐蚀作用也很小。 2.2清除水垢的基本原理 2.2.1溶解作用:酸溶液容易与钙、镁、碳酸盐水垢发生

换热器管束腐蚀案例分析及预防

换热器管束腐蚀案例分析及预防 发表时间:2020-01-18T09:19:09.970Z 来源:《基层建设》2019年第28期作者:盛洁 [导读] 摘要:管壳式换热器又称列管式换热器,是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。 国核电力规划设计研究院有限公司北京市 1000095 摘要:管壳式换热器又称列管式换热器,是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。换热器是化工装置中重要的设备之一。换热器工作原理是由管壳程中两种不同介质再在换热管壁两侧进行流动,达到动态平衡来起到冷热介质热量交换的作用。常用的换热管尺寸为Φ19x2和Φ25x2.5。常规化工设备,碳钢设备腐蚀量取2mm到2.5mm,设备壁厚最薄取8mm,所以与其他化工设备相比较换热管的壁厚特别薄,容易进行产生腐蚀穿透的现象。一旦换热管发生腐蚀穿透现象,换热器中压力高侧介质会流入压力低侧介质,破坏压力平衡,物料平衡和温度平衡状态。介质泄露会引发下游物料被掺混、催化剂中毒、计划外停产检修的事故。对于泄露的管束,一般无法进行更换,通常采用的维修方法为通过对壳程打压的方式找出泄露的换热管,将泄露的换热管两端用管堵堵住。堵住以后此换热管封闭,换热器面积会减小。当换热器管热面积小到无法满足换热性能要求,则需要更换换热器。文章以某工厂为例,对其换热器管束腐蚀情况进行了详细的分析,希望能够给相关人士提供重要的参考价值。 关键词:换热器;管束;防腐蚀 引言:合理设置换热器结构,规避不必要的腐蚀,决定着化工生产装置长期稳定的运行及安全的生产。换热器作为化工生产装置中重要部分,对换热器结构设计提出了特殊的要求。设计人员需要储备扎实的基础知识和丰富的工程经验,设计前充分考虑各种影响因素,设计出满足长期运行的换热器设备。 1.换热器目前的运行工况 某工厂甲醇-凝结水换热器1190-E1102A/B管束与管板自2017年4月份以来连续泄漏5次,泄漏频率明显提高,严重制约生产,烯烃中心申请质量技术部委托设计院,对此换热器的材质和工况进行重新核准,核准此管板和管束材质能否长期满足此工况运行,如果材质比较低,请给出升级后的材质建议,便于中心立刻上报采购计划,解决换热器泄漏的难题。管程:介质凝结水,出入口工作温度120/162℃,工作压力0.3MPa。壳程:介质甲醇,出入口工作温度76/100℃,工作压力0.8MPa。 2.换热器目前材质 规格型号BJS1300-2.5-465-6/25-41,管板材质16MnIII,换热管材质10#钢,每台管束共有1024根换热管,4管程,单台换热面积为467.1平方,上下重叠式安装。管程介质凝结水,壳程介质甲醇。 3.腐蚀介质的影响 换热器管程介质为加氢反应流出物,管程操作温度为240~260℃,操作压力为3.5MPa,该环境下加氢反应流出物中的腐蚀介质硫化氢、氨、水、氯化氢、氢均呈气相存在,可能对管束造成硫化氢+氢气腐蚀和氢损伤,而管束材质选用了耐硫化氢+氢气腐蚀和氢损伤的0Crr18ni10Ti奥氏体不锈钢,因此,其腐蚀轻微。腐蚀介质中虽含有氯元素,但其以气相化合物的形式存在,不可能导致管束性氯化物应力腐蚀开裂。因此,管程腐蚀介质不是导致管束开裂的主要影响因素。换热器壳程介质为冷低分油,操作温度为144~219℃,操作压力为0.6MPa,该环境下冷低分油中存在液相水,部分腐蚀介质溶于水中形成电化学腐蚀溶液,对换热管造成腐蚀。该冷凝水ph值为9.12,呈碱性,硫化氢含量较高,氯离子及铁离子含量较低。碳钢和低合金钢对硫化物应力腐蚀开裂比较敏感,而0Crr18ni10Ti奥氏体不锈钢对氯化物应力腐蚀开裂比较敏感,因此,冷低分油中的腐蚀介质氯化物给换热管的应力腐蚀开裂提供了腐蚀环境。 4.换热器目前泄漏维修状况 自2017年4月至今,共计检修5次。累计A台堵管70根,B台堵管120根。其中B台凝结水出口管程已经堵漏1/3,对工艺生产造成重大影响,能耗增加。 案例分析:(1)从腐蚀方面考量:本换热器管壳程介质为凝结水和甲醇,碳钢材质对此介质均有良好内腐蚀性,且从业主拍的换热器截面图片看,管束一侧有较多的管子腐蚀,说明不属于腐蚀导致管子泄露。如果是因为介质腐蚀导致管子泄露,则会均匀的有泄露换热管存在,不会集中在换热器某一区域。(2)从冲刷方面考量:本换热器壳程流量为236842kg/h密度741.06~711.25kg/m3入口管为DN300,出口管线为两个DN250。入口流量ρv2为1193.67kg(m.s2)因为壳程含有0.0015%酸值壳程介质为有腐蚀液体,在流速ρv2>740kg/(m.s2)会产生冲刷腐蚀情况。本设备壳程一个入口两个出口,入口DN300,出口DN250。DN300管口流通截面积为0.07065m2,一个出口流通截面积为0.049m2,两个出口流通截面积合计为0.098m2。在不介质密度影响不大的状态下壳程介质由壳程入口进入换热器,自设备出口流出时,换热器出口截面积大于入口截面积,壳程介质流体流速会更低一些[1]。如果由于两个出口由于配管等因素,压力降不同会导致在此换热器中壳程介质会发生壳程流体流向压力低侧,即绝大部分壳程流体流向一端出口。则可能会在壳程出口处出现流速激增,加重冲刷腐蚀现象。(3)从折流板方面考量:换热器壳体内有折流板以引导壳程流体在壳程中穿行。因为折流板与壳程流体垂直,且同一块折流板有死区,有缺口,所以在壳程流体冲击情况下会产生振动。换热管穿过折流板但并没有焊接,所以折流板如果发生振动,会对换热管产生割锯作用。如果折流板一端振动,振动区域附近换热管均会受此影响。换热器管束腐蚀预防:在重新设计换热器时,要采取相应

过热器高温腐蚀机理分析-赵梦瑾

过热器高温腐蚀机理分析 赵梦瑾 摘要:介绍了锅炉过热器高温硫腐蚀和水蒸汽氧化腐蚀的过程机理,分析导致腐蚀不断进行的主要因素,并提出防治措施,促进锅炉安全经济运行。 1 前言 过热器用于回收烟气中的热量,提高锅炉效率。炉膛出口烟气温度比较高,为1000~1100℃,经过过热器后温度降至700~800℃。过热器在锅炉受压部件中承受的温度最高。高温硫腐蚀和水蒸汽氧化腐蚀是过热器管两种主要腐蚀形式,其中外壁高温硫腐蚀已受到较多关注。近年来由水蒸气氧化腐蚀而引发爆管以及剥落下来的坚硬氧化皮微粒造成的汽轮机固体颗粒侵蚀的事故日益突出,水蒸汽氧化腐蚀问题也越来越引起重视。 2 高温硫腐蚀 2.1 机理 高温积灰所生成的内灰层含有较多的碱金属,这些碱金属与飞灰中的铁铝等成分以及烟气中通过松散外灰层扩散进来的氧化硫进行较长时间的化学作用便生成碱金属的硫酸盐等复合物,复合硫酸盐附着在管壁上,对管子金属进行氧化腐蚀。在腐蚀发生过程中,从机理上讲主要会有如下几种反应发生[1]: (1)在燃烧过程中,FeS2及有机硫化物与氧发生反应; 4FeS2 +11O2→2Fe2O3+8SO2 RS(有机硫化物)+ O2→SO2 2SO2+ O2→2SO3 (2)在高温条件下,煤中钠和钾被氧化成Na2O和K2O; (3)Na2O和K2O与烟气中或沉积在管壁上的SO3发生反应生成碱性硫酸盐; Na2O+ SO3→Na2SO4 K2O+ SO3→K2SO4 (4)碱性硫酸盐、氧化铁与SO3反应形成复合硫酸盐; 3Na2SO4+Fe2O3+ 3SO3→2Na3Fe(SO4)3 3K2SO4+Fe2O3+ 3SO3→2K3Fe(SO4)3 (5)在高温条件下,处于熔融状态的复合硫酸盐与管子金属发生下列反应。 4Na3Fe(SO4)3 +12Fe→3FeS+ 3Fe3O4 +2Fe2O3 +6Na2SO4+ 3SO2 4K3Fe(SO4)3 +12Fe→3FeS+ 3Fe3O4 +2Fe2O3 +6K2SO4+ 3SO2 这些复合硫酸盐在550~750℃范围内以熔化状态贴附在管壁上,并随着烟气的流动而被带走,造成管壁表面粗糙,而后面新生成的硫酸盐就越易在这些粗糙表面优先附着,又会重复上述的腐蚀反应。这是一个恶性循环过程,周而复始,随着腐蚀的进行,管壁就会被逐渐蚕食。当被侵蚀的金

换热器的腐蚀分析标准版本

文件编号:RHD-QB-K2856 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 换热器的腐蚀分析标准 版本

换热器的腐蚀分析标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 (1)管子本身材料缺陷在腐蚀介质和高温条件下,发生全面腐蚀和局部腐蚀;管内异物堆积产生点腐蚀。 (2)管子与管板的接口采用强度焊、强度胀因苛刻工况下产生胀力松弛而形成缝隙或应力,缝隙内介质浓度高于壳程侧介质浓度,产生缝隙腐蚀;已胀段和未胀管间过渡区,管子内外壁存在较大拉应力,易产生应力腐蚀破裂;管子与折流板处产生局部应力集中,加之间隙存在,腐蚀介质浓聚,其结合部位易产生应力腐蚀。

(3)壳体焊缝及热影响区在高温、腐蚀介质环境下,焊接质量不好更易发生腐蚀。 (4)壳体与折流板材质的电解电位不同,折流板材质的电位高于壳体,壳侧介质为电解质,壳体内壁因此受电化学腐蚀。 (5)大多数换热器失效都发生在管子与管板的连接处。连接接头处的失效可能造成产品不合格及减产、环境污染乃至引发火灾或爆炸,造成装置被迫停产。近年来,管壳式换热器在腐蚀性介质作用下产生的低应力破坏,引起了国内外/‘大学者及工程人员的极大关注,它的严重性正是由于破坏发生在远低于材料屈服点应力的状态下,应力腐蚀裂纹就是低应力

破坏的类型之一,这种破坏常常起源于微小的裂纹,然后深深穿透材料,最后导致泄漏或断裂。由于它发生在许用应力范围内,而且在使用过程当中突然、无征兆地发生,因此应力腐蚀破坏被认为是极其严重的一种破坏模式。 这里写地址或者组织名称 Write Your Company Address Or Phone Number Here

换热器的防腐蚀措施

编号:AQ-JS-07325 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 换热器的防腐蚀措施 Anti corrosion measures of heat exchanger

换热器的防腐蚀措施 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 1.采用能耐介质腐蚀的金属和非金属材料 2.采取有效的防腐蚀措施 (1)防腐涂层 在换热器与腐蚀介质接触表面,覆盖一层耐腐蚀的涂料保护层,涂层要有较好的耐蚀性、防渗性和较好的附着力和柔韧性。对水冷系统,管内清洗干净后进行预膜处理。 (2)金属保护层 常用方法有衬里、复合板(管)、金属喷涂、金属堆焊等。 (3)电化学保护 阴极保护因费用太高,一般不用。阳极保护是接以外用电源的阳极保护换热器,金属表面生成钝化膜而得到保护。 (4)防应力腐蚀措施 ①胀接结构,其胀管率越大,残余应力越大,则在腐蚀介质中

其电极电位越高,腐蚀倾向越大。在同一种腐蚀介质中,与焊接结构相比较,胀接结构,特别当胀接时胀管率较大时,更容易产生应力腐蚀,因而在保证胀接强度及密封性的条件下,胀接压力不宜过高以控制胀接后残余应力的大小,减小产生应力腐蚀的可能性。必要时可改变换热管与管板的连接形式,如用强度焊加轻微贴胀的结构代替原先的胀接结构,这种结构既减小了结构的残余应力,又能防止只焊接而产生缝隙腐蚀的可能,通过改变换热管与管板的连接形式来减小结构的残余应力,对预防换热器的应力腐蚀破裂是有效、可行的。 ②胀管深度应达管板底部,以消除全部缝隙。 ③在强应力腐蚀介质下的换热器,应对管板进行消除应力处理。 ④消除氯离子的浓缩条件,如采用内孔焊接,消除管头缝隙。 这里填写您的公司名字 Fill In Your Business Name Here

换热器的腐蚀分析详细版

文件编号:GD/FS-5285 (解决方案范本系列) 换热器的腐蚀分析详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

换热器的腐蚀分析详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 (1)管子本身材料缺陷在腐蚀介质和高温条件下,发生全面腐蚀和局部腐蚀;管内异物堆积产生点腐蚀。 (2)管子与管板的接口采用强度焊、强度胀因苛刻工况下产生胀力松弛而形成缝隙或应力,缝隙内介质浓度高于壳程侧介质浓度,产生缝隙腐蚀;已胀段和未胀管间过渡区,管子内外壁存在较大拉应力,易产生应力腐蚀破裂;管子与折流板处产生局部应力集中,加之间隙存在,腐蚀介质浓聚,其结合部位易产生应力腐蚀。

(3)壳体焊缝及热影响区在高温、腐蚀介质环境下,焊接质量不好更易发生腐蚀。 (4)壳体与折流板材质的电解电位不同,折流板材质的电位高于壳体,壳侧介质为电解质,壳体内壁因此受电化学腐蚀。 (5)大多数换热器失效都发生在管子与管板的连接处。连接接头处的失效可能造成产品不合格及减产、环境污染乃至引发火灾或爆炸,造成装置被迫停产。近年来,管壳式换热器在腐蚀性介质作用下产生的低应力破坏,引起了国内外/‘大学者及工程人员的极大关注,它的严重性正是由于破坏发生在远低于材料屈服点应力的状态下,应力腐蚀裂纹就是低应力破坏的类型之一,这种破坏常常起源于微小的裂纹,

换热器管束腐蚀案例分析及预防

换热器管束腐蚀案例分析及预防 摘要:管壳式换热器又称列管式换热器,是以封闭在壳体中管束的壁面作为传 热面的间壁式换热器。这种换热器结构较简单,操作可靠,可用各种结构材料 (主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。换 热器是化工装置中重要的设备之一。换热器工作原理是由管壳程中两种不同介质 再在换热管壁两侧进行流动,达到动态平衡来起到冷热介质热量交换的作用。常 用的换热管尺寸为Φ19x2和Φ25x2.5。常规化工设备,碳钢设备腐蚀量取2mm 到2.5mm,设备壁厚最薄取8mm,所以与其他化工设备相比较换热管的壁厚特 别薄,容易进行产生腐蚀穿透的现象。一旦换热管发生腐蚀穿透现象,换热器中 压力高侧介质会流入压力低侧介质,破坏压力平衡,物料平衡和温度平衡状态。 介质泄露会引发下游物料被掺混、催化剂中毒、计划外停产检修的事故。对于泄 露的管束,一般无法进行更换,通常采用的维修方法为通过对壳程打压的方式找 出泄露的换热管,将泄露的换热管两端用管堵堵住。堵住以后此换热管封闭,换 热器面积会减小。当换热器管热面积小到无法满足换热性能要求,则需要更换换 热器。文章以某工厂为例,对其换热器管束腐蚀情况进行了详细的分析,希望能 够给相关人士提供重要的参考价值。 关键词:换热器;管束;防腐蚀 引言:合理设置换热器结构,规避不必要的腐蚀,决定着化工生产装置长期 稳定的运行及安全的生产。换热器作为化工生产装置中重要部分,对换热器结构 设计提出了特殊的要求。设计人员需要储备扎实的基础知识和丰富的工程经验, 设计前充分考虑各种影响因素,设计出满足长期运行的换热器设备。 1.换热器目前的运行工况 某工厂甲醇-凝结水换热器1190-E1102A/B管束与管板自2017年4月份以来 连续泄漏5次,泄漏频率明显提高,严重制约生产,烯烃中心申请质量技术部委 托设计院,对此换热器的材质和工况进行重新核准,核准此管板和管束材质能否 长期满足此工况运行,如果材质比较低,请给出升级后的材质建议,便于中心立 刻上报采购计划,解决换热器泄漏的难题。管程:介质凝结水,出入口工作温度120/162℃,工作压力0.3MPa。壳程:介质甲醇,出入口工作温度76/100℃, 工作压力0.8MPa。 2.换热器目前材质 规格型号BJS1300-2.5-465-6/25-41,管板材质16MnIII,换热管材质10#钢, 每台管束共有1024根换热管,4管程,单台换热面积为467.1平方,上下重叠 式安装。管程介质凝结水,壳程介质甲醇。 3.腐蚀介质的影响 换热器管程介质为加氢反应流出物,管程操作温度为240~260℃,操作压力 为 3.5MPa,该环境下加氢反应流出物中的腐蚀介质硫化氢、氨、水、氯化氢、氢均呈气相存在,可能对管束造成硫化氢+氢气腐蚀和氢损伤,而管束材质选用 了耐硫化氢+氢气腐蚀和氢损伤的0Crr18ni10Ti奥氏体不锈钢,因此,其腐蚀轻微。腐蚀介质中虽含有氯元素,但其以气相化合物的形式存在,不可能导致管束 性氯化物应力腐蚀开裂。因此,管程腐蚀介质不是导致管束开裂的主要影响因素。换热器壳程介质为冷低分油,操作温度为144~219℃,操作压力为0.6MPa, 该环境下冷低分油中存在液相水,部分腐蚀介质溶于水中形成电化学腐蚀溶液, 对换热管造成腐蚀。该冷凝水ph值为9.12,呈碱性,硫化氢含量较高,氯离子

相关文档
相关文档 最新文档