文档库 最新最全的文档下载
当前位置:文档库 › CREO2.0齿轮建模

CREO2.0齿轮建模

CREO2.0齿轮建模
CREO2.0齿轮建模

基于CREO2.0渐开线变位圆柱直齿轮的参数化设计

第一步: 设置参数

1、启动软件,新建文件,起名GEAR,取消“使用缺省模版”,选择

“mmns-par-solid”确定。

2、工具-参数-添加参数-如下图添加。

参数字母含义如下:

M-模数Z-齿数ANG-压力角B-齿轮厚度DA-齿顶圆直径

DF-齿根圆直径HAX-定义齿顶高系数CX-定义齿顶系数X-变位系数

第二步:设置圆柱齿轮的基本尺寸关系

1、工具-关系-输入如下关系:

2、以FRONT面为草绘面进行草绘—绘制四个圆。

3、工具-关系-输入以下关系:

确定后,按再生按钮。

第三步:绘制渐开线齿轮轮廓曲线

1、点击曲线-来自方程的曲线-选择笛卡尔坐标-进入程序编辑器

2、在程序编辑器输入以下方程:

3、编写完成后保存退出-在绘图窗口就产生一条曲线。

4、以RIGHT面和TOP面创建基准轴A-1;以分度圆和曲线为参照

创建参考点PNT0;以点PNT0和中心轴A-1为基准创建平面

DTM1;以DTM1平面为基准,以中心坐标为轴创建齿廓中心面DTM2。

5、打开关系窗口输入:D12=360/(4*Z),按再生按钮。

6、以DTM2为中心创建镜像特征,生成对称的渐开线,创建齿廓。

第四步:绘制渐开线齿轮单齿实体

1、拉伸实体:在使用边上选取“环”,选取最里面的圆(齿根圆直

径),完成草图,拉伸长度出始为15.在关系窗口输入:D13=B。

按再生按钮,就生成圆柱齿轮的齿根圆实体。

2、拉伸实体-创建齿轮的齿廓。初始值设为15.

3、在关系窗口输入以下内容,按再生,生成实体。

第五步:创建渐开线变位圆柱齿轮实体模型

1、选择拉伸2-点击复制-粘贴-选择性粘贴-如下图勾选,确定进入

“选择性粘贴”的窗口。选择A-1作为旋转轴,在“变换”菜

单下设置旋转的初始旋转角为30°,如图所示。按确定完成。

2、打开关系窗口,输入以下内容:D16=360/Z,确定后,按再生,

生成实体。点选移动副本1,以中心轴A-1为中心进行矩阵,

其余皆为默认,在关系窗口输入,确定后再生,最终生成实体如图。

第六步:输入新的参数,观察渐开线变位圆柱齿轮实体模型变化:

PROE中的图层之一___零件模式下的层

我们可以通过图层来控制其显示,来达到快速选择的目的,把图层用好了,可以解决实际工作中的一些问题。那么PROE的层貌似比较复杂,其实不然,只要了解了其中的奥妙,就能为实际工作提高不少效率。 对于图层,在不同的模式下会有不同的情况,零件模式下有零件的图层,组件有组件的图层,工程图有工程图的图层,那么我们现在分别讲讲每个模式下的图层。 首先说下零件模式下的图层,零件模式下首先是默认层,那么默认层是我们根据个人习惯及建模情况而将特征进行分类,比如基准面层,坐标系层等等 可以通过增加默认层的操作对特征进行分类,如下图

我们可以在建模过程中,随时增加默认层,但是值得注意的是,新增加的默认层只对默认图层增加以后的特征有效,无法默认把之前的特征加入到图层内,需要手动增加到改图层内

以上讲了如何添加默认层来对特征进行分类,发现特征层的图标与上面的图标不一致,那是为什么呢?又代表了什么意义呢?我们接找往下看 PROE中主要提供了上面那么多种类型的图层,他们分别代表什么意思呢? 先说隐藏项目,对于隐藏项目相信各位在平时工作中常常使用,需要注意的是,你每次将某图层隐藏或者反隐藏后,必须要保存状态,要不你即使保存了模型,但是每次打开后,层还是未隐藏或者未显示。 简单层就是我们普通新建的层,可以通过手动方式增加或者排除项目,在增加或者排除层项目时,学会使用选择过滤器将会有事半功倍的效果。

上图中,层ID是用来干什么的呢?很多人不清楚,我们在后面关于数据转换中的层的教程中再说,关于数据转换中的图层。此ID是用来数据转换中的标识的。 关于缺省层,我们一开始已经讲过,所以现在我们也知道了,为什么刚才的那个默认层图标会不一样。 接下来我们来看一下规则层,通过名字我们很显然知道,是通过规则来定义的层,那么居然是用规则来定义的层,那么都有些什么规则呢? 对于嵌套层,其实也就是相当于在层中建层,也就是层中包括层,在组件中非常常见。因为组件的层是分级的,而在零件中也可以新建嵌套的层,嵌套的层也是存在父子关系的。我们也叫创建一个层的子层,我们来看下应该如何操作。 对于这样的操作有两种方式 1、在层中的内容中添加层,选择层的时候必须要在层树中选择 2、可以通过复制粘贴来完成嵌套层的操作

第三章 产品建模技术

第三章机械CAD/CAM建模技术 ?3.1 几何建模概述 ?3.2 三维几何建模技术 ?3.3 特征建模技术 ?3.4 产品结构建模

3.1 几何建模概述 一、机械CAD/CAM几何建模概述 1. 几何建模的概念 CAD的几何建模(Geometry Modehelling):是以计算机能够理解的方式,对实体进行确切的定义,赋予一定的数学描述,再以一定的数据结构来描述几何实体,从而在计算机内部构造一个实体模型。 包含:几何信息、拓补信息和其它属性数据

几何建模的方法:将对实体的描述和表达建立在几何信息和拓扑信息的基础上。 建模:把人们对的三维事物的认识描述到计算机内部,让计算机理解的过程大致可以分为三个阶段,即几何建模、产品建模和产品结构建模。

2. 几何建模技术的发展 线框模型(Wireframe Model) 20世纪60年代中期表面模型(Surface Model) 20世纪70年代中期实体模型(Solid Model) 20世纪70年代后期

几何建模的发展初期(线框建模时代),CAD技术主要用于计算机绘图。表面(曲面)建模和实体建模的出现,使用户基于统一的产品的数字化模型可生成工程分析的工程模型和供数控加工的工艺模型,实现CAD/CAE/CAM集成化。 产品结构建模是近年来出现的一种面向装配的建模技术,它包含了产品从零件、部件到总成的完整信息。

二、机械CAD/CAM几何建模技术的基本知识1)几何信息和拓扑信息 1.几何信息:指物体在空间的形状、尺寸及位置的描述。 用数学表达式来描述。但是数学表达式的几何元素是无界的,在实际应用中需要把数学表达式和边界条件相结合。 几何元素:点、直线或曲线、平面或曲面 组成几何模型的主要部分,可用合适的数据结构进行组织并存储在计算机内,供CAD/CAM使用。

proe零件建模层设置

1、什么是层、层树 层是使你能够用来组织特征、组件中的零件甚至其他层的容器对象。也就是说,你可以将项目(诸如特征、基准平面、组件中的元件甚至是其他的图层)放到一个单独的图层里面来,从而可以对这些项目进行整体操作,如:同时选中这些项目、隐藏层中的项目,简化几何选取等等。 可以根据需要创建任意数量的层,并且可将多个项目与层相关联。通过层树可以对层进行操作。 打开层树的方法: 在主工具栏单击“层”按钮,即可打开层树,在此单击该按钮关闭层树。 在模型树等不单击“显示”——“层树” 在主菜单选择“视图”—“层” 注意:"层树"(Layer Tree) 命令仅在将配置选项 floating_layer_tree 设置为 no 时可用。 "层树"中会使用以下符号,用以指示与项目有关的层的类型: 2、层的用途 层最常见的用途是从模型管理的角度来考虑的,可以对层中的项目执行整体操作,常用来隐藏设计中不再使用的基准特征、曲面特征等以保持截面的清晰和整洁。 对层中的项目最常见的操做有两种: 2.1隐藏和取消隐藏层 可以隐藏或取消隐藏零件和组件中的层。如下图所示,当隐藏基准轴所在的层后,在模型中将看不到任何基准轴,即使是将基准轴显示的开关打开。

隐藏层中的项目看上去似乎和隐含同样的项目类似,但实际上有很大去区别?隐含项目时,是将该项目从模型的再生循环中移除,而隐藏项目仅仅是将项目从图形窗口中移除 ?隐藏的项目仍包括在PROE计算(如质量属性分析)中,而隐含的项目不包括各项计算。 2.2在层上选取项目 通过层可以方便的选取多个项目,而不必逐个选取各个项目,如要选择某个某个含有100个零件轴的82个零件轴,就可以使用层来选取。一旦选择了项目,就可以对这些项目进行操作,如删除、隐含、编辑等等。 3、层的类型 在模型中包含三种类型的图层

CREO2.0零件建模5-混合

零件建模——混合 一、混合特征概述 一个混合特征至少由一系列的两个平面截面组成,这些平面截面在其顶点处用过渡曲面连接形成一个连续特征。共有三种混合类型: ——“平行”(Parallel) - 所有混合截面均位于平行平面上。 ——“旋转”(Rotational) - 混合截面绕旋转轴旋转。旋转的角度范围为 -120 度至 120 度。——“常规”(General) - 一般混合截面可以绕 x 轴、y 轴和 z 轴旋转,也可以沿这三个轴平移。每个截面都单独草绘,并用截面坐标系对齐。 二、平行混合 1、平行混合的用户界面 1.1按钮栏 1.2选项卡 选项卡设置随创建特征的过程不同略有差异,将在创建过程中详细介绍。 2、平行混合的三种方式 ——通过草绘截面创建平行混合 ——通过选择截面创建平行混合 ——通过投影截面创建平行混合 2.1通过草绘创建平行混合 2.1.1 单击“模型”(Model)?“形状”(Shapes)?“混合”(Blend)。“混合”(Blend)选项卡随即打开。 2.1.2 单击创建实体特征,或单击创建曲面特征。 2.1.3 要将内部或外部草绘用作第一个截面,可单击或选择“截面”(Sections)选项卡上的草绘截

2.1.4 通过执行下列步骤之一来创建第一个截面: 2.1.5 创建第二个截面: 2.1.6根据需要,通过重复前一步骤来草绘更多的截面。此例第三个截面为一个点。 2.1.7要沿混合移除材料以创建切口,可单击。单击可从草绘的另一侧移除材料。 2.1.8要向截面添加厚度,可单击,然后键入一个厚度值。单击将加厚方向切换到草绘的一侧、另一侧或两侧。 2.1.9单击完成。 2.2通过选择截面创建平行混合 2.2.1单击“模型”(Model)?“形状”(Shapes)?“混合”(Blend)。“混合”(Blend)选项卡随

proe精度设定

教程详细讲解了在Pro/Engineer中相对精度和绝对精度的不差异,并对两种产生的原理作了详细的剖析,对帮助读者理解和应用proe的精度很有好处 相对于其它的CAD软件,Pro/Engineer有一个相对来说比较特殊的精度系统,精度系统不单会影响系统的计算时间而且还会实际影响几何的创建。下面我们就对Pro/Engineer的精度系统进行一些探讨,力求帮助大家从原理上理解Pro/Engineer的精度系统。 在我们讲解精度之前,我们首先了解一下在Pro/Engineer有关精度的配置选项enable_absolute_accuracy yes/no 控制“精度”菜单的显示与否;当设为no的时候,只有零件的当前精度是绝对精度的时候点设置的时候才会出现精度菜单,否则不会出现,换言之,你无法进行绝对精度的设置。设为yes则不管当前零件是否使用绝对精度都可以出现精度菜单accuracy_lower_bound 1e-3 设置精度下限,设定你可以替模型设定的相对精度下限,同时也是绝对精度下限,default_abs_accuracy 0.001 缺省的绝对精度值。 实际上,对于精度的下限,在pro/engineer中我们实际可设的精度并不等于精度下限,而是要比精度下限要小10倍左右,这个10倍应该是为了安全起见而设置的安全系数,一般来说,这个安全系数在0.1到1之间,对于绝对精度亦然。比如你如果设置精度下限为1e-3,实际操作中你最小可以设置为1e-4。而如果模型最大尺寸为100,那么绝对精度就可以设置为0.01左右而不是0.1左右。 相对精度和绝对精度的设置 “精度”,这样在精度菜单中我们就可以通过选择相应的精度系统来进行设置,但前提是我们的配置选项已经设定正确。?“设置”?在Pro/Engineer中,有两种精度系统,它们分别是相对精度和绝对精度。要设置精度,我们可以通过菜单“编辑” 相对精度 相对精度使用一个比例值来设置模型中的最小尺寸,默认是0.0012。换言之,假设我们的模型最大尺寸是100mm,那么在我们的模型中,允许的最小尺寸大概就是100*0.0012*0.1=0.01左右。其中最后一个0.1是安全系数,在0.1和1之间。我们用一个例子来说明,首先创建一个100x100的正方形拉伸薄板,那么这个模型的最大尺寸应该是对角尺寸,大概在140左右。然后我们在其中一条边上倒圆角,输入0.01作为圆角大小,这时系统就会提示你最小的圆角必须是0.016以上(因为140×0.0012×0.1约等于0.016),在这里0.016这个尺寸就是我们这模型可以辨别的最小尺寸,凡是小于这个尺寸的几何将会认为是零值,比如圆角、间隙、短边等等。当然,安全系数并不总是等于0.1,具体的确定方法我们也无法清楚的确定,我们知道的只能是一个大概范围,但这已经足够我们用来进行判断我们的精度系统是否合适了。

proe参数化建模教程(最新)

proe参数化建模 本教程分两部分,第一部分主要介绍参数化建模的相关概念和方法,包括参数的概念、参数的设置、关系的概念、关系的类型、如何添加关系以及如何使用关系创建简单的参数化零件(以齿轮为例)。 第二部分介绍参数化建模的其他方法:如族表的应用、如何使用UDF(用户自定义特征)、如何使用Pro/Program创建参数化零件。(后一部分要等一段时间了,呵呵) 参数化设计是proe重点强调的设计理念。参数是参数化设计的核心概念,在一个模型中,参数是通过“尺寸”的形式来体现的。参数化设计的突出有点在于可以通过变更参数的方法来方便的修改设计意图,从而修改设计意图。关系式是参数化设计中的另外一项重要内容,它体现了参数之间相互制约的“父子”关系。 所以,首先要了解proe中参数和关系的相关理论。 一、什么是参数? 参数有两个含义: ●一是提供设计对象的附加信息,是参数化设计的重要要素之一。参数和模型一起存储,参数可以标明不同模型的属性。例如在一个“族表”中创建参数“成本”后,对于该族表的不同实例可以设置不同的值,以示区别。 ●二是配合关系的使用来创建参数化模型,通过变更参数的数值来变更模型的形状和大小。 二、如何设置参数 在零件模式下,单击菜单“工具”——参数,即可打开参数对话框,使用该对话框可添加或编辑一些参数。 1.参数的组成 (1)名称:参数的名称和标识,用于区分不同的参数,是引用参数的依据。注意:用于关系

的参数必须以字母开头,不区分大小写,参数名不能包含如下非法字符:!、”、@和#等。 (2)类型:指定参数的类型 ?a)整数:整型数据 ?b)实数:实数型数据 ?c)字符型:字符型数据 ?d)是否:布尔型数据。 (3)数值:为参数设置一个初始值,该值可以在随后的设计中修改 (4)指定:选中该复选框可以使参数在PDM(Product Data Management,产品数据管理)系统中可见 (5)访问:为参数设置访问权限。 ?a)完全:无限制的访问权,用户可以随意访问参数 ?b)限制:具有限制权限的参数 ?c)锁定:锁定的参数,这些参数不能随意更改,通常由关系式确定。 (6)源:指定参数的来源 ?a)用户定义的:用户定义的参数,其值可以随意修改 ?b)关系:由关系式驱动的参数,其值不能随意修改。 (7)说明:关于参数含义和用途的注释文字 (8)受限制的:创建其值受限制的参数。创建受限制参数后,它们的定义存在于模型中而与参数文件无关。 (9)单位:为参数指定单位,可以从其下的下拉列表框中选择。 2.增删参数的属性项目 可以根据实际需要增加或删除以上9项中除了“名称”之外的其他属性项目

常用快速成型基本方法简介

常用快速成型基本方法简介 1前言 快速成型(Rapid Prototyping)是上世纪80年代末及90 年代初发展起来的高新制造技术,是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。它集成了CAD技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大地提高了生产效率和制造柔性。 与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件。通过与数控加工、铸造、金属冷喷涂、硅胶模等制造手段相结合,已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。 2 快速成型的基本原理 快速成型技术采用离散/堆积成型原理,根据三维CAD模型,对于不同的工艺要求,按一定厚度进行分层,将三维数字模型变成厚度很薄的二维平面模型。再将数据进行一定的处理,加入加工参数,产生数控代码,在数控系统控制下以平面加工方式连续加工出每个薄层,并使之粘结而成形。实际上就是基于“生长”或“添加”材料原理一层一层地离散叠加,从底至顶完成零件的制作过程。快速成型有很多种工艺方法,但所有的快速成型工艺方法都是一层一层地制造零件,所不同的是每种方法所用的材料不同,制造每一层添加材料的方法不同。 快速成型的基本原理图 快速成型的工艺过程原理如下:

(1)三维模型的构造:在三维CAD设计软件中获得描述该零件的CAD文件。一般快速成型支持的文件输出格式为STL模型,即对实体曲面做近似的所谓面型化(Tessellation)处理,是用平面三角形面片近似模型表面。以简化CAD模型的数据格式。便于后续的分层处理。由于它在数据处理上较简单,而且与CAD系统无关,所以很快发展为快速成型制造领域中CAD系统与快速成型机之间数据交换的标准,每个三角面片用四个数据项表示。即三个顶点坐标和一个法向矢量,整个CAD模型就是这样一个矢量的集合。在一般的软件系统中可以通过调整输出精度控制参数,减小曲面近似处理误差。如Pre/1E软件是通过选定弦高值(ch-chordheight)作为逼近的精度参数。

proe装配图全解

第12章模型装配 ?完成零件设计后,将设计的零件按设计要求的约束条件或连接方式装配在一起才能形成一个完整的产品或机构装置。 利用Pro/E提供的“组件”模块可实现模型的组装。在 Pro/E系统中,模型装配的过程就是按照一定的约束条件或连接方式,将各零件组装成一个整体并能满足设计功能的过程。 ?本章主要讲解如下内容: ? 各种装配约束类型 ? 装配连接类型的概念 ? 零件装配与连接的基本方法 ? 组件分解图的建立方法图12-1 〖新建〗对话框 ? 组件的装配间隙与干涉分析

12.1 元件放置操控板?模型的装配操作是通过元件放置操控板来 实现的。单击菜单 【文件】→【新建】 命令,在打开的〖新 建〗对话框中选择 “组件”,如图12-1 所示。单击【确定】 按钮,进入“组件” 模块工作环境。

在组件模块工作环境中,单击按钮或单击菜单【插入】→【元件】→【装配】命令,在弹出的〖打开〗对话框中选择要装配的零件后,单击【打开】按钮,系统显示如图12-2所示的元件放置操控板。 ?图12-2中的图(a)为【放置】按钮对应的面板,图(b)为【移动】按钮对应的面板。下面对面板中各项功能及意义说明如下: 图(a)

(b) 图12-2 元件放置操控板

? 移动:使用〖移动〗面板可移动正在装配的元件,使元件的取放更加方便。当〖移动〗面板处于活动状态时,将暂停所有其他元件的放置操作。要移动参与组装的元件,必须封装或用预定义约束集配置该元件。在〖移动〗面板中,可使用下列选项: ? 运动类型:选择运动类型。默认值是“平移”。 ??定向模式:重定向视图。 ??平移:在平面范围内移动元件。 ??旋转:旋转元件。 ??调整:调整元件的位置。 ? 在视图平面中相对:相对于视图平面移动元件,这是系统默认的移动方式。 ? 运动参照:选择移动元件的移动参照。 ? 平移/旋转/调整参照:选择相应的运动类型出现对应的选项。 ? 相对:显示元件相对于移动操作前位置的当前位置。 ? 挠性:此面板仅对于具有预定义挠性的元件是可用的。 ? 属性:显示元件名称和元件信息。

数学建模零件参数的优化设计

数学建模零件参数的优 化设计 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

零件参数的优化设计 摘要 本文建立了一个非线性多变量优化模型。已知粒子分离器的参数y由零件 参数)7 2,1 ( = i x i 决定,参数 i x的容差等级决定了产品的成本。总费用就包括y 偏离y 造成的损失和零件成本。问题是要寻找零件的标定值和容差等级的最佳搭配,使得批量生产中总费用最小。我们将问题的解决分成了两个步骤:1.预先给定容差等级组合,在确定容差等级的情况下,寻找最佳标定值。2.采用穷举法遍历所有容差等级组合,寻找最佳组合,使得在某个标定值下,总费用最小。在第二步中,由于容差等级组合固定为108种,所以只要在第一步的基础上,遍历所有容差等级组合即可。但是,这就要求,在第一步的求解中,需要一个最佳的模型使得求解效率尽可能的要高,只有这样才能尽量节省计算时间。经过对模型以及matlab代码的综合优化,最终程序运行时间仅为秒。最终计算出的各个零件的标定值为: i x={,,,,,,}, 等级为:B B C C B B B d, , , , , , = 一台粒子分离器的总费用为:元 与原结果相比较,总费用由(元/个)降低到(元/个),降幅为%,结果是令人满意的。 为了检验结果的正确性,我们用计算机产生随机数的方式对模型的最优解进行模拟检验,模拟结果与模型求解的结果基本吻合。最后,我们还对模型进行了误差分析,给出了改进方向,使得模型更容易推广。

关键字:零件参数 非线性规划 期望 方差 一、问题重述 一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。零件参数包括标定值和容差两部分。进行成批生产时,标定值表示一批零件该参数的平均值,容差则给出了参数偏离其标定值的容许范围。若将零件参数视为随机变量,则标定值代表期望值,在生产部门无特殊要求时,容差通常规定为均方差的3倍。 进行零件参数设计,就是要确定其标定值和容差。这时要考虑两方面因素:一是当各零件组装成产品时,如果产品参数偏离预先设定的目标值,就会造成质量损失,偏离越大,损失越大;二是零件容差的大小决定了其制造成本,容差设计得越小,成本越高。 试通过如下的具体问题给出一般的零件参数设计方法。 粒子分离器某参数(记作y )由7个零件的参数(记作x 1,x 2,...,x 7)决定,经验公式为: y 的目标值(记作y 0)为。当y 偏离y 0+时,产品为次品,质量损失为1,000元;当y 偏离y 0+时,产品为废品,损失为9,000元。 零件参数的标定值有一定的容许范围;容差分为A、B、C三个等级,用与标定值的相对值表示,A等为+1%,B等为+5%,C等为+10%。7个零件参数标定值的容许范围,及不同容差等级零件的成本(元)如下表(符号/表示无此等级零件):

零件三维建模实验

目录 实验一零件的三维建模实验 (2) 实验二从零件的CAD数据模型自动生成数控加工代码和加工仿真实验 (7) 实验三集成化CAD/CAPP系统实验 (16)

实验一零件三维建模实验 一、实验目的 1、了解特征设计在CAD/CAM集成中的意义; 2、熟悉特征的种类的划分及特征拼合的基本方法,了解参数化设计方法。 3、了解各种计算机绘图软件的同时,掌握计算机绘图的系统知识,培养独 立上机绘制二维、三维图形的能力, 二、实验原理 图形是人类传递信息的一种方法,从二维平面图到三维立体图,人类经常要绘制各式各样的图纸。零件特征是零件们某一部分形状和属性的信息集合,如孔、槽台和基准等,一方面它能方便地描述零件的几何形状;另一方面,它能为加工、分析及其它工程应用提供必要和充分的信息。基于特征的设计是CAD技术的发展,它克服了传统CAD的缺陷。传统CAD只能表达底层的零件几何定义信息,如线架、边界表示(B-rep)和实体结构几何(CSG)的信息,点、线、面、体等,无法表达高层语义和功能信息,也不能对整个产品的外形进行抽象描述,更无法表达产品非几何信息,如工艺信息(公差装配等)、精度信息、材料信息、功能信息等。特征是完整描述产品信息的方法,也是系统的灵活性和产品间数据交换的实现途径,特征已成为设计、制造、分析等各种应用之间传递信息的媒体。 特征设计是在设计阶段捕捉除几何信息以外的设计与加工信息,从而避免了特征提取与识别。基于特征的设计系统使用参数化特征,并通过各类属性来描述零件的几何形状以及它们之间的功能关系,系统通常提供特征库,通过布尔运算等操作来生成零件的特征表示,但特征是孤立的信息,只有约束才能把它串联起来,形成产品。因而把约束定义为产品生命周期内各环节对产品模型的类型、属性、语义和行为的限制,它是维持产品模型有效性的手段,它决定着产品的有效性和可实现性,具有一定的定义、识别、分类。 特征的分类方法很多,其严格依赖于特征定义,兼顾抽象、语义和形状因素。形状特征的分类具有严格的教学形式,并符合已有实践和认识,对于特征库的建立,具有指导意义。从应用观点出发,特征分类有: 1、按对待特征技术的研究划分:特征识别、特征造型、特征映射。 2、按产品设计—制造过程划分:设计特征、分析特征、公差特征、制造特 征、检验特征、机器特征等。 3、按特征性质:形状特征、精度特征、材料特征、工艺特征及装配特征。

proe转cad工程图的图层设置问题

Pro-e工程图转autocad工程图(捉摸了好几天) 由于PRO/E系统采用单一数据库管理,因此工程图与对应的实体模型是相互关联的,如果在工程图中修改了尺寸,那么这些修改会在对应的零件模型中体现出来;相反的,如果对零件模型进行了修改,那么对应的工程图中也会做同样的修改(同样工程图中的各个视图的尺寸也是相关联的)。因此考虑如果能将Pro-E的工程图文件(.drw)输出为标准的AutoCAD 工程图DWG/DXF文件,这样就会省许多事。甚至我们可以有这样的设计思路:掌握设计意图一在PRO/E 中三维造型一在Pro-E中生成工程图一制成标准工程图一在AutoCAD中修改工程图一输出DXF/DWG文件。但是工程图模块作为PRO/E的一个重要组成部分,功能虽然已经十分强大,然而若是直接由pro-e 导出,其中的许多标准与国标不匹配,因此这样输出到Autocad中的工程图是不标准的,需要修改。 一、常见问题: 在由Pro-E输出DXF/DWG文件时遇到最大的障碍就是线型方面的问题。国家标准规定的各种图线分为粗、细两种,粗线的宽度b应按图的大小和复杂程度,在AutoCAD中这些问题都是由图层进行控制的。

但由Pro-E视图生成的线型是不能修改的。如果我们可以将PRO/E中的图层和AutoCAD中的图层设置统一起来,那么很多问题就会迎刃而解。转换的过程比较简单。只需将文件另存为DWG格式,既可完成转换。在Pro-E中,图层输出方式如果采取默认值的方式,当输出成DWG/DXF文件时。只会有下列几种图层,分别是:DEFAULT_l:图元为中心线时归入此层;DEFAULT_2:图元为隐藏线时归人此层;DEFAULT_3:图元为虚线时归人此层;0层:凡是不属于上面三种线型皆归人此层;HATCHING_*:剖视图的剖面线归人此层;TABLE_*:当工程图中有表格时,归人此层;对大多数的Pro/E用户而言,这样的设置其实已经够了,然而,对于用惯AutoCAD的用户而言,这样的设置其实是不足的,例如,对于尺寸的格式,便没有归类到单独层。 二、解决方法: (一)intf_out_layer设置为part_layer 打开Pro-e在工具—选项设置中,将选项: intf_out_layer的值设为part_layer,这样图元将以图层的方式输出,在输出时,系统会将图元详细来分类,并且以默认图层名称输出成DWG/DXF格式,在A中,

ProE官方设计基础教程—用骨架进行设计

www.bzfxw.com 第2-1页 本模块中,将学习如何在自顶向下设计环境中使用骨架模型来开发产品。 目标 学习此模块后,您将能够: ? 描述使用骨架的目的。 ? 创建骨架。 ? 使组件元件与骨架相关。 ? 使用骨架几何建模。 ? 控制骨架模型。 ? 使用各种骨架属性。

用骨架进行设计 第2-3页 NOTES

www.bzfxw.com 第2-4页 设计基础 NOTES 图2:发动机组件界面 2. 划分空间声明 可使用“骨架”创建子组件的空间声明,这样能够在模型中建立主组件与子组件之间的界面关系。 图3:子组件的空间声明

用骨架进行设计 第2-5页 3. 确定组件的运动 它可以指定组件的运动,这样就可以在加入元件前建立复杂的连杆运动。 图4:活塞运动的骨架 创建骨架 可在组件中创建骨架零件。完全控制其所在的级和位置。 注意: 在每一个组件中您只能创建一个骨架,但是对属于顶 级组件的每一个子组件而言均可拥有其骨架。[将配置 选项“multiple_skeletons_allowed ”设置为“是”(yes) 后,在每个组件中可具有多个骨架]。 如果在装配元件后才创建骨架,系统会用“原点对原 点”约束自动将骨架的放置重定义为第一个元件。 为了在模型中更易于使用骨架,可以增加层并修改特征名称。

www.bzfxw.com 第2-6页 设计基础 NOTES 使组件元件与骨架相关 在将元件装配到骨架零件上时,如果建立了组件元件与骨架模型之间的关系,会具有如下优点: ? 减少父子关系的体系 – 骨架成为组件中许多元件的主父项。 图5:父/子关系的示例 ? 限制了选取约束的范围 – 利用“设计管理器”功能中的“参照 控制”(Reference Control) 选项,可将系统配置成只能将模型装配到骨架上,而无法进行相互装配。 ? 控制元件位置 – 可将元件装配到骨架上,在骨架中修改空间声 明时,系统会自动更新元件位置。 ? 将运动集中控制 – 通过修改骨架元件,可以控制元件连结的运 动。

Tekla基本建模流程

Tekla基本建模流程 一、作业流程 1、设置轴线; 2、设置或建立工作视图; 3、3a产生初步布置图;建立主构件、次构件; 4、建立节点或细部; 5、执行编号; 6、修改布置图,产生构件图及零件图; 7、产生报表; 8、输出CAD图档或PDF档。 二、注意事项 1、设置轴线: a、依据设计图详细正确判读每一相邻轴线距离并遵照XSTEEL软件轴线设置,键入正确数据建立之。 b、检查动作: 输出一初步之轴线平面布置图并标注轴线距离或高程,打印图面并检查数据及轴线名是否正确。 c、事前准备:详细阅读设计图,对于较不明确处要仔细推敲演算。 2、设置或建立工作视图:

a、选用适当之视图属性设置,运用XSTEEL格子线视图功能产生所有相关之主要工作视图,或自行设置条件,产生无法自动生成之工作视图。 b、检查动作: ①检查视图属性设置是否合适。(含过滤条件是否设置合理) ②查看工作视图命名是否正确。 ③查看视深是否正确。 ④查看平面与立体设置是否恰当等。 c、事前准备: ①详细阅读设计图各平立面之最大纵深以利选用适合之视深数据。 ②判断平立面欲表达之构件内容以利布置图之调用。 3、建立主构件: a、详细阅读设计图所有构件规格、材质、位置、高程、工作点表面处理等重要信息,按规格大小、类别等因素排序,再设定素材代号以利模型之输入;输入时一般要须遵守构件与零件编号原则且接由左而右、由下而上之方向要求绘制。 b、检查动作: — c、事前准备: 详细判读设计图中各相关数据差异性,并针对差异性思考合适对策,利于日后变更修改等操作。

3a产生初步布置图: a、依据项目特性设置相应条件之图纸属性及图纸视图属性,产生布置图;布置图产生须考虑视深之控制、图面比例、图面布局、字体大小、线条颜色、图签、注解、规格表、图标签、方位符号等细节之设置是否搭配合理适当。 b、检查动作: 须确实与设计图相应数据仔细核对,并依据正确校核方法将正确、不正确及须修正数据标示于图面中,如有不明确之部位须要求再产生更多的剖视图,利于视图。 c、事前准备: 详阅设计图并以各别颜色予以区分,方便日后视图,对于较细微处应自行将其放大打印作为自己的工作数据保证工作能较有效率的 完成。 4、建立节点或细部: a、使用XSTEEL各节点程序将已归类之节点数据设置成节点应用参数并储存,方便点选应用;如不能一次性由程序直接完成之节点或细部,则选用较接近之节点式样处理再进一步修改或设定成自定义节点再行点选应用。操作时须保证相同的接头能运用同一节点参数,提高正确性,并利于变更修改。 b、检查动作:

建模技术的发展史

建模技术的发展史 三维建模技术是研究在计算机上进行空间形体的表示、存贮和处理的技术。实现这项技术的软件称为三维建模工具。本课程主要培养运用Pro/Engineer软件表示和设计空间形体的能力。 三维建模技术是利用计算机系统描述物体形状的技术。如何利用一组数据表示形体,如何控制与处理这些数据,是几何造型中的关键技术。 三维建模技术的研究和发展 在CAD技术发展初期,CAD仅限于计算机辅助绘图,随着三维建模技术的发展,CAD技术 才从二维平面绘图发展到三维产品建模,随之产生了三维线框模型、曲面模型和实体造型技术。而如今参数化及变量化设计思想和特征模型则代表了当今CAD技术的发展方向。三维建模技术是伴随CAD技术的发展而发展的! 三维建模技术的发展史 1 线框模型(Wire Frame Model) : 20世纪60年代末开始研究用线框和多边形构造三维实体,这样地模型被称为线框模型。三维物体是由它的全部顶点及边的集合来描述,线框由此得名,线框模型就像人类的骨骼。 优点: 有了物体的三维数据,可以产生任意视图,视图间能保持正确的投影关系,这为生产工程图带来了方便。此外还能生成透视图和轴侧

图,这在二维系统中是做不到的;构造模型的数据结构简单,节约计算机资源;学习简单,是人工绘图的自然延伸。缺点:因为所以棱线全部显示,物体的真实感可出现二义解释;缺少曲线棱廓,若要表现圆柱、球体等曲面比较困难;由于数据结构中缺少边与面、面与面之间的关系的信息,因此不能构成实体,无法识别面与体,不能区别体内与体外,不能进行剖切,不能进行两个面求交,不能自动划分有限元网络等等。 2曲面模型(Surface Model) 曲面模型是在线框模型的数据结构基础上,增加可形成立体面的各相关数据后构成的。曲面模型的特点 与线框模型相比,曲面模型多了一个面表,记录了边与面之间的拓扑关系。曲面模型就像贴付在骨骼上的肌肉。 优点:能实现面与面相交、着色、表面积计算、消隐等功能,此外还擅长于构造复杂的曲面物体,如模具、汽车、飞机等表面。 缺点: 只能表示物体的表面及边界,不能进行剖切,不能对模型进行质量、质心、惯性矩等物性计算 第二次技术革命——实体造型系统 进入20世纪80年代,CAD价格依然令一般企业望而却步,这使得CAD技术无法拥有更广阔的市场。 由于表面模型技术只能表达形体的表面信息,难以准确表达零件的其它特性,如质量、重心、惯性矩等,对CAE十分不利。基于对

PROE操作步骤

PRO-E模具设计具体操作步骤1:加载参照模型 执行【文件-新建】命令, 在【新建】对话框类型栏 内选择【制造-模具型腔】 并在【名称】文本框内输 入shuibei,取消【使用缺 省 模板】的勾选,点击【确 定】按钮,如图。 定位参照零件 执行菜单管理器中的 【模具】【模具模型】 【定位参照零件】命令

系统将同时弹出【布局】 对话框和【打开】对话框 ,在【打开】对话框中选 取shuibei.prt作为模具的 参 照零件,单击【打开】按 钮在【创建参照模型】对 话框中,输入参照模型的 名称:SHUIBEI -REF,单击[确定]按钮 在【布局】对 话框中单击【参 照模型起点与定 向】栏内的符 号如图 系统弹出另一个Pro/E 图形窗口,如图所示 零件的方位不正确, 要求参照模型的Z轴 与开模方向一致, 因此需要重新定位

?执行菜单管理器 中的【坐标系类型】 【动态】命令,如图 接着,屏幕上会弹 出【参照模型方向】 对话框,选择绕Y轴 旋转,将旋转角度 设置为-90度,单击 【确定】按钮,如图 ?参照【布局】对话 框中单击【预览】按钮,发现参照模型的方位已经发生 了变化,如图所示, PULL-DIRECTION 双箭头所示方向为 开模方向,MAIN-PARTING-PLN为主分型基准面,它应该与塑料之间的分型面垂直

模型布局可以选择单一布局 ?单击【预览】按钮,图形窗口将显示布局成功的参照模型, 如图 2应用收缩 ?单击菜单管理器中的【模具】-【收缩】命 令,系统将提示用户选择对象,在图形中任 选一个按钮参照模型。接着,依次单击菜单 管理器中【收缩】-【按尺寸】-【所有尺寸】 如图

PROE建模及工程图、标题栏、明细表、格式使用方法)

PROE建模及工程图、标题栏、明细表、格式使用方法PROE建模及工程图、格式使用体会 下载的资源(格式模板、工程图配置、标题栏、明细表的定义方法)都在最后 1、 设置PROE配置文件 按照自己的国标、方式、习惯进行适当设置,以提高工作效率; 如:设置缺省的建模模板(默认是英制,不适合我们中国人) template_solidpart值设置为 X:\proeWildfire3.0\templates\mmns_part_solid.prt 以及其它设置,如单位等,见下图 01 注:配置文件config.pro一定要保存在PROE安装目录下的TEXT目录下,否则无效

2、 设置建模模板(添加一些参数,以方便工程图的标题栏、明细表调用) 图样名称———CNAME 材料标记———CMAT 但我使用PTC_MATERIAL_NAME参数) 阶段标记———CJDBZ(用户定义的参数) 重量———CMASS 企业名称———QNAME 方法:“工具”→“参数”→点右下角“+”号→在名称列中输入参数名(如CNAME)→在类型列中选择类型(如字符串)→值为空→在说明列中输入简要的说明,以更自己识别)如下图02

3、 建立标题栏(具体方法不多说,本论坛中有很详细定制方法,在最后我也上传一方法,) ① 把标题栏建立成表格,以更日后调用 ② 标题栏中的参数一定要与你上面模板的参数一一对应,这样以后在建立工程图时,它才会自动获取零件中的相关数据,其中系统参数也是自动获取的,如比例、页码等

③ 你也可以把企业名称参数还要直接用你单位的名称代替,这样以后就不用每次输入,同样,你也可以在设置模板在将QNAME的值设置成你单位的名称(推荐),这是一样的。 ④ 注意:要设置“旋转原点”在右下角,旋转原点将是你以后将此表插入的基点,方法:选中整个表格,再点右键→设置旋转原点→靠近你要设置原点线段附近点左键→会出现一小叉→OK 见下图03、04

PROE建模规范

PROE外型建模规范 建模的顺序: 1.开始必须先构建完整的外型文件(通常起名为“OUT.PRT”以便区分)。外型文件完成后,再从该文件COPY所需曲面到新文件中构成单个零件。 2.创建装配图,将各个零件组合。在“OUT”文件中只须把大面构建,再将小特征位置定下即可。不必把所有细微的特征都构建在该文件中,以免曲面太多,分件时难以辨别。细特征可以留到装配图中构建(比如倒R角特征)。另外,外型文件中不能有实体,而且最好都是封闭的曲面,以方便分件时COPY。 COPY 曲面命令操作步骤: 新开文件→设定单位→单击置顶菜单“INSET”→于下拉菜单中找到“SHARED DATA” →再单击该项目中的“COPY GEOMETRY FROM OTHER MODEL…”一项→有弹出对话框→选择所需曲面所在的外型文件“OUT”,坐标系统选择默认→在右上角方框中选择“SURFACE REFS”特征重定义→选择所需曲面。若要COPY 曲线,方法同上,只是最后将选择“SURFACE REFS”一项改为选择“CURVE REFS”。 3.每开一个新文件,必须首先将绘图单位设定为“MM,G,SEC,C”,改变单位时选择第二项。 4.层的设置,为方便浏览,按如下统一设置:将原有层全部删除,开新层“DTM”,将基准面放置入内;开新层“S*”(*代表阿拉伯数字1,2,3….)放置曲面;开新层“C*”(*代表阿拉伯数字1,2,3….)放置曲线;开新层“P*”(*代表阿拉伯数字1,2,3….)放置点。但注意,这些层只用来放置辅助曲面,线和点的。主要曲面不能置内。要想隐藏主要曲面的话,可以开相应的层,比如想放面壳在该层,可以开一新层“FRONT_CAB”,底壳想放在该层,可以开新层“REAR_CAB”。这样做是为了避免辅助的曲面和主要曲面混在一起,分件时难以区分。 建模的注意事项: 1.拔模斜度:每个产品看似垂直的线和面,其实都有角度,并不是完全垂直的。构建外型文件时,不可以有跟分型面完全垂直的线和面 如图示,拔模角?,对于普通产品,?给1-2度即可,对于有粗纹和透明的产品,

PROE模型的视图管理

第9章模型的视图管理 在实际应用中,为了设计更加方便、进一步提高工作效率或为了更清晰地了解模型的结构,可以建立各种视图并加以管理,这就要用到Pro/ENGINEER的“视图管理”功能。在Pro/ENGINEER的“视图管理器”中,可以管理“简化表示”视图、“样式”视图、“分解”视图、“定向”视图,以及这些视图的组合视图。 9.1 定向视图 定向(Orient)视图功能可以将组件以指定的方位进行摆放,以便观察模型或为将来生成工程图做准备。图9.1.1是装配体asm_exercise2.asm定向视图的例子,下面说明创建定向视图的操作方法。 1.创建定向视图 Step1. 将工作目录设置至D:\proewf4.1\work\ch09\ch09.01,打开文件asm_exercise2.asm。 Step2. 选择下拉菜单命令;在“视图管理器”对话框的 选项卡中单击按钮,命名新建视图为view_course,并按回车键。 Step3. 选择命令,系统弹出“方向”对话框;在下拉列表中选取,如图9.1.2所示。 Step4. 定向组件模型。 (1)定义放置参照1:在下面的下拉列表中选择,再选取图9.1.3中的模型表面。该步操作的意义是使所选模型表面朝前,即与屏幕平行且面向操作者。 (2)定义放置参照2:在下面的列表中选择,再选取图中的模型表面,即将所选模型表面放置在右边。 Step5. 单击按钮,关闭“方向”对话框,再单击“视图管理器”对话框的 按钮。 图9.1.1 定向视图

2.设置不同的定向视图 用户可以为装配体创建多个定向视图,每一个都对应于装配体的某个局部或层,在进行不同局部的设计时,可将相应的定向视图设置到当前工作区中,操作方法是在“视图管理器”对话框的 选项卡中选择相应的视图名称,然后双击;或选中视图名称后,选择 命令。 9.2 样式视图 样式(Style)视图可以将指定的零部件遮蔽起来,或以线框和隐藏线等样式显示。 图9.2.1是装配体asm_exercise2.asm样式视图的例子,下面说明创建样式视图的操作方法。 1.创建样式视图 Step1. 将工作目录设置至D:\proewf4.1\work\ch09\ch09.02,打开文件asm_exercise2.asm。 Step2. 选择下拉菜单命令,在视图管理器对话框的选项卡中单击按钮,输入样式视图的名称style_course,并按回车键。 Step3. 系统弹出图9.2.2所示的“编辑”对话框,此时选项卡中提示“选取将被遮蔽的元件”,在模型树中选取bottle_asm。 图9.2.1 样式视图 图9.1.3 定向组件模型 选取此表面为“前” 选取此表面为“右” 图9.1.2 “方向”对话框 按所选的参照定向 定义旋转中心或默认方向 动态平移、缩放和旋转

相关文档