文档库 最新最全的文档下载
当前位置:文档库 › Magnetic flares and the optical variability of the X-ray transient XTE J1118+480

Magnetic flares and the optical variability of the X-ray transient XTE J1118+480

Magnetic flares and the optical variability of the X-ray transient XTE J1118+480
Magnetic flares and the optical variability of the X-ray transient XTE J1118+480

a r X i v :a s t r o -p h /0006139v 2 4 J u l 2000

Mon.Not.R.Astron.Soc.000,000–000(0000)Printed 1February 2008

(MN L A T E X style ?le v1.4)

Magnetic ?ares and the optical variability of the X-ray

transient XTE J1118+480

A.Merloni 1,T.Di Matteo 2?and A.C.Fabian 1

1Institute of Astronomy,Madingley Road,Cambridge,CB30HA.

2Harvard-Smithsonian Center for Astrophysics,60Garden St.,Cambridge,MA 02138,USA.

ABSTRACT

The simultaneous presence of a strong quasi periodic oscillation of period ~10seconds in the optical and X-ray lightcurves of the X-ray transient XTE J1118+480suggests that a signi?cant fraction of the optical ?ux originates from the inner part of the accretion ?ow,where most of the X-rays are produced.We present a model of magnetic ?ares in an accretion disc corona where thermal cyclo-synchrotron emission contributes signi?cantly to the optical emission,while the X-rays are produced by inverse Compton scattering of the soft photons produced by dissipation in the underlying disc and by the synchrotron process itself.Given the observational constraints,we estimate the values for the coronal temperature,optical depth and magnetic ?eld intensity,as well as the accretion rate for the source.Within our model we predict a correlation between optical and hard X-ray variability and an anticorrelation between optical and soft X-rays.We also expect optical variability on ?aring timescales (~tens of milliseconds),with a power density spectrum similar to the one observed in the X-ray band.Finally we use both the available optical/EUV/X-ray spectral energy distribution and the low frequency time variability to discuss limits on the inner radius of the optically thick disc.

Key words:accretion,accretion discs –magnetic ?elds –radiation mechanisms:thermal –binaries:general –stars:individual:XTE J118+480

1INTRODUCTION

The newly discovered transient X-ray source XTE J1118+480(Remillard et al.2000),has already shown a number of remarkable properties.It was discovered as a weak source with the RXTE All-Sky Monitor on March 29,2000at high galactic latitude (b ~62o ).Subsequent RXTE pointed observations revealed an energy spectrum typical of black hole candidates in their hard state,showing a promi-nent power-law component in its X-ray spectrum with a pho-ton index of about 1.8up to at least 30keV.The source was also observed on March 26in hard X-rays by BATSE,up to 120keV (Wilson &McCollough 2000).The 13th mag-nitude optical counterpart,discovered by Uemura,Kato &Yamaoka (2000),exhibit a spectrum fairly typical of X-ray Novae in outburst (e.g.Garcia et al.2000).

Being at such an high galactic latitude,the source suf-fers from low interstellar absorption,and consequently has also been observed in the extreme ultra violet (EUV)by the Extreme Ultraviolet Explorer (EUVE).The EUVE spectrum and ?uxes derived by Hynes et al.(2000)however are ex-

?Chandra Fellow tremely sensitive to the details of the absorbing column and

are therefore subject to large uncertainties.

A strong QPO feature with a frequency ν~0.08Hz has been found in the X-ray power density spectrum (PDS)of the source in the ?rst month of the outburst (March 29–May 4,see Revnitsev,Sunyaev &Borozdin 2000).More surprisingly,the optical lightcurves also show strong ?icker-ing on timescales of a few seconds or faster and a prominent quasi periodic feature with a frequency in agreement with that of the X-ray QPO.Subsequent HST,RXTE and ASCA observations in the optical/UV and X-ray band respectively,have also shown that the QPO is drifting to higher fre-quencies systematically in both bands,from ν~0.08Hz to ν~0.11Hz later in the month (Haswell et al.2000b;Yamaoka,Ueda &Dotani 2000;Patterson private commu-nication).

The strikingly similar variability properties observed in both bands suggest that at least a fraction of the optical/UV ?ux from the object should be produced in the same region of the accretion ?ow where the X-rays are produced and hence re?ect a di?erent aspect of the same phenomenon.This implies that the modulated optical/UV ?ux cannot be produced by thermal emission from the accretion disc itself;the optical/UV ?ux from a stellar mass black hole arises

c

0000RAS

2 A.Merloni et al.

from the outer region of the disc(radii greater than hundreds of Schwarzchild radii)where the X-ray emission is negligible.

Here we show that the presence of such optical/UV vari-ability in the observations of XTE J1118+480argues for the presence of signi?cant thermal synchrotron radiation from a magnetically dominated corona(or possibly from an advec-tion dominated accretion?ow,ADAF,occupying the inner parts of the?ow).

The only other object ever observed to show similar short timescale variability,in both the optical and X-ray bands,is the black hole candidate GX339-4in its hard state(Motch et al1982).For the case of GX339-4,typi-cally brighter than XTE J1118+480in X-rays,it was also suggested that thermal synchrotron emission should provide a signi?cant contribution to the optical band(Fabian et al. 1982;Di Matteo,Celotti&Fabian1999).

2CYCLO-SYNCROTRON EMISSION FROM A MAGNETIC CORONA

2.1The Magnetic?eld in the corona

It is now well established that magnetic stresses in accre-tion discs are likely to be responsible for the transfer of angular momentum(see Balbus&Hawley1998for a re-view).Magneto-rotational instabilities can drive turbulence by amplifying the seed magnetic?elds on roughly Keplerian timescales;the rate at which magnetic energy is built up is fast enough to explain the bulk of energy release in an ac-cretion disk as magnetic dissipation.This supports the idea that accretion disc coronae,the loci where the hard X-ray emission is produced,are highly magnetic and form by buoy-ancy of the strong magnetic?elds ampli?ed in the disk(e.g. Galeev,Rosner&Vaiana1979).This picture is supported by numerical simulations(Miller&Stone2000)which show that,when weak B?elds are ampli?ed via MHD turbulence in the disk,only a fraction~H/R<1of the energy is dis-sipated locally while the rest escapes and forms a strongly magnetized corona above the disc.

In any such models,the magnetic?eld in the corona is likely to be strongly inhomogeneous and to dissipate energy in localized active regions.Following Di Matteo,Celotti& Fabian(1997;1999),we assume that a signi?cant fraction, f,of the accretion power,L=˙mL Edd,is accumulated in the corona while the remaining fraction(1?f)is dissi-pated internally in the disc.The magnetic?eld strength, B,in the magnetic?ux tubes rising from the disk can be higher than the values implied by equipartition with radia-tion energy density.In fact,if the active region is powered by the release of magnetic energy,its dissipation velocity is ~v A,the Alfven speed(see e.g.Di Matteo1998).The en-ergy stored in the?eld is therefore a fraction v A/c~0.1of that of the radiation(Di Matteo,Blackman&Fabian1997). Based on similar arguments Haardt,Maraschi&Ghisellini (1994)showed that the magnetic energy is released on typ-ical timesclales t0~10R b/c,where R b is the size of the active region.This leads to a magnetic?eld strength,

B2

c ≈

9fL

r b ˙mfc

109K

)0.95(B

XTE J1118+4803

Fν∝ν1/3.On the other hand,un?ltered CCD fast pho-tometry(Haswell et al.2000b;Patterson2000)has revealed optical?ickering of±0.2mag on timescales of seconds,which correspond to~20per cent of the optical?ux.As the opti-cal variability is strongly modulated by a QPO with a fre-quency comparable(if not the same)to that of the X-ray one,it has to be produced where most of the X-rays are produced,namely in the inner part of the accretion?ow.

We assume that this rapid variability is due to self ab-sorbed cyclo-synchrotron(CS)emission.To explicitly show the various parameter dependences of the synchrotron emis-sion we write the?ux at the peak frequencyνc as(Di Mat-teo,Celotti&Fabian1997)

F CS=2πm eν3cθr2b N R S1+t CS/t iC (3)?5.7×10?14θr2b N νc d 2

× 1νc 3 ,

where d is the distance of the source in kiloparsecs,θ= kT/m e c2the dimensionless temperature,U rad=U rad,int+ U rad,ext and the ratio of the relevant timescales for the cyclo-synchrotron and inverse Compton emission determines which process dominates in an active(see Section2.2).Un-der the assumption that at least one fourth of the?ux atν=νc=1015Hz is due to CS,we deduce that the intrinsic dissipation in the accretion disc has to be fairly small(˙m(1?f)~10?3)implying a magnetic?eld intensity B?2×106G.

We model the spectrum of the source following the work of Di Matteo,Celotti&Fabian(1999).The main feature of the model is that it considers reprocessing of coronal ra-diation in the accretion disc not only according to the ac-tive blob size but also according to their height above the disc.The temperature and the optical depth in the corona are constrained from the observed slope of the power-law in the X-ray spectrum(α?0.8∝(τθ)?1;e.g.Wardzi′n ski& Zdziarski2000).The spectrum is calculated self-consistently for every annulus of radius R=rR S and width dR?R and integrated over radius from r=3to r=1000.We take into account all the relevant radiative processes and rescale them opportunely according to the ratios of their typical cooling timescales which are obtained by integrating each spectral component(more accurately than in Eq.3)

In all cases we postulate that the accretion disc extends down to the innermost stable orbit of a non-rotating black hole(R in=3R S),so that both the optical and X-rays are produced where most of the energy is dissipated.The num-ber of active regions at any given annulus is calculated as in Haardt,Maraschi&Ghisellini(1994),following their discus-sion on the timescales over which the magnetic?eld is am-pli?ed in the disc(t amp~t Kep)and released in the corona (t rel~t0,see section2.1).We obtain dN=9.5r?3/2dr,so that the total number of?ares active at any time N?10, as usually assumed from variability arguments.The mass is ?xed to10solar masses.

In Figure1we show an illustration of two model spec-tra for the recent optical and X-ray observations of XTE J1118+480.They are not to be regarded as detailed?ts to the data,rather as indicative of the physical properties of the source implied by the model.In particular,we do not at-tempt to?t the optical continuum with a realistic model for the outermost parts of the accretion disc,our main interest being to put constraints on the nature of the inner accretion ?ow.The relatively high optical-to-X-ray?ux ratio for the source imposes the major constraints on the model.In order for both the synchrotron component to be important in the optical band and the Comptonized?ux not to exceed the observed limit in the hard X-ray band U rad,ext,the external radiation energy density intercepting the active region(see Eq.3)has to be lower than(1?f)L/(4πR2disc c).

The?rst spectrum(case a,solid lines)is obtained as-suming static dissipation regions at?xed height.For r b=3 we have to allow the reconnection sites to be above the ac-cretion disc at a height of~4?5r b.The need for such aspect ratio of the active region is just an indication that the soft radiation?eld seen by the?aring region has been reduced.

As expected from the simple scaling arguments of Eqs.(2)and(3),we obtain a relatively low accretion rate (˙m?0.01)and a high value of the fraction of the power dissipated in the corona(f?0.97),both consistent with the source being in its hard state.However,in this geom-etry f is not a relevant parameter because the hard X-ray radiation illuminates the disk and a substantial fraction of it(<~0.5,depending on the disc albedo)is reprocessed and thermalized giving rise to a hotter blackbody-like compo-nent roughly similar to that obtained for lower values of f.

In Figure1(case b,dashed lines)we illustrate an al-ternative way to reduce the contribution from this thermal component in the soft X-ray band and enhance the the cyclo-synchrotron emission in the optical/UV band.Following Be-loborodov(1999),we allow for bulk relativistic motion of the emitting coronal plasma away from the disc.Due to Doppler boosting the radiation from a reconnection site to-wards the disc is reduced.This is equivalent,for our purpose, to the assumption that the coronal emission is anisotropic: for v/c~0.3,roughly90per cent of it is emitted upwards and only the remaining~10per cent impinges on the un-derlying disc.

Finally,the values of temperature and optical depth of the active regions we derive are,respectively,θ?0.3and τ?0.6and are almost equal in the two cases.The distance we obtain is of the order of D=0.4kpc,as expected for a high latitude galactic source.

3.2The inner disc

Hynes ey al.(2000)have recently reported on EUV observa-tions of XTE J1118+480and have shown that the relatively low EUV?ux may be inconsistent with an optically thick disc extending down to radii r in~<1000.However EUV ob-servations are extremely sensitive to the assumed absorption and the derived limits on r in highly uncertain.This is further emphasized by recent ASCA observations which appear to show a slight soft excess below2keV(Yamaoka et al.2000) well?tted by a multicolour disc of temperature0.2±0.1 keV.Because of the inconsistency between the ASCA and EUVE measurements we did not use the EUVE data as a further constraint for our model.

However,in accordance with the requirements discussed

c 0000RAS,MNRAS000,000–000

4 A.Merloni et

al.

Figure 1.Representative model predictions for the spectral en-ergy distribution of XTE J1118+480.The points represent op-tical (V band)(Uemura et al.2000),near UV (Haswell et al.2000a)and X-ray (Remillard et al.2000,Yamaoka et al.2000)observations of the source during its outburst.The two thicker lines represent models with (case a,solid line)and without (case b,dotted lines)bulk relativistic motion of the active regions.The parameters are very similar for the two cases:for the ac-tive region parameters we obtain,respectively τ=0.61,θ=0.3,r b =2.9,h =5.3r b (case a)and τ=0.56,θ=0.33,r b =3.2,h =4r b (case b).We have assumed a mass of 10M ⊙,and we estimate a distance of 0.4kpc;the accretion ?ow parameters are:˙m =0.01and f =0.97.The self absorbed cyclo-synchrotron emission and its Comptonization are plotted (thinner lines).The optically thick part signi?cantly contributes to the optical emis-sion,together with the expected (non-varying)emission from the outermost parts of the accretion disc,while the X-ray are mainly produced by Comptonization of disc photons.

above,most objects observed in their hard/low state often show either no or very little evidence for soft blackbody emission or strong re?ection features (i.e.,the backscattered emission from the putative accretion disk).Based on this,it has therefore been argued that,in the hard state,geo-metrically thin discs may not extend down to the inner-most stable orbit but are truncated at tens or hundreds of Schwarzchild radii.(Gierli′n sky et al.1997;Poutanen &

Coppi 1998;Zdziarski et al.1998;Done &˙Zycki 1998;Esin

et al.1997;Wilms et al.1999and references therein).

If the disc does not extends down to the innermost sta-ble orbit,then U rad ,ext is suppressed and the relative impor-tance of the synchrotron component (see Eq.3)increases,as required by the data.Therefore,a central advection domi-nated (ADAF)component of the ?ow extending out to hun-dreds or thousands of Schwarzschild radii and surrounded by an optically thick accretion disc may also ?t the spectrum reasonably well (see e.g.Esin et al.1998).The information provided by temporal studies are then crucial for constrain-ing the geometry of the inner disk,in particular optical-X-rays cross-correlation and time lag analysis for the QPO component.

3.2.1

The 0.1Hz QPO

Psaltis,Belloni &van der Klis (1999)have suggested that the frequencies of the periodic features in the PDS of black hole candidates (which can appear more or less broadened)follow a quite tight correlation that encompasses also neu-tron star sources,and therefore has to be related to the properties of the accretion ?ow.Recently Psaltis &Norman (2000)have proposed a model in which the QPOs are pro-duced in a narrow ring in the accretion disc where a discon-tinuity in some properties of the ?ow occurs.The frequen-cies themselves are essentially determined by the relativistic proper frequencies of the system (Stella,Vietri &Morsink 1999;Merloni et al.1999).Assuming such a model,the data can be used to constrain the position of the ?ow discontinu-ity (Di Matteo &Psaltis 1999).

The published PDS of XTE J1118+480strongly resem-bles that of GX 339-4in the hard state (see Nowak 2000for a discussion of the various variability components).Apart from the strongly peaked QPO at 0.08Hz,it exhibits a broader feature around 1Hz.Plotted one against the other,these frequencies fall remarkably well on the correlation pre-sented by Psaltis,Belloni &van der Klis (1999).This would suggest that the low frequency QPO is analogous to the HBO in neutron stars and is related to twice the nodal pre-cession general-relativistic frequency of a perturbed orbit around the compact object.The value of the transition ra-dius,where the modulation is produced,depends on the spin of the black hole,but is limited in the range 25>~R t /R S >~6for a 10M ⊙black hole with dimensionless angular momen-tum 0.99>~a >~0.01.This provides an upper bound for the inner extent of the geometrically thin accretion disc,which is in con?ict with the limits derived from EUVE observations (Hynes et al.2000)and signi?cantly reduces the relevance of a central ADAF component,favoring instead models dis-cussed in Section 3.1.We note,however,that if the observed QPO is associated with the HBO frequency it is not clear why the expected modulation at the keplerian frequency at the same radius (with frequency νKep ~30Hz)is not di-rectly observed,even though it should have a higher quality factor (although,see e.g.Nowak 2000).

Alternatively,we can ignore the very broad feature in the PDS at ~1Hz and consider the sharp low frequency QPO as due to Keplerian modulation of the ?ow far away from the source.This would imply a transition radius R t ?500R S .Although this interpretation for the observed vari-ability is less plausible,it may be in better agreement with the implied EUV ?uxes and possibly with the presence of a central ADAF component.However,in this case it remains to be explained how the modulation propagates inward in the advective ?ow without loss of coherence,given that,in the ADAF model,the bulk of the optical and X-ray are pro-duced in the inner part of the ?ow,where the magnetic ?eld

is high enough (B ADAF ~107α?1/20.1m ?1/210˙m 1/20.01r ?5/4

3G)to power the cyclo-synchrotron emission,which is then Com-ponized to give rise to the high energy spectrum (see e.g.Narayan &Yi 1995;Quataert &Narayan 1999).

4DISCUSSION

We have applied a model for the emission from a highly magnetic,structured corona to the optical and X-ray ob-c

0000RAS,MNRAS 000,000–000

XTE J1118+4805

servations of the newly discovered X-ray transient XTE J1118+480.

This source is unique for a number of reasons.It is lo-cated at high galactic latitude and has a very high optical-to-X-ray?ux ratio.The source is observed in the typical black hole candidates hard state(photon indexΓ?1.8). Given the optical/UV to X-ray?ux ratio we have derived constraints for the approximate size,optical depth and mag-netic?eld strengths of the coronal active regions.

The main point of our work is that the simultaneous presence of a strong quasi periodic feature in the optical and X-ray lightcurves clearly suggests that the?uxes in the two bands both originate from the same region in the inner part of the accretion?ow.Self-absorbed cyclo-synchrotron emission is the natural candidate to explain the optical vari-ability.Such emission is expected in any magnetic corona model,and the inferred magnetic?eld value(B≈2×106 G)is the one predicted to arise when the source is in the hard state(low value of˙m and high value of f).

Our model is not unique.The relatively high optical-to-X-ray?ux ratio observed can be explained either by a strong,structured magnetic corona with a relatvely high scaleheight,or by a central ADAF surrounded by an op-tically thick accretion disc.We have shown that even if cyclo-synchrotron emission plays an important role in the optical band in both cases,in our model the X-ray photons are mainly produced via inverse Compton scattering of the soft disc photons,while in the ADAF model the CS emis-sion itself acts as source?eld.We gave an example of how variability data can be used to further discriminate between the models.

Independently of the dominant source of soft photons for Comptonization,we expect that any(small)variation in the physical parameters characterizing the active coronal regions(either in temperature or optical depths)driven by a?ow discontinuity in the disk should modulate the emis-sion simultaneously in the optical(via the CS emission)and in the X-ray band(via inverse Compton emission).In par-ticular,any increase(at a level of20per cent or so,as re-quired)in temperature or density in the corona will cause an increase in the cyclo-synchrotron component at optical frequencies,while at the same time it will make the X-ray spectrum harder.From any such model we then expect a correlation between the optical and hard X-ray variability but an anticorrelation between optical and soft X-rays(this has been observed for the case of GX339-4;see Motch et al. 1982).Our model also predicts optical variability on?aring timescales(~tens of milliseconds),with a PDS similar to the one observed in X-rays.Furthermore the variable optical component is expected to drop out quickly at low frequencies ν<νc due to the fast decline of the synchrotron emission in the Rayleigh-Jeans regime.Time-resolved spectroscopy ob-servations of such behaviour would support this model and allow us to place strong constraints on the magnetic?eld strength in the corona.

5ACKNOWLEDGMENTS

We thank Annalisa Celotti for many useful suggestions and comments on the manuscript and Joe Patterson for useful informations on the optical variability.This work was done in the research network‘Accretion onto black holes,compact stars and protostars’,funded by the European Commission under contract number ERBFMRX-CT98-0195.AM and ACF thank the PPARC and The Royal Society for support, respectively.TDM acknowledges support for this work pro-vided by NASA through Chandra Fellowship grant number PF8-10005awarded by the Chandra Science Center,which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-39073.

REFERENCES

Balbus,S.A.&Hawley,J.F.,1998,Rev.Mod.Phys.70,1.

Di Matteo,T.,1998,MNRAS,299,L15.

Di Matteo,T.,Blackman,E.G.&Fabian,A.C.,1997,MNRAS, 291,L23.

Di Matteo,T.,Celotti,A.&Fabian,A.C.,1997,MNRAS,291, 805.

Di Matteo,T.,Celotti,A.&Fabian,A.C.,1999,MNRAS,304, 809.

Di Matteo,T.&Psaltis,D.,1999,ApJ,526,L101.

Done,C.,&Zycki,P.T.,1999,MNRAS,305,457.

Fabian,A.,Guilbert,P.W.,Motch,C.,Ricketts,M.,Ilovaisky, S.A.,Chevalier,C.,1982,A&A,111,L9.

Galeev,A.A.,Rosner,R.&Vaiana,G.S.,1979,ApJ,229,318. Garcia M.,Brown W.,Pahre M.,J.McClintock2000,IAUC7392. Gierli′n ski,M.,Zdziarski,A.A.,Done,C.,Johnson,W.N.,Ebi-sawa,K.,Ueda,Y.,Phlips,F.,1997,MNRAS,288,958. Haardt,F.,Maraschi,L.&Ghisellini,G.,1994,ApJ,432,L95. Haswell,Hynes,R.I.&King,A.R.,2000a,IAUC742 Haswell,C.A.,Skillman,D.,Patterson,J.,Hynes,R.I.,Cui,W., 2000b,IAUC7427

Hynes,R.I.,Mauche,C.W.,Haswell,C.A.,Schrader,C.R.,Cui, W.,Chaty,S.,2000,submitted to ApJL,astro-ph/0005398. Merloni,A.,Stella,L.,Vietri,M.,Bini,D.,1999,MNRAS,304, 155.

Miller,K.&A.Stone,J.M.,2000,ApJ,534,398.

Motch,C.,Ricketts,M.,Page,C.G.,Ilovaisky,S.A.,Chevalier,

C.,1983,A&A,119,171.

Narayan,R.&Yi,I.,1995,ApJ,452,710.

Nowak,M.A.,2000,MNRAS,in press,astro-ph/0005232. Patterson,J.,2000,IAUC7413;see also https://www.wendangku.net/doc/2c792875.html,/cba.

Psaltis,D.,Belloni,T.&van der Klis,M.,1999,ApJ,520,262. Psaltis,D.&Norman,C.,2000,ApJ,in press,astro-ph/0001391. Poutanen,J.,&Coppi,P.,1998,Phys.Scripta,T77,57(astro-ph/9711316).

Quataert,E.&Narayan,R.,1999,ApJ,520,298.

Remillard R.,Morgan E.,Smith D,Smith E.2000,IAUC7389 Revnivtsev M.,Sunyaev R.&Borozdin K.,2000,submitted to A&AL,astro-ph/0005212.

Stella,L.,Vietri,M.&Morsink,S.,1999,ApJ,524,L63. Uemura M.,Kato T.&Yamaoka H.2000,IAUC7390.

Wilson C.&McCollough M.2000,IAUC7390

Yamaoka,K,Ueda,Y.&Dotani,T.,2000,IAUC7427.

Wardzi′n ski,G.&Zdziarski,A.A.,2000,MNRAS,314,183. Wilms,J.,Nowak,M.A.,Dove,J.B.,Fender,R.P.,&Di Matteo, T.,1999,ApJ,522,460.

Zdziarski,A.A.,Poutanen,J.,Mikolajewska,J.,Gierli′n ski,M., Ebisawa,K.,&Johnson,W.N.,1998,MNRAS,301,435. This paper has been produced using the Royal Astronomical Society/Blackwell Science L A T E X style?le.

c 0000RAS,MNRAS000,000–000

公路电动栏杆机控制模块维修简述

公路电动栏杆机控制模块维修简述 目前,公路自动栏杆机控制模块主要是Magnetic的自动栏杆机控制模块,这种控制模块采用了先进的微处理器技术和可靠的开关控制技术,系统集成度高,逻辑功能强,满足公路环境下的应用。 下面简单介绍栏杆机控制模块面板的功能与接线,栏杆机控制模块中的数字代表意义和接法如下: “1”表示接电源L(火线)220V AC; “2”表示接电源N(零线); “3”表示电源线地线; “4”表示电机接地线PE; “5”表示电机公共绕组U,接电机公共绕组U; “6”表示电机落杆绕组V,接电机绕组V; “7”表示电机升杆绕组W,接电机绕组W; “8、9”表示降压减速阻容(R=5Ω/25W C=2uF/AC450V,电阻和电容串联); “10、11”表示电机运行电容(4uF/AC450V); “17”表示电源输出24VDC接地线; “18”表示电源输出 24VDC正极; “19”表示控制信号共用线(+24VDC); “20”表示开脉冲,和控制信号共用线(+24VDC)短接有效; “21”表示环路感应器2输入(用于车辆到时自动抬杆,用于6、8模式); “22”表示关脉冲,和控制信号共用线(+24VDC)短接有效; “23”表示抬杆、落杆限位开关输入信号; “24”表示安全开关,接常闭触点;断开时,系统不会执行落杆动作; “25”表示控制信号共用线(+24VDC),同“19”功能一样; “26”表示档杆状态输出公共触点; “27、28”完全等同于“20、22”,常开触点(300ms); “29”表示抬杆状态输出触点; “30”表示落杆状态输出触点; “31、32”表示报警输出,为常开触点。 栏杆机控制模块长期处于工作状态,每天控制栏杆上下达几千次以上,是栏杆机易损元件之一,下面简单介绍几点常见的故障和维修方法,供大家参考: 首先,在维修栏杆机控制模块之前,务必将故障设备的灰尘清除干净,养成这个习惯可以让你检查和维修故障更快速、准确。 故障一控制模块无电现象 控制模块电源长期处于带电中,供电系统元件容易老化,容易出现无供电现象。这种情况一般先观察,所谓观察就是用眼睛看。注意观察栏杆机控制模块的外观、形状上有无什么异常,电器元件(如变压器、电容、电阻等)有无出现变形、断裂、松动、磨损、冒烟、腐蚀等情况。 其次是鼻子闻,一般轻微的气昧是正常的,如果有刺鼻的焦味,说明某个元器件被烧坏或击穿,应替换相应的元器件。最后用手试,当然是触摸绝缘的部分,有无发热或过热,用手去试接头有无松动,以确定设备运行状况以及发生故障的性质和程度。 如某站01#车道出现控制模块无电,经测试是电源保险管(250V 4A)烧毁。在更换前

栏杆机说明书

MAGSTOP MIB 2O/3O/40 栏杆机 及MAGTRONIC MLC 控制器 操作指导 @1999年马格内梯克控制系统(上海)有限公司 地址:上海浦东新区宁桥路999号二幢底西层邮编:201206 电话:(21)58341717 传真:(21)58991233

目录 1. 系统概述 2 1.1 停车场系统的布局 2 1. 2 系统组件概述 2 2 安全 3 2.1一般安全信息3 2.2 建议用途 3 2.3 本手册中使用的安全标志3 2.4 操作安全 4 2.5 技术发展 4 2.6 质量保证 4 3. 装配及安装 5 3.1 构筑安装地基 5 3.2 安装感应线圈 6 3.3 安装机箱 8 3.4 安装栏杆机臂 8 3.5 基本机械结构 9 3.6 设置及校准弹簧 9 3.7 校准栏杆机臂位置 10 4. 电源连接 10 5. MLC控制器 11 5.1 命令发生器:在不同操作模式下的连接及功能 12 5.2 MLC控制器的操作 14 5.3 MLC控制器显示信息的解释 14 5.4 MLC控制器的复位 14 5.5 栏杆机的操作 15 5.6 编制及读取操作数据 16 5.7 校准感应线圈 18 6. 初始化操作 19 6.1 委托程序 19 6.2 在启动过程中显示的信息 19 7. 技术数据 21 7.1 栏杆机 21 7.2 控制器 21 8. 附录 22 8.1校准角度传感器及优化栏杆机的动作22 8.2 校准安全设备的角度 24 8.3 读取时间计数器 25 8.4 读取操作循环计数器 25 8.5 读取制动设置 25 8.6 复位情况的说明 26 8.7 测试模式 27 8.8 校准传感器 28 9. 技术支持 28 10. 备用零部件 29

高速公路自动栏杆机控制模块维修

高速公路自动栏杆机控制模块维修实例【转贴】 本人在成绵高速公路长期的维护工作中收集、总结的一些关于自动栏杆机控制模块的维护心得,供大家参考。成绵高速公路自动栏杆机控制模块主要是恒富威和magnetic专业设计的自动栏杆机控制模块,主要用于栏杆机的控制。采用了先进的微处理器技术和可靠的开关控制技术,系统集成度高,逻辑功能强,满足高速公路环境下的应用。下面我介绍下栏杆机控制模块面板的功能与接线栏杆机控制模块中的数字代表意义货接法如 下:“1”表示接电源L(火线)220V。“2”表示接电源N (零线)。“3”表示电源线地线。“4”表示电机接地线PE。“5”表示电机公共绕组U;接电机公共绕组U。“6”表示电机落杆绕组V;接电机绕组V。“7”表示电机升杆绕组W;接电机绕组W。“8、9”表示降压减速阻容(R=5Ω/25W C=2uF/AC450V,电阻和电容串联)。“10、11”表示电机运行电容 (4uF/AC450V)。“17”表示24V接地线。“18”表示表示电源+24V。“19”表示控制信号共用线(+24V)。“20”表示开脉冲,和控制信号共用线(+24V)短接有效。“21”表示环路感应器2输入(用于车辆到时自动提杆,用于6、8模式)。“22”表示关脉冲,和控制信号共用线(+24V)短接有效。“23”表示抬杆、落杆限位开关输入信号。“24”示安全开关,接常闭触点;断开时,系统不会执行落杆动作。“25”表示控制信号共用线(+24V),同“19”功能一样。“26”表示档杆状态输出公共触点。“27、28”完全等同于“20、22”表示计数输出,常开触点 (300ms)。“29”表示抬杆状态输出触点。“30”表示落杆状态输出触点。“30、31”表示报警输出,常开触点。栏杆机控制模块长期处于工作状态,每天控制栏杆上下达千次以上;是栏杆机易坏元件之一,下面我介绍常见几点常见的故障和实用的维修方法,供大家参 考。首先,维修设备之前,务必将故障设备的灰尘清除掉,养成这个习惯可以让你维修和检查故障起来轻松、准确许多。 故障一控制模块无电现象控制模块电源长期处于带电中,供电系统元件容易老化,容易出现无供电现象。这种情况一般先观察,所谓观察就是用眼睛看。注意观察栏杆机控制模块的外观、形状上有无什么异常,电器元件,如变压器,电容,电阻等有无出现变形,断裂,松动,磨损,冒烟,腐蚀等情况。其次是鼻子闻,一般轻微的气昧是正常的,如果有刺鼻的焦味,说明某个元器件被烧坏或击穿,应替换相应的元器件。最后用手试,当然是触摸绝缘的部分,有无发热或过热,用手去试接头有无松动;以确定设备运行状况以及发生故障的性质和程度。如某站一道出现控制模块无电,经测试是电源保险管(250V 4A)烧毁。我在更换前观察其他元件外表是否变形断裂,用手触摸电容、电感等接头有无松动。其次我就用万用表跑线,看是否有短路现象。经我检查后初步判定为保险丝被击穿,准备替换。替换前应认清被替换元器件的型号和规格。(同时替换某些元件时还应该注意方向。)最后我将同一型号的保险丝替换上并加电,控制模块工作灯亮起,用外用表测试控制模块,修复。有时,无电现象还由变压器(PIN9 0-115V PIN16 115V-0)损坏造成的。控制模块

Magnetic TOLL栏杆机中文说明书

9 电气连接 9.1 安全 请参照18页,第2.6节“专业安全和特殊危险”中的安全注意事项。 电压 危险 一般 警告

热的表面 小心 电磁干扰 个人保护装备

在施工过程中,必须穿戴以下几种保护装备: ■工作服 ■保护手套 ■安全鞋 ■保护头盔。 9.2安装电保护设备 根据地区或当地的规定,安全设备需要提供给客户。通常有以下几种:■漏电保护器 ■断路器 ■ EN 60947-3的可锁定的2极开关。 9.3连接电源线 电压 危险 注意! 电源线的导线截面在1.5到4mm2 之间。要遵守国家关于 导线长度和相关电缆截面积的规定.

危险! 电压有致命的危险! 1.断开栏杆机系统电源。确保系统断电。确保机器不会再启动。 接线的准备—剥电缆外皮和铁芯绝缘 2.照下图剥开电源线和磁芯 图37:剥电源供应线。 1 电位 2 零线 3 地线 安置电源线 3.照下图,把电源线正确安装在相应的终端线夹上。也可参照,163页,第17.1节的“接线图”。 ■在机箱中正确安装电源线。此电源线不可连接移动部件。 ■用两个束线带固定电源线。 图38 安置电源线 1 电源线

2 束线带 3 束线带的金属突出物 连接电源线 图39:连接电源线 1 电源线的终端线夹 2 电位L 3 零线 N 4 地线 PE 9.4连接控制线路(信号设备) 以下连接对控制和反馈端有效: ■控制栏杆机的8个数码输入 ■反馈信息的4个数码输出 ■反馈信息的6个继电器输出。3个常开,3个转换触点。 危险! 电压有致命危险! 1.断开栏杆机系统电源。确保系统断电并不会重启。 连接控制线 2.将控制线穿过穿线孔。 ■在机箱中合理的放置控制线。控制线不可进入可移动部件。 ■安装控制线夹和绑线。通过轻微按压或移动,线夹可以在轨道上移动到预期的位置。绑线可以绑扎在金属突出物上。 3. 根据接线图连接控制线。请参照163页,第17.1节的“接线图”。

栏杆机控制器

MLC 580C N ,5131/04.02Phone:+49 7622/695-5Fax:+49 7622/695-602 e-mail:info@ac-magnetic.de https://www.wendangku.net/doc/2c792875.html,

Magnetic Control Systems Sdn.Bhd.No.16, Jalan Kartunis U1/47Temasya Ind.Park, Section U140150 Shah Alam, Selangor Darul Ehsan, Malaysia Phone:(+60) 3 / 55691718eMail: info@https://www.wendangku.net/doc/2c792875.html,.my Magnetic Control Systems (Shanghai) Co. Ltd.999 Ning-qiao Road, Bldg. 2W/1F Pudong New Area Shanghai 201206, China Phone:(+86) 21/ 58 341717eMail: magnetic@https://www.wendangku.net/doc/2c792875.html, Magnetic Automation Pty. Ltd.19 Beverage Drive Tullamarine, Victoria 3043, Australia Phone:(+61) 3 / 93 30 10 33eMail: info@https://www.wendangku.net/doc/2c792875.html, Magnetic Automation Corp.3160 Murrell Road Rockledge, FL 32955, USA Phone:(+1) 321/ 635 85 85eMail: info@https://www.wendangku.net/doc/2c792875.html, Magnetic Autocontrol Pvt.Ltd.Calve Chateau, 2B, IInd Floor Kilpauk 322 Poonamallee High Road IND Chennai, 600010 / India Phone:(+91) 44 6400 443eMail: magneticsales@https://www.wendangku.net/doc/2c792875.html,

德国magnetic栏杆机常见故障分析

德国Magnetic栏杆机的常见故障分析德国Magnetic自动栏杆机的核心部分是MLC控制器,控制器设置的正确与否直接影响栏杆机的正常工作。当栏杆机工作不正常时,请先确认是否是栏杆机的问题,是栏杆机哪个部分出现问题(如机械部分或控制部分),建议先将其他车道工作正常栏杆机控制器换到本车道,以确认是否是控制器出现问题;如果互换控制器后栏杆机工作正常,那么就确认本车道控制器有问题,请参照工作正常的控制器设置即可;如控制器重新设置后仍不能解决问题,请将控制器返回厂家维修。 以下是德国Magnetic自动栏杆机控制器的几种常见设置,可供参考。 1、控制器黑色按键和白色按键的作用: ?黑键:1)、手动控制抬杆; 2)、控制器编程时改变数值; 3)、控制器编程完毕后保存 ?白键:1)、手动控制落杆; 2)、控制器编程时确认数值; 3)、控制器编程完毕后不保存。 ?编程时,同时按下黑键和白键后数值下边出现光标。 ?同时按下黑键和白键持续四秒钟,控制器重启。 2、MLC控制器复位: ?同时按下黑键和白键持续四秒钟; ?将圆盘转至F,确认后可恢复到出厂设置; ?详见中文说明书第14页。 3、控制器圆盘开关各位置的功能 位置0:普通操作模式 位置1:程序代码 1—8

位置2:转矩时间 1—30秒 位置3:栏杆机开启时间 1—255秒 位置4:感应线圈A灵敏度 O一9 (0最小,9最大) 位置5:感应线圈B灵敏度 0—9(0最小,9最大) 位置6:检测器模式A0—8(见功能说明表) 位置7:检测器模式B0—8(见功能说明表) 位置8:感应线圈A/B频率 1 0,000Hz一90,000Hz 位置9:备用 位置A:计数模式 位置B:备用 位置C:备用 位置D:硬件错误控制器 16进制错误代码 位置E:语种选择德、英、法、西 位置F:出厂设置重设所有操作数据 4、模式设置: 将圆盘转至1,控制器有8种操作模式可供选择;详见中文说明书第16页。 5、控制器编程过程: (1)将圆盘开关转到所需位置; (2)同时按下黑色按键和白色按键; (3)使用黑色按键将数字滚动显示为所需的数值(光标位于正在变化的数字下方); (4)按下白色按键存储选中的数值或者将光标移到右边的一格; (5)按下黑色按键确认最终的数值或者按下白色按键取消输入的数值。 注意:完成编程后,请将圆盘开关转回到“0”位置(即普通操作模式) 6、感应线圈灵敏度设置: 将圆盘转至4或5(设置线圈A转至4,线圈B转至5);一般情况下灵敏度选择4-6,不宜太高或太低。详见中文说明书第16页。 7、检测器A、B的开启和关闭 将圆盘开关转至6和7分别设置检测器A、B的状态,如果A、B线圈都没有使用或只使用了一个检测器,那么就要关闭没有使用的检测器(将检测器A、B的数值设置为0,是关闭状态;检测器开启时数值是应该是1或2,一般用2。) 8、校准传感器/优化栏杆机动作

栏杆机

栏杆机 3.5基本机械结构 1.栏杆机臂 2.设置弹簧拉力的调节螺丝,带有安全夹 3.凸缘轴的紧固柄 4.橡胶缓冲块 5.连接件 6.电机的紧固柄 警告: 弹簧收紧后,弹簧及栏杆机臂对驱动装置(BDU)是加了相当大的力并因此产生了潜在的发生伤害的危险。 因此任何对于栏杆机臂驱动装置(BDU)的工作,必须在弹簧未被收紧并且栏杆机臂确保安全或被卸下的情况下才可以进行! 3.6测试/校准弹簧 所有栏杆机在生产工厂中都根据原配的栏杆机臂做了设置.但在使用时安装完栏杆机臂后进行栏杆机的第一次操作前,应该检查栏杆机臂的设置。 在栏杆机臂的重量被弹簧施加的拉力所平衡的情况下,栏杆机才可以正确运作。因此任何对于栏杆机臂的变动都必须根据如下步骤进行重新校准。 测试弹簧设置: 1.打开栏杆机箱体的门,卸下安装板,开启并取去封盖。 2.拔下电源插头。 3.手工将栏杆机臂调到约45°C角的位置后放开手。如果栏杆机臂稳定在此位置不动,说明此时 弹簧的调整是正确。 校准弹簧设置: 1.取下两个弹簧调节螺杆上的两个安全夹。同时拧紧或放松左右两根调节螺杆直至栏杆机臂在45°C角的位置保持稳定。 2.重新装上调节螺杆安全夹。 例外情况: 当栏杆机被设置为在发生电源故障的情况下自动打开,就需要比上面提到的更大的弹簧拉力(只有在栏杆机臂长度最大为3.5M 的情况下)。 请注意如果栏杆机在生产工厂中特别设置为这种打开方式,那么栏杆机臂在水平终点位置时不会锁止! 3.7校准栏杆机臂位置 要校准栏杆机臂位置(例如,在施加过度的力之后),请根据如下步骤进行: 1.打开栏杆机箱体的门,卸下安装板,开启并取出封盖。 2.按下黑色按键升起栏杆机臂。 3.将MLC控制器前面板上的旋转选择开关(图S0227)转到位置“1” 4.松开凸缘轴的紧固柄上的两个紧固螺钉,使得可以用手将栏杆机臂重新定位。 5.校准栏杆机臂的位置(垂直位置)。 6.使用扭矩扳手重新拧紧两个紧固螺钉(72Nm). 7.将MLC控制器选择开关(图S0227)转回到位置“0”。 4.电源连接

高速公路自动栏杆机控制模块维修实例

高速公路自动栏杆机控制模块维修实例 本人在成绵高速公路长期的维护工作中收集、总结的一些关于自动栏杆机控制模块的维护心得,供大家参考。 成绵高速公路自动栏杆机控制模块主要是恒富威和magnetic专业设计的自动栏杆机控制模块,主要用于栏杆机的控制。采用了先进的微处理器技术和可靠的开关控制技术,系统集成度高,逻辑功能强,满足高速公路环境下的应用。 下面我介绍下栏杆机控制模块面板的功能与接线 栏杆机控制模块中的数字代表意义货接法如下: “1”表示接电源L(火线)220V。“2”表示接电源N(零线)。“3”表示电源线地线。“4”表示电机接地线PE。“5”表示电机公共绕组U;接电机公共绕组U。“6”表示电机落杆绕组V;接电机绕组V。“7”表示电机升杆绕组W;接电机绕组W。“8、9”表示降压减速阻容(R=5Ω/25W C=2uF/AC450V,电阻和电容串联)。“10、11”表示电机运行电容(4uF/AC450V)。“17”表示24V接地线。“18”表示表示电源+24V。“19”表示控制信号共用线(+24V)。“20”表示开脉冲,和控制信号共用线(+24V)短接有效。“21”表示环路感应器2输入(用于车辆到时自动提杆,用于6、8模式)。“22”表示关脉冲,和控制信号共用线(+24V)短接有效。“23”表示抬杆、落杆限位开关输入信号。“24”示安全开关,接常闭触点;断开时,系统不会执行落杆动作。“25”表示控制信号共用线(+24V),同“19”功能一样。“26”表示档杆状态输出公共触点。“27、28”完全等同于“20、22”表示计数输出,常开触点(300ms)。“29”表示抬杆状态输出触点。“30”表示落杆状态输出触点。“30、31”表示报警输出,常开触点。 栏杆机控制模块长期处于工作状态,每天控制栏杆上下达千次以上;是栏杆机易坏元件之一,下面我介绍常见几点常见的故障和实用的维修方法,供大家参考。 首先,维修设备之前,务必将故障设备的灰尘清除掉,养成这个习惯可以让你维修和检查故障起来轻松、准确许多。 故障一控制模块无电现象 控制模块电源长期处于带电中,供电系统元件容易老化,容易出现无供电现象。这种情况一般先观察,所谓观察就是用眼睛看。注意观察栏杆机控制模块的外观、形状上有无什么异常,电器元件,如变压器,电容,电阻等有无出现变形,断裂,松动,磨损,冒烟,腐蚀等情况。其次是鼻子闻,一般轻微的气昧是正常的,如果有刺鼻的焦味,说明某个元器件被烧坏或击穿,应替换相应的元器件。最后用手试,当然是触摸绝缘的部分,有无发热或过热,用手去试接头有无松动;以确定设备运行状况以及发生故障的性质和程度。 如某站一道出现控制模块无电,经测试是电源保险管(250V 4A)烧毁。我在更换前观察其他元件外表是否变形断裂,用手触摸电容、电感等接头有无松动。其次我就用万用表跑线,看是否有短路现象。经我检查后初步判定为保险丝被击穿,准备替换。替换前应认清被替换元器件的型号和规格。(同时替换某些元件时还应该注意方向。)最后我将同一型号的保险丝替换上并加电,控制模块工作灯亮起,用外用表测试控制模块,修复。 有时,无电现象还由变压器(PIN9 0-115V PIN16 115V-0)损坏造成的。控制模块变压器的13、14脚8V 2.4V A;15、16脚1.8V 5.4V A。首先观察变压器是否变形,有无焦味。再用外用表测试进电是否有电,出电是否和变压器上标示的一样则可判断变压器是否损坏。修复方法同上。 车辆过后栏杆无法下落 有的时候还会出现,自动栏杆在过车以后偶尔无法降杆,这往往也是栏杆机内部的控制模块工作紊乱导致。此时,只要对其进行重新复位,就能够很快恢复正常。操作方法:按下控制模块上RESET红色小键即复位,或者将栏杆机电源重开关一次即可修复。

栏杆控制模块说明及简单维修

栏杆控制模块说明及简单维修 高速公路自动栏杆机控制模块主要是恒富威和magnetic专业设计的自动栏杆机控制模块,主要用于栏杆机的控制。采用了先进的微处理器技术和可靠的开关控制技术,系统集成度高,逻辑功能强,满足高速公路环境下的应用。 下面我介绍下栏杆机控制模块面板的功能与接线 栏杆机控制模块中的数字代表意义接法如下: “1”表示接电源L(火线)220V AC; “2”表示接电源N(零线); “3”表示电源线地线; “4”表示电机接地线PE; “5”表示电机公共绕组U,接电机公共绕组U; “6”表示电机落杆绕组V,接电机绕组V; “7”表示电机升杆绕组W,接电机绕组W; “8、9”表示降压减速阻容(R=5Ω/25W C=2uF/AC450V,电阻和电容串联); “10、11”表示电机运行电容(4uF/AC450V); “17”表示电源输出24VDC接地线; “18”表示电源输出 24VDC正极; “19”表示控制信号共用线(+24VDC); “20”表示开脉冲,和控制信号共用线(+24VDC)短接有效; “21”表示环路感应器2输入(用于车辆到时自动抬杆,用于6、8模式); “22”表示关脉冲,和控制信号共用线(+24VDC)短接有效; “23”表示抬杆、落杆限位开关输入信号; “24”表示安全开关,接常闭触点;断开时,系统不会执行落杆动作; “25”表示控制信号共用线(+24VDC),同“19”功能一样; “26”表示档杆状态输出公共触点; “27、28”完全等同于“20、22”,常开触点(300ms); “29”表示抬杆状态输出触点; “30”表示落杆状态输出触点; “31、32”表示报警输出,为常开触点。 栏杆机控制模块长期处于工作状态,每天控制栏杆上下达几千次以上,是栏杆机易损元件之一,下面简单介绍几点常见的故障和维修方法,供大家参考: 首先,在维修栏杆机控制模块之前,务必将故障设备的灰尘清除干净,养成这个习惯可以让你检查和维修故障更快速、准确。 故障一控制模块无电现象 控制模块电源长期处于带电中,供电系统元件容易老化,容易出现无供电现象。这种情况一般先观察,所谓观察就是用眼睛看。注意观察栏杆机控制模块的外观、形状上有无什么异常,电器元件(如变压器、电容、电阻等)有无出现变形、断裂、松动、磨损、冒烟、腐蚀等情况。 其次是鼻子闻,一般轻微的气昧是正常的,如果有刺鼻的焦味,说明某个元器件被烧坏或击穿,应替换相应的元器件。最后用手试,当然是触摸绝缘的部分,有无发热或过热,用手去试接头有无松动,以确定设备运行状况以及发生故障的性质和程度。 如某站01#车道出现控制模块无电,经测试是电源保险管(250V 4A)烧毁。在更换前观察其它元器件外表是否变形断裂,用手触摸电容、电感等接头有无松动。其次就用万用表

冰机压缩机问题

冰机岗位即冷冻,是将甲醇洗、合成、及空分来的气氨经压缩机压缩到一定的压力,使气氨在常温下经水冷却后,冷凝为液氨,再将液氨输送到合成、甲醇洗、空分岗位的氨冷器,吸热后汽化的气氨再回到冷冻岗位组成一个循环系统 二、本岗位机的工艺原理 气氨的液化包括气氨的压缩和冷凝,气氨在常压下的冷凝温度-33.35℃,因此在常压下不能用常温水使其冷凝成液氨,氨的冷凝温度随压力的提高而升高,当压力提高到1.6MPa 时,冷凝温度为40℃.高于一般冷却水温度,可用25-30℃的常温水冷却使之液化 三、螺杆氨压缩机的工作原理 压缩机内的一对相互啮合,按一定传动比旋转的阴、阳转子,产生周期性的容积变化,完成制冷剂气体的吸入、压缩和排出。 四、氨压缩机机组工作原理 从低压系统来的低温低压气体经过吸气过滤器后进入压缩机,被压缩成高温高压气体后进入油分离器,在油分离器内经过油气分离后排出。 五、氨压缩机的能量调节 通过控制油活塞两侧润滑油的进出,改变其两侧的压力,带动能量滑阀在转子腔内移动,从而改变转子的有效工作长度,实现压缩机的能量无级调节。 六、冰机正常开机操作要点 1、盘车数圈并确认无卡阻现象 2、检查油分油位并确认在指标以里 3、确认冰机蒸发冷凝器已经正常开启 4、检查机组内各阀门已经处于正常位置 5、开启电机稀油站、检查油位、油压、油温并确认正常(若有稀油站) 6、联系配电室测量绝缘要求送电 7、开启油泵,检查油位、油压、油温并确认正常 8、确认冰机已经卸载到“0”位置,若不在零位,要卸载至零位 9、启动主机同时缓慢开启吸气截止阀控制吸气压力在正常范围内 10、全面检查各部件及运转情况是否正常 11、冰机增载控制正常指标 七、正常停机步骤 1、压缩机减载

德国magnetic栏杆机调试资料

德国Magnetic栏杆机的调试及常见故障分析 德国Magnetic自动栏杆机的核心部分是MLC控制器,控制器设置的正确与否直接影响栏杆机的正常工作。当栏杆机工作不正常时,请先确认是否是栏杆机的问题,是栏杆机哪个部分出现问题(如机械部分或控制部分),建议先将其他车道工作正常栏杆机控制器换到本车道,以确认是否是控制器出现问题;如果互换控制器后栏杆机工作正常,那么就确认本车道控制器有问题,请参照工作正常的控制器设置即可;如控制器重新设置后仍不能解决问题,请将控制器返回厂家维修。 一、以下是MLC控制器面板操作元件及解释: 注:对于通常的操作模式,将选择开关设置到“0”位置。 控制器操作元件的解释: 1指示操作及程亭数据的液晶显示屏(L C D) 2. 选择操作数据的旋转选择开关 3. 黑色按键开启/滚动(操作模式/程序模式) 4. 白色按键关闭/输入(操作模式/程序模式) 5. 接线柱-输入侧 6. 接线柱-输出侧

以下是液晶显示屏显示的信息及解释: 二、以下是德国Magnetic自动栏杆机控制器的几种常见设置,可供参考。 1、控制器黑色按键和白色按键的作用: 黑键:1)、手动控制抬杆; 2)、控制器编程时改变数值; 3)、控制器编程完毕后保存 白键:1)、手动控制落杆; 2)、控制器编程时确认数值; 3)、控制器编程完毕后不保存。 编程时,同时按下黑键和白键后数值下边出现光标。 同时按下黑键和白键持续四秒钟,控制器重启。 2、MLC控制器复位: 同时按下黑键和白键持续四秒钟; 将圆盘转至F,确认后可恢复到出厂设置; 详见中文说明书第14页。 3、控制器圆盘开关各位置的功能 位置0:普通操作模式

相关文档