文档库 最新最全的文档下载
当前位置:文档库 › 多址,互调,同频,干扰影响、对抗方法

多址,互调,同频,干扰影响、对抗方法

多址,互调,同频,干扰影响、对抗方法
多址,互调,同频,干扰影响、对抗方法

1:多址干扰定义:

是指同CDMA系统中多个用户的信号在时域和频域上是混叠的。因为CDMA 系统为码分多址,CDMA系统采用的是不同的地址码来区分每个用户,但多个用户的信号在时域和频域上是混叠的,所以在频域在产生一定的同频和邻频干扰,则为多址干扰。

2:多址干扰的由来

CDMA的一系列优点使其成为新一代移动通信的佼佼者,但在商用化的过程中CDMA仍有许多关键的技术需要解决。例如克服CDMA系统自身的多址干扰(MAI),就是一个要解决的关键技术问题。CDMA系统自身产生多址干扰的原因主要有两个:一是由于各用户使用的通信频率相同,在不同用户之间的扩频序列不能进行完全正交,即互相关系数不为零;二是即使扩频序列能正交,实际信道中的异步传输也会引入相关性。下面即给出了同步加性白噪声(AWGN)信道中采用传统检测器时产生多址干扰的数学推导。

3:多址干扰对CDMA系统的影响

传统CDMA系统中的信号检测将于多址干扰视为高斯噪声来处理,因而忽略多址干扰的存在,这种方法会带来以下两个方面的影响:

(1)系统容量受到限制:当系统中用户数较少时,多址干扰因伪随机码良好的互相关性而不会太严重。但随着同时接入系统用户数目的增加,多址干扰的影响也会逐渐严重起来,导致系统误码率的上升,使得系统的容量受到影响。尤其是3G系统中大容量的要求和多天线发射分集的采用,都将导致CDMA系统容量受多址干扰的严重影响。

(2)严重影响了系统的性能:如果干扰用户比目标用户距离基站近得多,即使忽略衰落的影响,信号的路径衰耗亦与用户距基站距离的三次方成正比,这时干扰信号在基站的接收功率会比目标用户信号的接收功率大得多,在传统接收机输出中的多址干扰份量会很重,以至将目标用户的信号淹没,而出现远近效应。

4:克服多址干扰的影响,可以采用以下一些技术

(1)扩频码的设计:多址干扰产生的根源是扩频码间的不完全正交性,如果扩频码集能在任何时刻完全正交,那么多址干扰就会不复存在。但实际上信

道中都存在不同程度的异步性,要设计出在任何时延上都能保持正交性的码集几乎是不可能的。因此需要设计者设计出一种尽可能降低互相关性的工程实用码型,这在现实信道的条件下还是有可能的。

(2)功率控制:功率控制可以有效地减小远近效应的影响,在IS-95和3G移动通信标准中都采用了功率控制技术。但功率控制不能从根本上消除多址干扰,因为会受到各用户接收功率相等时接收性能的限制,而且也存在以下一些缺点,如占用信道传送功率控制信息,存在算法收敛速度问题,且性能与用户移动速度有关,系统较为复杂等等。

(3)前向纠错编码(FEC):利用编码的附加冗余度纠正因信道畸变而产生的错误比特判决,已成为提高通信质量的一个重要手段,对于纠正多址干扰引发的错误也同样有效。但采用前向纠错编码的代价是在相同信道传输速率下有用信息的传输速率会有所下降。

(4)空间滤波技术:用智能天线对接收信号进行空域处理可以减小多址干扰对信号的影响,同时采用具有一定方向性的扇形天线也可以抑制除某一角度内的其他干扰,而提高系统性能。起初,由于智能天线的高复杂度和高能量消耗,对它的研究大都局限于在基站中应用,直至近几年,智能天线技术才被引入到移动台之中。因此智能天线有望显著地提高3G移动台的性能,也将成为3G移动通信系统研究的热点之一。

(5)多用户检测技术:多用户检测理论和技术的基本思想是利用多址干扰中包含的用户间的互相关信息来估计干扰和降低、消除干扰的影响。

6:同频干扰

影响:当小区不断分裂使基站服务区不断缩小,同频复用系数增加时,大量的同频干扰将取代人为噪声和其它干扰,成为对小区制的主要约束。这时移动无线电环境将由噪声受限环境变为干扰受限环境。

原因:无用信号的载频与有用信号的载频相同,并对接收同频有用信号的接收机造成的干扰。

对抗技术:发射功率不宜过大

相邻发射台采用不同极化方式

相邻发射台的载频采用2/3行频(10KHz)偏置,或3MHz、4MHz(错开几MHz)偏置,可降低对同频保护度要求

使用跳频技术、使用裂向技术

7:互调干扰

原因:或多个干扰信号同时加到接收机时,由于非线性的作用,这两个干扰的组合频率有时会恰好等于或接近有用信号频率而顺利通过接收机

影响:由移动台接收机形成的互调干扰、由基地台接收机形成的互调干扰、由基地台发射机互耦形成的互调干扰

接收机互调干扰特性

ITU-R SM.1134-1建议书* 陆地移动业务中互调干扰的计算 (ITU-R 44/1号研究课题) (1995-2007年) 范围 本建议书为计算最多三种互调干扰提供了依据,接收机输出端出现的这种互调干扰,是接收机幅度响应的非线性在接收机输入端产生的强烈无用信号引起的。 国际电联无线电通信全会, 考虑到 a) 在大多数典型情况下,确定陆地移动业务干扰的主要因素包括: –由两个(或更多个)高电平干扰信号产生的带内互调产物; –当来自其他发射机的任何其他信号出现在受影响的发射机的RF级输入级,就会在发射机产生无用发射; –有用和干扰的信号幅度是随机变量; b) 两个(或更多个)无用信号必须具有特定的频率,造成互调产物落入接收机频带内; c) 由两个以上的幅度很高的无用信号引起互调干扰的概率非常小; d) 互调干扰计算程序将为陆地移动业务的频谱利用效率的提高提供一个的有用的方法, 建议 1应使用附件1中提出的接收机互调模型进行陆地移动业务的互调干扰计算; 2互调干扰计算应遵循以下的程序,详情见附件1; 2.1确定随机有用信号功率在接收机输入端的均值和偏差值; 2.2确定一个随机互调干扰信号功率在接收机输入端的平均值和偏差值; 2.3确定接收时出现接收机自身以及由发射机互调产生的互调产物的概率; *应提请无线电通信第8研究组注意本建议书。

3 受互调干扰影响的区域以及相应的干扰发射机与接收机间的必要地理间隔应根据给定的干扰概率值来确定,如附件1所述。 附 件 1 互调模型 本附件描述了两个互调模型;接收机互调(RXIM )模型和发射机互调(TXIM )模型。它分成5个小节。 第1节概述了计算接收机互调干扰的通用公式。第2节描述了RXIM 的测量程序。第3节概述了使用通用公式来评估接收互调干扰的程序。第4节概述了发射机互调干扰的公式。第5节描述了如何计算RXIM 和TXIM 干扰的概率。 1 接收机互调分析模型 两信号、三阶互调干扰功率由以下公式给出(前CCIR 522-2报告,1990年,杜塞尔多夫): ()()1,222112K P P P ino -β-+β-= (1) 其中: P 1和P 2: 分别为在频率f 1和f 2上的干扰信号功率 P ino : 在频率f 0(f 0 = 2f 1 - f 2)上的三阶互调产物功率 K 2,1: 三阶互调系数,可以根据三阶互调测量结果计算得到或从设备参数获得 β1和β2: 分别为距工作频率f 0频偏为?f 1和?f 2处的RF 频率选择性参数。 例如β1和β2值可以通过计算失谐频率的信号衰减的公式得到: ??? ? ??????? ? ???+=?2 2 1 log 60)(βRF B f f (2) 其中B RF 是接收机的RF 带宽。 值得注意的是,对一个工作在VHF 和低UHF 频带的陆地移动模拟无线电接收机的一组特定的三阶互调测量值,由公式(1)可以得到以下公式[1974年,McMahon]: P ino = 2P 1+P 2+10-60 log(σf ) (3)

电磁干扰及其抑制方法的研究

弱电工程中电磁干扰及其抑制方法的研究 (葛洲坝通信工程有限公司方宏坤 151120) 【摘要】在弱电工程应用领域,强电与弱电交叉耦合,电磁干扰(EMI)错综复杂,严重影响弱电系统的稳定性和安全性。本文详细介绍了 EMI 产生的原因、分析EMI/RFI的特性,及其传输途径和危害,利用电磁理论和工程实践,分析并提出了一些在弱电工程领域行之有效的 EMI 抑制方法。 【关键词】弱电电磁干扰(EMI)射频干扰(RFI)干扰抑制 随着计算机技术,特别是网络技术的飞速发展,IT技术在弱电工程领域的广泛应用,IT设备日益精密、复杂,使得电子干扰问题日趋严峻。它可使系统的稳定性、可靠性降低,功能失效,甚至导致系统完瘫痪和设备损坏。特别是EMI/RFI(电磁干扰/射频干扰)问题,已成为近几年弱电工程领域的焦点。 1、电磁干扰分类和特性 生活中电磁干扰无处不在,其干好错综复杂。通常我们把电磁干扰主要划分为电磁干扰(EMI)、射频干扰(RFI)和电磁脉冲(EMP)三种,根据其来源可分为外界和内部两种,严格的说所有电子运行的元件均可看作干扰源。本文中所提EMI是对周围电磁环境有较强影响的干扰;RFI则从属于EMI;EMP 是一种瞬态现象,它可由系统内部原因(电压冲击、电源中断、电感负载转换等)或外部原因(闪电等)引起,能耦合到任何导线上,如电源线和通信电缆等,而与这些导线相连的电子系统可能受到瞬时严重干扰或使系统内的电子电路永久性损坏。图 1 给出了常见 EMI/RFI 的干扰源及其频率范围。

1.1 EMI特性分析 在电子系统设计中,应从三个方面来考虑电磁干扰问题:首先是电子系统产生和发射干扰的程度;其次是电子系统在强度为 1~10 V/m、距离为 3 米的电磁场中的抗扰特性;第三是电子系统内部的干扰问题。利用干扰三要素分析与EMI相关的问题需要把握EMI的五个关键因素,这五个关键因素是频率、幅度、时间、阻抗和距离。 在EMI分析中的另一个重要参数是电缆的尺寸、导线及护套,这是因为,当EMI成为关键因素时,电缆相当于天线或干扰的传输器,必须考虑其物理长度与屏蔽问题。 1.2 RFI特性分析 无线电发射源无处不在,如无线电台、移动通信、发电机、电动机、电锤等等。所有这些电子活动都会影响电子系统的性能。无论RFI的强度和位置如何,电子系统对RFI必须有一个最低的抗扰度。在通信、无线电工程中,抗扰度定义为设备承受每单位RFI功率强度的敏感度。从“干扰源—耦合途径—接收器”的观点出发,电场强度E 是发射功率、天线增益和距离的函数,即 E=5.5· P·G d 式中P为发送功率(mW/cm2),G为天线增益,d为电路或系统距干扰源的距离(m)。 由于模拟电路一般在高增益下运行,对RF场比数字电路更为敏感,因此,必须解决μV级和mV级信号的问题;对于数字电路,由于它具有较大的信号摆动和噪声容限,所以对RF场的抑制力更强。 1.3 干扰途径 任何干扰问题可分解为干扰源、干扰接收器和干扰的耦合途径三个方面,即所谓的干扰三要素。如表 2 所示。 表2 干扰源耦合途径干扰类型接收器 共地阻抗传导干扰 辐射场到互连电缆(共模)辐射干扰 微控制器辐射场到互连电缆(差模)辐射干扰 有源器件电缆间串扰(电容效应)感应干扰微控制器 静电放电电缆间串扰(电感效应)感应干扰通信接收器 通信发射机电缆间串扰(漏电导)传导干扰有源器件 电源电缆间串扰(场耦合)辐射干扰其他电子系统扰动电源线到机箱传导干扰 雷电辐射场到机箱辐射干扰

互调干扰原理介绍及分析

一、互调干扰原理 互调干扰是在多个载频的大功率信号条件下,由于部件本身非线性引起信号互调,如果互调产物落入接收频段,将会干扰正常通信。分为有源互调与无源互调,无源互调(PIM)特性通常是接头、馈线、天线和滤波器等无源部件在多个载波的大功率信号条件下,由于部件本身存在非线性而引起的互调效应。通常认为这些无源部件是线性的,但是在大功率条件下,无源部件都不同程度地存在一定的非线性,这种非线性主要是由以下因素引起的:不同材料金属的接触;相同材料的接触表面不光滑;连接处不紧密;存在磁性物质;天馈老化;跳线接头氧化等。有源互调一般指信号在合路器进行合路时其互调交调产物落在接收频带内,导致小区高干扰。 当两个射频信号输入到一个非线性元件中,或者通过一个存在不连续性的传输介质时,将因为这种非线性而产生一系列新的频率分量,新产生信号的频率分量满足如下频率关系,设输入的两个信号的频率为f1,f2(绝对频率),产生的互调产物如下: 三阶互调:2F1-F2,2F2-F1 互调产物带宽为600K 五阶互调:3F1-2F2,3F2-2F1 互调产物带宽为1M 七阶互调:4F1-3F2,4F2-3F1 互调产物带宽为1.4M 九阶互调:5F1-4F2,5F2-4F1 互调产物带宽为1.8M 其中阶数越低,互调产物分量约高,互调产物带宽为源信号带宽(GSM为200K)*阶数 中国移动互调分量如下表所示:

对于GSM900频段,对上行造成严重干扰的主要是五阶和七阶互调产物,对于1800频段,主要为七阶和九阶互调。由于GSM900频段传输损耗小,且较低阶的互调产物就能落在上行频带内,故出现互调干扰几率要远大于1800频段。 二、互调干扰特点对网络产生影响 互调干扰产物随信号源功率增大而明显增加,一般信号功率增加1dB,互调产物往往增加3dB。互调干扰的典型特征是小区业务量较小时,此时因发射功率较低,互调产物电平低,上行干扰不明显;当小区业务量较大时,互调产物随发生功率升高而明显抬升,小区出现严重上行干扰,即体现出上行干扰带变化随小区业务量变化而随之改变的特征。 互调干扰作为一类上行干扰,对用户感知和无线接通率、上行语音质量、掉话率、切换成功率等重要KPI指标产生严重影响。 三、互调干扰判断方法 业界对互调干扰的判断方法一般如下: 1、首先检查小区干扰带4~5级占比是否随业务量变化而明显变化,如小区忙时上行干扰严重而小区闲时上行干扰不明显,则存在互调干扰的可能性较大。 2、如果小区存在上行干扰时,降低小区发射功率或通过参数调整将小区下用户切走,小区干扰带明显降低,则说明小区存在互调干扰。 为方便互调干扰定位,华为在维护台上引入开启空闲BURST操作。开启空闲BURST后,基站在空闲的信道上也会发送空闲突发脉冲,摸拟大量用户占用场景,使所有载频都满功率发射。在小区空闲场景,开启空闲BURST后,上行干扰带4~5级占比明显增加,则说明小区存在互调干扰。 四、互调干扰定位及处理 现网基站和分布系统可能产生互调的节点:

干扰达人养成计划(9)——典型GSM互调干扰

干扰达人养成计划(9)——典型GSM互调干扰 日期:2016-11-02 21:19 浏览:605 评论:11 背景知识 在第一篇文章里面也讲解了互调干扰的相关概念,这里就不在重复。 现网应该大量存在此类干扰,GSM900的二次谐波以及1800的三阶互调,都会直接影响到F 频段的上行信号。 典型问题分析 1、问题现象 深圳移动同时建设F频段(1.9G)和D频段(2.5G)两张TDL网络,大部分与 移动2G/3G网络共站,部分新建站。在进行路测时,发现相同下行条件下F频 段的上行吞吐量较小且波动大,D频段的上行吞吐量相对平稳,且符合正常值,因此怀疑F频段上行受到干扰。 同时分析前后台数据,可发现明显的外部干扰 RB足量,且UL MCS Count的调度数一直在200次,调度数足够。 MCS降阶主要就是误码率导致

从后台跟踪可疑看出,这个站点确实存在这种DCS干扰的特征Excel中按照rsrp>-110dBm进行染色缩小后结果图。

2、处理思路 1)首先需要确定是否存在干扰;主要通过反向RSSI等指标进行判断(当前 TDS-TDL双模版本不支持反向频谱扫描功能),如果反向RSSI以及RB级 RTWP指标异常,且有规律,则可判断干扰存在; 2)接着需要扫频寻找干扰来源;主要通过天面扫频方式,结合扫频情况进行 分析,找出最终的干扰源; 天面扫频的主要方法: a)使用较高精度,便携式的频谱仪以及八木天线作为扫频工具;有条件情况下则使用高精度的频谱仪和窄波束高增益定向天线,定向性更好; b)路测扫频,进行大带宽扫频(一般情况下200M左右,以有用信号的中心频点为扫频中心频点),获取有用带宽周围的信号分布情况; c)天面扫频,在天面进行360度的频域和时域扫频,通过不同方向上干扰信号的强度对干扰来源的方向进行判断; d)在多个站点天面进行天面扫频,通过3点定位方法,确定干扰源的大致方向;

LTE谐波互调干扰处理案例

LTE谐波互调干扰处理案 例 2017-09

1.案例概述 通过IDS干扰分析,发现6APYNX-鄱阳桥下-27083-8FC4D10-1小区连续多日存在高干扰,PRB干扰均值在-109dBm左右。 2.问题分析 通过IDS干扰分析平台查询得知,RB95及两边邻近RB持续干扰,RB44及两边邻近RB 干扰强度随着时间变化,满足1个或多个RB干扰凸起的情况,根据经验判断为二次谐波(2f1)及二阶互调(f1+f2)造成。 LTE小区为38400频点,中心频率为1895MHZ,LTE每RB带宽为180KHZ,两边各1MHZ 保护带宽,中国移动GSM900下行频率从935MHZ开始,每200KHZ一个频点,频率计算方法: RB95对应模糊频率=1886+95*0.18=1903.1MHZ RB44对应模糊频率=1886+44*0.18=1893.92MHZ BCCH对应模糊频率=1903.1/2=951.55MHZ BCCH对应频点 =(951.55-935)/0.2=82.75 将BCCH频点取整为83,通过查询2G工参,发现确实共站存在PYXX-桥下-27083-10581-A1的GSM小区,其BCCH频点为83,两个TCH频点,分别为:37;27 ,同理可以计算出BCCH频点83与TCH频点37的二阶频率为935+0.2*83+935+37*0.2=1894MHZ,与RB44频率相近,通过以上方法基本确认为GSM小区BCCH83与TCH 37频点造成的干扰,为了计算方便,我根据此原理编写了工具,网上也有类似excel公式,效果如下:

谐波互调分析.xl sm 3.优化措施及效果 1)通过上述分析,确认为GSM侧小区造成的干扰,使用OMC网管干扰检测监控对6APYNX-鄱阳桥下-27083-8FC4D10-1进行实时干扰跟踪,并过滤出RB43/44/94/95/96的干扰噪声功率,受BCCH二次谐波干扰的RB基本持续高干扰,而受TCH与BCCH二阶互调干扰的RB实时跟踪噪声功率呈现忽高忽低,主要由于TCH信道非持续发射,在业务忙时干扰会恶化,如下图所示: 干扰实时监控 2)联系GSM工程师,建议其将PYXX-桥下-27083-10581-A1小区BCCH频点控制在1-40范围内,因为1~40及86~94频点二次谐波对F1频点不会造成干扰,由于此次干扰还涉及到BCCH 与TCH的二阶互调,不宜将频点修改到86~94,否则二阶互调就很难避免,GSM工程师根据建议将BCCH频点修改到25,4G侧干扰立即消除,如下图所示:

传感器的噪声及其抑制方法

传感器的噪声及其抑制方法 1 引言 传感器作为自控系统的前沿哨兵,犹如电子眼一般将被测信息接收并转换为有效的电信号,但同时,一些无用信号也搀杂在其中。这些无用信号我们统称为噪声。 应该说,噪声存在于任何电路之中,但它对传感器电路的影响却尤为突出。这是因为,传感器的输出阻抗一般都很高,使其输出信号衰减厉害,同时,传感器自容易被噪声信号淹没。因此,噪声的存在必定影响传感器的精度和分辨率,而传感器又是检测自控系统的首要环节,于是势必影响整个自控系统的性能。 由此,噪声的研究是传感器电路设计中必须考虑的重要环节,只有有效地抑制、减少噪声的影响才能有效利用传感器,才能提高系统的分辨率和精度。 但噪声的种类多,成因复杂,对传感器的干扰能力也有很大差异,于是抑制噪声的方法也不同。下面就传感器的噪声问题进行较全面的研究。 2 传感器的噪声分析及对策 传感器噪声的产生根源按噪声源分为内部噪声和外部噪声。 2.1 内部噪声——来自传感器件和电路元件的噪声 2.1.1 热噪声 热噪声的发生机理是,电阻中自由电子做不规则的热运动时产生电位差的起伏,它由温度引发且与之呈正比,由下面的奈奎斯特公式表示: 其中,Vn:噪声电压有效值;K:波耳兹曼常数(1.38×10-23J〃K-1);T:绝对温度(K);B:系统的频带宽度(Hz);R:噪声源阻值(Ω)。 噪声源包括传感器自身内阻,电路电阻元件等。 由公式(1)可见,热噪声由于来自器件自身,从而无法根本消除,宜尽可能选择阻值较小的

电阻。 同时,热噪声与频率大小无关,但与频带宽成正比,即,对应不同的频率有均匀功率分布,故,也称白噪声。因此,选择窄频带的放大器和相敏检出器可有效降低噪声。 2.1.2 放大器的噪声 2.1.3 散粒噪声 散粒噪声的噪声源为晶体管,其机理是由到达电极的带电粒子的波动引起电流的波动形成的。噪声电流In与到达电极的电流Ic及频带宽度B成正比,可表示为: 由此可见,使用双极型晶体管的前置放大器来放大传感器的输出信号的场合,选Ic取值尽可能小。同时,也可选择窄频带的放大器降低散粒噪声电流。 2.1.4 1/f噪声 1/f噪声和热噪声是传感器内部的主要噪声源,但其产生机理目前还有争议,一般认为它是一种体噪声,而不是表面效应,源于晶格散射引起。在晶体管的P-N附近是电子-空穴再复合的不规则性产生的噪声,该噪声的功率分布与频率成反比,并由此而得名。其噪声电压表示为: Hooge还在1969年提出了一个解释1/f噪声的经验公式: 式中,SRH和SVH为相应于电阻起伏和电压起伏的功率噪声密度,V为加在R上的偏压,N 为总的自由载流子数,α叫Hooge因子,是一个与器件尺寸无关的常数,它是一个判断材料性能的重要参数。 对于矩形电阻,总的自由载流子数N=PLWH,其中,P为载流子浓度,L、W、H为电阻的长、宽、厚。

互调干扰

互调干扰 基站互调信号的产生和对GSM网络质量的影响,必须在处理网络规划和网络优化中关注。在自然界中,当两个射频信号输入到一个非线性元件中,或者通过一个存在不连续性的传输介质时,将因为这种非线性而产生一系列新的频率分量,新产生信号的频率分量满足如下频率关系,设输入的两个信号的频率为f1,f2(绝对频率): Fn=mf1+nf2 和 Fn=mf1-nf2 最常见是三阶、五阶互调分量,因为在各阶互调分量中,三阶、五阶互调产物的幅度较高。以三阶互调为例: 2f1-f2和2f2-f1的两种频谱分量距离本身信号最近,它们最有可能对系统产生干扰,频谱分布如图所示: 图1 互调信号频谱分布图 新增信号的幅度取决于器件的非线性程度或者微波传输不连续性,衡量的指标为三阶互调指标IM3。IM3定义:该指标定义为输入两个一定电平的等幅信号,由于系统的非线性而产生的三阶互调产物与输入信号的差值。一般情况下器件三阶互调指标满足要求,在频率规划时,不考虑三阶互调的频点,但对于所使用双频网(共天馈时)或使用频带特别宽的情况,下行产生的三阶互调会影响上行的接收,在排查干扰问题时重点考虑。 天线作为无源器件和微波信号传输器件,产生互调的可能有以下几个方面: 天线输入接头的清洁程度,机械性损伤,或者多次拆装造成内部的镀银层损坏和遗留在接头内的金属屑; 天线接头安装不紧密或密封不良; 密封在保护罩内部天线阵子被腐蚀; 天线输入接头到天线阵子的馈电部分被腐蚀。

互调产物干扰接收必须满足两个基本条件: 互调产物落入接收带内。 互调产物必须达到一定的电平,按照同频干扰和基站灵敏度-110dBm要求,天线端口互调产物的最大信号电平必须满足:-110dBm-9dB(同频干扰抑制因子)+ 6dB(60m馈线损耗)=-113dBm。 对于第一个条件,以M900 两个发射信号互调产物落入接收带内为例: 在对某基站第二小区拨测中,发现很明显的噪音,这个小区中的频点依次为109、87、18、96。将计算96和18频点的下行绝对频点: F1 (18) =935MHz+0.2MHz*18=938.6MHz F2(96)=935MHz+0.2MHz*96=954.2MHz 图2 3阶和5阶互调信号分布 两者的三阶互调产物信号频率为:2F1-F2=923MHz 两者的五阶互调产物信号频率为:3F1-2F2=907.4MHz 五阶互调产物都已经落入M900 的上行频带内,对应上行信号频点为 F3=(907.4-890)/0.2=87,而87频点正好是本小区使用的频点,就可能产生干扰。 对于第二个条件,仍然以这个小区为例。 该小区采用双CDU配置,TRX输出功率40W,假设馈线损耗为6dB时,输入到天线输入端口的功率为35dBm左右,不考虑其他,仅仅按照天线互调IM3=-150dB的要求来衡量,天线端口的互调产物可粗略的估计为:35dBm-150dB=-115dBm<-113dBm,将不会因互调而产生干扰。但是,如果互调指标恶化20dB,则天线口的互调产物为-95dBm,该信号通过CDU后的输入电平为-90dBm左右,形成等级为2的干扰带(干扰带门限为缺省值时)。 对于目前中国移动(1~94号频点)和中国联通(96~124)的频段化分,通过计算没

同频干扰与相互干扰的区别

同频干扰 影响:当小区不断分裂使基站服务区不断缩小,同频复用系数增加时,大量的同频干扰将取代人为噪声和其它干扰,成为对小区制的主要约束。这时移动无线电环境将由噪声受限环境变为干扰受限环境。 原因:无用信号的载频与有用信号的载频相同,并对接收同频有用信号的接收机造成的干扰。对抗技术:发射功率不宜过大 相邻发射台采用不同极化方式 相邻发射台的载频采用2/3行频(10KHz)偏置,或3MHz、4MHz(错开几MHz)偏置,可降低对同频保护度要求 使用跳频技术、使用裂向技术 互调干扰 原因:或多个干扰信号同时加到接收机时,由于非线性的作用,这两个干扰的组合频率有时会恰好等于或接近有用信号频率而顺利通过接收机 影响:由移动台接收机形成的互调干扰、由基地台接收机形成的互调干扰、由基地台发射机互耦形成的互调干扰 1:多址干扰定义: 是指同CDMA系统中多个用户的信号在时域和频域上是混叠的。因为CDMA 系统为码分多址,CDMA系统采用的是不同的地址码来区分每个用户,但多个用户的信号在时域和频域上是混叠的,所以在频域在产生一定的同频和邻频干扰,则为多址干扰。 2:多址干扰的由来 CDMA的一系列优点使其成为新一代移动通信的佼佼者,但在商用化的过程中CDMA仍有许多关键的技术需要解决。例如克服CDMA系统自身的多址干扰(MAI),就是一个要解决的关键技术问题。CDMA系统自身产生多址干扰的原因主要有两个:一是由于各用户使用的通信频率相同,在不同用户之间的扩频序列不能进行完全正交,即互相关系数不为零;二是即使扩频序列能正交,实际信道中的异步传输也会引入相关性。下面即给出了同步加性白噪声(AWGN)信道中采用传统检测器时产生多址干扰的数学推导。

二阶互调和三阶互调

二阶互调 x+x+45=y+95 ;x=912+(a-110*0.2) ;y=1773.2+(b-827*0.2) ;a=100~124 ;b=800~859 ;计算上述5个式子可得:2(890-0.2a)=1773.2+0.2b-165.4+50 ;计算可得:122.2=0.2a-0.4b 即2a+611=b 然后可得对应得二阶互调频点为:100-811 ,101-813 102-815 ,103-817 。。。。。。。。。。115-841 ,116-843 。。。。。。。。。。123-857 ,124-859 (1)该频率计划是因为二阶互调所引起的。115频点的发射频率和接收频率之和等于841的下行频率1871,同时124频点的发射频率和接收频率之和等于859的下行频率1874.6,因此引起了二阶互调导致系统掉话。 (2)对于该网络的频率计划主要要考虑900/1800之间的二阶互调干扰和三阶互调干扰。二阶互调干扰: 1、二阶互调表现为fA+/-fB=fC,对双频网可能的表现形式有: DCS1800Tx-GSM900Tx=GSM900Rx;Tx代表基站发射频率,Rx代表基站接收频率 共站时1800发射频率与900发射频率的差频不能等于GSM900的接收频率。 2、还有一种情况就是一个基站的三个小区的BCCH之间存在这样的关系也是二阶互调: BCCH(A)+BCCH(B)=2*BCCH(C) 三阶互调干扰 三阶互调表现为:fA+fB+fC=fD,fA-fB-fC=fD,fA+fB-fC=fD或fA-fB+fC=fD。对双频网前两者不可能成立,后两者其实是同一种情况。可归结为:情况1:DCS1800Tx1-DCS1800Tx2+GSM900Tx=GSM900Rx 即:共站两1800频点发射频率的差频与GSM900频点发射频率的和不能等于GSM900的接收频率情况2:DCS1800Tx-GSM900Tx1+GSM900Tx2= DCS1800Rx 即:共站两GSM900发射频率的差频与DCS1800发射频率的和不能等于DCS1800的接收频率。

LTE干扰处理

LTE干扰处理_ 王楠 一、TD-L TE干扰概述 1.TD-LTE频段分析 目前TD-LTE主要使用三个频段,F、D、E。

2.TD-LTE内外干扰分析 1)内部干扰 交叉时隙干扰:上下行时隙干扰 远距离同频干扰:站A和站B间距>GP传播距离 GPS失步:失步基站与周围基站上下行收发不一致,相互干扰 小区间同频干扰:同PCI同mod3 设备故障:RRU故障;天馈故障 2)外部干扰 同频干扰:杂散干扰,互调干扰,谐波干扰 异频干扰:阻塞干扰

3)干扰表现 上行底噪≥=105db ping包延时大于正常小区,或无法ping成功KPI:切换、接通、掉线 4)外部干扰分频段分析

①F频点干扰状况 ?DCS1800阻塞干扰:16~30dB底噪抬升,UL吞吐量损失严重,甚至无法建立连 接 ?DCS1800杂散干扰:5dB的底噪抬升, UL吞吐量损失约10% ?DCS1800互调干扰:8~16dB的底噪抬升, UL吞吐量损失超过30% ?GSM900谐波干扰:约5dB的底噪抬升 ?PHS杂散:一般情况下轻微干扰,严重时TD-S或TD-L无法建立连接

②E频段干扰状况 ?E频段和Wifi相隔30MHz,比较近,且Wifi不遵循3GPP协议,射频指标比较差?普通室分系统下,80dB的合路器基本可以消除干扰,两者频率越远,受到的影响 越小。 ?外挂情况下,空间隔离需1m以上 ③D频段干扰状况 ?从频谱状况来说,存有各运营商TD-LTE间的干扰、与雷达间、射频天文、北斗、 Wifi以及MMDS、Wimax间的干扰 ?MMDS和WiMAX对D频段的同频干扰,可使底噪抬升20dB以上,严重时更会 导致TD-LTE业务无法建立连接

二阶互调

二阶互调 x+x+45=y+95 ; x=912+(a-110*0.2) ; y=1773.2+(b-827*0.2) ; a=100~124 ; b=800~859 ; 计算上述5个式子可得: 2(890-0.2a)=1773.2+0.2b-165.4+50 ;计算可得: 122.2=0.2a-0.4b 即2a+611=b 然后可得对应得二阶互调频点为: 100-811 ,101-813 102-815 ,103-817 。。。。。。。。。。 115-841 ,116-843 。。。。。。。。。。 123-857 ,124-859 (1)该频率计划是因为二阶互调所引起的。 115频点的发射频率和接收频率之和等于841的下行频率1871,同时 124频点的发射频率和接收频率之和等于859的下行频率1874.6,因此 引起了二阶互调导致系统掉话。 (2)对于该网络的频率计划主要要考虑900/1800之间的二阶互调干扰和三阶互调干扰。 二阶互调干扰: 1、二阶互调表现为fA+/-fB=fC,对双频网可能的表现形式有: DCS1800Tx-GSM900Tx=GSM900Rx; Tx代表基站发射频率,Rx代表基站接收频率。 共站时1800发射频率与900发射频率的差频不能等于GSM900的接收频 率。 2、还有一种情况就是一个基站的三个小区的BCCH之间存在这样的关系也是二 阶互调:

BCCH(A)+BCCH(B)=2*BCCH(C) 三阶互调干扰: 三阶互调表现为: fA+fB+fC=fD,fA-fB-fC=fD,fA+fB-fC=fD或fA-fB+fC=fD。 对双频网前两者不可能成立,后两者其实是同一种情况。可归结为:情况1:DCS1800Tx1-DCS1800Tx2+GSM900Tx=GSM900Rx 即:共站两1800频点发射频率的差频与GSM900频点发射频 率的和不能等于GSM900的接收频率 情况2:DCS1800Tx-GSM900Tx1+GSM900Tx2= DCS1800Rx 即:共站两GSM900发射频率的差频与DCS1800发射频率的 和不能等于DCS1800的接收频率。

电磁干扰及其抑制方法的研究

弱电工程中电磁干扰及其抑制方法的研究 (洲坝通信工程方宏坤 151120) 【摘要】在弱电工程应用领域,强电与弱电交叉耦合,电磁干扰(EMI)错综复杂,严重影响弱电系统的稳定性和安全性。本文详细介绍了 EMI 产生的原因、分析EMI/RFI的特性,及其传输途径和危害,利用电磁理论和工程实践,分析并提出了一些在弱电工程领域行之有效的 EMI 抑制方法。 【关键词】弱电电磁干扰(EMI)射频干扰(RFI)干扰抑制 随着计算机技术,特别是网络技术的飞速发展,IT技术在弱电工程领域的广泛应用,IT设备日益精密、复杂,使得电子干扰问题日趋严峻。它可使系统的稳定性、可靠性降低,功能失效,甚至导致系统完瘫痪和设备损坏。特别是 EMI/RFI(电磁干扰/射频干扰)问题,已成为近几年弱电工程领域的焦点。 1、电磁干扰分类和特性 生活中电磁干扰无处不在,其干好错综复杂。通常我们把电磁干扰主要划分为电磁干扰(EMI)、射频干扰(RFI)和电磁脉冲(EMP)三种,根据其来源可分为外界和部两种,严格的说所有电子运行的元件均可看作干扰源。本文中所提EMI是对周围电磁环境有较强影响的干扰;RFI则从属于EMI;EMP 是一种瞬态现象,它可由系统部原因(电压冲击、电源中断、电感负载转换等)或外部原因(闪电等)引起,能耦合到任何导线上,如电源线和通信电缆等,而与这些导线相连的电子系统可能受到瞬时严重干扰或使系统的电子电路永久性损坏。图 1 给出了常见 EMI/RFI 的干扰源及其频率围。

1.1 EMI特性分析 在电子系统设计中,应从三个方面来考虑电磁干扰问题:首先是电子系统产生和发射干扰的程度;其次是电子系统在强度为 1~10 V/m、距离为 3 米的电磁场中的抗扰特性;第三是电子系统部的干扰问题。利用干扰三要素分析与EMI相关的问题需要把握EMI的五个关键因素,这五个关键因素是频率、幅度、时间、阻抗和距离。 在EMI分析中的另一个重要参数是电缆的尺寸、导线及护套,这是因为,当EMI 成为关键因素时,电缆相当于天线或干扰的传输器,必须考虑其物理长度与屏蔽问题。 1.2 RFI特性分析 无线电发射源无处不在,如无线电台、移动通信、发电机、电动机、电锤等等。所有这些电子活动都会影响电子系统的性能。无论RFI的强度和位置如何,电子系统对RFI必须有一个最低的抗扰度。在通信、无线电工程中,抗扰度定义为设备承受每单位RFI功率强度的敏感度。从“干扰源—耦合途径—接收器”的观点出发,电场强度E 是发射功率、天线增益和距离的函数,即 式中P为发送功率(mW/cm2),G为天线增益,d为电路或系统距干扰源的距离(m)。 由于模拟电路一般在高增益下运行,对RF场比数字电路更为敏感,因此,必须解决μV级和mV级信号的问题;对于数字电路,由于它具有较大的信号摆动和噪声容限,所以对RF场的抑制力更强。 1.3 干扰途径 任何干扰问题可分解为干扰源、干扰接收器和干扰的耦合途径三个方面,即所谓的干扰三要素。如表 2 所示。 表2 干扰源耦合途径干扰类型接收器 共地阻抗传导干扰 辐射场到互连电缆(共模)辐射干扰 微控制器辐射场到互连电缆(差模)辐射干扰 有源器件电缆间串扰(电容效应)感应干扰微控制器 静电放电电缆间串扰(电感效应)感应干扰通信接收器 通信发射机电缆间串扰(漏电导)传导干扰有源器件 电源电缆间串扰(场耦合)辐射干扰其他电子系统扰动电源线到机箱传导干扰

LTE谐波互调干扰处理案例

L T E谐波互调干扰处理 案例 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

L T E谐波互调干扰处理案例 2017-09 1.案例概述 通过IDS干扰分析,发现6APYNX-鄱阳桥下-27083-8FC4D10-1小区连续多日存在高干扰,PRB干扰均值在-109dBm左右。 2.问题分析 通过IDS干扰分析平台查询得知,RB95及两边邻近RB持续干扰,RB44及两边邻近RB干扰强度随着时间变化,满足1个或多个RB干扰凸起的情况,根据经验判断为二次谐波(2f1)及二阶互调(f1+f2)造成。 LTE小区为38400频点,中心频率为1895MHZ,LTE每RB带宽为180KHZ,两边各1MHZ保护带宽,中国移动GSM900下行频率从935MHZ开始,每200KHZ一个频点,频率计算方法: RB95对应模糊频率=1886+95*= RB44对应模糊频率=1886+44*= BCCH对应模糊频率=2= BCCH对应频点 =/= 将BCCH频点取整为83,通过查询2G工参,发现确实共站存在PYXX-桥下-27083-10581-A1的GSM小区,其BCCH频点为83,两个TCH频点,分别为:37; 27 ,同理可以计算出BCCH频点83与TCH频点37的二阶频率为 935+*83+935+37*=1894MHZ,与RB44频率相近,通过以上方法基本确认为GSM小区

BCCH83与TCH 37频点造成的干扰,为了计算方便,我根据此原理编写了工具,网上也有类似excel公式,效果如下: 3.优化措施及效果 1)通过上述分析,确认为GSM侧小区造成的干扰,使用OMC网管干扰检测监控对6APYNX-鄱阳桥下-27083-8FC4D10-1进行实时干扰跟踪,并过滤出 RB43/44/94/95/96的干扰噪声功率,受BCCH二次谐波干扰的RB基本持续高干扰,而受TCH与BCCH二阶互调干扰的RB实时跟踪噪声功率呈现忽高忽低,主要由于TCH信道非持续发射,在业务忙时干扰会恶化,如下图所示: 干扰实时监控 2)联系GSM工程师,建议其将PYXX-桥下-27083-10581-A1小区BCCH频点控制在1-40范围内,因为1~40及86~94频点二次谐波对F1频点不会造成干扰,由于此次干扰还涉及到BCCH与TCH的二阶互调,不宜将频点修改到86~94,否则二阶互调就很难避免,GSM工程师根据建议将BCCH频点修改到25,4G侧干扰立即消除,如下图所示: GSM侧修改BCCH后 4.优化经验总结 目前GSM与LTE基本共站址建设,由于隔离度不足或天馈线器件老化等原因,谐波互调干扰会越来越多,同时GSM也在大规模翻频,后台及时处理谐波互调干扰显得尤为重要,在日常工作中遇到最多的为BCCH二次谐波,其次为BCCH与TCH二阶互调,最后为TCH二次谐波,在处理此类干扰的话,建议GSM选用频点的时候需注意不会引入新的谐波或者互调干扰。

直放站设计中噪声和互调干扰的解决方法

一、直放站的噪声系数对GSM网络的影响及解决方法 例一:设EDoPL为90dB,直放站增益设为90dB(设此时直放站下行输出功率和基站一样),直放站和基站的噪声系数5dB,为保持上下行链路平衡,上下行增益设置一样。利用前边的公式可以得出: ROT=3dB 结论:直放站的引入使基站噪声电平提高3dB,接收机灵敏度降低3dB,施主基站覆盖范围缩小20-30%,同样直放站的覆盖范围也要相应减小。 例二:设EDoPL为90dB,直放站增益设为85dB(直放站下行输出功率比基站小5dB),直放站和基站的噪声系数5dB,为保持上下行链路平衡,上下行增益设置一样。利用前边的公式可以得出: ROT=0.8dB 结论:直放站的引入使基站噪声电平提高0.8dB,接收机灵敏度降低0.8dB,施主基站覆盖范围缩小较少。 2解决方法 通过以上两例可以看出,影响上行输出噪声功率的因素有两个:噪声系数和整机功率。当直放站增益设置比有效路径损耗小时,直放站躁声系数对基站的影响比较小(如果在此基础上再留10dB左右的余量,直放站对基站影响将会更小:<0.3dB)。选择噪声系数尽可能小的直放站,合理调整直放站的增益,严格控制直放站的发射功率,才能避免上行躁声给网络带来的不利影响。 二、直放站的互调干扰对GSM网络的影响及解决办法 三阶互调的两种模型2fa-fb、fa+fb-fc, 二阶互调fa+fb、fa-fb等,因其频率远离主导信号频率fa、fb,可不考虑:三阶互调的两种模型2fa-fb、fa+fb-fc,因其频率接近或等于主导信号频率,对通信的影响最大; 2解决方法 通过上述分析可知,影响上行输出的互调因素有两个:设备本身的线性度和ALC控制电平。为避免产生三阶互调,可采用下面的办法: (1)选择适当的频点组合。拉开频距选用无三阶互调频道点组工作,使三阶互调不会落在所使用的频点内; (2)采用自动增益(功率)控制(APC)技术,实时减小发射功率以减低互调电平,使其不至于落入有源器件的非线性区。 (3)提高收信机前端的选择性,抑制干扰信号;改善收信机输入级的线性度,提高互调

电气设备的干扰及其抑制

电气设备的干扰及其抑制 1引言 随着电力电子技术的发展,供电系统中增加了大量的非线性负载,特别是静止变流器,从低压小容量家用电器到高压大容量用的工业交、直流变换装置,应用广泛。由于静止变换器是以开关方式工作的,会引起电网电流、电压波形发生畸变,使高次谐波显著增加。尽管供电系统中电弧炉、电焊机、变压器、旋转电机、荧光灯等其它非线性负载都会在电网中产生不同频率和幅值的高次谐波,但静止变 流器产生的高次谐波最为严重,成为电网中的公害”。 2高次谐波产生的主要原因 2.1整流器 作为直流电源装置,整流器广泛应用于各种场合。其典型电路如图1所示。在整流装置中,交流电源的电流为矩形波,该矩形波为工频基波电流波形和奇数倍频率的高次谐波电流波形的合成波形。图2给出了6脉冲3相桥式整流器在不同时的高次谐波含有率。2.2交流调压器 交流调压器多用于调光装置、电阻炉和感应电动机等工业设备的电力调整。其典型电路如图3所示。交流电力调压器产生的谐波次数与整流器基本相同。 2.3频率变换器 频率变换器是ac-ac变换器的代表设备。当用作电动机的调速装置时,它含有随输出频率变化的边频带,由于频率连续变化,出现的谐波含量比较复杂。 2.4通用变频器 通用变频器的输入电路通常由二极管全桥整流电路和直流侧电容器所组成,如图4(a)所示,这种电路的输入电流波形随阻抗的不同相差很大。在电源阻抗比较小的情况下,其波形为窄而高的瘦长型波形,如图4(b)所示;反之,当电源阻抗比 较大时,其波形为矮而宽的扁平型波形,如图4(b)虚线所示。 2.5高频开关电源 除了上述典型变流装置会产生大量的谐波以外,近年来彩电、个人电脑、电池充电器等装置的迅速普及,使得电容滤波的整流电路迅猛增加。对其交流侧谐波的分析已经开始成为谐波源分析领域关注的焦点之一。 3高次谐波的危害 3.1对电力电容器的影响 由于电容器的容抗与频率成反比,因此在高次谐波电压作用下的容抗要比在基波电压作用下的容抗小得多,从而使谐波电流的波形畸变更比谐波电压的波形畸变大得多,即便电压中谐波所占的比例不大,也会产生显著的谐波电流。特别是在发生谐振的情况下,很小的谐波电压就可引起很大的谐波电流,使电容器成倍地过负荷,导致电容器因过流而损坏。 3.2对旋转电机的影响 谐波电压或电流会在电机的定子绕组、转子回路以定子和转子铁芯中引起附加损耗。由于涡流和集肤效应的关系,定子和转子导体内的这些附加损耗要比直流电阻引起的损耗大。 另外,谐波电流还会增大电机的噪音和产生脉动转矩。转子第k次谐波电流与基波旋转磁场产生的脉动转矩可由下式表示:(2)

甚高频互调干扰抑制措施

甚高频互调干扰抑制措施 发表时间:2017-07-20T16:41:53.640Z 来源:《基层建设》2017年第9期作者:周小涛[导读] 摘要:伴随着民航事业突飞猛进的发展,飞行流量持续不断的增加,对管制部门的要求越来越高,对甚高频通信质量的要求也不断提高。 民航宁夏空管分局宁夏银川 750000 摘要:伴随着民航事业突飞猛进的发展,飞行流量持续不断的增加,对管制部门的要求越来越高,对甚高频通信质量的要求也不断提高。甚高频(VHF)地对空通信甚高频地空通信是空管系统对航空器实施有效空域管制的重要手段,但随着各地大量无线台站的建立,使得无线电磁环境日趋复杂。民航甚高频频段受到各种干扰比较严重,特别是互调干扰已经成为危害航空通信安全的重要原因。本文将分析 互调干扰形成的机理以及提出如何减少互调干扰所应采取的措施。 关键词:甚高频;互调干扰;三阶互调干扰 1、互调干扰概述 无线电干扰是指在无线电通信过程中发生的,由一种或多种发射、辐射、感应或组合所产生的无用能量,它对无线电通信系统的接收产生影响或对无线电通信所需接收信号的接收产生影响,通过直接耦合或间接耦合方式进入接收设备信道或系统的电磁能量,它可以导致无线电通信性能下降,质量恶化,甚至会阻断通信。 无线电干扰通常分为互调干扰、同信道干扰、邻道干扰、带外干扰、杂散辐射干扰、阻塞干扰和来自非无线电设备的干扰这七大类,其中,互调干扰是无线电通信中最严重的干扰之一。互调干扰是指当两个或两个以上的频率信号同时输入收、发信机时,由于电路的非线性而产生第三个频率F0,当F0恰好落入某个电台的工作频段中,则该台将受到干扰。互调干扰不仅影响通话质量,严重的时候会造成信号严重失真,致使空中交通管制人员与飞行人员通话困难甚至联络不上,严重干扰民航地空指挥通信系统的正常运转,直接影响到飞行安全。互调干扰还会造成设备的损坏,当发射机调试好以后,它的工作频率是处在输出电路的最佳谐振点上,这时候电路电流最小,但是互调干扰信号使工作电路失谐,电流增大,元器件发热严重,大大增加发射机的故障,影响飞行安全。 2、互调干扰形成的机理 我们知道任何一个线性系统都存在非线性系数。三阶互调是指当两个信号或多个信号在一个线性系统中,由于非线性因素存在使一个信号的二次谐波与另一个信号的基波产生差拍(混频)后所产生的寄生信号。比如F1的二次谐波是2F1,他与F2产生了寄生信号2F1-F2。由于一个信号是二次谐波(二阶信号),另一个信号是基波信号(一阶信号),他们俩合成为三阶信号,其中2F1-F2被称为三阶互调信号,它是在调制过程中产生的。又因为是这两个信号的相互调制而产生差拍信号,所以这个新产生的信号称为三阶互调失真信号。产生这个信号的过程称为三阶互调失真。由于F1,F2信号一般比较接近,也造成2F1-F2,2F2-F1与原来的基带信号F1、F2比较接近,这样会干扰到原来的基带信号F1,F2。这就是三阶互调干扰。当情况比较复杂如有三个信号在一个线性系统中,如F1、F2、F3,他们除了产生上述说说的三阶互调外,还将产生三阶互调F1+F2-F3、F1+F3-F2、F2+F3-F1。当然,在这个过程中也会出现更高阶的互调,比如五阶互调、七阶互调,但是由于高阶互调信号强度较弱,造成的干扰较轻微,因此我们就一般不考虑更高阶的互调干扰,而认为三阶互调是最主要的干扰。 3、互调干扰的分类 互调干扰来源于电路的非线性,根据产生的位置不同,我们大致可分为以下三种: 3.1发射机互调干扰 由于其他信道的发射信号或RF共用器件耦合到发射机末级与本机,发射信号在功放电路中相互调制而产生新的频率组合,随同有用信号一起发射出去,对接收机形成干扰。这类干扰称为发射机互调干扰。 3.2接收机互调干扰 在接收机的前端电路中,同时两个偏离接收频率的干扰信号同时侵入接收机时,由于高频放大器和变频器的非线性,使其调制而产生互调频率,互调频率落入接收机频带内造成的干扰称为接收机互调干扰。 3.3外部效应引起的互调干扰 在发射机发射端传输电路中,由于天线、馈线接头以及其他接点接触不良,或者是异种金属的接触部分所引起非线性的原因,在强射频电场中起检波作用,从而产生互调干扰。这类干扰称为外部效应互调干扰。这类互调干扰的特性比较复杂,它是随天气和气候变化而变化,白天也黑夜、干燥和潮湿、甚至上午与下午的干扰程度都不尽相同。 4、减少互调干扰的措施 互调干扰不仅影响通话质量,严重时还会造成信号的严重失真,致使空管人员与飞行人员通话困难甚至联络不上严重干扰地空通信系统的正常运转。因此我们要想方设法去使互调干扰的危害降到最小,下面就各种互调提出减小互调干扰应采取的措施。 4.1对于减少发射机互调干扰采取的措施 1)改善发射机与天线馈线的匹配。2)改善发射机末级功放的性能,提高其线性动态范围。3)在民航VHF通信中,甚高频设备大多采用共用天线系统,各发射机与天线间可插入单向隔离器或单向隔离器与腔体滤波器的组合器件。4)在台站规划建设时,根据互调干扰产生的条件选用无三阶互调工作频率组。 4.2对于减少接收机互调干扰采取的措施 1)接收机输入回路应有良好的选择性,如采用多级调谐回路,以减少进入高效的强干扰。2)高放和混频器宜采用具有平方律特性的器件,如结型场效应管。3)接收机前端加入衰减器,降低干扰信号电平。 4.3对于减少外部效应引起的互调干扰 如果发信机的高频滤波器、射频避雷器及天线馈线等插件接触不良,或者发信机天线螺栓等金属构件有锈蚀,会存在非线性作用而出现的互调现象,这是由外部效应引起的互调现象。只要采用适当措施,如保证插接部件接触良好,并用良好的涂料防止金属构件锈蚀,便可以避免。

相关文档