文档库 最新最全的文档下载
当前位置:文档库 › 外文翻译---微生物中多聚磷酸盐细菌加强生物废水中清除磷的能力

外文翻译---微生物中多聚磷酸盐细菌加强生物废水中清除磷的能力

外文翻译---微生物中多聚磷酸盐细菌加强生物废水中清除磷的能力
外文翻译---微生物中多聚磷酸盐细菌加强生物废水中清除磷的能力

附录

毕业设计(论文)外文资料翻译

学院(系):资源与环境工程学院

专业:环境工程

姓名:

学号:

外文出处:http://protein.bio.msu.ru/biokhimiya/

ontents/v65/full/65030405.html

附件: 1.外文资料翻译译文;2.外文原文。

微生物中多聚磷酸盐细菌加强生物废水中

清除磷的能力

摘要

活性污泥处理工艺在厌氧和有氧(厌氧—好氧法)环境交替进行方法可以提高的废水中磷的去除效果(EBPR)。据了解,聚磷菌(PAB)在厌氧—好氧法中发挥重要作用。本文对微生物的新陈代谢和群落结构描述有限,主要突出在EBPR过程中的选择作用。微生物在厌氧—好氧法中,碳源丰富的厌氧环境和碳源缺乏的好氧环境交替进行,促进了聚磷菌重要的新陈代谢特征。其中包括有机质的吸收,以及把它们转化为细胞内聚磷菌自身储存的PHA和水解产物,并在厌氧条件下释放能量。假设细胞内神经的功能是作为调节器,调节细胞的氧化还原平衡。能另储存有助与聚磷菌在厌氧环境中维持氧化还原平衡,吸收各种类型的有机质,增强微生物的选择功能。聚磷菌不能由其他物质组成,各种各样的细菌除外。要确定EBPR工艺中微生物群落的结构,需要通过分子技术细心观察在各种EBPR中,每一种聚磷菌的活动情况,因为许多聚磷菌都是不可用的培养基。

关键词:

活性污泥厌氧—好氧法生态学生物加强清除磷酸盐微生物群落聚磷菌废水处理工艺

当过量的含磷废水排入不外流的水体,湖泊或内陆海水时会造成水体富营养化。(海藻过量生长繁殖)要在污水排入水体之前去处水中的磷。厌氧、好氧条件交替控制活性污泥法已经成功的用于提高水体中磷的去处效果。这种厌氧好氧交替运行的工艺已经得到普遍运用,在厌氧段、好氧段池体的空间布局以及利用设备的污泥回流系统等方面有显著效果。例如这种被称为EBPR的厌氧—好氧或厌氧—缺氧过程。据研究显示,聚磷菌在EBPR厌氧好氧法中具有重要作用。EBPR要实现高而稳定的性能,必须保持聚磷菌在系统中的活性。

基本的厌氧—好氧法的图表可以说明其中的问题。这一过程的特点是结构上存在一种厌氧阶段,保持绝对厌氧条件,没有氧气,也没有no2-/no3-为活性污泥细菌提供电子受体。有机质的供应一部分来自进入厌氧段的污水,一部分是反应器中回流污泥补充碳源。在EBPR过程中,加快厌氧段有机质的吸收率是细菌得到微生物的关键。这种PAB繁殖机制可以如下表述。通常,在厌氧阶段活性污泥向污水中释磷,同时吸收有机质。在后期的好氧段,吸收的磷,远大于在厌氧段前期释放的磷。污水中的磷被去处了,它作为一种物质积累到细胞里。多聚磷酸盐是一种高能化合物,它水解能为细胞多种生化反应提供足够的

能量。在厌氧阶段,多聚磷化物的水解使PAB获得足够的能量以满足它们吸收有机质。没有电子受体(氧,NO2-/NO3-)好氧细菌和反硝化细菌没有足够的能量利用有机质,也不能完成PAB的利用。因此采用厌氧段使PAB具有优势,更好的处理污泥中的磷。处理系统中的过量污泥并收集含高浓度磷的污泥,这样可以提高除磷效率。数量极少的纯培养基在EBPR中扮演重要角色。EBPR 中新陈代谢方面的研究主要是基于对浓集的混合培养基的研究而不是纯培养基。这方面的不足就是缺乏准确的有关EBPR的微生物学和生物化学方面的资料。因此,EBPR中PAB的微生物学变的不容易理解。

EBPR工艺中聚磷菌的碳代谢

虽然厌氧—好氧法对于EBPR从工程角度来说已经是成熟的工艺方法,但它还不能清楚的解释一些微生物方面的定义

在微生物的新陈代谢过程中,厌氧段通过废水中细菌的酶化作用完成了碳化合物的吸收。由于污泥在厌氧条件下完成了和碳化合物的充分接触,生物体能更有效的利用碳质,在厌氧环境中占据优势。因此,在厌氧条件下,PAB能实现对碳质的高速吸收的原因是我们一直关注的重要课题。据了解,短链脂肪酸醋酸有利于EBPR中碳的来源,并且在EBPR中新陈代谢已经作为碳质的模型正在进行研究。在这项研究上有一个决定性问题,就是事实上没有一个细菌可以从EBPR工艺中孤立起来,来显示EBPR污泥的主要特征。任何孤立的纯文化每一个细菌在掩样杨。这就是EBPR中的微生物被研究原因。这种高浓度PAB培养基通常从模拟实验获得,模拟厌氧—好氧法处理废水。

在一组醋酸作为碳源的厌氧实验中,含高浓度PAB的活性污泥利用短链迅速吸收醋酸,在细胞内累计PHAs释放磷。吸收的醋酸作为PHs转化和积累。据发现在高浓度PAB中PHAs的积累由4部分组成3HB, 3HV, 3H2MB,和3H2MV。分析这些PHAs的化学成分并证明是由上述四个单位组成。至于碳水化合物,有人证明了它存在于厌氧—好氧活性污泥中,当醋酸作为碳源被吸收时,高浓度PHAs在厌氧段形成。醋酸转化为PHAs需要减少电能,因为PHAs比醋酸不易合成。为了解释在没有电子受体情况下减少电能这个过程,Mino 和Arun提出一个假设模型。该模型中,在假设降低PHAs能量情况下,厌氧环境中存储的乙酰部分氧化为二氧化碳。这种模式现在被称为Mino模型,其相关的一些研究者已证实,理论化学计量学根据模型依照显示能定量地解释通过PAB 污泥将醋酸盐和糖朊转换成PHA ,成功地采用了类似的概念来解释在EBPR中厌氧吸收率问题。

EBPR中厌氧碳新陈代谢模型

另一个假说是由Matsuo、Comeau和 Wentze提出来的。根据这种假说,TCA

循环假设在厌氧条件下进行,把一部分醋酸氧化成二氧化碳并减少能量。这种模式通常只在厌氧或好氧环境下进行循环。对于这一矛盾的热力学理论,人们已经在厌氧或好氧环境中发现完整的TCA循环。这些微生物利用硫元素和电子受体通过氧化醋酸完全转化二氧化碳。据认为,这种情况的产生主要是要求减少能量生成代谢,就像Mino模型;而不是TCA循环那种预言。原因如下:(1)这种理论能很好地解释实验观察到醋酸厌氧吸收率的现象,通过高浓度PAO,PHA的形成、乙二醇的应用、二氧化碳的生成。(2)13C示踪实验器材的使用指出:醋酸通过厌氧污泥吸收的不是二氧化碳,因此不会通过循环进行代谢。(3)实验用13C-器材,显示乙二醇转化为厌氧代谢的淤泥。

另一方面,有证据表明有可能介入的局部TCA循环发电,减少电能是在EBPR 厌氧阶段。即13C的碳被转化高浓度PAB,醋酸-污泥浓缩被认为是绝对厌氧条件下释放二氧化碳。迄今为止,这是唯一可能的实验结果显示了运行周期迈进的阶段厌氧Ebpr的过程. 循环的功能迈进的碳排放源的厌氧吸收率以及对微生物的筛选过程Ebpr有待进一步调查.

EBPR的过程中,受到其他微生物碳厌氧环境和丰富的碳有氧环境恶劣. 这一交替的、综合和退化三种形式临时医院引起循环和新陈代谢,是通过这些微生物完成的。这种微生物循环是能量的消耗,而不是微生物的能源利用效率。然而,这种微生物循环使PAB在厌氧—好氧环境中进行选择。如何解释这一规定在细胞循环代谢是由Pramanik发现的。这一模式包含了一整套涉及细胞代谢途径和能源需求及高分子合成代谢物如何运输并跨越细胞膜.模型不仅支持假设,还提供了生物代谢途径,以及能源供应,而且还表明,在代谢途径中规则成立。

强化社会结构生物学微生物磷清除过程

不动杆菌首次作为PAB被提出来,很少有研究人员质疑不动杆菌是否仅仅是EBPR中的一种细菌。它有可能被认为高磷EBPR淤泥清除能力是一组由微生物,试图找出几个不动杆菌以外生物体。现在,新的强有力的工具的运用,对微生物体结构的分析,了开发和利用EBPR淤泥。其中化学分析方法与分子分析与方法,如荧光在原地交错(渔)、图书馆克隆方法、热梯度电泳(DGGE)、终端限制碎片长度白细胞(T生物)等。

高EBPR浓度污泥的微生物多样性已成功利用这种新技术。分子分析适用于活性污泥结构的特点分析,醌生物样品的种类数量可确定,应当明确反映研究样本形态组成。有人建议由几个不同EBPR污泥组织,醌最丰富、Q-8,仅占总数约PAB污泥的31%(磷含量1.94、60mG悬浮固体);第二个最丰富的人,Q-10,占8.5%; 第三、MK-8(H4)、6.5%。换句话说,有几个不同污泥微生物群体,已确认的其他研究人员也用它,T-样品的分离,PCR-16S更直接表明不同的人口,数量

约19至24年各主要见于高度PAB污泥浓缩。(磷含量、悬浮固体12%)。Dgge 的技巧也显示分离,扩大碎片rDNA和EBPR淤泥中的一些主要的DNA序列不同的碎片,暗示研究Ebpr结构多样性。这些成果有力地表明,没有一个是PAB或基因型数量有限,但也会涉及各类细菌。

Bond应用PCR克隆启动两种活性污泥,高磷清除绩效果以及典型的新陈代谢,PAB等。他们发现这个组织数量相当惊人,高磷污泥比低磷污泥大幅度提高了。这一结果显示,有特定集团作用. 然而,只有14%的被占领,基因总数在少数的高磷污泥。现在还不能确定这能否为观察到高磷清除绩效。讨论之前,有报道EBPR结构中有一种压倒优势(细菌总数81%)。就目前而言,这是唯一的一个案例,主要是细菌的主要表现是EBPR负责。用DAPI进行双重染色与rRNA的探针,针对不同对象确定细菌组繁殖在原地。因此,在检验污泥时这两个群体被认为在累积磷。报告说,阳性菌G+C高含量DNA扮演重要角色,因为较高EBPR发生这种细菌组发现了一个克隆EBPR的过程。大多数基因阳性菌具有很强的DNAG+C 含量,依据实验样品的rDNA碎片从高浓度-污泥浓缩(磷含量,12%的悬浮固体)、污泥很低磷酸盐含量(2%悬浮固体)。认为阳性菌具有很强的DNAG+C的结构不只是PAB的重要组成部分。醌分析使用方法,该市污水处理厂污泥运作模式相类似,不论对方采取何种过程污泥。从淤泥中EBPR程序和常规程序分子形态十分相似。比较不同启动模式醌淤泥建议采用的厌氧阶段进入,全面启动常规污泥过程不会导致大量细胞变化。上述这些结果又会导致下述结论:细胞拥有独特的新陈代谢特点,把生物和微生物群体分开。最可能的阿尔法-、试用、伽玛射线的类别和阳性菌具有很强的DNAG+C的内特性。

展望未来

这次审查显示,PAB不是由少数受限制物质组成,但也会转化成各类细菌。在EBPR中细菌的种类不同,负责功能不同。在EBPR过程中,明确界定微生物Ebpr社会结构和过程的机制来描述PAB生态选择,在研究加强和行为发生个别种类对EBPR的需要。因为许多PAB似乎是不可能的结构,只有分子方法能实现这些目的。这可能意味着,新陈代谢的关键基因的EBPR常见细菌不同。最有趣最重要的是确定这种基因并且找出它是怎样的规则。

Microbial Selection of Polyphosphate-Accumulating Bacteria in Activated Sludge Wastewater Treatment Processes for Enhanced

Biological Phosphate Removal

Abstract:Activated sludge processes with alternating anaerobic and aerobic conditions (the anaerobic-aerobic process) have been successfully used for enhanced biological phosphate removal (EBPR) from wastewater. It is known that polyphosphate-accumulating bacteria (PAB) play an essential role for EBPR in the anaerobic-aerobic process. The present paper reviews limited information available on the metabolism and the microbial community structure of EBPR, highlighting the microbial ecological selection of PAB in EBPR processes. Exposure of microorganisms to alternate carbon-rich anaerobic environments and carbon-poor aerobic environments in the anaerobic-aerobic process induces the key metabolic characteristics of PAB, which include organic substrate uptake followed by its conversion to stored polyhydroxyalkanoate (PHA) and hydrolysis of intracellular polyphosphate accompanied by subsequent Pi release under anaerobic conditions. Intracellular glycogen is assumed to function as a regulator of the redox balance in the cell. Storage of glycogen is a key strategy for PAB to maintain the redox balance in the anaerobic uptake of various organic substrates, and hence to win in the microbial selection. Acinetobacter spp., Microlunatus phosphovorus, Lampropedia spp., and the Rhodocyclus group have been reported as candidates of PAB. PAB may not be composed of a few limited genospecies, involve phylogenetically and taxonomically diverse groups of bacteria. To define microbial community structure of EBPR processes, it is needed to look more closely into the occurrence and behavior of each species of PAB in various EBPR processes mainly by molecular methods because many of PAB seem to be impossible to culture.

KEY WORDS:activated sludge, anaerobic-aerobic process, ecological selection, enhanced biological phosphate removal (EBPR), Lampropedia, microbial community, (PHAs), polyphosphate-accumulating bacteria, wastewater treatment Phosphate can cause eutrophication (extraordinary growth of algae) when it is excessively discharged into closed natural water bodies like lakes and inland seas. To control eutrophication, phosphate removal from wastewater is often required before wastewater is discharged to the receiving water bodies. Activated sludge processes with alternating anaerobic and aerobic conditions have been successfully used for enhanced biological phosphate removal (EBPR) from wastewater. This anaerobic-aerobic alternation can be achieved either by spatial configuration of anaerobic and aerobic zones in series in continuous flow systems with sludge recycle or by temporal arrangement of anaerobic and aerobic periods in sequence batch reactors. Such EBPR processes are referred to as the anaerobic-aerobic or

anaerobic-oxic process. It has been shown in previous studies that polyphosphate-accumulating bacteria (PAB) play an essential role for EBPR in the anaerobic-aerobic process. To achieve high and stable EBPR performance, it is essential to maintain PAB in the system.

A basic configuration of the anaerobic-aerobic process is schematically shown in Fig. a. This process is structurally characterized by the presence of an anaerobic stage in which absolute anaerobic conditions are kept with neither oxygen nor NO2-/NO3- available as electron acceptor for activated sludge bacteria. Organic substrates are supplied from influent wastewater into the anaerobic stage and the return sludge comes into contact with the carbon source only in the anaerobic stage. Faster uptake of organic substrates in the anaerobic stage is the key for bacteria to win in the microbial selection in the EBPR process. The mechanism of proliferation of PA

B can be described as follows. It is typically observed in the anaerobic stage that the activated sludge releases Pi to the bulk solution with concomitant uptake of organic substrates. In the subsequent aerobic stage, it takes up more Pi than has been released in the previous anaerobic stage. The Pi removed from the wastewater is accumulated in the cell as polyP. Polyphosphate is a high-energy compound and its hydrolysis can supply energy to various biochemical reactions in the cell. In the anaerobic stage, the hydrolysis of intracellular polyP enables PAB to obtain the energy they need to take up organic substrates. Without electron acceptors (oxygen, NO2-/NO3-), aerobic bacteria and denitrifying bacteria are unable to obtain the energy required for the utilization of organic substrates, and they are thus unable to compete with PAB. Therefore, the introduction of the anaerobic stage leads to the precedence of PAB and to a rise in phosphorus content of the sludge. By withdrawing the phosphorus-rich sludge from the system as excess sludge, high phosphate removal efficiency can be achieved.

Fig. 1. a) Basic concept of anaerobic-aerobic process for EBPR. b) Behavior of PO4-P, orthophosphate present in the bulk solution; glycogen, glycogen stored in the cells; PHA, polyhydroxyalkanoates stored in the cells.

Although the anaerobic-aerobic process for EBPR is an established process from an engineering point of view, it has not been clearly defined in microbiological terms. For example, the phylogenetic or taxonomic groups responsible for EBPR have not been identified, and general structures of the EBPR microbial community have not been successfully described yet. Very few pure cultures have been isolated as candidates of PAB playing a key role in EBPR processes. Studies on metabolic aspects of EBPR have been mainly done based on enriched mixed cultures but not on pure cultures. This has resulted in lack of definitive and conclusive information

about the microbiology and biochemistry of EBPR. Thus, the mechanism of microbial ecological selection of PAB in EBPR processes has been understood very poorly. The present paper reviews limited information available on the metabolism and the microbial community structure of EBPR, highlighting the selection of PAB in EBPR processes.

CARBON METABOLISM ADOPTED BY POLYPHOSPHATE- ACCUMULATING BACTERIA IN EBPR PROCESSES In terms of microbial metabolism, the anaerobic stage involves the uptake of organic substrates from wastewater by bacteria. Since the sludge comes into contact with organic substrates under anaerobic conditions, organisms that can utilize organic substrates more rapidly in an anaerobic environment gain precedence. Therefore, the reason why PAB can achieve a very high rate of organic substrate uptake under anaerobic conditions has been a major subject of concern. It has been well known that short chain fatty acids like acetate are favorable carbon sources for EBPR, and acetate metabolism has been intensively studied as a model carbon metabolism substrate in EBPR. A critical problem in such studies lays in the fact that none of the bacteria isolated from EBPR processes have exhibited all the key characteristics of the EBPR sludge and that any isolated pure cultures had never been verified to be primarily responsible for EBPR in an anaerobic-aerobic system until recently . This is the reason that metabolic aspects of EBPR have been studied using mixed cultures enriched with PAB. Such PAB-enriched cultures have usually been obtained from lab-scale activated sludge reactors simulating the anaerobic-aerobic process fed with synthetic wastewater.

In anaerobic batch experiments with acetate as the carbon source, the activated sludge enriched with PAB typically take up acetate rapidly, accumulate PHAs in the cell, consume previously stored intracellular carbohydrate, and release Pi as a result of utilization of stored polyP. These typical behaviors of key substances involved in EBPR are graphically shown in Fig.. The acetate taken up is converted to and accumulated as PHAs. Satoh et al. [found that the PHAs accumulated in the PAB-enriched sludge are composed of four monomeric units: 3HB, 3HV, 3H2MB, and 3H2MV. Inoue et al. analyzed the chemical structure of these PHAs by NMR and verified that they are co-polymers composed of the above four monomeric units. As for carbohydrate, Liu et al. proved enzymologically that the carbohydrate stored in the anaerobic-aerobic sludge is a polymer of glycosyl units with the alpha-1,4- and the alpha-1,6-linkages, or glycogen. When acetate is fed as the carbon source, 3HB-rich PHAs are formed in the anaerobic stag. The conversion of acetate to PHA requires reducing power, because PHA is a more reduced compound than acetate. To explain the source of the reducing power under the conditions without electron

acceptors, a hypothetical model was proposed by Mino et al. and Arun et al.. In that model, anaerobic degradation of stored glycogen to acetyl-CoA as well as its partial oxidation to CO2 is assumed to account for the generation of the reducing power for PHA synthesis. This model is now called the Mino model, and its relevance has been confirmed by several researchers. The outlines of the model are shown in Fig. The theoretical stoichiometry based on the model could quantitatively explain the observed conversions of acetate and glycogen to PHA by PAB-enriched sludges, as shown in the table. Satoh et al. [successfully applied a similar concept to explain the anaerobic uptake of propionate in EBPR processes (see the table).

Fig. 3. A conceptual model for anaerobic carbon metabolism in an EBPR process (after references).

Another hypothesis was postulated by Matsuo et al., Comeau et al. [, and Wentzel et al. [to account for the source of the reducing power in anaerobic acetate metabolism. According to this hypothsis, the TCA cycle is assumed to operate under anaerobic conditions in order to oxidize a part of acetate to CO2 and to generate reducing power in the form of NADH. This model is referred to as the Comeau-Wentzel model. Usually the TCA cycle operates only under aerobic or anoxic conditions. The oxidation of succinate to fumarate in the TCA cycle requires a terminal electron acceptor with a redox potential (E0′) more positive than that of fumarate/succinate couple (+32 mV). Only O2 (O2/H2O, E0′= +818 mV), NO3- (NO3-/NO2-, E0′ = + 433 mV), and NO2- (NO2-/N2-, E0′ = +970 mV) appear to meet these conditions. Contradictory to this thermodynamic theory, a complete TCA cycle has been found to operate in some anaerobic eubacteria or archae. These microorganisms can oxidize acetate completely to CO2 via the TCA cycle by utilizing elemental sulfur, thiosulfate, or sulfate as electron acceptor. It is believed, however, that major part of the required reducing power should be generated through the glycogen metabolism as described in the Mino model rather than through the TCA cycle as predicted by the Comeau-Wentzel model. The reasons are as follows: 1) the theoretical stoichiometry for the glycogen metabolism can explain very well the experimentally observed anaerobic acetate uptake, PHA formation, glycogen utilization, and CO2 production by PAO-enriched sludges ; 2) a 13C tracer experiment using NMR indicated that the acetate taken up by the sludge anaerobically was not oxidized to CO2 and thus not metabolized through the TCA cycle, and 3) experiments using 13C-NMR [demonstrated that glycogen is involved in the anaerobic metabolism of EBPR sludges.

On the other hand, there is evidence that indicates the possibility of partial involvement of the TCA cycle in the generation of reducing power by PAB in the anaerobic stage of the EBPR process. Namely, 13C-labeled carbon in the acetate fed

to a PAB-enriched sludge was found to be released as CO2 under absolute anaerobic conditions. So far, this is the only experimental result indicating the possible functioning of the TCA cycle in the anaerobic phase of the EBPR process. The function of the TCA cycle in the anaerobic uptake of carbon sources by PAB as well as its contribution to the microbial selection in the EBPR process remains to be further investigated.

In the EBPR process, microorganisms are exposed to alternate carbon-rich anaerobic environments and carbon-poor aerobic environments. By this alternation, synthesis and degradation of three kinds of biopolymers (polyP, PHA, and glycogen) are induced and metabolic cycling through these biopolymers is established in microorganisms. Such metabolic cycling is energy consuming and not favorable for microorganisms in terms of energy utilization efficiency. Ecologically, however, this metabolic cycling enables PAB to win in the microbial selection in the anaerobic-aerobic process. To explain how this metabolic cycling is regulated in the cell, a metabolic flux model was developed by Pramanik et al.. This model contains a complete set of metabolic pathways involved in biosynthesis and energy production and accounts for energy requirements for macromolecule synthesis and metabolite transport across the cell membrane. The model not only supports the hypothesis that the biopolymer metabolism provides a means for PAB to balance intracellular energy supplies, but also suggest pathways at which metabolic regulation should occur.

MICROBIAL COMMUNITY STRUCTURE OF ENHANCED BIOLOGICAL

PHOSPHATE REMOV AL PROCESS

When Acinetobacter was first proposed as PAB, there were very few researchers who raised the question of whether Acinetobacter is the only bacterium responsible for EBPR. It may have been somehow assumed that EBPR sludges with high phosphate removal capability were dominated by a single group of microorganisms, and few attempts were made to find candidates of PAB other than Acinetobacter. Now, new and powerful tools for the analysis of microbial community structures have been developed and used to analyze EBPR sludges. They include chemotaxonomic methods like quinone profiling and molecular methods like the fluorescent in situ hybridization (FISH), the clone library approach, denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphisms (T-RFLP), etc.

High microbial diversity of the EBPR sludge has been demonstrated by using these new techniques. Quinone profiling was applied to characterize activated sludge community structures. The type of quinone in biological samples can be quantitatively determined, and the quinone patterns should explicitly reflect the

chemotaxonomic composition of the examined samples. It was suggested that EBPR sludges consist of several different chemotaxonomic groups. The most abundant quinone, Q-8, accounts for only about 31% of total quinone in a PAB-enriched sludge (phosphorus content, 1.94 mmoles or 60 mg/g of suspended solids); the second most abundant one, Q-10, accounts for 8.5%; the third, MK-8(H4), 6.5% (calculated from Hiraishi et al.). The FISH technique with group-specific oligonucleotide probes targeting rRNA showed that an EBPR sludge contained the alpha-, beta-, and gamma-subclasses of proteobacteria, the cytophage group, and Gram-positive bacteria with high G+C DNA contents (13, 25-33, 10-12, 1, and 17-27% of the total cell count, respectively). In other words, the EBPR sludge phylogenetically consisted of several different microbial groups, which has been confirmed using FISH by other researchers as well. The T-RFLP of PCR-amplified 16S rDNA more directly showed the high population diversity; about 19-24 different numerically dominant ribotypes were observed in a highly PAB-enriched sludge (phosphorus content, 12% of suspended solids). The DGGE technique also showed that PCR-amplified 16S rDNA fragments of EBPR sludges contained a number of dominant DNA fragments with different sequences, implying that the examined EBPR communities had high genotypical diversity. All these results strongly suggest that PAB are not a single genotype or a few limited genospecies, but involve phylogenetically and taxonomically diverse groups of bacteria.

Bond et al. applied PCR cloning to two activated sludges, one with high phosphate removal performance as well as the typical metabolism of PAB and the other without. They found that the Rhodocyclus group belonging to the beta-subclass of proteobacteria was present in significantly higher numbers in the high-phosphate sludge than in the low-phosphate sludge. This result suggests that the Rhodocyclus group may have a specific role in EBPR. However, the Rhodocyclus group occupied only 14% of the total isolated clones in the high-phosphate sludge. It is not certain that this can account for the observed high phosphate removal performance. As discussed before, an EBPR community was reported in which a type of Rhodocyclus was overwhelmingly dominating (81% of total bacteria) bacterium was shown to be essentially responsible for EBPR. Kawaharasaki et al. used dual staining with DAPI for polyP and rRNA-targeted oligonucleotide probes specific to different bacterial groups to identify PAB in situ. Many of the Gram-positive bacteria with high G+C DNA content and the alpha-subclass of proteobacteria gave the fluorescent DAPI signal of polyP. Therefore, these two groups were considered to accumulate polyP in the EBPR sludge examined. Christensson et al. reported that the Gram-positive bacteria with high G+C DNA content was suspected to play an important role in EBPR because

relatively high occurrence of this bacterial group was observed in a clone library from an EBPR process. A significant portion of the clones of Gram-positive bacteria with high G+C DNA content was phylogenetically close to Terrabacter tumescens. Based on comparison of the electrophoregrams of T-RFLP of 16S rDNA fragments from a highly PAB-enriched sludge (phosphorus content, 12% of suspended solids) and a sludge with very low phosphate content (2% of suspended solids), Liu et al. concluded that the Gram-positive bacteria with high G+C DNA contents are not the only major component of PAB. Hiraishi et al. showed using the quinone profiling approach that the quinone patterns of activated sludges treating municipal sewage were similar to each other irrespective of the type of activated sludge process; sludges from EBPR processes and conventional processes had very similar quinone patterns. The comparison of quinone patterns from different activated sludges suggested that introduction of the anaerobic stage into the fully aerobic conventional activated sludge process does not result in significant population shift. These findings described above may again lead to the conclusion that PAB, which physiologically possess unique metabolic characteristics, should include different phylogenetic and taxonomic bacterial groups: most probably the alpha-, beta-, and gamma-subclasses of proteobacteria and the Gram-positive bacteria with high G+C DNA contents are the candidates.

FUTURE PERSPECTIVES

The present review shows that PAB are not composed of a few limited genospecies, but involve phylogenetically and taxonomically diverse groups of bacteria. The type of bacteria responsible for EBPR may vary among different situations. To clearly define the microbial community structure of EBPR processes and to describe mechanism of ecological selection for PAB in EBPR processes, a closer look into occurrence and behavior of individual species of PAB in various EBPR processes will be needed. Since many of PAB seem to be impossible to culture, molecular methods are surely powerful tools for this purpose. A common EBPR metabolism seems to exist in phylogenetically diverse microbial populations of PAB. This suggests the possibility that the key genes of the EBPR metabolism are common among different bacteria. It is important and interesting to determine such key genes and to find how they are regulated genetically or enzymologically.

REFERENCES

1. Barnard, J. L. (1975) Water Res., 9, 485-490.

2. Fuhs, G. W., and Chen, M. (1975) Microb. Ecol., 2, 119-138.

3. Buchan, L. (1983) Wat. Sci. Tech., 15, 87-103.

4. Lotter, L. H. (1985) Wat. Sci. Tech., 17, 127-138.

5. Mino, T., Kawakami, T., and Matsuo, T. (1984) Wat. Sci. Tech., 17, 93-10

6.

6. Mino, T., Kawakami, T., and Matsuo, T. (1985) Wat. Sci. Tech., 17, 11-21.

7. Arun, V., Mino, T., and Matsuo, T. (1988) Water Res., 22, 565-570.

8. Marais, G. v. R., Lowenthal, R. E., and Siebritz, I. (1982) Proc. Post Conf. Seminar on Phosphate Removal in Biological Treatment Processes, V ol. 2,pp. 5-6. 9. Mino, T., Tsuzuki, Y., and Matsuo, T. (1987) Proc. IAWPRC Int. Conf. on “Biological Phosphate Removal from Wastewaters”, Adv. Wat. Pollut. Cont. (Ramadori, R., ed.) Pergamon Press, Rome,pp. 27-38.

10. Jenkins, D., and Tandoi, V. (1991) Water Res., 25, 1471-1478.

11. Mino, T., van Loosdrecht, M. C. M., and Heijnen, J. J. (1998) Water Res., 32, 3193-3207.

12. Rabinowitz, B., Koch, F. A., Vassos, T. D., and Oldham, W. K. (1987) Proc. IAWPRC Int. Conf. on “Biological Phosphate Removal from Wastewaters”, Adv. Wat. Pollut. Cont. (Ramadori, R., ed.) Pergamon Press, Rome, pp. 349-352.

13. Wentzel, M. C., Ekama, G. A., Loewenthal, R. E., Dold, P. L., and Marais, G. v. R. (1989) Water SA, 15, 89-102.

14. Smolders, G. J. F., van Loosdrecht, M. C. M., and Heijnen, J. J. (1996) Water Res., 30, 2748-2760.

15. Satoh, H., Mino, T., and Matsuo, T. (1992) Wat. Sci. Tech., 26, 933-942.

16. Inoue, Y., Sano, F., Nakamura, K., Yosie, N., Saito, Y., Satoh, H., Mino, T., Matsuo, T., and Doi, Y. (1996) Polymer Int.,39, 183-189.

17. Liu, W. T., Mino, T., Nakamura, K., and Matsuo, T. (1994) J. Ferment. Bioeng., 77, 535-540.

18. Mino, T., and Matsuo, T. (1984) Japan. J. Water Pollut. Res., 7, 605-609 (in Japanese).

19. Maurer, M., Gujer, W., Hany, R., and Bachmann, S. (1997) Water Res., 31, 907-917.

20. Pereira, H., Lemos, P. C., Reis, M. A., Crespo, J. P. S. G., Carrondo, M. J. T., and Santos, H. (1996) Water Res., 30, 2128-2138.

21. Smolders, G. J. F., van der Meij, J., van Loosdrecht, M. C. M., and Heijnen, J. J. (1995) Biotech. Bioeng., 47, 277-287.

22. Gottschalk, G. (1986) Bacterial Metabolism,2nd ed.,Springer-Verlag, N. Y.

23. Mino, T., Satoh, H., and Matsuo, T. (1994) Wat. Sci. Tech., 29, 67-70.

24. Mino, T., Liu, W. T., Satoh, H., and Matsuo, T. (1996) Proc. 10th Forum for Applied Biotechnology, Brugge, V ol. 1, pp. 1769-1776.

微生物英文文献及翻译—翻译

A/O法活性污泥中氨氧化菌群落的动态与分布 摘要: 我们研究了在厌氧—好氧序批式反应器(SBR)中氨氧化菌群落(AOB)和亚硝酸盐氧化菌群落(NOB)的结构活性和分布。在研究过程中,分子生物技术和微型技术被用于识别和鉴定这些微生物。污泥微粒中的氨氧化菌群落结构大体上与初始的接种污泥中的结构不同。与颗粒形成一起,由于过程条件中生物选择的压力,AOB的多样性下降了。DGGE测序表明,亚硝化菌依然存在,这是因为它们能迅速的适应固定以对抗洗涤行为。DGGE更进一步的分析揭露了较大的微粒对更多的AOB种类在反应器中的生存有好处。在SBR反应器中有很多大小不一的微粒共存,颗粒的直径影响这AOB和NOB的分布。中小微粒(直径<0.6mm)不能限制氧在所有污泥空间的传输。大颗粒(直径>0.9mm)可以使含氧量降低从而限制NOB的生长。所有这些研究提供了未来对AOB微粒系统机制可能性研究的支持。 关键词:氨氧化菌(AOB),污泥微粒,菌落发展,微粒大小,硝化菌分布,发育多样性 ?简介 在浓度足够高的条件下,氨在水环境中对水生生物有毒,并且对富营养化有贡献。因此,废水中氨的生物降解和去除是废水处理工程的基本功能。硝化反应,将氨通过硝化转化为硝酸盐,是去除氨的一个重要途径。这是分两步组成的,由氨氧化和亚硝酸盐氧化细菌完成。好氧氨氧化一般是第一步,硝化反应的限制步骤:然而,这是废水中氨去除的本质。对16S rRNA的对比分析显示,大多数活性污泥里的氨氧化菌系统的跟?-变形菌有关联。然而,一系列的研究表明,在氨氧化菌的不同代和不同系有生理和生态区别,而且环境因素例如处理常量,溶解氧,盐度,pH,自由氨例子浓度会影响氨氧化菌的种类。因此,废水处理中氨氧化菌的生理活动和平衡对废水处理系统的设计和运行是至关重要的。由于这个原因,对氨氧化菌生态和微生物学更深一层的了解对加强处理效果是必须的。当今,有几个进阶技术在废水生物处理系统中被用作鉴别、刻画微生物种类的有价值的工具。目前,分子生物技术的应用能提供氨氧化菌群落的详细分类说明。

医学微生物学考试试卷(附答案)

医学微生物学考试试卷( A ) (临床医学本科、影像医学本科、中医药学本科、实验技术本科、预防医学本科)班级学号姓名 注意事项: 1.在试卷上写上姓名、班级。在答题卡上填上学号,将相应的数字涂黑,并写上班级、姓名和试卷类型( A 卷 /B 卷)。交卷时必须将答题卡与试卷一起上交,否则以零分计算! 2.本份试卷由基础知识题和病例分析题组成,共150 个选择题,请按题目要求,在备选答案中选择一个最佳答案,并在答题卡上将相应的字母涂黑,做在试卷上无效。 3.考试时请严格遵守考场纪律,原则上不允许上厕所。 第一部分、A型选择题 (由一题干和5个备选答案组成,请选出一个最佳答案。共90 个选择题) 1. 哪种疾病的病原体属于非细胞型微生物: A. 疯牛病C. 结核病E.体癣 B.梅毒D.沙眼 2. 细菌属于原核细胞型微生物的主要依据是: A. 单细胞 C.对抗生素敏感B.二分裂方式繁殖 D.有由肽聚糖组成的细胞壁 E.仅有原始核结构,无核膜 3. 革兰阳性菌细胞壁: A. 肽聚糖含量少C.对溶菌酶敏感 B.缺乏五肽交联桥 D.所含脂多糖与致病性有关 E.有蛋白糖脂外膜 4. 青霉素杀菌机制是: A. 干扰细胞壁的合成C. 影响核酸复制E.损伤细胞膜 B.与核糖体 D.与核糖体 50S 亚基结合,干扰蛋白质合成 30S 亚基结合,干扰蛋白质合成 5.有关“细菌鞭毛”的叙述,哪一项是错误的: A.与细菌的运动能力有关 B.许多革兰阳性菌和阴性菌均有鞭毛 C.在普通光学显微镜下不能直接观察到 D.可用于细菌的鉴定 E.将细菌接种在固体培养中有助于鉴别细菌有无鞭毛(半固体 ) 6.有关“芽胞”的叙述,错误的是 : A. 革兰阳性菌和阴性菌均可产生(都是阳性) B. 不直接引起疾病 C. 对热有强大的抵抗力 D.代谢不活跃 7.E.通常在细菌处于不利环境下形成 :用普通光学显微镜油镜观察细菌形态时,总放大倍数为 A.10 倍 B.100 倍 C.400 倍 D.900~ 1000 倍 E.10000 倍 8.脑膜炎奈瑟菌和肺炎链球菌经结晶紫初染、碘液媒染、95%乙醇脱色后,菌体分别呈 : A. 红色和紫色 B.紫色和紫色 C. 紫色和无色 D.无色和无色 E.无色和紫色

毕业设计外文翻译

附件1:外文资料翻译译文 城市污水常温处理中的新型改良EGSB(膨胀颗粒污泥床)反应器的发展 近年来,厌氧处理技术已经成为一项有吸引力的可持续发展的污水处理技术,因为它耗能少而且产气量少。特别的,流式厌氧污泥床(UASB)和常规膨胀颗粒污泥床(EGSB)在城市污水处理中得到了广泛应运。通常,EGSB比UASB 更能有效去除化学需氧量(COD),更能有效抵抗有机负荷率(OLR)、温度和pH 的变化。然而,由于较高的上升流速和较多的甲烷气泡,使膨胀颗粒污泥床(EGSB)中的三相分离器中的水的流速很高,这就导致了大量生物质的流失,最终废水中的COD浓度就升高了。所以,有时候不能满足城市污水处理厂或生物处理系统排放的标准,并导致生物处理系统崩溃。因此,对与EGSB系统来说,城市污水处理中的关键问题是如何控制在高上升流速下的生物量流失。 在本文中,提出一种改进型的EGSB反应器模型,它结合了EGSB 和UASB 两者的优势。在相同环境下通过比较,试验性地研究EGSB m和EGSB c两种反应器。在东区污水处理厂中有一个初级出水沉降池。在对膨胀颗粒污泥床(EGSB m)中水动力特征分析时,进行了停留时间分布(RTD)的实验和Polvmerase连锁反应实验,并且应用变性梯度凝胶电泳(PCR-DGGE)技术来探索颗粒污泥中微生物的多样性。 1.材料和方法 1.1影响生物量和养料的来源 常温厌氧颗粒污泥取自中国无锡市的一家污水处理厂,该厂主要利用全比例内循环生物反应器处理酸性废水。黑色的颗粒污泥有规则的形状(φ=0.8 - 2毫米)和良好的沉降性能。污泥中含有悬浮固体(TSS)73.6克/升和挥发性悬浮固体(VSS)59克/升。在EGSB m和EGSB c两种反应器中,最初的接种污泥量占有效总量的65%。 污水样本取自上海东区城市污水处理厂的一个初级沉淀池中。其中包括60%生活污水和40%的工业废水。污水的主要指标如表1。

微生物学习题集1_4章答案(1)

【第一章原核微生物】 一、填空题 1.革兰氏阳性细菌的细胞壁成分为----------和-----------;革兰氏阴性细菌细胞壁分外两层,层成分是 ----------,外层称外膜,成分为----------、----------和----------。 革兰氏阳性细菌的细胞壁成分为肽聚糖和磷壁酸;革兰氏阴性细菌细胞壁分外两层,层成分是肽聚糖,外层称外膜,成分为脂多糖、磷脂和脂蛋白。 2.在革兰氏阳性细菌细胞壁的肽聚糖成分中,肽包括----------和----------两种,聚糖则包括---------- 和----------两种糖。 在革兰氏阳性细菌细胞壁的肽聚糖成分中,肽包括四肽尾和肽桥两种,聚糖则包括N-乙酰葡糖胺和N-乙酰胞壁酸两种糖。 3.肽聚糖中的双糖是由----------连接的,它可被----------水解,从而形成无细胞壁的原生质体。 肽聚糖中的双糖是由β-1,4-糖苷键连接的,它可被溶菌酶水解,从而形成无细胞壁的原生质体 4. E. coli的肽聚糖单体结构与Staphylococcus aureus的基本相同,所不同的是①----------,②----------。 E. coli的肽聚糖单体结构与Staphylococcus aureus的基本相同,所不同的是前者①四肽尾第3个氨基酸是m-DAP,②无五肽桥 5.G+细菌细胞壁的特有成分是----------,G-细菌的则是----------。 G+细菌细胞壁的特有成分是磷壁酸,G-细菌的则是脂多糖 6.脂多糖(LPS)是革兰氏阴性细菌细胞壁外膜的主要成分,由----------------、----------------和 ----------------三部分构成,在LPS上镶嵌着多种外膜蛋白,例如----------------等。 脂多糖(LPS)是革兰氏阴性细菌细胞壁外膜的主要成分,由脂质A、核心多糖和O-特异侧链三部分构成,在LPS上镶嵌着多种外膜蛋白,例如孔蛋白等 7.在G-细菌细胞壁的外膜与细胞膜间有一狭窄空间,称为----------------。其中含有多种周质蛋白, 如----------------、----------------和----------------等。 在G-细菌细胞壁的外膜与细胞膜间有一狭窄空间,称为周质空间。其中含有多种周质蛋白,如水解酶类、合成酶类和运输蛋白等 8.人为去尽细胞壁的细菌称为-----------,未除尽壁的细菌常称为-----------,在实验室中发生自发缺 壁突变的细菌被称为-----------,而自然界中存在的稳定型无壁原核微生物则是-----------。 人为去尽细胞壁的细菌称为原生质体,未除尽壁的细菌常称为球状体,在实验室中发生自发缺壁突变的细菌被称为L型细菌,而自然界中存在的稳定型无壁原核微生物则是支原体

医学微生物学考试试卷(附答案)汇总

医学微生物学考试试卷(A) (临床医学本科、影像医学本科、中医药学本科、实验技术本科、预防医学本科) 班级学号姓名 注意事项: 1.在试卷上写上姓名、班级。在答题卡上填上学号,将相应的数字涂黑,并写上班级、姓名和试卷类型(A卷/B卷)。交卷时必须将答题卡与试卷一起上交,否则以零分计算! 2.本份试卷由基础知识题和病例分析题组成,共150个选择题,请按题目要求,在备选答案中选择一个最佳答案,并在答题卡上将相应的字母涂黑,做在试卷上无效。 3.考试时请严格遵守考场纪律,原则上不允许上厕所。 第一部分、A型选择题 (由一题干和5个备选答案组成,请选出一个最佳答案。共90个选择题) 1.哪种疾病的病原体属于非细胞型微生物: A.疯牛病 B.梅毒 C.结核病 D.沙眼 E.体癣 2.细菌属于原核细胞型微生物的主要依据是: A.单细胞 B.二分裂方式繁殖 C.对抗生素敏感 D.有由肽聚糖组成的细胞壁 E.仅有原始核结构,无核膜 3.革兰阳性菌细胞壁: A.肽聚糖含量少 B.缺乏五肽交联桥 C.对溶菌酶敏感 D.所含脂多糖与致病性有关 E.有蛋白糖脂外膜 4.青霉素杀菌机制是: A.干扰细胞壁的合成 B.与核糖体50S亚基结合,干扰蛋白质合成 C.影响核酸复制 D.与核糖体30S亚基结合,干扰蛋白质合成 E.损伤细胞膜 5.有关“细菌鞭毛”的叙述,哪一项是错误的: A.与细菌的运动能力有关 B.许多革兰阳性菌和阴性菌均有鞭毛 C.在普通光学显微镜下不能直接观察到 D.可用于细菌的鉴定 E.将细菌接种在固体培养中有助于鉴别细菌有无鞭毛(半固体) 6.有关“芽胞”的叙述,错误的是: A.革兰阳性菌和阴性菌均可产生(都是阳性) B.不直接引起疾病 C.对热有强大的抵抗力 D.代谢不活跃 E.通常在细菌处于不利环境下形成 7.用普通光学显微镜油镜观察细菌形态时,总放大倍数为: A.10倍 B.100倍 C.400倍 D.900~1000倍 E.10000倍 8.脑膜炎奈瑟菌和肺炎链球菌经结晶紫初染、碘液媒染、95%乙醇脱色后,菌体分别呈: A.红色和紫色 B.紫色和紫色 C.紫色和无色 D.无色和无色 E.无色和紫色 9.革兰染色法是最常用的一种染色法,其实际意义不包括:

微生物学细菌中英翻译及促生素概论

清酒乳杆菌(Lactobacillus sakei),弯曲乳杆菌(Lactobacillus curvatus),明串珠菌属的肠膜明串珠菌(Leuconostoc mesenteroides)和非培养的明串珠菌(Uncultured Leuconostoc sp.) 清酒乳杆菌清酒亚种(Lactobacillus sakei subsp.sakei) 弯曲乳杆菌蜜二糖亚种(Lactobacillus curvatus subsp.melibiosus) 粪肠球菌(E.faecalis)屎肠球菌(E.faecium) 鸟肠球菌(E.avium) 酪黄肠球菌(E.casseliflavus) 坚忍肠球菌(E.durans) 鸡肠球菌E.galinarum) 芒地肠球菌(E.mundii) 恶臭肠球菌(E.maladoratum) 希拉肠球菌(E.hirae) 孤立肠球菌(E.solitarius) 棉子糖肠球菌(E.raffinosus) 假鸟肠球菌(E.pseudoavium) 粪肠球变异株(E.faecalis var)。 Abiotrophia adjacens 毗邻贫养菌 Abiotrophia defectiva 软弱贫养菌 Achromobacter spp 无色杆菌属某些种 Acinetobacter /Pseudomonas spp 不动杆菌/假单胞菌属某些种 Acinetobacter baumannii 鲍氏不动杆菌 Acinetobacter calcoaceticus 醋酸钙不动杆菌 Acinetobacter haemolyticus 溶血不动杆菌 Acinetobacter johnsonii 约氏不动杆菌 Acinetobacter junii 琼氏不动杆菌 Acinetobacter lwoffii 鲁氏不动杆菌 Acinetobacter radioresistens 抗辐射不动杆菌 Acinetobacter spp 不动杆菌属某些种 Acinetobacter spp/Pseudomonas spp 不动杆菌属某些种/假单胞菌属某些种 Acinetobacter/Pseudomonas spp 不动杆菌/假单胞菌属某些种 Actinobacillus actinomycetemcomitans 伴放线放线杆菌 Actinomyces israelii 衣氏放线菌 Actinomyces meyeri 麦氏放线菌 Actinomyces naeslundii 内氏放线菌 Actinomyces neuii anitratus 纽氏放线菌无硝亚种 Actinomyces neuii neuii 纽氏放线菌纽氏亚种 Actinomyces neuii radingae 纽氏放线菌罗亚种 Actinomyces neuii turicensis 纽氏放线菌图列茨亚种 Actinomyces odontolyticus 龋齿放线菌 Actinomyces viscosus 粘放线菌

医学微生物学各个细菌形状的总结

1 葡萄球菌属链球菌属肺炎球菌属脑膜炎奈氏球菌形状球球矛头状肾形 排列葡萄状链状成双成双 染色G- 特殊结 构 无幼龄、有荚膜有荚膜有荚膜及菌毛 营养普通需含溶血素、葡萄糖、 血清等 需含血巧克力营养基 气体需氧或兼性需氧需CO25%-20%CO2温度37(28—38) PH7.3-7.4 菌落有色素,B溶血环ABC溶血环A溶血环露滴状 变异耐药性 抗原葡萄球菌抗原 (SPA) c抗原,表面抗原(含 M蛋白) 分类金黄色,表皮,腐 生 甲型,乙型,丙型(据 溶血现象);19个血清 型(据C抗原) 84个血清型 抵抗力较强,耐药较弱,首选青霉素较弱极弱,耐药 致病物质凝固酶,葡萄球菌 溶血素,沙白细胞 素,肠毒素,表皮 溶解毒素,毒性休 克综合征1 脂磷壁酸(LPA),M 蛋白,侵袭性酶,链球 菌溶血素(SLO,SLS) 致热外毒素 荚膜(最主要),溶血 素,紫点形成因子,神 经氨酸酶 菌毛,荚膜,内毒素 疾病化脓性炎症,食物 中毒,烫伤样皮肤 综合征,毒性休克 综合征,葡萄球菌 性肠炎 甲型,化脓性感染,猩 红热,丹毒,蜂窝组织 炎,急性肾小球肾炎, 风湿热,毒性休克样综 合征;乙型,新生儿败 血症,脑膜炎 大叶性肺炎,支气管肺 炎,中耳炎,脑膜炎 流行性脑脊髓炎 血症败血症,脓毒血症败血症败血症菌血症 免疫不强无交叉免疫,可反复感 染 特异性免疫较强

生化反 应 备注不耐高温传染源 2 淋球奈氏菌大肠埃希菌伤寒沙门菌霍乱弧菌形状椭圆形、肾形杆状杆状弯曲型排列成双 染色 特殊结构有夹膜及菌毛 有周鞭毛、普通菌毛、性 菌毛,有荚膜 有周鞭毛,多有菌毛单端有鞭毛,菌毛 营养巧克力营养基普通普通碱性蛋白胨水 气体5%-20%CO2兼性厌氧,氧充足更好 温度35-36 PH8.9菌落半透明,光滑有些有溶血环 变异 耐药性H-O,S-R,V-W,位相变异 抗原O、K、H O,K O,H 分类ETEC(产毒性)EHEC(出 血性),EIEC(侵袭性) EPEC(致病性)EAggEC (聚集性) 痢疾致贺菌,福氏致贺 菌,鲍氏致贺菌。宋内 致贺菌 O1群,不典型O1 群,非O1群,血清 型 抵抗力弱较其他肠道杆菌强不强 致病物质菌毛 定居因子(菌毛)肠毒素 (LT,ST),细胞毒素, 脂多糖,K抗原,载铁体 内毒素,外毒素 鞭毛,菌毛霍乱肠毒 素

医学微生物学复习题

1、疯牛病的病原体是(e) A、细菌 B、病毒C、类病毒D、卫星病毒 E、朊粒 2、革兰阳性菌细胞壁特有的成分是(b) A、脂蛋白B、磷壁酸C、核酸D、脂多糖E、肽聚糖 3、a革兰阴性菌细胞壁特有的成分是(a) A、外膜B、脂磷壁酸C、核酸D、壁磷壁酸E、肽聚糖 4、e质粒是细菌的(e) A、核质DNAB、胞质中核蛋白体C、异染颗粒 D、中介体 E、核质外(或染色体外)DNA 5、下列关于细菌芽胞的论述哪一项是错误的(b) A、是某些细菌体内形成的圆形或卵圆形小体 B、是能形成芽胞细菌的一种繁殖方式 C、具有多层膜结构 D、对理化因素抵抗力强 E、芽胞是细菌的一种休眠状态 6、关于革兰染色操作步骤,下列哪项是错误的(d) A、标本涂片干燥固定 B、结晶紫初染 C、碘液媒染 D、75%酒精脱色 E、稀释复红复染 7、保存病毒最适温度是 (b) A.37℃ B.4℃ C.室温 D.-20℃ E.-70℃ 8、细菌毒素中,毒性最强的是 (d) A.破伤风痉挛毒素B.霍乱肠毒素 C.白喉外毒素 D.肉毒毒素 E.金黄色葡萄球菌肠毒素 9、类毒素是(b) A.抗毒素经甲醛处理后的物质B..内毒素经甲醛

处理后脱毒而保持抗原性的物质C.外毒素经甲醛处理后脱毒而保持抗原性的物质D.细菌经甲醛处理后的物质

E.外毒素经甲醛处理后脱毒并改变了抗原性的物质 10、下列哪种不属于垂直感染病原体传播的方式(e)A.胎盘B.生殖细胞C.产道D.产后哺乳E.血液 11、麻疹病毒感染引起的亚急性硬化性全脑炎属于(c) A.急性感染B.慢性感染C.潜伏感染D.慢发病毒感染E.急性病毒感染的迟发并发症 12、有关于潜伏感染叙述正确的是(c) A.血中可持续检测出病毒B.慢性发展的进行性加重,直至死亡C.原发感染后,潜伏在机体某些组织,一定条件激活而致疾病复发 D.潜伏期短、发病急E.病后可获得特异性免疫力 13、单纯疱疹病毒Ⅱ型可引起(a)A宫颈癌B.Kaposi肉瘤C.原发性肝癌D.B细胞淋巴瘤E.鼻咽癌 14、6个月以内的婴儿较少患病毒性传染病是由于来自母体的(b)A.IgA B.IgG C.IgE D.IgM E. IgD 15、条件致病菌是:(b)A.正常时不存在于机体内的非致病菌B.正常时存在于机体内而不引起疾病的细菌C.从外部侵入,但尚未引起疾病的病原菌D.恢复期病人排泄的病原菌E.以上都不是 16、关于正常菌群的叙述,正确的是(d)A.一般情况下,正常菌群对人体有益无害B..肠道内的双歧杆菌产生大量的碱性物质,能拮抗肠道细菌感染 C.口腔中的正常菌群主要为需氧菌,少数为厌氧菌D..即使是健康胎儿,也携带正常菌群E.在人的一生中,正常菌群的种类和数量保持稳定

污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理 国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。因此,城市污水处理厂一般不推荐采用。从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步 实现工业化流程。目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。 ?生物脱氮原理 生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。 由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件: 硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。 反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH条件。 生物脱氮过程如图5—1所示。 反硝化细菌 +有机物(氨化作用)(硝化作用)(反硝化作用)

?生物除磷原理 磷常以磷酸盐(H 2PO 4 -、HPO 4 2-和H 2 PO 4 3-)、聚磷酸盐和有机磷的形式存在于废水中,生物除 磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。 生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。有报道称,当泥龄为30d时,除磷率为40%,泥龄为17d时,除磷率为50%,而当泥龄降至5d时,除磷率达到87%。 大量的试验观测资料已经完全证实,再说横无除磷工艺中,经过厌氧释放磷酸盐的活性污泥,在好氧状态下有很强的吸磷能力,也就是说,磷的厌氧释放是好氧吸磷和除磷的前提,但并非所有磷的厌氧释放都能增强污泥的好氧吸磷,磷的厌氧释放可以分为两部分:有效释放和无效释放,有效释放是指磷被释放的同时,有机物被吸收到细胞内,并在细胞内储存,即磷的释放是有机物吸收转化这一耗能过程的偶联过程。无效释放则不伴随有机物的吸收和储存,内源损耗,PH变化,毒物作用引起的磷的释放均属无效释放。 在除磷系统的厌氧区中,含聚磷菌的会留污泥与污水混合后,在初始阶段出现磷的有效释放,随着时间的延长,污水中的易降解有机物被耗完以后,虽然吸收和储存有机物的过程基本上已经停止,但微生物为了维持基础生命活动,仍将不断分解聚磷,并把分解产物(磷)释放出来,虽然此时释磷总量不断提高,但单位释磷量所产生吸磷能力随无效释放量的加大而降低。一般来说,污水污泥混合液经过2小时厌氧后,磷的释放已经甚微,在有效释放过程中,磷的释放量与有机物的转化量之间存在着良好的相关性,磷的厌氧释放可使污泥的好氧吸磷能力大大提高,每厌氧释放1mgP,在好氧条件下可吸收2.0~2.24mgP,厌氧时间加长,无效释放逐渐增加,平均厌氧释放1mgP,所产生的好氧吸磷能力降至1mgP以下,甚至达到0.5mgP。因此,生物除磷并非厌氧时间越长越好,同时在运行管理中要尽量避免PH的冲击,否则除磷能

外文文献及翻译

外文文献及翻译 题目:利用固定化过氧化氢酶 回收纺织品漂染的废水 专业食品科学与工程 学生姓名梁金龙 班级B食品072 学号0710308119 指导教师郑清

利用固定化过氧化氢酶回收纺织品漂染的废水 Silgia A. Costa1, Tzanko Tzanov1, Filipa Carneiro1, Georg M. Gübitz2 &Artur Cavaco-Paulo1,? 1纺织工程系, 米尼奥大学, 4810吉马尔, 葡萄牙 2环境生物技术系, 格拉茨技术大学, 8010格拉茨, 奥地利 ?作者联系方式(Fax: +351 253 510293; E-mail: artur@det.uminho.pt) 关键词:过氧化氢酶的固定化,酶稳定,过氧化氢,纺织印染 摘要 过氧化氢酶固定在氧化铝载体上并用戊二醛交联,在再循环塔反应器和CSTR反应器中研究贮存稳定性,温度和pH值对酶的活性。固定化酶的在的活性维持在44%,pH值11(30?C),对照组是活性为90%,pH值7(80?C),过氧化氢酶固定化的半衰期时间被提高到2小时(pH12,60?C)。用过氧化氢漂白织物后,洗涤过程中的残留水被固定化酶处理,可以用于再次印染时,记录实验数据。 1 序言 由于新的法规的出台,从生态经济的角度来看(Dickinson1984年),对于纺织行业中存在的成本和剩余水域的污染问题,必须给予更多的关注。过氧化氢是一种漂白剂,广泛应用于工业纺织工艺(Spiro & Griffith1997年)。在去除H2O2时,会消耗大量的水和能源(Weck 1991, St?hr & Petry 1995),以避免对氧气敏感的染料(Jensen 2000)产生后续问题。过氧化氢酶可用于降低过氧化氢的含量(Vasudevan & Thakur 1994, Emerson et al. 1996),从而减少水分消耗或方便回收印染洗涤液。过氧化氢酶的使用主要问题出在漂白时温度和清洗液碱度过高。以前,我们试图通过筛选新的嗜热嗜碱的微生物(Paar et al. 2001)或使用不同的酶稳定剂(Costa et al. 2001)来解决此问题。但是染料与蛋白质之间的潜在相互作用(Tzanov et al. 2001a, b)表明,可溶性过氧化氢酶的使用是不恰当的。固定化过氧化氢酶的使用还有一种选择(Costa et al. 2001, Amar et al. 2000)。在这项研究中,我们对氧化铝进行共价固定并使用戊二醛作为交联剂,这种方法在商业中得到验证。本项研究的目的就是探讨过氧化氢酶的固定化动力学,及其稳定性和工艺条件,这将使我们能够应用此系统,以处理可能被用于清洗染色的反复使用的酒。 2 材料和方法 2.1 酶 Terminox(EC1.11.1.6),50L以上,由AQUITEX- Maia提供,葡萄牙产。 2.2 过氧化氢酶的固定化 取Al2O3颗粒或薄片(Aldrich),直径分别为3和7毫米,在45摄氏度下,先经浓度4%的γ-氨丙基三乙氧基硅烷(Sigma)烷基化,再放入丙酮中浸泡24小时。用蒸馏水洗涤硅烷化载体后,放入浓度为2%戊二醛水溶液中室温下浸泡2小时(Aldrich),重复清洗一次并在60?C下干燥1小时。取五克的烷基化载体,室温24?C下浸泡在25毫升粗酶制剂中(Costa et al. 2001)。得出,每克Al2O3

医学微生物学简答题(详细答案

微生物根据大小、结构、化学组成分为哪3大类微生物?各大类微生物有何特点?包裹哪些种类的微生物? 1.原核细胞型微生物:仅仅只有原始的核质,无核膜、核仁,缺乏完整的细菌器,只有核糖体,DNA和RNA同时存在。它包括细菌、放线菌、支原体、衣原体、立克次体和螺旋体。 2.真核细胞型微生物:细胞核的分化程度高,有核膜和核仁,胞质内细胞器完整。如真菌属于此类。 3.非细胞型微生物:是最小的一类微生物,结构简单,只有一种核酸(DNA或RNA)存在。缺乏完整的酶系统,必须要在活细胞内增殖。如病毒属于此类。 G+菌与G-菌细胞壁的异同点? 肽聚糖组成由聚糖骨架、四肽侧链、五肽交联桥构成坚韧三维立体结构由聚糖骨架、四肽侧链构成疏松二维平面网络结构 细胞壁强度较坚韧较疏松 细胞壁厚度 20~80nm 10~15nm 肽聚糖层数多,可达50层少,1~2层 脂类含量少,1%~4% 多,11%~22% 磷壁酸有无 外膜无有 细胞壁共同的主要功能 (1)维持形态、抵抗低渗作用,保持菌体完整 (2)屏障作用

(3)物质交换作用 (4)抗原性 (5)致病作用 (6)细胞分裂中的作用 细菌的特殊结构有哪些?有何功能及意义? 1.荚膜功能:①抗吞噬②抗有害物质损伤③抗干燥。 2.鞭毛功能:是细菌的运动器官。 3.菌毛功能:①普通菌毛:与细菌粘附有关。②性菌毛:具有传递遗传物质作用。 4.芽胞功能:芽胞对理化因素(热、干燥、辐射、化学消毒剂等)具有高强度的抵抗力。此外,当芽胞成为繁殖体后,能迅速大量繁殖而致病。 细菌的生长繁殖分为几个时期,每个时期的特点是什么,有什么意义? 细菌群体的生长繁殖:迟缓期、对数期、稳定期、衰亡期 特点 生长时期迟缓期对数期稳定期衰亡期 维持时间 1-4h 4-8h 10h 活菌数量恒定,增加很少对数增长维持平衡逐步减少 生长速率零最大速率速率降低死亡速率增加 细胞代谢非常活跃活性高而稳定活性稳定活性降低衰老 意义

医学微生物学重点复习资料

医学微生物学复习资料汇总 绪论 微生物:存在于自然界的一大群体形微小、结构简单、肉眼直接看不见,必须借助光学显微镜或电子显微镜放大数百倍、数千倍。甚至数万倍才能观察 到的微小生物。 3、病原微生物:少数具有致病性,能引起人类、植物病害的微生物。 机会致病性微生物:在正常情况下不致病,只有在特定情况下导致疾病的微生物。

4,郭霍法则:①特殊的病原菌应在同一种疾病中查见,在健康人中不存在;②该特殊病原菌能被分离培养得纯种;③该纯培养物接种至易感动物,能产生同样病症;④自人工感染的实验动物体内能重新分离得到该病原菌纯培养。 5、免疫学:㈠主动免疫;㈡被动免疫。 第一篇细菌学 第一章细菌的形态与结构 第一节细菌的大小与形态 1、观察细菌常采用光学显微镜,一般以微米为单位。 2、按细菌外形可分为: ①球菌(双球菌、链球菌、葡萄球菌、四联球菌、八叠球菌) ②杆菌(链杆菌、棒状杆菌、球杆菌、分枝杆菌、双歧杆菌) ③螺形菌(弧菌、螺菌、螺杆菌) 第二节细菌的结构 1、基本结构:细胞壁、细胞膜、细胞质、核质 特殊结构:荚膜、鞭毛、菌毛、芽胞 2、革兰阳性菌(G+):显紫色;革兰阴性菌(G-):显红色。 3、

细胞壁结构革兰阳性菌G+革兰阴性菌G- 肽聚糖组成由聚糖骨架、四肽侧链、五肽交 联桥构成坚韧三维立体结构 由聚糖骨架、四肽侧链构成疏 松二维平面网络结构 肽聚糖厚度20~80nm 10~15nm 肽聚糖层数可达50层仅1~2层 肽聚糖含量占胞壁干重50~80% 仅占胞壁干重5~20% 磷壁酸有无 外膜无有 4、G-菌的外膜{脂蛋白、脂多糖(LPS)→【脂质A,核心多糖,特异多糖】、脂质双层、} 脂多糖(LPS):即G-菌的内毒素。LPS是G-菌的重要致病物质,使白细胞增多,直至休克死亡;另一方面,LPS也可增强机体非特异性抵抗力,并有抗肿瘤等有益作用。 ①脂质A:内毒素的毒性和生物学活性的主要成分,无种属特异性,不同细菌的脂质A骨架基本一致,故不同细菌产生的内毒素的毒性作用均相似。 ②核心多糖:有属特异性,位于脂质A的外层。 ③特意多糖:即G-菌的菌体抗原(O抗原),是脂多糖的最外层。 5、细胞壁的功能:维持菌体固有的形态,并保护细菌抵抗低渗环境。 G-菌的外膜是一种有效的屏障结构,使细菌不易受到机体的体液杀菌物质、肠道的胆盐及消化酶等的作用。 6、细菌细胞壁缺陷型(细菌L型):细菌细胞壁的肽聚糖结构受到理化或生物因素的直接破坏或合成被抑制,这种细菌壁受损的细菌在高渗环境下仍可存活者称为细菌细胞壁缺陷型。 原生质体:G+菌细胞壁缺失后,原生质层仅被一层细胞膜包住 原生质球:G-菌肽聚糖层受损后尚有外膜保护 ■细菌L型的诱发因素,如:溶菌酶,青霉素,溶葡萄球菌素,胆汁,抗体,补体等。 溶菌酶:能裂解肽聚糖中N-乙酰葡萄胺和N-乙酰胞壁酸之间的β-1,4糖苷键,破坏聚糖骨架,引起细菌裂解。 青霉素:能与细菌竞争合成肽聚糖过程中所需的转肽酶,抑制四肽侧链上D-丙氨酸与五肽桥间的联结,使细菌不能合成完整的肽聚糖,在一般渗透压

微生物翻译1

微生物翻译 201111202919尹炫植 Synopsis Microbiology is the study of microorganisms, which are tiny organisms too small to be seen without the aid of a microscope. The family of microorganisms includes prokaryotes, eukaryotes, and viruses. In general, microorganisms are small, simple, organisms that grow rapidly. Prokaryotes are single-cell organisms, such as bacteria, that have no real nucleus and do not contain membrane-enclosed organelles. Eukaryotes, such as algae, fungi and protozoa, have a real nucleus and membrane-enclosed organelles. Viruses are tiny, complex molecules composed of protein and nucleic acid, that cannot replicate independently off their host cells. The study of microbiology provides an excellent foundation for understanding cell function in higher organisms. Knowledge of microbiology is necessary in problem-solving and dealing with practical issues in medicine, agriculture, industry, and environmental studies. In this chapter we will introduce the study of microbiology as a scientific discipline and review the major historical developments in the field. The chapter concludes with a discussion of the important role that microbiology plays in the life sciences. 微生物学是研究不借助显微镜看不到的微小的生物学科。微生物的家庭中包括原核生物、真核生物和病毒。一般来说,微生物微小,简单,生长迅速。原核生物是单细胞生物,没有真正的细胞核和不含有细胞膜的细胞器,如细菌。真核生物, 有一个真正的细胞核和细胞膜封闭的细胞器,如藻类、真菌和原生动物。病毒是由微小的,复杂的蛋白质与核酸分子组成,不能独立于他们的宿主细胞生存,复制。 微生物的研究为高等生物细胞的功能的理解提供了一个良好的基础。微生物学的知识在解决医学、农业、工业、和环境研究方面问题和处理实际问题过程中是必要的。 在这一章中, 我们将微生物学作为一门学科介绍学习并复习这一领域的主 要历史发展。本章结尾讨论微生物学在生命科学中的重要作用。

微生物学第一章

第一章原核生物的形态、构造和功能 选择题(每题1分,共60题,60分) 1.芽孢细菌的繁殖是依靠( B )正确 A. 芽孢 B. 裂殖 C. 出芽 D. 藻殖段 2.放线菌的菌体呈分枝丝状体, 因此它是一种( C )正确 A. 多细胞的真核微生物 B. 单细胞真核微生物 … C. 多核的原核微生物 D. 无壁的原核微生物 3.自养细菌中固定CO2的场所是( B )正确 A. 类囊体 B. 羧酶体 C. 异染粒 D. 淀粉粒 4.原核生物( C )。错误正确答案:D A. 有细胞核 B. 有有丝分裂 * C. 有线粒体 D. 有细胞壁 5.没有细胞壁的原核微生物是( B )。正确 A. 立克次氏体 B. 支原体 C. 衣原体 D. 螺旋体 6.中介体是由细菌哪种结构衍生的( B )正确 A.细胞壁 B.细胞膜 ? C.细胞浆 D.核质 7.属于细菌细胞基本结构的为( B )正确 A.荚膜

C.芽孢 D.鞭毛 8.微生物在固体斜面上生长的群体称( B )正确 A.菌落 B.菌苔 : C.菌膜 D.凝絮 9.革兰氏染色的关键操作步骤是( C )正确 A. 结晶紫染色 B. 碘液固定 C. 酒精脱色 D. 复染 10.下列微生物中,( A )属于革兰氏阴性菌。正确 A. 大肠杆菌 B. 金黄色葡萄球菌 ~ C. 巨大芽孢杆菌 D. 肺炎双球菌 11.下列微生物中能通过细菌滤器,并营专性寄生的是:( C )正确 A. 苏云金杆菌 B. 蛭弧菌 C. 衣原体 D. 类菌体 12.在下列原核生物分类中,属古细菌类的细菌是:( D )正确 A. 大肠杆菌 B. 枝原体 % C. 放线菌 D. 产甲烷细菌 13.在放线菌发育过程中,吸收水分和营养的器官为( A )正确 A.基内菌丝 B.气生菌丝 C.孢子丝 D.孢子 14.大肠杆菌经革兰氏染色后,菌体应呈( B )正确 A.无色

医学微生物学考试试卷(A)(附答案)

医学微生物学考试试卷(A)(附答案) (临床医学本科、影像医学本科、中医药学本科、实验技术本科、预防医学本科)班级学号姓名 注意事项: 1.在试卷上写上姓名、班级。在答题卡上填上学号,将相应的数字涂黑,并写上班级、姓名和试卷类型(A卷/B卷)。交卷时必须将答题卡与试卷一起上交,否则以零分计算! 2.本份试卷由基础知识题和病例分析题组成,共150个选择题,请按题目要求,在备选答案中选择一个最佳答案,并在答题卡上将相应的字母涂黑,做在试卷上无效。 3.考试时请严格遵守考场纪律,原则上不允许上厕所。 第一部分、A型选择题 (由一题干和5个备选答案组成,请选出一个最佳答案。共90个选择题) 1.哪种疾病的病原体属于非细胞型微生物: A.疯牛病 B.梅毒 C.结核病 D.沙眼 E.体癣 2.细菌属于原核细胞型微生物的主要依据是: A.单细胞 B.二分裂方式繁殖

C.对抗生素敏感 D.有由肽聚糖组成的细胞壁 E.仅有原始核结构,无核膜 3.革兰阳性菌细胞壁: A.肽聚糖含量少 B.缺乏五肽交联桥 C.对溶菌酶敏感 D.所含脂多糖与致病性有关 E.有蛋白糖脂外膜 4.青霉素杀菌机制是: A.干扰细胞壁的合成 B.与核糖体50S 亚基结合,干扰蛋白质合成 C.影响核酸复制 D.与核糖体30S亚基结合,干扰蛋白质合成 E.损伤细胞膜 5.有关“细菌鞭毛”的叙述,哪一项是错误的: A.与细菌的运动能力有关 B.许多革兰阳性菌和阴性菌均有鞭毛 C.在普通光学显微镜下不能直接观察到 D.可用于细菌的鉴定

E.将细菌接种在固体培养中有助于鉴别细菌有无鞭毛 6.有关“芽胞”的叙述,错误的是: A.革兰阳性菌和阴性菌均可产生 B.不直接引起疾病 C.对热有强大的抵抗力 D.代谢不活跃 E.通常在细菌处于不利环境下形成 7.用普通光学显微镜油镜观察细菌形态时,总放大倍数为: 倍倍 倍~1000倍 倍 8.脑膜炎奈瑟菌和肺炎链球菌经结晶紫初染、碘液媒染、95%乙醇脱色后,菌体分别呈: A.红色和紫色 B.紫色和紫色 C.紫色和无色 D.无色和无色 E.无色和紫色 9.革兰染色法是最常用的一种染色法,其实际意义不包括: A.鉴别细菌 B.初选抗菌药物 C.了解细菌致病性 D.了解细菌的染色性

污水脱氮除磷

中小城镇污水处理厂生物除磷脱氮工艺的选择 一概述 改革开放以来,在我国的大中型城市中,建设了一批污水处理设施,对于保护大中型城市的环境,治理水污染起到了很大作用。随着我国城乡经济的发展,人民生活水平的显著提高,我国农村城市化的速度将大大加快,大量的小城镇将迅速兴起,预计到本世纪末,全国设市城市将达1200个左右,建制镇25000~3O000个左右,全国城镇人口达6.8亿左右,城市化水平约为45%,其中小城镇人口所占比例达65%左右。从发展眼光看,今后我国的大部分人口将生活在中小城镇。 目前全国共有1700O个建制镇,绝大多数没有排水和污水处理设施,而且,由于二十几年来,乡镇企业的蓬勃发展,造成一些中小城镇尤其是经济比较发达的中小城镇,污染严重,已经影响到人民的生活和健康。 从另一方面讲,中小城镇和大中城市在水系上是相通的,而且往往处于大中城市的上游,中小城镇的污水治理工作做不好,大中城市水环境的质量也不会有明显改善,因此,中小城市的环境保护问题越来越引起人们的重视。针对目前的情况,国家提出至2010年我国污水处理率要达到4O%,因此,未来一段时间内我国将会集中在中小城镇建设一大批污水处理厂,这些污水处理厂的规模,小的只有每日几十吨,大的每日几万吨,因此在规模上和大型污水处理厂相差较大,而且,由于这些中小城镇和大中城市经济发展水平、排水体制,基础资料,融资渠道有很大不同,因此以往建设大型污水处理厂的经验只有借鉴的意义,不可能也不应该把大中城市的污水治理工艺、技术装备等搬用到城镇级的污水处理厂中去,否则目前在大中城市中出现的“建的起,用不起”的局面将会在中、小城镇更加强烈的表现出来,甚至会演变成“既建不起,更用不起”的局面,因此探索适合中小城镇的经济实用的污水处理工艺,以较少的投资建成污水处理厂,以较低的运行费用运转污水处理厂,达到消除污染、保护环境的目的是摆在给排水工作者面前的一个挑战。 考虑到1998年1月1日之后,已经开始实行《污水排放综合标准》(GB8978-1996),因此中小城镇的污水处理厂在选择处理工艺时都要考虑除磷脱氮,本文谨就适合于中小城镇城市污水处理厂的生物除磷脱氮工艺谈一些粗浅的看法,供大家参考,不妥之处请指正。 二可供选择的工艺 各种除磷脱氮工艺一般都是除碳、除氮、除磷三种流程的有机组合,得利满公司提出了“SARAOE”概念,来描述用于除磷脱氮的不同区域。 1.选择区(Selectorzone) 设置选择区的目的主要是为了避免污泥膨胀。 2.厌氧区(Anaerobiczone) 设置厌氧区是为了提供一个使聚磷菌释放磷的环境,为后续的好氧吸磷创造条件。 3.再活化区(Reactivationzone) 设置再活化区用于再活化回流污泥。 4.缺氧区(Anoxiczone) 设置缺氧区,提供一个缺氧环境,使硝酸盐氮被还原为氮气。 5.好氧区(Oxidationzone) 该区为主反应区,在该反应区内完成碳的氧化和氨氮的硝化。 6.内源呼吸区(Endogenouszono) 在该区内进一步完成硝酸盐氮的反硝化。 在实际的工程设计中,根据受纳水体的要求和其它一些实际情况,生物除磷脱氮工艺可以分成以下几个层次: 1、去除有机物、氨氮和硝酸盐氮,因对总氮无要求,可以采用生物硝化工艺,生物硝化工艺与传统活

医学微生物学名词解释总结

第一二章细菌的形态结构与生理 1、微生物:(P1)存在于自然界形体微小,数量繁多,肉眼看不见,必须借 助与光学显微镜或电子显微镜放大数百倍甚至上万呗,才能观察的一群微小低等生物体。 2、微生物学:(P2)用以研究微生物的分布、形态结构、生命活动(包括生 理代谢、生长繁殖)、遗传与变异、在自然界的分布与环境相互作用以及控制他们的一门科学 3、医学微生物学:(P3)主要研究与人类医学有关的病原微生物的生物学症 状、对人体感染和致病的机理、特异性诊断方法以及预防和治疗感染性疾病的措施,以控制甚至消灭此类疾病为的目的的一门科学 4、代时:细菌分裂倍增的必须时间 5、细胞壁:包被于细菌细胞膜外的坚韧而富有弹性的膜状结构 6、肽聚糖或粘肽:原核细胞型微生物细胞壁的特有成分,主要由聚糖骨架、 四肽侧链及肽链或肽键间交联桥构成 7、脂多糖:(P13)LPS 革兰阴性菌细胞壁外膜伸出的特殊结构,即细菌内 毒素。由类脂A、核心多糖和特异多糖3个部分组成 8、$ 9、质粒:(P15)是细菌染色体外的遗传物质,双链闭合环状DNA结构,带 有遗传信息,具有自我复制功能。可使细菌或的某些特定形状,如耐药、毒力等 10、荚膜:(P16)某些细菌能分泌粘液状物质包围与细胞壁外,形成一层和 菌体界限分明、不易着色的透明圈。主要由多糖组成,少数细菌为多肽。 其主要功能是抗吞噬,并有抗原性 11、鞭毛:(P16)从细菌细胞膜伸出于菌体外的细长弯曲的蛋白丝状物,是 细菌的运动器官,见于革兰阴性菌、弧菌和螺菌。 12、菌毛:(P17)是存在于细菌表面,由蛋白质组成的纤细、短而直的毛状 结构,只有用电子显微镜才能那个观察,多见于革兰阴性菌 13、芽孢:(P18)那个环境条件下,某些革兰阳性菌能在菌体内形成一个折 光性很强的不易着色小题,成为内生孢子,简称芽孢 14、细菌L型:(P14)即细菌缺陷型。有些细菌在某些体内外环境及抗生素 等作用下,可部分或全部失去细胞壁。 15、磷壁酸:(P12)是由核糖醇或甘油残基经磷酸二酯键互相连接而成的多 聚物。为大多数革兰阳性菌细胞壁的特有成分。有两种,即壁磷壁酸和膜磷壁酸 16、细菌素:(P25)是某些细菌菌株产生的一类具有抗菌作用的蛋白质或蛋 白质与脂多糖的复合物 17、/ 18、专性需氧菌:(P 23)此类细菌具有较完善的呼吸酶系统,需要分子氧作 为受氢体,只能在有氧的情况下生长繁殖。 19、热原质:(P25)是细菌产生的一种脂多糖,将它注入人体或动物体内可 引起发热反应 20、专性厌氧菌:(P23)此类细菌缺乏完善的呼吸酶系统,只能在无氧条件 下生长繁殖 21、抗生素:(P25)为某些微生物代谢过程中产生的一类能抑制或杀死某些

相关文档
相关文档 最新文档