文档库 最新最全的文档下载
当前位置:文档库 › 高中数学求函数解析式的各种方法

高中数学求函数解析式的各种方法

高中数学求函数解析式的各种方法
高中数学求函数解析式的各种方法

函数解析式

1、已知2(21)42f x x x +=-,求()f x 表达式。

2、已知1()2()23f x f x x

+=+,求()f x 表达式。

3、已知2(1)21f x x +=+,求(1)f x -,()f x 。

4、已知23()2()23f x f x x --=-,不求()f x 的解析式,直接求(0)f ,(2)f 。

5、已知2

211()11x x f x x

--=++,求()f x 解析式。 6、设()f x 是R 上的函数,且满足(0)1f =,并且对任意的实数x,y 都有()()(21)f x y f x y x y -=--+,求()f x 。

7、若函数2

2()1x f x x

=+,求111(1)(2)()(3)()(4)()234f f f f f f f ++++++。 8、已知函数()x f x ax b

=+,(2)1f =且方程()0f x x -=有唯一解,求()f x 表达式。 9、设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 。

10、已知221)1(x

x x x f +=+

)0(>x ,求 ()f x 的解析式。 11、已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式。 12、已知函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。

13、设,)1(2)()(x x f x f x f =-满足求)(x f 。

14、设)(x f 为偶函数,)(x g 为奇函数,又,1

1)()(-=+x x g x f 试求)()(x g x f 和的解析式。 15、设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f 。

16、已知f (x +1)=x +2x ,求()f x 的解析式。

17、已知f (x +

x 1)=x 3+31x ,求()f x 的解析式。 18、已知函数()f x 是一次函数,且满足关系式3(1)2(1)217f x f x x +--=+,求()f x 的解析式。

19、已知2(1)lg f x x +=,求()f x 。

20、已知()f x 满足1

2()()3f x f x x +=,求()f x 。

高中数学函数解析式求法

函数解析式的表示形式及五种确定方式 函数的解析式是函数的最常用的一种表示方法,本文重点研究函数的解析式的表达形式与解析式的求法。 一、解析式的表达形式 解析式的表达形式有一般式、分段式、复合式等。 1、一般式是大部分函数的表达形式,例 一次函数:b kx y += )0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、分段式 若函数在定义域的不同子集上对应法则不同,可用n 个式子来表示函数,这种形式的函数叫做分段函数。 例1、设函数(]() ???+∞∈∞-∈=-,1,log 1,,2)(81x x x x f x ,则满足41)(=x f 的x 的值为 。 解:当(]1,∞-∈x 时,由4 12= -x 得,2=x ,与1≤x 矛盾; 当()+∞∈,1x 时,由4 1log 81=x 得,3=x 。 ∴ 3=x 3、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例2、已知3)(,12)(2 +=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。 解:[]721)3(21)(2)(2 2+=++=+=x x x g x g f [][]4443)12(3)()(222 ++=++=+=x x x x f x f g 二、解析式的求法 根据已知条件求函数的解析式,常用待定系数法、换元法、配凑法、赋值(式)法、方程法等。 1待定系数法 若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数。

人教版高中数学必修一-第三章-函数的应用知识点总结

高中数学必修一第三章函数的应用知识点总结(详细) 第三章函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数y=f(x),使f(x)=0 的实数x叫做函数的零点。(实质上是函数y=f(x)与x轴交点的横坐标) 2、函数零点的意义:方程f(x)=0 有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点 3、零点定理:函数y=f(x)在区间[a,b]上的图象是连续不断的,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)至少有一个零点c,使得f( c)=0,此时c也是方程f(x)=0 的根。 4、函数零点的求法:求函数y=f(x)的零点: (1)(代数法)求方程f(x)=0 的实数根; (2)(几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点. 5、二次函数的零点:二次函数f(x)=ax2+bx+c(a≠0). 1)△>0,方程f(x)=0有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点. 2)△=0,方程f(x)=0有两相等实根(二重根),二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点. 3)△<0,方程f(x)=0无实根,二次函数的图象与x轴无交点,二次函数无零点. 二、二分法 1、概念:对于在区间[a,b]上连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。 2、用二分法求方程近似解的步骤: ⑴确定区间[a,b],验证f(a)f(b)<0,给定精确度ε; ⑵求区间(a,b)的中点c;

高中数学函数最值问题的常见求解方法

一、配方法 例1:当01≤≤-x 时,求函数x x y 4322 ?-=+的最大值和最小值. 解析:34)3 22(32 + --=x y ,当01≤≤-x 时,122 1≤≤x .显然由二次函数的性质可得1min =y ,3 4max = y . 二、判别式法 对于所求的最值问题,如果能将已知函数式经适当的代数变形转化为一元二次方程有无实根的问题,则常可利用判别式求得函数的最值. 例2:已知012442 2 =-++-x x xy y ,求y 的最值. 解析:由已知,变形得0)1()12(242 2 =-+--y x y x ,R x ∈,则0≥?,即有 0)1(16)12(422≥---y y 故 4 5≤ y . 因此 4 5 max = y ,无最小值. 例3:若x 、R y ∈且满足:022 2 =-+++y x xy y x ,则m ax x = min y = 解析:由已知,变形得:0)()12(2 2 =++-+x x y x y ,R y ∈,则0≥?,即有 0)(4)12(22≥+--x x x ,于是018≥+-x ,即 81≤ x .即 8 1max =x . 同理,0)()12(2 2 =-+++y y x y x ,R x ∈,则0≥?,即有 0)(4)12(22≥--+y y y ,于是018≥+y ,即 81-≥y .即 8 1 min -=y . 注意:关于x 、y 的有交叉项的二元二次方程,通常用此法 例4:已知函数1 1 3452 2+++=x x x y ,求y 的最值. 解析:函数式变形为:0)1(34)5(2 =-+--y y x y ,R x ∈,由已知得05≠-y , 0)1)(5(4)34(2≥----=?∴y y ,即:0762≤--y y ,即:71≤≤-y . 因此 7max =y ,1min -=y . 例5:已知函数)(1 2R x x b ax y ∈++=的值域为]4,1[-,求常数b a , 解析: 01 2 22 =-+-?+=+?++= b y ax yx b ax y yx x b ax y

高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可. 例1 已知f (x x 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2 x ,求f (x )的解析式. 解: f (x +1)= 2)(x +2 x +1-1=2)1(+x -1, ∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x , 则有 f (x )= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ???==. 7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.

高中数学函数知识点总结

高中数学函数知识点总结 (1)高中函数公式的变量:因变量,自变量。 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 (2)一次函数:①若两个变量 ,间的关系式可以表示成(为常数,不等于0)的形式,则称是的一次函数。②当 =0时,称是的正比例函数。(3)高中函数的一次函数的图象及性质 ①把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。 ②正比例函数 =的图象是经过原点的一条直线。 ③在一次函数中,当 0, O,则经2、3、4象限;当 0, 0时,则经1、 2、4象限;当 0, 0时,则经1、 3、4象限;当 0, 0时,则经1、2、3象限。 ④当 0时,的值随值的增大而增大,当 0时,的值随值的增大而减少。(4)高中函数的二次函数: ①一般式: ( ),对称轴是 顶点是; ②顶点式: ( ),对称轴是顶点是; ③交点式: ( ),其中(),()是抛物线与x轴的交点 (5)高中函数的二次函数的性质 ①函数的图象关于直线对称。 ②时,在对称轴()左侧,值随值的增大而减少;在对称轴()右侧;的值随值的增大而增大。当时,取得最小值

③时,在对称轴()左侧,值随值的增大而增大;在对称轴()右侧;的值随值的增大而减少。当时,取得最大值 9 高中函数的图形的对称 (1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。 (2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

高中数学函数的解析式

课题:___函数的解析式___ 教学任务 教 学 目 标 知识与技能目标会求简单函数的解析式 过程与方法目标 学生通过“回顾-反思-巩固-小结”的过程中 总结简单函数的解析式三种类型及解法。理解掌握 换元法、待定系数法,体会建立数学模型。培养学 生分类讨论的数学思想。 情感,态度与价值 观目标 使学生认识到数学与生活紧密相连,数学活动充满着探索与创 造,让他们在学习活动中培养独立的分析和建模的能力。 重点理解掌握应用换元法、待定系数法求简单函数的解析式 难点能初步掌握用数学模型解决实际问题,并能注意实际问题中的定义域 教学过程设计 问题与情境 设计 意图 活动1课前热身(资源如下) 1、设 ? ? ? ? ? < = > + = )0 (0 )0 ( )0 (1 ) ( x x x x x fπ,则f{f[f(-1)]}=_______ ___ 2、若一次函数f(x),使f[f(x)]=9x+1,则() f x= 3、已知:) (x f=x2-x+3 ,则 f(x+1) = , f( x 1 )= 4、若 x x x f - = 1 ) 1 (求f(x) = 5、客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙 地停留了半小时,然后以80km/h的速度匀速行驶1小时到达丙 地,下列描述客车从甲地出发.经过乙地,最后到达丙地所经过 的路程s与时间t之间关系的图象中,正确的是(). A. B. C. D. . 从正 反两 种情 况出 发,让 学生 回忆 体会 函数 解析 式用 法和 求法。 活动2类型解法 函数的解析式的几种类型及解法: 1、已知所要求的函数类型(一次、二次、反比例、指对数等), 利用待定系数法来求; 2、已知复合函数一般用变量代换(换元)法; 3、涉及实际问题求解析式,需建立数学模型即:把实际问题转 化为数学问题。 培 养学 生用 自己 的语 言来 总结 类型 与解 法 活动3提高探究 资源1、求满足下列条件的函数() f x的解析式: ①已知一次函数() f x,满足3(1)2(1)217 f x f x x +--=+. ②若二次函数满足(0)0 f=,且(1)()1 f x f x x +=++ ③设二次函数f(x)满足f(x-2)=f(-x-2),且图象在y轴上的截距为1,在x轴上截得 的线段长为2 2. 掌 握利 用待 定系 数法 求解 析式。

人教版高中数学公式整理

人教版高中数学公式整理 1. ,. 2.. 3. 4.集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有 个. 5.二次函数的解析式的三种形式 (1)一般式; (2)顶点式;当已知抛物线的顶点坐标时,设为此式 (3)零点式;当已知抛物线与轴的交点坐标为时,设为此式 4切线式:。当已知抛物线与直线相切且切点的横坐标为时,设为此式 6.解连不等式常有以下转化形式 . 7.方程在内有且只有一个实根,等价于或。 8.闭区间上的二次函数的最值

二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下: (1)当a>0时,若,则; ,,. (2)当a<0时,若,则, 若,则,. 9.一元二次方程=0的实根分布 1方程在区间内有根的充要条件为或; 2方程在区间内有根的充要条件为 或或; 3方程在区间内有根的充要条件为或 . 10.定区间上含参数的不等式恒成立(或有解)的条件依据

(1)在给定区间的子区间形如 ,,不同上含参数的不等式(为参 数)恒成立的充要条件是 。 (2)在给定区间 的子区间上含参数的不等式(为参数) 恒成立的充要条件是 。 (3) 在给定区间 的子区间上含参数的不等式(为参数) 的有解充要条件是 。 (4) 在给定区间 的子区间上含参数的不等式(为参数) 有解的充要条件是 。 对于参数及函数.若恒成立,则;若恒成立,则;若有解,则 ;若 有解,则 ;若 有解,则 . 若函数无最大值或最小值的情况,可以仿此推出相应结论 11.真值表 12.常见结论的否定形式

, 或且 ,成立 且或 13.四种命题的相互关系(右图): 14.充要条件记表示条件,表示结论 1充分条件:若,则是充分条件. 2必要条件:若,则是必要条件. 3充要条件:若,且,则是充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 15.函数的单调性的等价关系 (1)设那么 上是增函数; 上是减函数. (2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.

高中数学函数常用函数图形及其基本性质

高中数学函数常用函数图形及其基本性质 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

常见函数性质汇总 常数函数f (x )=b (b ∈R) 图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴) 的直线 一次函数f (x )=kx +b (k ≠0,b ∈R)|k|越大,图象越陡;|k|越小,图象越平缓; 图象及其性质:直线型图象。b=0;k>0;k<0 定义域:R 值域:R 单调性:当k>0时,当k<0时 奇偶性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反函数:有反函数。K=±1、b=0的时候 周期性:无 补充:一次函数与其它函数之间的lianxi 1、与一元一次函数之间的联系 2、与曲线函数的联合运用 反比例函数f (x )= x k (k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第 一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定义域:),0()0,(+∞-∞ 值域:),0()0,(+∞-∞ 单调性:当k>0时;当k<0时 奇偶性:奇函数反函数:原函数本身周期性:无 x y b O f (x )=b x y O f (x )=kx +b x y O f (x )=x k

补充:1、反比例函数的性质 2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个— —⑴直接带入,李永二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此) 3、反函数变形(如右图)f (x )= d cx b ax ++(c ≠0且d ≠0) (对比标准反比例函数,总结各项内容) 二次函数 一般式:)0()(2≠++=a c bx ax x f 顶点式:)0()()(2≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f 图象及其性质:①图形为抛物线,对称轴为,顶点坐标为 ②当0>a 时,开口向上,有最低点当00时,函数图象与x 轴有两个交点();当<0时,函数图象与x 轴有一个交点();当=0时,函数图象与x 轴没有交点。 ④)0()(2≠++=a c bx ax x f 关系)0()(2≠=a ax x f 定义域:R 值域:当0>a 时,值域为();当0a 时;当0

{高中试卷}高一数学基本初等函数部分练习题[仅供参考]

20XX年高中测试 高 中 试 题 试 卷 科目: 年级: 考点: 监考老师: 日期:

高一数学基本初等函数部分练习题(2) 一、选择题:(只有一个答案正确,每小题5分共40分) 1、若0a >,且,m n 为整数,则下列各式中正确的是 ( D ) A 、m m n n a a a ÷= B 、n m n m a a a a =? C 、()n m m n a a += D 、01n n a a -÷= 2、已知(10)x f x =,则()100f = ( D ) A 、100 B 、10010 C 、lg10 D 、2 3、对于0,1a a >≠,下列说法中,正确的是 ( D ) ①若M N =则log log a a M N =;②若log log a a M N =则M N =;③若22log log a a M N =则M N =;④若M N =则22log log a a M N =。 A 、①②③④ B 、①③ C 、②④ D 、② 4、函数22log (1)y x x =+≥的值域为 ( C ) A 、()2,+∞ B 、(),2-∞ C 、[)2,+∞ D 、[)3,+∞ 5、设 1.50.90.4812314,8,2y y y -??=== ???,则 (C ) A 、312y y y >> B 、213y y y >> C 、132y y y >> D 、123y y y >> 6、在(2)log (5)a b a -=-中,实数a 的取值范围是 ( B ) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a << 7、计算()()5lg 2lg 25lg 2lg 2 2?++等于 ( B ) A 、0 B 、1 C 、2 D 、3 8、已知3log 2a =,那么33log 82log 6-用a 表示是(B ) A 、52a - B 、2a - C 、23(1)a a -+ D 、 2 31a a -- 二、填空题:(每小题4分,共20分) 9、某企业生产总值的月平均增长率为p ,则年平均增长率为()1112-+p . 10、[]643log log (log 81)的值为 0 .

高中数学求函数解析式的各种方法

函数解析式 1、已知2(21)42f x x x +=-,求()f x 表达式。 2、已知1()2()23f x f x x +=+,求()f x 表达式。 3、已知2(1)21f x x +=+,求(1)f x -,()f x 。 4、已知23()2()23f x f x x --=-,不求()f x 的解析式,直接求(0)f ,(2)f 。 5、已知2 211()11x x f x x --=++,求()f x 解析式。 6、设()f x 是R 上的函数,且满足(0)1f =,并且对任意的实数x,y 都有()()(21)f x y f x y x y -=--+,求()f x 。 7、若函数2 2()1x f x x =+,求111(1)(2)()(3)()(4)()234f f f f f f f ++++++。 8、已知函数()x f x ax b =+,(2)1f =且方程()0f x x -=有唯一解,求()f x 表达式。 9、设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 。 10、已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式。 11、已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式。 12、已知函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。 13、设,)1(2)()(x x f x f x f =-满足求)(x f 。 14、设)(x f 为偶函数,)(x g 为奇函数,又,1 1)()(-=+x x g x f 试求)()(x g x f 和的解析式。 15、设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f 。 16、已知f (x +1)=x +2x ,求()f x 的解析式。 17、已知f (x + x 1)=x 3+31x ,求()f x 的解析式。 18、已知函数()f x 是一次函数,且满足关系式3(1)2(1)217f x f x x +--=+,求()f x 的解析式。 19、已知2(1)lg f x x +=,求()f x 。 20、已知()f x 满足1 2()()3f x f x x +=,求()f x 。

人教版高一数学函数及其性质知识点归纳与习题

O O O O (1) (2) (3) (4) 时间 时间 时间 时间 离开家的距离 离开家的距离 离开家的距离 离开家的距离 人教版高一数学函数及其性质知识点归纳与习题 第一部分 函数及其表示 知识点一:函数的基本概念 1、函数的概念: 一般地,设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A→B 为从集合A 到集合B 的一个函数。记作: A x x f y ∈=,)(。 x 叫自变量,x 的取值范围A 叫做函数的定义域,y 叫函数值,y 的取值范围叫函数的值域。 说明:①函数首先是两个非空数集之间建立的对应关系 ②对于x 的每一个值,按照某种确定的对应关系f ,都有唯一的y 值与它对应,这种对应应为数与数之间的“一对一”或“多对一”。 ③认真理解)(x f y =的含义:)(x f y =是一个整体,)(x f 并不表示f 与x 的乘积,它是一种符号,可以是解析式,也可以是图象,还可以是表格; 2、函数的三要素:定义域,值域和对应法则 3、区间的概念:三种区间:闭区间、开区间、半开半闭区间 4、两个函数相等:同时满足(1)定义域相同;(2)对应法则相同的两个函数才相等 5、分段函数: 说明:①在求分段函数的函数值时,首先要确定自变量在定义域中所在的范围,然后按相应的对应关系求值。 ②分段函数是一种重要的函数,它不是几个函数,而是同一个函数在不同范围内的表示方法不同。 6、函数图像 练习 1.下列图象中表示函数图象的是 ( ) (A ) (B) (C ) (D) 2.下列各组函数中,表示同一函数的是( ) A .x x y y ==,1 B .1,112 -=+?-=x y x x y C .3 3 ,x y x y = = D . 2 )(|,|x y x y == 3.下列所给4个图象中,与所给3件事吻合最好的顺序为 ( ) (1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。 A 、(1)(2)(4) B 、(4)(2)(3) C 、(4)(1)(3) D 、(4)(1)(2) 4.下列对应关系:( ) ①{1,4,9},{3,2,1,1,2,3},A B ==---f :x x →的平方根 ②,,A R B R ==f :x x →的倒数 ③,,A R B R ==f :2 2x x →- ④{}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方 其中是A 到B 的映射的是 A .①③ B .②④ C .③④ D .②③ 5.在国内投寄平信,每封信不超过20克重付邮资80分,超过20克重而不超过40克重付邮资160分,将每封信的应付邮资(分)表示为信重()040x x <≤克的函数,其表达式为()f x =____ ____ 6.设函数? ??<+≥-=10110 2)(2x x x x x f ,则)9(f = ,)15(f = 7.设函数?? ?<-≥-=5 35 2)(2 x x x x x f ,若)(x f =13,则x= 。 8.函数()1,3,x f x x +?=?-+? 1, 1,x x ≤>则()()4f f = . 9.下列各组函数是同一函数的有 ①3()2f x x =-与()2g x x x =-;②()f x x =与2()g x x =; ③0 ()f x x =与0 1()g x x = ;④2()21f x x x =--与2 ()21g t t t =--。 10.作出函数(]6,3,762 ∈+-=x x x y 的图象 x y 0 x y 0 x y 0 x y 0

高中数学常见函数图像

高中数学常见函数图像 1.指数函数: 定义 函数 (0x y a a =>且1)a ≠叫做指数函数 图象 1a > 01a << 定义域 R 值域 (0,)+∞ 过定点 图象过定点(0,1),即当0x =时,1y =. 奇偶性 非奇非偶 单调性 在R 上是增函数 在R 上是减函数 2.对数函数: 定义 函数 log (0a y x a =>且1)a ≠叫做对数函数 图象 1a > 01a << 定义域 (0,)+∞ 值域 R 过定点 图象过定点(1,0),即当1x =时,0y =. 奇偶性 非奇非偶 单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数 x a y =x y (0,1) O 1 y =x a y =x y (0,1) O 1 y =x y O (1,0) 1 x =log a y x =x y O (1,0) 1 x =log a y x =

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

4. 函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ? ?++??? ? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

人教版高中数学必修一函数解析式的求法大盘点

函数解析式的求法大盘点 函数解析式的求解方法较多,在此,我归纳了几类供大家学习,希望对大家有所帮助。 一. 方程组法 型型和此法主要适用(x) )()()()()(c tx bf x af x c x t bf x af =+=+。 。即函数的解析式为得:替换为解析:把。 联立方程组,即可解出替换为分析:把的解析式。 ,求满足函数例3)(3)(-)(2)-()(2)(,)(,)()(2)()(.1x x f x x f x x f x f x x f x f x x x f x x x f x x f x f x f ==????=-=----=-- 。即函数的解析式为得:替换为解析:把。联立方程组,即可解出替换为分析:把的解析式。,求满足函数例)2(31)()2(31)(1 )(2)1()1(2)(,1)(,1)()1(2)()(.2x x x f x x x f x x f x f x x f x f x x x f x x x f x x f x f x f +--=+--=???? ????-=--=----=-- 点评:方程组法求函数解析式关键是根据所给表达式列出方程组。 )()()()()()()()()()(x f x t c x bf x t af x c x t bf x af x t x x c x t bf x af 即可解出,即替换为型需把???????=+=+=+, ).()()()()()()((x) )()(x f tx c x bf tx af x c tx bf x af tx x c tx bf x af 即可解出,即替换为型需把???=+=+=+

高中数学阶段常见函数性质汇总

高中阶段常见函数性质汇总 函 数 名 称:常数函数 解析式 形 式:f (x )=b (b ∈R) 图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线 定 义 域:R 值 域:{b} 单 调 性:没有单调性 奇 偶 性:均为偶函数[当b =0时,函数既是奇函数又是偶函数] 反 函 数:无反函数 周 期 性:无周期性 函 数 名 称:一次函数 解析式 形 式:f (x )=kx +b (k ≠0,b ∈R) 图象及其性质:直线型图象。|k|越大,图象越陡;|k|越小,图象越平缓; 当b =0时,函数f (x )的图象过原点; 当b =0且k =1时,函数f (x )的图象为一、三象限角平分线; 当b =0且k =-1时,函数f (x )的图象为二、四象限角平分线; 定 义 域:R 值 域:R 单 调 性:当k>0时,函数f (x )为R 上的增函数; 当k<0时,函数f (x )为R 上的减函数; 奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数。[特殊地,当k =-1或b =0且k =1时,函数f (x )的反函数为原函数f (x )本身] 周 期 性:无 函 数 名 称:反比例函数 解析式 形 式:f (x )= x k (k ≠0) 图象及其性质:图象分为两部分,均不与坐标轴相交,当k>0时,函数f (x )的 图象分别在第一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 图象成中心对称图形,对称中心为原点; 图象成轴对称图形,对称轴有两条,分别为y =x 、y =-x ; 定 义 域:),0()0,(+∞-∞Y 值 域:),0()0,(+∞-∞Y 单 调 性:当k>0时,函数f (x )为)0,(-∞和),0(+∞上的减函数; 当k<0时,函数f (x )为)0,(-∞和),0(+∞上的增 函数; 奇 偶 性:奇函数 反 函 数:原函数本身 b

高中数学函数题型分类

高中数学函数学生常见问题以及函数常见题型、解法指导 一、学生常见问题: (一)、认知层面的问题: 这个问题就是在高一学习函数时就一直在困扰学生的问题。我们要了解高一学生在学习数学时产生困难的原因,首先要了解学生的数学认知结构。即学生在对数学对象、数学知识与数学经验感知与理解的基础上形成的一种心理结构。通俗地说:数学认知结构就就是人们按照自己的经验与理解,根据自己的感知、记忆、思维的特点,把数学知识在大脑中组合而成的具有内部规律的整体结构。数学认知结构受个体认知特点的制约,具有浓厚的认知主体性与鲜明的个性色彩。高一新生在学习数学时的困难正就是由于数学认知结构的特点所决定。高一新生在学习高中数学时,碰到的困难比如无法理解函数的概念,无法建立对应的观念,对集合的概念理解不够透彻等问题,导致高中数学的学习存在很大的困难。 (二)、基础知识层面的问题: 在进行高三复习的时候,同学们普遍的反映都不太好。原因在于,同学们感觉学校老师复习得很快。学校老师的讲课思路就是先大致的把知识点串讲一遍,接着在课上做一些例题,课后给同学发一些卷子以做为练习,这些练习在做完之后老师也不一定会仔细的讲解,知识点的落实也不太扎实。因此同学感觉老师的复习很快。(因此这里学生会出现的问题就就是基础知识不扎实)那么我们在具体的操作中,首先应该了解学生复习的程度。在总复习的过程中侧重于整体性,所以可以先了解一下学生就是否有一个整体的框架。(框架的作用就是帮助PEC检查学生的知识体系就是否完善) 接下来,就就是要求学生能够对这个表格里的每个点都比较了解。(框架完善了,就要瞧基础知识点就是否真的落实) 首先这六大基础函数,学生就是否都了解呢?包括:正比例函数,反比例函数,一次函数,二次

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题: 1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 此法较适合简单题目。 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2). (2) 已知2 2 1)1(x x x x f + =+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3. (2) 2)1()1(2 -+ =+ x x x x f , 21≥+ x x 2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例2 (1) 已知x x x f 2)1(+=+,求)1(+x f (2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+= x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(2 2 -=-+-=t t t t f 1)(2 -=∴x x f )1(≥x x x x x f 21)1()1(2 2 +=-+=+∴ )0(≥x

(2)设 .)(,,,1 11 1111 11-= ∴-= - = = =x x f t t t f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。应用此法解题时往往需要解恒等式。 例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x, 则应有.)(12121 0224 2222 --=∴?? ???-=-==∴?????=+-==x x x f c b a c a b a 四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例4 设,)1 (2)()(x x f x f x f =-满足求)(x f 解 x x f x f =-)1 (2)( ① 显然,0≠x 将x 换成 x 1,得: x x f x f 1 )(2)1(=- ② 解① ②联立的方程组,得: x x x f 323)(-- = 五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例5 已知:1)0(=f ,对于任意实数x 、y ,等式

高考文科数学知识点(函数部分)

2013高中文科数学知识点(函数) 一、函数的概念: 1. 函数的概念: 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A . 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 函数的三要素:定义域、对应关系、值域. 2.函数的三种表示方法:解析法、图象法、列表法. 二、定义域的求法: 能使函数式有意义的实数x 的集合称为函数的定义域。求函数的定义域时,列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1; (5) 指数为零,底不可以等于零; (6) 如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合; (7)实际问题中的函数的定义域还要保证实际问题有意义. 三、值域的求法: 1.函数的值域是由其对应法则和定义域共同决定的其类型依解析式的特点分可分三类: (1)求常见函数值域; (2)求由常见函数复合而成的函数的值域; (3)求由常见函数作某些“运算”而得函数的值域 2.函数值域的常用方法: (1)观察法: 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 (2)配方法: (二次或四次) 转化为二次函数,利用二次函数的特征来求值; 常转化为含有自变量的平方式与常数的和,型如:),(,)(2 n m x c bx ax x f ∈++=的形式,然后根据变量的取值范围确定函数的最值。 (3)换元法: 代数换元法通过变量代换达到化繁为简、化难为易的目的;三角代换法可将代数函数的最值问题转化为三角函数的最值问题,化归思想。 (4)分离常数法: 对某些分式函数,可通过分离常数法,化成部分分式来求值域。 (5)判别式法: 若函数y =f (x )可以化成一个系数含有y 的关于x 的二次方程a (y )x 2 + b (y )x +c (y ) =0,则在a (y )≠0时,由于x 、y 为实数,故必须有Δ=b 2 (y )-4a (y )·c (y )≥0,从而确定函数的最值,检验这个最值在定义域内有相应的x 值。 (6)最值法: 对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a),f(b)作比较,求出函数的最值,可得到函数y 的值域。 四、解析式的求法: 1. 待定系数法: 已知函数图象,确定函数解析式,或已知函数的类型且函数满足的方程时,常用待定系数法。 2. 函数性质法: 如果题目中给出函数的某些性质(如奇偶性、周期性),则可利用这些性质求出解析式。

高中数学函数的定义定义域值域解析式求法

课题7:函数的概念(一) 一、复习准备: 1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义: 在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。 表示方法有:解析法、列表法、图象法. 二、讲授新课: (一)函数的定义: 设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作: (),y f x x A =∈ 其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。显然,值域是集合B 的子集。 (1)一次函数y=ax+b (a ≠0)的定义域是R ,值域也是R ; (2)二次函数2 y ax bx c =++ (a ≠0)的定义域是R ,值域是B ;当a>0时,值域244ac b B y y a ??-??=≥?????? ;当a ﹤0时,值域244ac b B y y a ??-??=≤?????? 。 (3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。 (二)区间及写法: 设a 、b 是两个实数,且a≤<的实数x 的集合分别表示为[)(),,,,a a +∞+∞(](),,,b b -∞-∞。 巩固练习:用区间表示R 、{x|x ≥1}、{x|x>5}、{x|x ≤-1}、{x|x<0} (三)例题讲解: 例1.已知函数2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。 变式:求函数223, {1,0,1,2}y x x x =-+∈-的值域 例2.已知函数1()2f x x =+, (1) 求()()2 (3),(),33f f f f --的值;(2) 当a>0时,求(),(1)f a f a -的值。 (四)课堂练习: 1. 用区间表示下列集合: {}{}{}{}4,40,40,1,02x x x x x x x x x x x x ≤≤≠≤≠≠-≤>且且或 2. 已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1)的值; 3. 课本P 19练习2。

相关文档
相关文档 最新文档