文档库 最新最全的文档下载
当前位置:文档库 › (整理)4第四章传感器的使用.

(整理)4第四章传感器的使用.

(整理)4第四章传感器的使用.
(整理)4第四章传感器的使用.

第四章传感器使用基础

1、振动传感器

现场振动测试采用的传感器一般有非接触式电涡流传感器、速度传感器、加速度传感器和复合传感器(它是由一个非接触式传感器和一个惯性传感器组成)四种。每一种传感器都有它们固有频响特性,其决定了各自的工作范围。如果采用的传感器在超出其线性频响区域工作时,测量得到的读数会产生较大的偏差。下表列出了振动测量中常用的一些传感器的性能和适用范围及优、缺点等。

表1—1 常用的振动传感器及其性能和适应范围

1.1、振动传感器的构成及工作原理

振动传感器是将机械振动量转换为成比例的模拟电气量的机电转换装置。

传感器至少有

机械量的接收和

机电量的转换二

个单元构成。机械

接收单元感受机

械振动,但只接收

位移、速度、加速

度中的一个量;机

电转换单元将接收到的机械量转换成模拟电气量,如电荷、电动势、电阻、电感、电容等;另外,还配有检测放大电路或放大器,将模拟电气量转换、放大为后续分析仪器所需要的电压信号,振动监测中的所有振动信息均来自于此电压信号。

1.2、振动传感器的类型

振动传感器的种类很多,且有不同的分类方法。按工作原理的不同,可分为电涡流式、磁电式(电动式)、压电式;按参考坐标的不同,可分为相对式与绝对式(惯性式);按是否与被测物体接触,可分为接触式与非接触式;按测量的振动参数的不同,可分为位移、速度、加速度传感器;以及由电涡流式传感器和惯性式传感器组合而成的复合式传感器,等等。

在现场实际振动检测中,常用的传感器有磁电式速度传感器(其中又以绝对式应用较多)、压电式加速度传感器和电涡流式位移传感器。其中,加速度传感器应用最广,而大型旋转机械转子振动的测量几乎都是涡流式传感器。

2.电动力式振动速度传感器的工作原理

固定在壳体内部的永久磁铁,随着外壳与振动物体一起振动,同时,由于内部由弹簧固

定着的线圈不能与磁铁同步运动,磁铁的磁力线被线圈以一定的速度切割,从而产生了电动势输出。而所输出的电动势的大小则与磁通量的大小和线圈参数(在此处均系常数)以及线圈切割磁力线的速度成正比,所以我们可以得到和磁铁的运动速度成正比的输出电动势,即:传感器的输出电压与被测物体的振动速度成正比。

3. 磁电式速度传感器

磁电式速度传感器的构造如下图所示。

磁电式速度传感器的工作原理是,传感器固定在被测物体上,物体振动时,固定在壳体7上的磁钢5,随壳体与物体一起振动,而由弹簧片2和线圈3组成的弹簧—质量元件,与磁钢的振动并不同步,而是发生相对运动,线圈切割磁钢的磁力线而产生电动势,在磁通量及线圈参数均为常数的情况下,电动势的大小与线圈切割磁力线的相对速度成正比。此相对速度,对相对式,显然是被测物体的相对振动速度;对绝对式来说,当传感器中的弹簧—质量元件的固有频率远小于被测物体的振动频率时,线圈的振动速度会远小于磁钢的振动速度,线圈与磁钢之间的相对速度,接近于被测振动体相对于大地或惯性空间的绝对速度。总之,可以认为,磁电式速度传感器的输出电压与被测物体的振动速度成正比。

速度传感器通过积分电路可测得位移,通过微分电路可测得加速度。

磁电式速度传感器的优点是,灵敏度高,输出信号大,输出阻抗低,电气性能稳定性好,不易受外部噪声干扰,不需外加电源,安装简单,使用方便,对后续电路也无特殊要求;缺点是动态频响范围有限,尺寸和重量较大,弹簧片容易发生疲劳损坏。速度传感器的构造特点决定了弹簧片为关键的矛盾点,弹簧片厚,弹簧—质量元件的固有频率就增高,所能测得的低频范围变窄;弹簧片薄,易损坏,使用寿命短。

4. 压电式加速度传感器

某些晶体,在受到沿一定方向的外力作用时,其内部的晶格会发生变化,产

生极化现象,同时在晶体

的两个表面上产生了极

性相反的电荷;当外力消

除后,又恢复到原来的不

带电状态;当作用力方向

改变时,所产生的电荷的

极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比,此现象称为压电效应。

压电式加速度传感器,就是根据压电晶体受力后会在其两个表面产生不同电荷的压电效应来实现机电转换的。

压电式加速度传感器的构造如下图所示。

其工作原理是,

压电式加速度传感器

的基座4固定或紧密

接触于被测物体,与

物体一起振动,由压

紧弹簧1与惯性质量

块2组成的弹簧—质

量元件,与基座的振

动并不同步、而是发

生相对运动,压电晶

体3受到质量块因相对振动加速度产生的惯性力作用而产生电荷,电荷量的大小与惯性力成正比。当传感器中的弹簧—质量元件的固有频率远大于被测物体的振动频率时,质量块的振动位移会远小于基座的振动位移,质量块与基座之间的相对振动接近于基座、即被测物体的振动。因此,压电式加速度传感器的输出电压与被测物体的振动加速度成正比。

加速度传感器通过积分电路可测得速度,通过二次积分电路可测得位移。

压电式加速度传感器的优点是,体积小,重量轻,频率响应范围宽。适于测量高频、冲击信号,例如齿轮、滚动轴承的振动测量,耐温、耐蚀性较好,不易损坏,在实际测量中应用最广泛。由于压电晶体产生的电荷量很小,加速度传感器需要配置电荷放大器,因此造成内阻抗高、电荷放大器前的连接电缆容易受到外部电磁干扰。现在,许多加速度传感器把放大电路集成到传感器内,抗干扰能力得到大幅度的提高。压电式加速度传感器的频响特性范围,下限由电荷放大器

决定,上限由传感器的固有频率及安装谐振频率决定。即传感器与被测物体的接触及固定状况会大大影响高频测量的范围,其中钢螺栓联接固定方式的高频测量范围最高,可达10000Hz,磁铁固定式为2000Hz,手持式最低,仅数百Hz。5. 电涡流式位移传感器

电涡流式位移传感器由探头和前置放大器(又称测隙仪)二部分组成,探头对着转子被测表面,但并不接触,留有一定的间隙,用支架固定在轴承的瓦座上或机壳上,通过延伸电缆与机壳外的前置

放大器相连。

电涡流式位移传感器的构造如右图

所示。

电涡流式位移传感器的工作原理是,

传感器的头部线圈,与谐振电容、前置器

内的石英振荡器,构成高频(1~2MHz)

电流振荡回路,在头部线圈周围产生高频

交变磁场。当磁场范围内出现金属导体、

如转子时,转子表面会产生感应电流,即电涡流。电涡流产生的感应磁场反作用于线圈的高频磁场,使线圈的阻抗(或者说电感)发生变化,转子与探头之间的间隙δ越小,电涡流就越大,线圈的阻抗就越大、电感量就越小。在振荡器激励电流参数、线圈参数、金属(转子)电导率和磁导率都为常数的情况下,电感量是间隙δ的单值函数。测出电感量的变化,即可知道转子与探头的间隙变化。由延伸电缆输出的电感量变化信号为高频载波信号,经前置放大器内的检波器放大、转换后输出的是直流电压信号。该电压与探头和转子之间的间隙δ成正比,因此称为间隙电压。间隙电压U又可分为直流分量Uo和变化分量Ua两部分。直流分量对应于初始间隙(又称安装间隙)或平均间隙,用于测量轴位移;变化分量对应于振动间隙,用于测量振动。测隙仪输出的间隙电压信号经后续仪表的进一步处理,即可转化成轴振动、轴位移、转速、相位的数值以及状态监测的各种图谱。

电涡流式位移传感器是非接触式传感器,具有灵敏度高、线性范围大、频响范围宽、具有零频响应、探头结构尺寸小、抗干扰能力强、适于远距离传送、易于校准标定等优点。与接触式传感器(速度传感器、加速度传感器都是接触式)相比,电涡流式传感器能够更准确地测量出转子振动状况的各种参数,尤其适用于大型旋转机械轴振动、轴位移、相位、轴心轨迹、轴心位置、差胀、等等的测量,用途十分广泛。

6. 常用振动传感器主要性能及优缺点

现将常用振动传感器主要性能及优缺点列表如下:

电涡流传感器优

缺点比较一览表优点缺点

1、直接测量转子的动态运动,而转子

动态运动是大部分常见机器故障

的振动源,如不平衡、摩擦、轴承

失稳等;

2、测量转子相对于轴承或轴承座在

轴承间隙内的平均位置,平均位置

是作用于转子上的单向预负荷稳1、电气或机械引起的初始偏差;与转子材料

的均匀性有关,对转子表面质量要求高,不能有划痕、锈蚀、凸起的斑点和磁场;

2、对某些转子材料(金属元素)敏感,可能

需要特别标定;

3、需要外部直流电源;

4、对某些机器来说,安装比较困难;

常用振动传感器主要性能及优缺点

类型电涡流式位移传感器磁电式速度传感器压电式加速度传感器项目(本特利3300、3500系列)(绝对式CD-1)(YD42,YE14103)

灵敏度7.87 mV/μm±4%60 mV/(mm/s)20pc/g

频率范围0~10000Hz 10~500Hz 1~10000Hz

线性范围2mm ±1mm 1000g

适用范围轴振动、轴位移、转速、轴承座、机壳、基础等高频、冲击信号的测相位、轴心轨迹等多种测量非转动部件的振动测量量,如齿轮、滚动轴承

①非接触式测量①灵敏度高①灵敏度高

②灵敏度高,线性范围大②输出阻抗小,输出信②体积小、重量轻

③频响范围宽,具零频响号大,电气性能稳定,③频响范围宽,适于优点应,可测静态值不易受外部噪声干扰高频、冲击信号的检测

④高电压、低阻抗输出,③不需外加电源④耐温、耐蚀性较好

适于远距离传送④简单、方便

⑤工作可靠,适应环境

⑥可静态标定,校准方便

应,可测静态值

①对被测部件的缺陷敏感,①频响范围有限①对安装状况敏感

易存在机械及电气偏差②体积、重量较大②内阻抗高,放大器缺点②需要外部电源③弹簧易疲劳损坏前电缆易受电磁干扰

③安装较复杂④易受高温、磁场影响③标定较困难

⑤标定较麻烦

定状态的重要标志,如来自不对

中、流体或空气动力影响等,均可

得到体现;

3、标定简单,只需千分表和数字电压

表即可完成静态标定;

4、某些型号的传感器可用作轴向推

力位置测量、转子偏心(弯曲)测

量、转速测量、相位角测量和差胀

测量;

5、直接以工程单位测量位移,对评价

机器由于大多常见故障引起的总

体响应和振动严重程度非常有意

义;

6、良好的信噪比,高电平低阻抗输

出,监测仪到传感器系统的电缆长

度可达300米;

7、频率响应宽,达到DC到10kHz;

8、无活动部件,高可靠性;

9、模块化涉及,更换方便灵活。5、一般用于临时监测时,无法快速安装,即

使用于定期测量,传感器也需永久性固定

安装;

6、用于测量转子绝对振动时,与之相连结的

速度传感器必须安装在同一位置(方位)。

这种情况多用于低机械阻抗比的机器。

速度传感器优

缺点比较一览表优点缺点

1、安装方便、快捷,可安装在机器外

部,如轴承座部位;

2、在中等频率范围内(15Hz到1kHz)

具有较强输出信号;

3、无需外部电源;

4、与电涡流传感器配合可测量转子

绝对振动;

5、对中等速度范围内运行的机器,其

频率响应足够用于评价其运行状

态;

6、使用磁性座可临时安装;

7、有高温型可用于高温环境下的振

动测量;

8、速度可方便地积分为位移,用以评

价机器总体振动状态;

9、速度有效值(振动烈度)以作为评

价中等转速(功率)机器的国际标

准应用工程单位。 1、能提供转子动态运动的信息有限,在低机

械阻抗的机器上适用是可以的;

2、由于安装在机器外部,测量易受到周边环

境传递到机器壳体上振动的影响,影响因素如管道、基础、相邻的机器等;

3、机械设计(弹性/质量/阻尼)、性能在

正常应用一段时间后会降低;

4、传感器任何结构的故障都需整体更换传

感器;

5、标定困难,需要从机器上卸下,适用振动

台标定;

6、低频段幅值和相位误差大;

7、在高幅值下的交叉轴灵敏度问题;

8、体积较大,重量高。

但有资料认为,在某些场合如确定共振峰值时不应以有效值来计量,应以峰值或峰峰值来计量。笔者认为,在衡量运行条件相对稳定的机器振动时,采用有效值是合适的,在衡量非稳定状态时,使用峰值来确定振动的严重程度可能更合适。

按照惯例,振动位移以峰峰值计量,振动速度以有效值(烈度)计量,振动加速度以单峰值计量。但测量往复压缩机振动时振动速度以峰值计量更合理。

在使用惯性式速度传感器时应注意其规定使用方向,有些型号的传感器对使用方向有严格的要求,主要是内部设计结构不同。

在三种常用振动传感器中,其寿命最短。

加速度传感器优

缺点比较一览表优点缺点

1、安装方便,可安装在机器外部,如

轴承座部位;

2、对高频测量,特别是2kHZ以上的

测量非常有用;

3、无移动部件,良好的可靠性;

4、具有高温型号可选择;

5、当最大频率和温度超过限定值时,

加速度传感器就成为唯一的振动

传感器。

6、相对轻量设计。1、提供转子的动态运动信息非常有限,适用

于低机械阻抗设计的机器;

2、由于安装在机器外部,测量易受到周边环

境传递到机器壳体上振动的影响,影响因

素如管道、基础、相邻的机器等;安装位

置选择必须仔细,以最大程度地降低外部

影响;

3、安装不好时会引入噪声,需要仔细安装,

当手持测量时,响应范围非常有限,一般

仅能达到500Hz;

4、无法修理或部分更换,需整体更换;

5、标定困难,同样需要从机器上卸下,适用

振动台标定;

6、不适用于一些低转速设备,低频下信噪比

极低;

7、双积分成位移时,低频段误差大;

8、一般在监测时需要滤波器,不同的机器需

要的滤波范围也不同;

9、需要外部电源;

10、某些情况下因冲击、跌落在水泥地上易

造成损坏。

附注

普通压电加速度传感器需要信号输入调节,即要求使用电荷放大器,为了避免这类麻烦,一般采用ICP加速度传感器,即集成电路加速度传感器,只要测量仪器解决了传感器的供电问题就可以了。若测量仪器没有设计给ICP传感器供电,可以选择小型单通道恒流源(电池供电)给ICP传感器供电,解决临时监测问题。

振动传感器频率响应范围

传感器的安装,直接影响到信号输出的正确与否,特别是电涡流传感器,由于安装比较困难,在一些结构紧凑的机器上安装更是复杂,需要特别注意。虽然电涡流传感器的安装与从事设备状态监测与故障诊断人员没有直接的关系,但因安装位置、间隙、支撑刚度、牢固程度等等,都会对信号输出造成干扰或虚假信号。了解电涡流传感器安装的基本要求,对设备状态监测与故障诊断是有帮助的。

影响电涡流传感器输出的因素有:

●转子材质。对大多转子材质来说,电涡流输出的灵敏度是相似的,即我们常说的

8mV/μm,但对一些特殊钢材来说,传感器输出的灵敏度会变化;

●转子轴颈的表面状态。表面粗糙度或表面处理工艺不同,输出信号不同。表面镀层

的厚度若很薄,传感器磁场穿透后感受到两层不同的材质,就会影响输出。在传感

器磁场穿透范围内有内部缺陷,也会影响信号输出的正确性;

●线性范围和温度范围。必须保证在规定范围内使用。

由于安装导致信号干扰的因素:

●交叉干扰;

●探头安装不合理;

●探头固定刚度不足;

●前置器输入或输出接头松动。

对3300/3500系列,A不小于25mm;对7200系列,A不小于40mm。小于这个最小尺寸,容易产生交叉偶合干扰。在国产DH型风机上安装传感器时,由于轴径纵向长度太短,同时安装键相传感器时就会发生这种干扰,表现为正常振动信号上叠加了脉冲信号,使得监测仪表读数偏大,经常出现报警黄灯甚至危险红灯。

安装传感器时,探头端部必须伸出来,并保证与轴的正确间隙,以面传感器产生的磁场受到安装孔的影响。否则会导致传感器读数不准。

传感器垂直方向的支撑刚度必须足够高,不能在运行中产生振动。

图中箭头所指的地方必须连接牢固。现在已经有的产品改为锁紧式设计。

还有其它类型的传感器,如复合式绝对位移传感器、胀差传感器、压电速度传感器、应变式加速度传感器等等,都可以根据不同的使用要求进行选择。

压电速度传感器胀差传感器复合式传感器

图4-1、涡流传感器输出及其温度漂移曲线

图4-2、速度传感器频率响应曲线

图4-3、速度传感器频响相位延迟曲线

选择电涡流传感器时要注意其温度漂移指标,特别是应用于高温环境下时,更应注意。国产的电涡流传感器在常温或较低工作温度下的性能是没有问题的,但多数温度漂移指标不合格,这样就会导致输出的信号线性非常差,数据的准确性无法保证。

速度传感器国内生产商不少,目前可以满足基本振动监测要求,可以根据需要进行选择。如果是采用永久性安装,最好选择压电速度传感器,以保证其可靠性和较宽的频率响应。便携仪器配套的速度传感器,一般是临时监测用,采用普通惯性式速度传感器就可满足需要。

传感器的选择主要依据以下三个因素:

1、测试对象的运转情况与什么参数有关,适合什么类型的传感器;

2、机械阻抗(支撑刚度)的影响,振动信号能否较好地传递到机壳上,测量部位的特性(轴承类型等);

3、频率范围要求。较低的频率或总振动水平测量可采用速度传感器,分析高频域振动(叶片、滚动轴承或齿轮故障)、结构频率响应等采用加速度传感器。

对传感器的类型确定后,采用正确的安装方式,就能正确地完成测试任务。

图4-4、速度传感器频响曲线

图4-5、加速度传感器频响曲线

常用机械选择传感器的方法

附加说明:

速度传感器一般采用钢制螺拴或磁铁安装;

加速度传感器安装方式较多,不同的安装方式具有不同的高频响应。采用钢制螺拴安装时,能达到传感器设计高频范围,其它的方式均会影响高频响应,应

当在特殊场合应用时予以注意;

使用加速度传感器测振时,要特别注意连接电缆的噪声问题和接地问题。工作中的拉伸、压缩和动态弯曲均会引入噪声,引起“颤动噪声”干扰;测量系统

必须保证“一点接地”,或使用绝缘层将传感器与被测物体表面隔离;

测量小结构物体时(如小型叶片),应使用质量较小的加速度传感器,必须保证传感器的质量远小于被测物体的质量,否则会引起很大的误差,若确因条件

限制时,必须对测量结果予以修正;

选择加速度传感器时,必须满足加速度使用的上限频率(传感器说明书中有此指标)应大大小于加速度传感器的一阶共振频率(取决于不同的安装方式),

一般其使用上限频率应小于传感器一阶共振频率的2.5~3倍以上,这样才能保证测量精度;

非接触式位移传感器因其放大部分为非线性放大,具有一定的阻抗要求,因此其延伸电缆的长度不能随意改变,替换时应注意选择相同的型号和相同的延伸电缆长度,以保证其灵敏度的相同。

附录:常用振动标准

1、 振动烈度标准(ISO237

2、ISO3945)

Ⅰ级小型机械(15kW 以下电机)、Ⅱ级中型机械(15~75kW 电机和300kW 以下机械)、Ⅲ级大型机械(安装在坚固重型基础上)转速为600~12000rpm ,振动测量范围10~1000Hz 、Ⅳ级大型机械(安装在较软的基础上)。

2、 大型透平压缩机组转子相对振动

rpm

V P P 12000

5.25?

=- )(m μ 进行超速试验时,振动允许值可增加10%作为控制标准。 由于大型旋转机组生产厂家不同,应用的环境和流程不同,转子相对振动值控制标准也有所不同,一般机组说明书中均规定了振动要求数值,可按照该要求进行评定。

本标准以API (美国石油学会)标准为主,主要适用于柔性转子。

3、 轴承座振动标准(VDI2056)

该标准规定的机器类型更详细一些,并按照机器的新旧程度、要求值上下限规定了检查和修理两个门槛值。

传感器原理及应用期末考试试卷(含答案)

传感器原理及应用 一、单项选择题(每题2分.共40分) 1、热电偶的最基本组成部分是()。 A、热电极 B、保护管 C、绝缘管 D、接线盒 2、为了减小热电偶测温时的测量误差,需要进行的温度补偿方法不包括( )。 A、补偿导线法 B、电桥补偿法 C、冷端恒温法 D、差动放大法 3、热电偶测量温度时( )。 A、需加正向电压 B、需加反向电压 C、加正向、反向电压都可以 D、不需加电压 4、在实际的热电偶测温应用中,引用测量仪表而不影响测量结果是利用了热电偶的哪 个基本定律( )。 A、中间导体定律 B、中间温度定律 C、标准电极定律 D、均质导体定律 5、要形成测温热电偶的下列哪个条件可以不要()。 A、必须使用两种不同的金属材料; B、热电偶的两端温度必须不同; C、热电偶的冷端温度一定要是零; D、热电偶的冷端温度没有固定要求。 6、下列关于测温传感器的选择中合适的是()。 A、要想快速测温,应该选用利用PN结形成的集成温度传感器; B、要想快速测温,应该选用热电偶温度传感器; C、要想快速测温,应该选用热电阻式温度传感器; D、没有固定要求。 7、用热电阻测温时,热电阻在电桥中采用三线制接法的目的是( )。 A、接线方便 B、减小引线电阻变化产生的测量误差 C、减小桥路中其他电阻对热电阻的影响 D、减小桥路中电源对热电阻的影响 8、在分析热电偶直接插入热水中测温过程中,我们得出一阶传感器的实例,其中用到了()。 A、动量守恒; B、能量守恒; C、机械能守恒; D、电荷量守恒; 9、下列光电器件中,基于光电导效应工作的是( )。 A、光电管 B、光敏电阻 C、光电倍增管 D、光电池

(完整版)第4章应变式传感器习题及解答

第4章应变式传感器 一、单项选择题 1、为减小或消除非线性误差的方法可采用()。 A. 提高供电电压 B. 提高桥臂比 C. 提高桥臂电阻值 D. 提高电压灵敏度 2、全桥差动电路的电压灵敏度是单臂工作时的()。 A. 不变 B. 2倍 C. 4倍 D. 6倍 3、电阻应变片配用的测量电路中,为了克服分布电容的影响,多采用( )。 A.直流平衡电桥 B.直流不平衡电桥 C.交流平衡电桥 D.交流不平衡电桥 4、通常用应变式传感器测量( )。 A. 温度 B.密度 C.加速度 D.电阻 5、影响金属导电材料应变灵敏系数K的主要因素是()。 A.导电材料电阻率的变化 B.导电材料几何尺寸的变化 C.导电材料物理性质的变化 D.导电材料化学性质的变化 6、产生应变片温度误差的主要原因有()。 A.电阻丝有温度系数 B.试件与电阻丝的线膨胀系数相同 C.电阻丝承受应力方向不同 D.电阻丝与试件材料不同 7、电阻应变片的线路温度补偿方法有()。 A.差动电桥补偿法 B.补偿块粘贴补偿应变片电桥补偿法 C.补偿线圈补偿法 D.恒流源温度补偿电路法 8、当应变片的主轴线方向与试件轴线方向一致,且试件轴线上受一维应力作用时,应变片灵敏系数K的定义是()。 A.应变片电阻变化率与试件主应力之比 B.应变片电阻与试件主应力方向的应变之比 C.应变片电阻变化率与试件主应力方向的应变之比 D.应变片电阻变化率与试件作用力之比 9、制作应变片敏感栅的材料中,用的最多的金属材料是()。 A.铜 B.铂 C.康铜 D.镍铬合金 10、利用相邻双臂桥检测的应变式传感器,为使其灵敏度高、非线性误差小()。 A.两个桥臂都应当用大电阻值工作应变片 B.两个桥臂都应当用两个工作应变片串联 C.两个桥臂应当分别用应变量变化相反的工作应变片

传感器技术与应用考题及部分答案

一、填空题(每空1分,共30分) 1、声波是一定频率范围内可以在弹性介质中传播的波,低于16 Hz的声波称为次声波,高于20k Hz的声波称为超声波。 2、超声波可分为纵波、横波、表面波。 3、超声波中的纵波能在固体、液体、气体中传播;横波只能在固体中传播。 4、在空气中传播的超声波,其频率应选得较低;在固体、液体中传播的超声波,其频率应选得较高。 5、光电元件的工作原理是基于不同形式的光电效应。 6、光敏电阻的相对光敏灵敏度与入射光波长的关系称为光谱特性,亦称为光谱响应。 7、光敏电阻的阻值与入射光量有关,而与电压、电流无关。 8、光敏晶体管的光电特性是指外加偏置电压一定时,光敏晶体管的输出电流与光照度之间的关系。 9、光电检测必须具备光源、被测物、和光敏元件。 10、光电开关可分为直射(透射)型和反射型两种。 11、光纤传感器主要由光导纤维、光源和光探测器组成。 12、光纤是利用光的完全内反射原理传输光波的一种媒质。 13、接触式码盘的码道数n越大,所能分辨的角度α越小,测量精度越高。

14、感应同步器利用定尺和滑尺的两个平面印刷电路绕组的互感随其相对位置变化的原理,将位移转换为电信号。 二、选择题(每小题2分,共30分) 1、直探头可发射和接收 A 波,斜探头可发射和接收 B 波。 A 纵B横C表面 2、超声波测厚常用C 法。 A穿透B反射C脉冲回波 3、光敏二极管在测光电路中应处于 B 偏置状态;而光电池通常处于 A 偏置状态。 A 正向B反向C零 4、温度上升,光敏电阻、光敏二极管、光敏三极管的暗电流 A 。 A上升B下降C不变 5、普通型硅光电池的峰值波长为 B 。 A 0.8mm B 0.8μm C 0.8nm 6、下列传感器中,不能直接用于直线位移测量的传感器是 C 。 A 长光栅 B 感应同步器 C 角编码器 7、增量式位置传感器输出的信号是 C 。 A 电压信号 B 电流信号 C 脉冲信号 8、某直线光栅每毫米刻线数为50线,采用四细分技术,则该光栅的分辨力为 A μm。 A 5 B 20 C 50 9、光栅中采用sin和cos两套光电元件是为了 B 。 A 抗干扰 B 辨向 C 进行三角函数运算 10、增量式编码器通常为 B 码盘。 A 接触式 B 光电式 C 电磁式 11、有一只1024位增量式角编码器,光敏元件在30秒内连续输出了102400个脉冲,则该编码器测得的转速为 A r/min。 A 200 B 1024 C 3000 12、感应同步器的输出电压 C 励磁电压。

《传感器技术与应用》期中考试题(含答案)

一、填空题:(每空2分,共20分) 1、传感器的动态特性越好,则能测的信号频率越宽(宽、窄)。 2、已知一米尺的修正值为-2mm,现用该米尺测得某物体长度为32.5cm,则该物体长度为 32.3 。 3、测50mm的物体,测得结果为50.02mm,则相对误差为 0.04% 。 4、相敏检波电路与差动变压器配合使用是为了辨别方向。 5、电阻式传感器是将被测非电量转换为电阻的变化的装置。 6、在差动变压器的实验中,观察到的现象是在一定范围内呈线性。 7、在某些晶体物质的极化方向上施加电场时,这些晶体物质会产生变形,这种现象称为逆压电效应。 8、电容式传感器存在的边缘效应可以通过初始电容量c0 或 加装等位环来减小。 9、差动变压器是属于信号调制中的调幅类型(调幅、调频、调相)。 二、判断题(正确的打√,错误的打×。每小题1分,共10分) 1、差动结构从根本上解决了非线性误差的问题。( x ) 2、为了使压电陶瓷具有压电效应,必须在一定温度下通过强电场作用对其作极化处理。( Y ) 3、变间隙型的电感式传感器初始间隙越大,灵敏度越低,非线性误差越小,量程越大。( Y ) 4、变面积型的电容式传感器输出与输入之间的关系是线性的。( Y ) 5、压电式传感器只能进行动态测量。( Y ) 6、随机误差可以通过系统校正来减小或消除。( X ) 7、求和取平均是为了减小系统误差。( X )

8、电涡流式传感器不仅可以用于测量金属,还可以测量非金属。( X ) 9、石英晶体沿任意方向施加力的作用都会产生压电效应。( X ) 10、电容传感器采用运算放大器测量电路则从原理上解决了单个变间隙型电容传感器输出特性非线性问题。( Y ) 三、计算题(每小题10分,共50分) 1、将一电阻应变片接入电桥电路中,已知电阻应变片在无应变时的电阻值为80欧,R3=40欧,R4=100欧。运算放大器的电压增益为20。问R2选取多大合适?如果该电阻应变片的灵敏度为4,受力的作用后发生变形其应变为2×10-3,电阻值变化为多少?受到该力的作用后输出电压U为多少? U

传感器技术及应用 试 题(2007)重点

哈工大2007 年秋季学期 传感器技术及应用试题 课程综合考试,合计分数70分 一、判断题(正确打√标记,错误打×标记,每题1分,共5分) 1.()传感器是一种测量器件或装置,它将被测量按一定规律转换成可用输出,一般系统有输入和输出,所以均可看作传感器。 2.()对变间隙的电容式传感器而言,即使采用差动结构也不能完全消除非线性误差。 3.()压电晶体有三个互相垂直的轴,分别为X轴(电轴)、Y轴(力轴)、Z轴(光轴),当沿某一轴的方向施加外作用力时,会在另外两个轴的表面出现电荷。 4.()光电池和光敏二极管都是建立在内光电效应基础上,工作电路也一样。 5.()自感式电感传感器改变空气隙等效截面积类型变换器转换关系为非线形的,改变空气隙长度类型的为线形的。 二、简答题(每题5分共20分) 1.什么是传感器?传感器由哪三个部分组成? 2.简述热电偶热电势产生的原因。

3.简要说明金属应变片与半导体应变片在工作原理上的区别? 4.什么是电容传感器的“驱动电缆技术”,采用它的目的是什么? 三、(8分)影响电容传感器精度的主要因素是边缘效应和寄生电容,试分别详细说明减少这两种影响的措施(建议以图示进行辅助说明)。

H 四、(12分)什么是电感传感器的零点残余电压?残余电压过大带来哪些影响?减小零点残余电压的措施有哪些? 五、(10分)霍尔片采用恒流源供电,为补偿温度误差,采用在输入回路并联电阻,如下图示,若已知霍尔元件灵敏度温度系数为α,霍尔元件输入电阻温度系数为β,温度t 0 时的输入电阻为R i0,霍尔元件灵敏度系数为K H0;温度t 1时的输入电阻为00[1()]it i R R t t β=+-,霍 尔元件灵敏度系数为00[1()]Ht H K K t t α=+-,请推导并联的电阻R P 的大小。

第2章 电阻式传感器习题

一、填空题: 1、电位移传感器是将1、电位器式传感器是一种将转换 成的传感器。 2、金属丝在外力作用下发生机械形变时,其电阻值发生变化,这一效应称为 2、常用弹性敏感元件一般用制成。 3、电阻应变式传感器可直接测量的物理量是,电阻应变片的制作材料分为和两种。它们收到外力电阻发生变化,第一种是由形成的,第二种是由造成的。的灵敏度较大。 4、电阻应变片配有桥式测量转换电路的作用是。 5、应变测量电桥的三种接法是、、。输出电压分别为、、。电桥转换电路,因接法不同,灵敏度也不同,的灵敏度最大,实验证明输出电压与应变或受力成(线性/非线性)关系。 6、要使直流电桥平衡,必须使相对桥臂的电阻值的相等。 7、电阻应变效应做成的传感器可以测量、、。 8、测温热电阻分为和。 9、MQN气敏电阻可测量。TiO2气敏电阻可 测量。 10、带有调零、调满度的热电阻测量转换电路调试过程的步骤是 _____。若发现毫伏表的满度值偏大,应将RP2往_____调。 11、测温热电阻分按结构分为___ 、___ _、__ 热敏电阻按温度系数又可分___ 、_ _。 12、湿敏电阻传感器按结构形式分为___ 、___ 、 _。 13、在下图控制电路中R t应选用________(PTC/NTC)。 二、选择题 1、将应变片贴在上,可以分别做成测量位移、力、加速度传感器。 A试件 B质量块 C应变电阻弹性元件 D机器组件 2、产生应变片误差的主要原因。 A电阻有温度系数 B试件与电阻丝的线膨胀系数相同 C电阻丝承受应变力方向不同 3、应变片的标称电阻3、电阻应变片的标称电阻有几种,应用3、、

A60 A 60 B100 C120 D200 D200 4、通常用应变式传感器测量。 A温度 B密度 C 加速度 D 电阻 5、电桥测量转换电路的作用是将传感器的参量变化为的输出。AA 电阻 B电容 C电压电压 D 电荷 6、电子秤中所使用的应变片应选择应变片;为提高集成度,测量气体压力应选择;一次性、几百个应力试验测点应选择应变片。 A. 金属丝式 B. 金属箔式 C. 电阻应变仪 D. 固态压阻式传感器 7、应变测量中,希望灵敏度高、线性好、有温度自补偿功能,选择 的测量转换电路。 AA 单臂半桥 B 双臂半桥 C全桥四臂全桥 8、测量温度不可用传感器。 A. 热电阻 B. 热电偶 C. 电阻应变片 D.热敏电阻 A 提高测量灵敏度 B 减小非线性误差 C 提高电磁兼容性 D 减小引线电阻影响 9、MQN型气敏电阻使用时一般随氧气浓度增加,电阻。 灵敏度。 A.减小 B. 增大 C. 不变 10、TiO2型气敏电阻使用时一般随气体浓度增加,电阻。 A.减小 B. 增大 C. 不变 11、湿敏电阻使用时一般随周围环境湿度增加,电阻。 A.减小 B. 增大 C. 不变 12、MQN型气敏电阻可测量的浓度,TiO2型气敏电阻的浓度。 A. CO2 B. N2 C. 气体打火机间的有害气体 D 锅炉烟道中剩余的氧气。 13、湿敏电阻利用交流电作为激励源是为了。 A 提高灵敏度 B 防止产生极化、电解作用 C 减小交流电桥平衡难度 14、使用测谎器时,被测人员由于说谎、紧张而手心出汗,可 用传感器来测量 A应变片 B热敏电阻 C 气敏电阻 D湿敏电阻 15、某NTC的特性如图曲线1所示。将它与电视机的显像管的灯丝串

传感器技术与应用试题及答案(二)

传感器技术与应用试题及答案(二) 传感器技术与应用试题及答案(二) 题号一、选择题(本大题共20小题,每小题2分,共40分) 1、以下不属于我国电工仪表中常用的模拟仪表精度等级的是( ) A 0.1 B 0.2 C 5 D 2 2、( )又可分为累进性的、周期性的和按复杂规律变化的几种类型。 A 系统误差 B 变值系统误差 C 恒值系统误差 D 随机误差 3、改变电感传感器的引线电缆后,( ) A不必对整个仪器重新标定 B 必须对整个仪器重新调零 C 必须对整个仪器重新标定 D不必对整个仪器重新调零 4、在电容传感器中,若采用调频法测量转换电路,则电路中( )。 A、电容和电感均为变量 B、电容是变量,电感保持不变 C、电感是变量,电容保持不变 D、电容和电感均保持

不变 5、在两片间隙为1mm的两块平行极板的间隙中插入( ),可测得最大的容量。 A、塑料薄膜 B、干的纸 C、湿的纸 D、玻璃薄片 6、热电阻测量转换电路采用三线制是为了( ) 。 A、提高测量灵敏度 B、减小非线性误差 C、提高电磁兼容性 D、减小引线电阻的影响 7、当石英晶体受压时,电荷产生在( ) 。 A、Z面上 B、X面上 C、Y面上 D、X、Y、Z面上 8、汽车衡所用的测力弹性敏感元件是( )。 A、悬臂梁 B、弹簧管 C、实心轴 D、圆环 9、在热电偶测温回路中经常使用补偿导线的最主要的目的是( )。 A、补偿热电偶冷端热电势的损失 B、起冷端温度补偿作用 C、将热电偶冷端延长到远离高温区的地方 D、提高灵敏度 10、在仿型机床当中利用电感式传感器来检测工件尺寸,该加工检测装置是采了( )测量方法。 A、微差式 B、零位式 C、偏差式 D、零点式 11、测得某检测仪表的输入信号中,有用信号为20毫伏,干扰电压也为20毫伏, 则此时的信噪比为( )。

第二章 电阻式传感器分析

第二章 电阻式传感器 电阻式传感器的基本原理是将被测物理量的变化转换成电阻值的变化,再经相应的测量电路和装置显示或记录被测量值的变化。按其工作原理可分为变阻器式(电位器式)、电阻应变式和固态压阻式传感器三种。 1、教学内容 (1).应变效应 (2).电阻应变片的结构和种类 (3).电阻应变片的主要特性(静态、动态) (4).应变式传感器测量电路的特性分析及其补偿 (5).压阻式传感器工作原理及特点 (6).电阻式传感器应用举例 2、教学要求 (1).理解应变效应、应变式传感器工作原理及特性 (2).掌握测量电路特性分析及补偿方法 (3).掌握电阻式传感器的典型应用 (3).了解电阻式传感器的结构、及压阻式传感器基本知识 3、教学重点及难点: 应变效应、电阻应变片工作原理、测量电路特性分析、典型应用 2.1 变阻器式传感器 1、变阻器式传感器工作原理 变阻器式传感器也称电位器式传感器,其工作原理是将物体的位移转换为电 阻的变化。根据式:x x l R k R R x ??== (2-1) 式中k R ――电位器的电阻灵敏度。 则电刷位移x 的电压输出U 0为:x x l U k U U ??==0 (2-2)式中k U ――电位器的电压灵敏度。 当电阻丝直径与材质一定时,则电阻R 随导线长度l 而变化。常用电位器式传感器有直线位移型、角位移型和非线性型等,如图2-1所示。 图2-1 变阻式传感器 (c )非线性型 (b )角位移型 (a )直线位移型

2、变阻式传感器的优缺点 变阻式传感器的优点是:(1)结构简单、尺寸小、重量轻、价格低廉且性能稳定;(2)受环境因素(如温度、湿度、电磁场干扰等)影响小;(3)可以实现输出—输入间任意函数关系;(4)输出信号大,一般不需放大。它的缺点是:因为存在电刷与线圈或电阻膜之间摩擦,因此需要较大的输入能量;由于磨损不仅影响使用寿命和降低可靠性,而且会降低测量精度,所以分辨力较低;动态响应较差,适合于测量变化较缓慢的量。 3、变阻式传感器的应用 变阻式传感器常用来测量位移、压力、加速度等参量。 图2-2是用变阻式传感器制作的位移传感器的结构图。被测位移使测量轴沿导轨轴向移动时,带动电刷在滑线电阻上产生相同的位移,从而改变电位器的输出电阻。精密电阻与电位器电阻式电桥的两个桥臂,构成电桥测量电路。 2.2 电阻应变式传感器 电阻应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器。传感器由在弹性元件上粘贴电阻应变敏感元件构成。 当被测物理量作用在弹性元件上时,弹性元件的变形引起应变敏感元件的阻值变化,通过转换电路将其转变成电量输出,电量变化的大小反映了被测物理量的大小。 电阻应变式传感器是目前测量力、力矩、压力、加速度、重量等参数应用最广泛的传感器。 2.2.1 金属电阻的应变效应 金属电阻应变片的工作原理,是基于金属导体的应变效应,即金属导体在外力作用下发生机械变形时,其电阻值随着它所受机械变形(伸长或缩短)的变化而发生变化的现象。 如图2-3,若金属丝的长度为L,截面积为S,电阻率为ρ,其未受力时的电阻为R,则: (2-3) 1 4 3 2 5 6 8 7 图2-2 滑线电阻式位移传感器 1-测量轴2-滑线电阻3-触头4-弹簧5-滑块6-导轨7-外壳8-无感电阻

《传感器原理与应用》综合练习答案(期末考试)

《传感器原理与应用》综合练习 一、填空题 1.热电偶中热电势的大小仅与金属的性质、接触点温度有关,而与热电极尺寸、形状及温度分布无关。 2.按热电偶本身结构划分,有普通热电偶、铠装热电偶、微型热电偶。3.热电偶冷端电桥补偿电路中,当冷端温度变化时,由不平衡电桥提供一个电位差随冷端温度变化的附加电势,使热电偶回路的输出不随冷端温度的变化而改变,达到自动补偿的目的。 4.硒光电池的光谱峰值与人类相近,它的入射光波长与人类正常视觉的也相近,因而应用较广。 5.硅光电池的光电特性中,光照度与其短路电流呈线性关系。 6.压电式传感器的工作原理是基于某些介质材料的压电效应。 7.压电陶瓷是人工制造的多晶体,是由无数细微的电畴组成。电畴具有自己极化方向。经过极化过的压电陶瓷才具有压电效应。 8.压电陶瓷的压电常数比石英晶体大得多。但石英晶体具有很多优点,尤其是其它压电材料无法比的。 9.压电式传感器具有体积小、结构简单等优点,但不能测量频率小的被测量。特别不能测量静态量。 10.霍尔效应是导体中的载流子在磁场中受洛伦茨力作用发生位移的结果。 11.霍尔元件是N型半导体制成扁平长方体,扁平边缘的两对侧面各引出一对电极。一对叫激励电极用于引入激励电流;另一对叫霍尔电极,用于引出霍尔电势。 12.减小霍尔元件温度误差的措施有:(1)利用输入回路的串联电阻减小由输入电阻随温度变化;引起的误差。(2)激励电极采用恒流源,减小由于灵敏度随温度变化引起的误差。 13.霍尔式传感器基本上包括两部分:一部分是弹性元件,将感受的非电量转换成磁物理量的变化;另一部分是霍尔元件和测量电路。 14.磁电式传感器是利用霍尔效应原理将磁参量转换成感应电动势信号输出。 15.变磁通磁电式传感器,通常将齿轮的齿(槽)作为磁路的一部分。当齿轮转动时,引起磁路中,线圈感应电动势输出。 16.热敏电阻正是利用半导体的数目随着温度变化而变化的特性制成的热敏感元件。 17.热敏电阻与金属热电阻的差别在于,它是利用半导体的电阻随温度变化阻值变化的特点制成的一种热敏元件。 18.热敏电阻的阻值与温度之间的关系称为热敏电阻的。它是热敏电阻测温的基础。 19.热敏电阻的基本类型有:负温度系数缓变型、正温度系数剧变型、临界温度型。 20.正温度系数剧变型和临界温度型热敏电阻不能用于温度范围的温度控制,而在某一温度范围内的温度控制中却是十分优良的。 21.正温度系数剧变型和临界温度型热敏电阻属于型,适用于温度监测和温度控制。

传感器原理及应用习题9要点

第四章 阻抗型传感器 4.1 电阻式传感器 4.1.1 电位器式传感器 一、组成原理 二、输入—输出特性 1.线性特性——线性电位器 x L R R x ?= x L U R R U U x x ?=?= 式中L ——触点行程 x ——触点位移? ??角位移线位移 2.非线性特性——非线性电位器 )(x f R x = 非线性函数 )(x f R U U x ?= 三、结构形式 2.非接触式――光电电位器 图4-1-2(c ) 五、用途:①测量位移; ②测量可转化为位移的其他非电量 4.1.2 电阻式应变传感器和固态压阻式传感器 一、电阻式应变传感器 (一)电阻应变效应——应变使电阻变化 1.应变:图4-1-3 纵向线应变l dl /=ε 横向线应为με-=r dr / l dr r dr //-=μ泊松比 面应变 με22 /-==r dr A dA 体应变 εμ)21(/-=+=A dA L dl V dV

2.导体电阻及其变化 A L R ?=ρ ρρ εμd A dA L dL R dR + +=-=)21( 金属材料 εμρ ρ)21(-==c v dv c d 半导体材料 επρ ρ E d = π——压阻系数 E ——弹性模量 3.应变效应表达式: ε00 K R R =? ε 0/R R K ?= (应变材料的灵敏系数): 金属材料 μμμ21)21()21(0+≈-++=c K 约1.0~2 半导体材料 E E K ππμ≈++=)21(0 约50~100 (二)电阻应变片 1、组成结构——图4-1-4 3、安装——粘贴在试件表面(应使应变片轴向与所测应变方向一致) 4、应变片灵敏系数――应变片电阻相对变化与粘贴处试件表面应变之比 ε R R K /?= y y x x k k R R εε+=?x x H k εα)1(+=x k ε= x ε——试件表面纵向线应变 y ε——试件表面横向线应变 )0(<-==αμεεαx y x k ——纵向灵敏系数,y k ——横向灵敏系数 x y k k H /=——横向效应系数

传感器技术及应用教学大纲

传感器及应用教学大纲 一、课程说明 课程性质:专业核心课 课程描述: “传感器技术”是电子、机电与自动控制类专业的专业核心课,是必修课。通过本课程的学习,学生能了解传感器的基本概念、传感器的构成、传感器工作的有关定律、传感器的作用、传感器和现代检测技术发展的趋势。其作用是通过本课程的学习,培养学生利用现代电子技术、传感器技术和计算机技术解决生产实际中信息采集与处理问题的能力,为工业测控系统的设计与开发奠定基础。知识目标:掌握主要传感器的原理、特性,各种应用条件下传感器的选用原则和应用电路设计。 技能目标:独立分析、解决传感器方面问题的能力;利用网络、数据手册、厂商名录等获取和查阅传感器技术资料的能力。 素质目标:具有较强的专业素质,不断进行创新。 教学重点与难点: 课程重点:电阻式、电感式传感器的原理与应用,霍尔式传感器,电流、电压传感器。 课程难点:各种传感器的温度误差与补偿,电容式传感器的屏蔽技术,光纤传感器的原理。 适用专业:机电一体化、电气自动化专业 学时数:80学时 二、教学目的与内容 1 传感器技术基础(2学时) 教学目的与要求: 明确“传感器技术”在专业培养计划中的地位,课程的性质、任务和大体内容,传感器在现代生产、生活中的作用。了解检测技术与传感器的定义、组成、作用和分类,了解传感器的静、动态特性,掌握传感器常用的技术指标。 教学重点与难点: 教学重点:传感器的定义、组成和作用 教学难点:传感器的技术指标 教学内容: 1)传感器简介 (1)传感器的定义

(2)传感器的组成与作用 2)传感器的分类 (1)按工作原理分 (2)按被测量分 (3)按输出信号性质分 3)传感器的特性及主要技术指标 (1)静态特性和动态特性 (2)主要技术指标 2 电阻式传感器(6学时) 教学目的与要求: 理解电阻式传感器的组成和基本原理,了解电阻式传感器的常用类型。掌握应变片式传感器的形式、特点、应用方法和转换电路。 教学重点与难点: 教学重点:电阻式传感器的组成和基本原理 教学难点:电阻应变片的工作原理 教学内容: 1)电位器式传感器(2学时) (1)电位器式传感器的基本工作原理 (2)电位器式传感器的输出特性 (3)电位器式传感器的特性 (4)电位器式位移传感器 2)应变式传感器(2学时) (1)电阻应变片的结构和工作原理 (2)电阻应变片的特性 (3)测量电路 (4)温度误差与补偿 3)压阻式传感器(2学时) (1)压阻效应 (2)结构与特性 (3)固态压阻传感器测量电路 (4)温度补偿 3 变磁阻式传感器(4学时) 教学目的与要求: 掌握三种变磁阻式传感器(电感式传感器、差分变压器式传感器、电涡流式传感器)的基本结构和工作原理,了解上述传感器将非电量信号转换成电信号的过程,了解三种变磁阻式传感器的特点、

电阻式传感器习题

A60 A 60 B100 C120 D200 D200 4、通常用应变式传感器测量。 A温度 B密度 C 加速 度 D 电阻 5、电桥测量转换电路的作用是将传感器的参量变化为的输出。AA 电阻B电容C电 压电压 D 电荷 6、电子秤中所使用的应变片应选择应变片;为提高集成度,测量气体压力应选择;一次性、几百个应力试验测点应选择应变片。 A. 金属丝式 B. 金属箔式 C. 电阻应变仪 D. 固态压阻式传感器 7、应变测量中,希望灵敏度高、线性好、有温度自补偿功能,选择 的测量转换电路。 AA 单臂半桥 B 双臂半桥 C全桥四臂全桥 8、测量温度不可用传感器。 A. 热电阻 B. 热电偶 C. 电阻应变片 D.热敏电阻 A 提高测量灵敏度 B 减小非线性误差 C 提高电磁兼容性 D 减小引线电阻影响 9、MQN型气敏电阻使用时一般随氧气浓度增加,电阻。 灵敏度。 A.减小 B. 增大 C. 不变 10、TiO2型气敏电阻使用时一般随气体浓度增加,电阻。 A.减小 B. 增大 C. 不变 11、湿敏电阻使用时一般随周围环境湿度增加,电阻。 A.减小 B. 增大 C. 不变 12、MQN型气敏电阻可测量的浓度,TiO2型气敏电 阻的浓度。 A. CO2 B. N2 C. 气体打火机间的有害气体 D 锅炉烟道中剩余的氧气。 13、湿敏电阻利用交流电作为激励源是为了。 A 提高灵敏度 B 防止产生极化、电解作用 C 减小交流电桥平衡难度 14、使用测谎器时,被测人员由于说谎、紧张而手心出汗,可 用传感器来测量

A应变片 B热敏电阻 C 气敏电阻 D湿敏电阻 15、某NTC的特性如图曲线1所示。将它与电视机的显像管的灯丝串连,求: (1)指出各曲线代表的电阻。 (2)在室温(25℃)时的阻值为_____Ω,在150℃时的阻值为_____Ω。 (3)电视机上电的瞬间,流过显像管灯丝的电流接近于_____。当该PTC的温 度上升到150℃(PTC与一个专用加热电阻封装在一个壳体内),显像管的 灯丝电流显著_____(增大/减小)。采用该电路,可以达到使显像管_____ (快/慢)启动的目的。 三、问答题 1、解释应变效应、压阻效应。 2、电阻应变传感器在单臂电桥测量转换电路在测量时由于温度变化产生误差的过程。电阻应变式传感器进行温度补偿的方法是什么 四、分析与计算题 1、有一等截面圆环受力如图所示,为测压力在环内表面贴有四个同类型的应变片,请在图上随意画出环上四应变片的位置编号,并说明各自产生的应变类型?及对应变片阻值的影响? 2、采用阻值R=120 灵敏度系数K=的电阻金属应变片与阻值R=120 的固定电阻组成电桥,供桥电压为10V。当应变片应变 =1000um/m时,若要使输出电压大于10mV则可采用何种工作方式。(设输出阻抗为无穷大) 3、有一吊车的拉力传感器如图,电阻应变片R1、R2、R3、R4的位置如图所示。 已知R1、R2、R3、R4的标称电阻均为120Ω,桥路电压3V,物重m引起R1、 R2的变化增量为Ω。画出应变电桥电路,计算测得的输出电压,并说出R3、R4的作用。 4、有一个金属热电阻,分度号为Pt100,采用三线制电桥,R2=R3=R4=100Ω,Ui=5V求: (1)该电阻的材料 (2)测温范围 (3) 0℃的电阻值 (4)查分度表-40℃—+40℃的电阻值 (5)计算t=40℃时电桥的开路输出电压。r1、 r4 r i r7 都不计,不考虑RP1RP2的影响 第二章电阻传感器习题答案 一、填空题:

传感器原理及其应用考试重点

传感器原理及其应用 第一章传感器的一般特性 1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 2)传感器又称变换器、探测器或检测器,是获取信息的工具 广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 3)传感器的组成: 敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。 转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。 基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。 4)传感器的静态性能指标 (1)灵敏度 定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比, 传感器输出曲线的斜率就是其灵敏度。 ①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。(2)线性度 定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。 线性度又可分为: ①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。 ②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。 端基直线定义:实际平均输出特性首、末两端点的连线。 ③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。 ④独立线性度:以最佳直线作为参考直线的线性度。 ⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。 (3)迟滞 定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。 即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 (4)重复性 定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输

传感器教案第二章 电阻式传感器

第二章 电阻式传感器 自1856年英国物理学家汤姆逊发现材料的电阻应变效应以来,在第二次世界大战期间制成了世界上第一片电阻应变式传感器,至今,它仍是测力与应变的主要传感器。其测力范 围小到肌肉纤维,约5×10-5N ,大到阿波罗登月火箭,维5×107 N ,精确度可达0.1%,好的可达0.01~0.005%,可有10年以上的校准稳定性。 电阻式传感器的基本原理是将被测量的变化转换为传感元件中电阻值的变化,再经过转换电路变成电信号输出。 它具有结构简单、性能稳定、灵敏度较高等优点,在几何量和机械量的测量领域中应用广泛。 电阻式传感器,根据其传感元件的不同,可分为应变式传感器、压阻式传感器、电位器式传感器等。 第一节 应变式传感器 应变式传感器基本上是利用金属的电阻应变效应将被测量转换为电量输出的。 它有以下优点: (1) 结构简单,使用方便,性能稳定、可靠,由于有保护覆盖层,可工作于各种恶 劣环境; (2) 易于实现测试过程自动化和多点同步测量、远距测量和遥测; (3) 灵敏度高,测量速度快,范围大、体积小、动态响应好,适合静态、动态测量, 如变形可从弹性到塑性,由1~20%变化;分辨率可达1~2微应变(με);误差小于1%; (4) 可以测量多种物理量。 因此,至今,它仍是测力与应变的主要传感器,广泛应用于测量应变力、压力、转矩、位移、加速度等。其缺点是电阻会随温度变化,产生误差。测量容器内部应变时无法粘贴,故难以测量。 一、工作原理 (一)金属的电阻应变效应 当金属丝在外力作用下发生机械变形时,其电阻值将发生变化,这种现象称为金属的电阻应变效应。 由电阻公式 S L R ρ = (2-1) 差分

传感器原理及其应用期末预习复习资料

信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 1.什么是传感器? 广义:传感器是一种能把特定的信息按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准:定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 2.传感器由哪几个部分组成?分别起到什么作用? 传感器一般由敏感元件、转换原件和基本电路组成。敏感元件感受被测量,转换原件将其响应的被测量转换成电参量,基本电路把电参量接入电路转换成电量。传感器的核心部分是转换原件,转换原件决定传感器的工作原理。 3.传感器的总体发展趋势是什么?传感器的应用情况。 传感器正从传统的分立式朝着集成化、数字化、多功能化,微型化、智能化、网络化和光机电一体化的方向发展,具有高精度、高性能、高灵敏度、高可靠性、高稳定性、长寿命、高信噪比、宽量程和无维护等特点。未来还会有更新的材料,如纳米材料,更有利于传感器的小型化。发展趋势主要体现在这几个方面:发展、利用新效应;开发新材料;提高传感器性能和检测范围;微型化与微功耗;集成化与多功能化;传感器的智能化;传感器的数字化和网络化。 4.了解传感器的分类方法。所学的传感器分别属于哪一类? 按传感器检测的范畴分类:物理量传感器、化学量传感器、生物量传感器按传感器的输出信号分类:模拟传感器、数字传感器 按传感器的结构分类:结构型传感器、物性型传感器、复合型传感器 按传感器的功能分类:单功能传感器、多功能传感器、智能传感器 按传感器的转换原理分类:机—电传感器、光—电传感器、热—电电传感器、磁—电传感器 电化学传感器 按传感器的能源分类:有源传感器、无源传感器 国标制定的传感器分类体系表将传感器分为:物理量、化学量、生物类传

传感器技术的应用及其发展

传感器技术的应用及其发展 摘要:传感器是新技术革命和信息社会的重要技术基础,传感器技术是实现测试与自动控制的重要环节,而测试技术与自动控制水平 高低,是衡量一个国家科学技术现代化程度的重要标志。本文列举了传感器技术在当前一些重要领域里的应用,并讲述了其发展趋势。 关键词:传感器技术应用现状发展趋势 一、引言 传感器技术是当今世界令人瞩目,迅速发展的高新技术之一,也是当代科学发展的一个重要标志,与通许技术、计算机技术共同构成21世纪信息产业的三大支柱。如果说计算机是人类大脑的扩展,那么传感器就是人类五官的延伸。因此各发达国家都将传感器技术作为本世纪重点技术加以发展。随着国内工业自动化、信息化和国防现代化的发展,传感器的年需求量持续增长。传感器的应用也越来越广泛、已渗透到各个专业领域。但是目前国内传感器技术的创新和新产品开发能力落后于国内外先进水平,制约了我国工业自动化和信息化技术的发展。 二、传感器介绍 传感器一般由敏感元件、传感元件和其他辅助件组成,有时也将信号调节与转换电路、辅助电源作为传感器的组成部分。传感器通常可以按照一系列方法进行分类。根据输入物理量的分类,传感器常以别测物理量命名,如位移传感器,速度传感器、温度传感器、压力传感器等;根据工作原理分类,传感器常可以依据工作原理进行命名,如应变式、电容式、电感式、热电式、光电传感器等;按输出信号分类,可分为模拟传感器和数字式传感器。输出量为模拟量则称为模拟式,输出量为数字式则称为数字式传感器等等。 三、主要传感器技术分类 传感器技术是当前代表国家综合科研水平的重要技术,传感器技术的具体应用是传感器技术转化的重要途径和方法。加强对传感器技术应用的研究也是了解传感器技术发展现状并对其未来发展进行预测的基础和前提。 3.1 光电传感器技术

13传感器技术与应用答案

传感器技术与应用习题答案 习题1 l.1 检测系统由哪几部分组成? 说明各部分的作用。 答:检测系统是由被测对象、传感器、数据传输环节、数据处理环节和数据显示环节构成。 传感器是把被测量转换成电学量的装置,显然,传感器是检测系统与被测对象直接发生联系的部件,是检测系统最重要的环节,检测系统获取信息的质量往往是由传感器的性能确定的。 数据传输、处理环节,又称之为测量电路,它的作用是将传感器的输出信号转换成易于测量的电压或电流信号。 数据显示记录环节是检测人员和检测系统联系的主要环节,主要作用是使人们了解被测量的大小或变化的过程。常用的有模拟显示、数字显示和图像显示三种。 1.2 传感器的型号有几部分组成?各部分有何意义? 答:传感器是由敏感元件、转换元件和测量电路组成,敏感元件:直接感受被测量的变化,并输出与被测量成确定关系的某一物理量的元件,它是传感器的核心。转换元件:将敏感元件输出的物理量转换成适于传输或测量电信号的元件。测量电路:将转换元件输出的电信号进行进一步转换和处理的部分,如放大、滤波、线性化、补偿等,以获得更好的品质特性,便于后续电路实现显示、记录、处理及控制等功能。 1.3 测量稳压电源输出电压随负载变化的情况时,应当采用何种测量方法? 如何进行? 答:直接测量。使用电压表进行测量,对仪表读数不需要经过任何运算,直接表示测量所需要的结果。 1.4 某线性位移测量仪,当被测位移由4.5mm变到5.0mm时,位移测量仪的输出电压由3.5V 减至 2.5V,试求该仪器的灵敏度。 解: 灵敏度s=(3.5-2.5)v/(5.0-4.5)mm=2v/mm 1.5 有三台测温仪表,量程均为0~800℃,精度等级分别为 2.5级、2.0级和1.5级,现要测量500℃的温度,要求相对误差不超过2.5%,选那台仪表合理? 答:2.5级时的最大绝对误差值为20℃,测量500℃时的相对误差为4%;2.0级时的最大绝对误差值为16℃,测量500℃时的相对误差为3.2%;1.5级时的最大绝对误差值为12℃,测量500℃时的相对误差为2.4%。因此,应该选用1.5级的测温仪器 1.6 什么是系统误差和随机误差?准确度和精密度的含义是什么? 它们各反映何种误差? 答:系统误差(简称系差):在一定的条件下,对同一被测量进行多次重复测量,如果误差按照一定的规律变化,则把这种误差称为系统误差。系统误差决定了测量的准确度。系统误差是有规律性的,因此可以通过实验或引入修正值的方法一次修正给以消除。 随机误差(简称随差,又称偶然误差):由大量偶然因素的影响而引起的测量误差称为随机误差。对同一被测量进行多次重复测量时,随机误差的绝对值和符号将不可预知地随机变

(完整版)电阻式传感器例题与习题

第二章电阻式传感器原理与应用 [基本要求] 1. 掌握金属应变式传感器的构成原理特性; 2. 掌握压阻式传感器工作原理,固态压阻器件设计特点; 3. 了解电阻应变式传感器动的粘贴方法; 4. 通过对电阻应变片测量电路分析,掌握直流惠斯通电桥结构形式及特点。 [例题分析] 例题2-1 如果将100Ω电阻应变片贴在弹性试件上,若试件受力横截面积S = 0.5×10-4 m 2,弹性模量E =2×1011 N/m 2 ,若有F=5×104 N 的拉力引起应变电阻变化为1Ω。试求该应变片的灵敏度系数? 解:由题意得应变片电阻相对变化量100 1 = ?R R 根据材料力学理论可知:应变E σε= (σ为试件所受应力,S F = σ),故应变 005.0102105.010511 44 =????=?=-E S F ε 应变片灵敏度系数 2005 .0100 /1/== ?= ε R R K 例题2-2 一台用等强度梁作为弹性元件的电子秤,在梁的上、下面各贴两片相同的电阻应变片(K=2)如图2-1(a)所示。已知l =100mm 、b=11mm 、t=3mm ,E=2×104N/mm 2。现将四个应变片接入图(b )直流电桥中,电桥电压U=6V 。当力F=0.5kg 时,求电桥输出电压U 0=? 解: 由图(a )所示四片相同电阻应变片贴于等强度梁上、下各两片。当重力F 作用梁端部后,梁上表面R 1和R 3产生正应变电阻变化而下表面R 2和R 4则产生负应变

电阻变化,其应变绝对值相等,即 E bt Fl 2 42316= =-=-==εεεεε 电阻相对变化量为 ε?=?=?-=?-=?=?K R R R R R R R R R R 44223311 现将四个应变电阻按图(b )所示接入桥路组成等臂全桥电路,其输出桥路电压为 mV V E bt Fl K U K U R R U 8.170178.010 23111008.95.06264 220==????????=??=?=??= εε 例题2-3采用四片相同的金属丝应变片(K =2),将其贴在实心圆柱形测力弹性元件上。如图2-2(a) 所示,力F =1000kg 。圆柱断面半径r =1cm ,弹性模量E =2×107N/cm 2,泊松比μ=0.3。求(1)画出应变片在圆柱上粘贴位置及相应测量桥路原理图;(2)各应变片的应变ε=?电阻相对变化量△R /R =?(3)若电桥电压U = 6V ,求电桥输出电压U 0 =?(4)此种测量方式能否补偿环境温度对测量的影响?说明原因。 解: ⑴按题意采用四个相同应变片测力单性元件,贴的位置如图2-2(a )所示。R 1、R 3沿轴向在力F 作用下产生正应变ε1> 0,ε3> 0;R 2、R 4沿圆周方向贴则产生负应变ε2< 0,ε4< 0。 四个应变电阻接入桥路位置如图2-2(b )所示。从而组成全桥测量电路可以提高输出电压灵敏度。 ⑵μεπεε1561056.110 218 .9100047231=?=????== =-SE F μεμεε471047.01056.13.04442-=?-=??-=-==--SE F

相关文档
相关文档 最新文档