文档库 最新最全的文档下载
当前位置:文档库 › 空间立体几何专题三

空间立体几何专题三

空间立体几何专题三
空间立体几何专题三

1.在如图所示的几何体中,四边形ABC D 为矩形,平面⊥A B E F 平面ABC D ,

,12,2,90,//=====∠EF AF AB AD BAF AB EF 点P 在棱DF 上.

(1)求证:BF AD ⊥;

(2)若P 是DF 的中点,求异面直线BE 与CP 所成角的余弦值.

2.如图,在四棱锥ABCD S -中,底面ABCD 是菱形,

60=∠BAD ,侧面⊥SAB 底面

ABCD ,并且2===AB SB SA ,F 为SD 的中点. (1)证明://SB 平面FAC ; (2)求三棱锥FAC S -的体积;

(3)求直线BD 与平面FAC 所成角的正弦值.

B

D

B

D

F

3.如图,在三棱台ABC DEF -中,DE AB 2=,H G ,分别是BC AC ,的中点. (1)求证://BD 平面FGH ;

(2)若⊥CF 平面ABC , 45,,=∠=⊥BAC DE CF BC AB ,求平面FGH 与平面ACFD 所成的角(锐角)的大小.

4.如图,在直四棱柱1111D C B A ABCD -中,底面是正方形,

G F E ,,分别是棱DA D D B B ,,11的中点.求证:

(1)平面//1E AD 平面BGF ; (2)AC E D ⊥1.

A

F

E

G D

A

C

B

D 1

A 1

B 1

C 1

5.如图,在三棱锥ABC P -中,⊥PA 平面ABC ,D 是PC 的中点,

90,=∠=ACB AC PA .

(1)证明:AD PB ⊥;

(2)设二面角C AB D --为

60,2=PA ,求三棱锥ADB P -的体积.

6.如图,三棱锥ABC P -中,⊥PC 平面ABC ,2

,3π

=

∠=ACB PC ,E D ,分别是线段

BC AB ,上的点,且22,2====EB CE DE CD .

(1)证明: ⊥DE 平面PCD ;

(2)求二面角C PD A --的余弦值.

A

B

C

C A

B

P

D

E

7.如图,四边形ABCD 是菱形,

60=∠ABC ,⊥PA 平面ABCD ,E 为PC 中点. (1)求证:平面⊥BED 平面ABCD ;

(2)求平面PBA 与平面EBD 所成二面角的余弦值.

8如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,

3,6,4====BC AB PC PD .

(1)证明://BC 平面PDA ; (2)证明:PD BC ⊥;

(3)求点C 到平面PDA 的距离. .

D

B

P

A

C

P

立体几何空间角

D C 1 A 1 B 1 C 1 D B C A D 立体几何专题----空间角 知识点归纳 1、异面直线所成的角 异面直线所成角的定义: 如图,已知两条异面直线 a , b , 经过空间任一点O作直线 a′∥a , b ′∥b 则把 a ′ 与 b ′所成的锐角(或直角)叫做异面直线所成的角(或夹角). a b 注1:异面直线所成的角的范围( 0O , 90O ] 注2:如果两条异面直线 a , b 所成的角为直角,我们就称这两条直线互相垂直 , 记为a ⊥ b 注3:在求作异面直线所成的角时,O点常选在其中的一条直线上(如线段的端点,线段的中点等) 2 、直线与平面所成的角 平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角 (1)一条直线垂直于平面,它们所成的角是直角 (2)一条直线和平面平行,或在平面内,它们所成的角是0 ?的角 (3)直线和平面所成角的范围是[0?,90?] 3、二面角: 如右图在二面角的棱l取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则 叫做二面角的平面角. 注:①二面角的平面角的大小与O点位置_____ _。 ②二面角的平面角的范围是_______ 。 ③平面角为______的二面角叫做直二面角。 试题探究: 1、如图:表示正方体 1 1 1 1 D C B A ABCD-, 求异面直线 1 1 CC BA和所成的角。 2、空间四边形ABCD中,2 AD BC ==,,E F分别是, AB CD的中点,3 EF=, 求异面直线, AD BC所成的角。 3、在单位正方体 1111 ABCD A B C D -中,试求直线 1 BD与平面ABCD所成的角. 4、在单位正方体 1111 ABCD A B C D -中,求直线 11 A C与截面 11 ABC D所成的角. 5、将一副三角板如图拼接,∠BAC=∠BCD=90°,AB=AC,∠BDC=60°,且平面ABC⊥平面BCD, (1)求证:平面ABD⊥平面ACD;(2)求二面角A-BD-C的正切值;(3)求异面直线AD与BC所成角的余弦值. a′O b′ a P α O A O A B D C A 1 B 1 C 1 D A F E D B A B D B 1 A 1 C 1 D 1

立体几何中用传统法求空间角

-立体几何中的传统法求空间角 知识点: 一.异面直线所成角:平移法 二.线面角 1.定义法:此法中最难的是找到平面的垂线.1.)求证面垂线,2).图形中是否有 面面垂直的结构,找到交线,作交线的垂线即可。 2.用等体积法求出点到面的距离sinA=d/PA 三.求二面角的方法 1、直接用定义找,暂不做任何辅助线; 2、三垂线法找二面角的平面角. 例一:如图,在正方体错误!未找到引用源。中,错误!未找到 引用源。、错误!未找到引用源。分别是错误!未找到引用 源。、错误!未找到引用源。的中点,则异面直线错误!未 找到引用源。与错误!未找到引用源。所成的角的大小是 ______90______. 考向二线面角 例二、如图,在四棱锥P-ABCD中,底面ABCD是矩 形,AD⊥PD,BC=1, ,PD=CD=2. (I)求异面直线PA与BC所成角的正切值;(II)证明平面PDC⊥平面ABCD; (III)求直线PB与平面ABCD所成角的正弦值。 N A 1

练 习 : 如图 , 在 三棱锥 P ABC -中, PA ⊥底面 ,, 60,A B C P A A B A B C B C A ?? =∠=∠=, 点D ,E 分别在棱,PB PC 上,且//DE BC (Ⅰ)求证:BC ⊥平面PAC ; (Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成的角的正弦值; (Ⅰ)∵PA ⊥底面ABC ,∴PA ⊥BC . 又90BCA ? ∠=,∴AC ⊥BC . ∴BC ⊥平面PAC . (Ⅱ)∵D 为PB 的中点,DE//BC ,

∴1 2 DE BC = , 又由(Ⅰ)知,BC ⊥平面PAC , ∴DE ⊥平面PAC ,垂足为点E . ∴∠DAE 是AD 与平面PAC 所成的角, ∵PA ⊥底面ABC ,∴PA ⊥AB ,又PA=A B , ∴△ABP 为等腰直角三角形,∴ AD AB = , ∴在Rt △ABC 中,60ABC ? ∠=,∴1 2 BC AB = . ∴在Rt △ADE 中,sin 24 DE BC DAE AD AD ∠= ==, 考向三: 二面角问题 在图中做出下面例题中二面角 例三:.定义法(2011广东理18) 如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60?,PA PD == E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值. 法一:(1)证明:取AD 中点G ,连接PG ,BG ,BD 。 因PA=PD ,有PG AD ⊥,在ABD ?中,1,60AB AD DAB ==∠=?,有ABD ?为 等边三角形,因此,BG AD BG PG G ⊥?=,所以AD ⊥平面 PBG ,.AD PB AD GB ?⊥⊥ 又PB//EF ,得AD EF ⊥,而DE//GB 得AD ⊥DE ,又FE DE E ?=,所以AD ⊥ 平面DEF 。

2020高考数学三视图汇编(供参考)

高考立体几何三视图 1(2017全国卷二理数)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体 的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .π90 B .π63 C .π42 D .π36 【答案】B 【解析】该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半. 2(2017北京文数) 某三棱锥的三视图如图所示,则该三棱锥的体积为 A 60 B 30 C 20 D 10 【答案】D 【解析】该几何体是如图所示的三棱锥P-ABC , 由图中数据可得该几何体的体积为115341032V =????= 3(2017北京理数)某四棱锥的三视图如图所示,则该四棱锥 的最长棱的长 度为 A 3 B 2 C 2 D 2 【答案】B 【解析】如下图所示,在四棱锥-P ABCD 中,最长的棱为PA , 所以2222=2(22)23+=+=PA PC AC ,故选B . 4(2017山东理数)由一个长方体和两个14 圆柱构成的几何体的三视图如图,则该几何体的体积为 。 【答案】2+2π 【解析】由三视图可知,长方体的长、宽、 高分别是2、1、1,圆柱的高为1,底面半径为1,所以 2121121=2+42 V ππ?=??+?? 5(2017全国卷一理数)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若 干个是梯形,这些梯形的面积之和为 A .10 B .12 C .14 D .16 【答案】B 232

【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成, 如下图,则该几何体各面内只有两个相同的梯形, 则这些梯形的面积之和为12(24)2122?+??=,故选B. 6(2017浙江文数)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( ) A. π+12 B. π+32 C. 3+12π D. 3π+32 【答案】A 【解析】由三视图可知该几何体由一个三棱锥和半个圆锥组合而成,圆锥的 体积为2111π13232V π=????=,三棱锥的体积为2111213322 V =????=, 所以它的体积为12π122V V V =+= + 7.(2016全国卷1文数)如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3 ,则它的表面积是( ). A .17π B . 18π C . 20π D . 28π 【答案】B 【解析】由三视图可知该几何体是78 个球(如图所示),设球的半径为R ,则374π28π833V R =?=得R=2,所以它的表面积是22734π2+21784S 表ππ=????= 8.(2016全国卷2文数)右图是圆柱与圆锥组合而成的几何体的三视图,则该几何 体的表面积为( ). A.20π B.24π C.28π D.32π 【答案】C 【解析】由题意可知,圆柱的侧面积为12π2416S π =??= 圆锥的侧面积为212π2482S π=???=

高考数学复习-第十二讲--立体几何之空间角

第十二讲 立体几何之空间角 一、基本知识回顾 空间的角主要包括两条异面直线所成的角、直线与平面所成的角以及二面角。 1) 异面直线所成角 1.022.π??? ? ???????????范围:,平移相交(找平行线替换)求法:向量法??? ??20π, 2) 直线与平面所成角 1.π???????????????? 范围0,2定义2.求法向量法?? ? ? ??2,0π n m n m ??=arcsin θ 若n m ⊥则α//a 或α?a 若n m //则α⊥a 3) 二面角[]1.0.2.π??? ?????? ?? ???? ???? ?????? 范围:定义法(即垂面法)作二面角平面角的方法:三垂线定理及逆定理垂线法 直接法3.求二面角大小的方法射影面积法向量法 θcos S S =' (S 为原斜面面积,S '为射影面积,θ为斜面与射影所成锐二面角的平面 角) 当θ为锐角时,n m n m ??=arccos θ 当θ为锐角时,n m n m ??-=arccos πθ

二、例题讲解 1.在正三棱柱 111 ABC A B C -中,若 1 2, AB BB =求 1 AB与B C 1 所成的角的大小。 解:法一:如图一所示, 设O为C B 1 、B C 1 的交点,D AC 为的中点,则所求角是DOB ∠。 设 1 ,2 BB a AB a == 则,于是在DOB ?中, 1 222 1 1336 ,2, 2222 13 ,, 2 OB BC a BD a a OD AB a BD OB OD ==== ===+ 即90, DOB ∠=?∴? = ∠90 DOB 法二:取 11 A B的中点O为坐标原点,如图建立空间直角坐标系, xyz O-AB 2 1 的长度单位,则由

立体几何之空间角(经典)

中小学1对1课外辅导专家 武汉龙文教育学科辅导讲义 授课对象 冯芷茜 授课教师 徐江鸣 授课时间 2013-9-19 授课题目 立体几何中的空间角 课 型 复习课 使用教具 讲义、纸、笔 教学目标 熟悉高考中立体几何题型的一般解法 教学重点和难点 重点:运用空间直角坐标系的方法解决立体几何问题 难点:二面角,线面角的空间想象能力 参考教材 人教版高中教材 高考考纲 历年高考真题 教学流程及授课详案 【知识讲解】 空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形) (1)异面直线所成的角:通过直线的平移,把异面直线所成的角转化为平面内相交直线所成的角。异面直线所成角的范围:o o 900≤<α; 注意:若异面直线中一条直线是三角形的一边,则平移时可找三角形的中位线。有的还可以 通过补形,如:将三棱柱补成四棱柱;将正方体再加上三个同样的正方体,补成一个底面是正方形的长方体。 (2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90; ③斜线与平面所成的角:范围o o 900<<α;即也就是斜线与它在平面内的射影所成的角。 (3)二面角:关键是找出二面角的平面角。方法有:①定义法;②三垂线定理法;③垂面法; 注意:还可以用射影法:S S ' cos =θ;其中θ为二面角βα--l 的大小,S 为α内的一个封 闭几何图形的面积;'S 为α内的一个封闭几何图形在β内射影图形的面积。一般用于解选择、填空题。 时 间 分 配 及 备 注

【题海拾贝】 例1在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点. EF平面P AD; (1)求证:// (2)当平面PCD与平面ABCD成多大二面角时, EF平面PCD? 直线 例2已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC = AD = CD = DE = 2a,AB = a, F为CD的中点. (Ⅰ)求证:AF⊥平面CDE; (Ⅱ)求异面直线AC,BE所成角余弦值; (Ⅲ)求面ACD和面BCE所成二面角的大小.

立体几何三视图[高考题精选]

三视图强化练习 (13)10.某四棱锥的三视图如图所示,则该四棱锥的体积为。 (12)7.某三棱锥的三视图如图所示,该三梭锥的表面积是() A. 28+65 B. 30+65 C. 56+ 125 D. 60+125 (11理)7.某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A.8 B.62C.10 D.82 (11文)5.某四棱锥的三视图如图所示,该四棱锥的表面积是 A.32 B.16+162C.48 D.16+322

(13)(13)某几何体的三视图如图所示,则该几何体的体积是 . (13)5、某几何体的三视图如题()5图所示,则该几何体的体积为( ) A 、5603 B 、5803 C 、200 D 、240 (13)8、一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( ) A. 1243V V V V <<< B. 1324V V V V <<< C. 2134V V V V <<< D. 2314V V V V <<<

(13全国新课标1)8、某几何体的三视图如图所示,则该几何体的体积为 16+ (A)8π 8+ (B)8π 16+ (C)π61 8+ (D)16π -中的坐标分别是(1,0,1),(13全国新课标2)7、一个四面体的顶点在空间直角坐标系O xyz (1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为() (A) (B) (C) (D) (12天津)(10)一个几何体的三视图如图所示(单位:m),则该几何体的体积3 m. (11东城二模)(4)如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为2,那么这个几何体的体积为

文科立体几何面角二面角专题-带答案

文科立体几何线面角二面角专题 学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.如图,在三棱锥中,,,为的中点.(1)证明:平面; (2)若点在棱上,且二面角为,求与平面所成角的正弦值. 2.如图,在三棱锥中,,,为的中点.(1)证明:平面; (2)若点在棱上,且,求点到平面的距离. 3.(2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.

(Ⅰ)证明:AB1⊥平面A1B1C1; (Ⅱ)求直线AC1与平面ABB1所成的角的正弦值. 4.如图,在三棱柱中,点P,G分别是,的中点,已知⊥平面 ABC,==3,==2. (I)求异面直线与AB所成角的余弦值; (II)求证:⊥平面; (III)求直线与平面所成角的正弦值. 5.如图,四棱锥,底面是正方形,,,,分别是,的中点.

(1)求证; (2)求二面角的余弦值. 6.如图,三棱柱中,侧棱底面,且各棱长均相等.,,分别为棱,,的中点. (1)证明:平面; (2)证明:平面平面; (3)求直线与直线所成角的正弦值. 7.如图,在四边形ABCD中,AB//CD,∠AB D=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF. (Ⅰ)求证:平面ADE⊥平面BDEF; (Ⅱ)若二面角C BF D的大小为60°,求CF与平面ABCD所成角的正弦值. 8.如图,在四棱锥中,平面,,,

,点是与的交点,点在线段上,且. (1)证明:平面; (2)求直线与平面所成角的正弦值. 9.在多面体中,底面是梯形,四边形是正方形,,,,, (1)求证:平面平面; (2)设为线段上一点,,求二面角的平面角的余弦值. 10.如图,在多面体中,四边形为等腰梯形,,已知,,,四边形为直角梯形,,. (1)证明:平面,平面平面;

高考数学一轮复习第七章立体几何7.1空间几何体的结构及其三视图和直观图课时提升作业理

空间几何体的结构及其三视图和直观图 (25分钟60分) 一、选择题(每小题5分,共25分) 1.下列结论正确的是( ) A.各个面都是三角形的几何体是三棱锥 B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥 C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥 D.圆锥的顶点与底面圆周上的任意一点的连线都是母线 【解析】选 D.A错误,如图所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是三棱锥; B错误,如图,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边,所得的几何体都不是圆锥; C错误,若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长. 2.已知某几何体的正视图和侧视图均如图所示,给出下列5个图形: 其中可以作为该几何体的俯视图的图形个数是( ) A.5个 B.4个 C.3个 D.2个 【解析】选B.根据正视图与侧视图的画法知④不能作为俯视图,故选B. 【加固训练】(2016·忻州模拟)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是( )

【解析】选C.依题意,此几何体为组合体,若上下两个几何体均为圆柱,则俯视图为A; 若上边的几何体为正四棱柱,下边几何体为圆柱,则俯视图为B; 若俯视图为C,则正视图中应有实线或虚线,故该几何体的俯视图不可能是C; 当上边的几何体为底面是等腰直角三角形的直三棱柱,下面的几何体为正四棱柱时,俯视图为D. 3.(2016·衡阳模拟)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( ) 【解析】选D.如图所示,点D1的投影为C1,点D的投影为C,点A的投影为B,故选D. 【加固训练】用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是图中的( ) 【解析】选B.截去的平面在俯视图中看不到,故用虚线,因此选B. 4.(2016·开封模拟)若某几何体的三视图如图所示,则这个几何体的直观图可以是( )

立体几何空间直角坐标系解法典型例题

立体几何坐标解法典型例题 1、如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 2、如图,在Rt AOB △中, π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. A B C D

3.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点. (1)求异面直线A 1B 、EF 所成角θ的正弦值; (2)求点B 1到平面AEF 的距离. 4.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. D B C A S

5.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB → 的值为( ) A .0 B .1 C .0或1 D .任意实数 5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( ) A.32 B.1010 C.35 D.25 <二>选择题辨析 [注]: ①两条异面直线在同一平面内射影一定是相交的两条直线.(×) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面,b 与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) ⑥在同一平面内的射影长相等,则斜线长相等.(×) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. [注]: ①直线与平面内一条直线平行,则∥. (×) ②直线与平面内一条直线相交,则与平面相交. (×) ③若直线与平面平行,则内必存在无数条直线与平行. (√) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) ⑤平行于同一直线的两个平面平行.(×) ⑥平行于同一个平面的两直线平行.(×) ⑦直线与平面、所成角相等,则∥.(×) [注]: ①垂直于同一平面....的两个平面平行.(×) ②垂直于同一直线的两个平面平行.(√) ③垂直于同一平面的两条直线平行.(√) αααb a ,b a =b a ,a αa αa αa αa ααa l αβαβ

高考数学专题复习立体几何专题空间角

立体几何专题:空间角 第一节:异面直线所成的角 一、基础知识 1.定义: 直线a 、b 是异面直线,经过空间一交o ,分别a ?//a ,b ?//b ,相交直线a ?b ?所成的锐角(或直 角)叫做 。 2.范围: ?? ? ??∈2,0πθ 3.方法: 平移法、问量法、三线角公式 (1)平移法:在图中选一个恰当的点(通常是线段端点或中点)作a 、b 的平行线,构造一个三角形,并解三角形求角。 (2)向量法: 可适当选取异面直线上的方向向量,利用公式b a = ><=,cos cos θ 求出来 方法1:利用向量计算。选取一组基向量,分别算出 b a ? 代入上式 方法2:利用向量坐标计算,建系,确定直线上某两点坐标进而求出方向向量 ),,(111z y x a = ),,(222z y x b =2 2 22222 1 2 12 12 12121cos z y x z y x z z y y x x ++++++= ∴θ (3)三线角公式 用于求线面角和线线角 斜线和平面内的直线与斜线的射影所成角的余弦之积等于斜线和平面内的直线所成角的余弦 即:θθθcos cos cos 2 1= 二、例题讲练 例1、(2007年全国高考)如图,正四棱柱 1111ABCD A B C D -中, 12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为 例2、在长方体ABCD-A 1B 1C 1D 1中,已知AB=a ,BC=)(b a b >,AA 1= c ,求异面直线D 1B 和AC 所成 的角的余弦值。 方法一:过B 点作 AC 的平行线(补形平移法) A B 1 B 1 A 1D 1 C C D

立体几何空间角习题

立体几何空间角习题 【基础】空间角是线线成角、线面成角、面面成角的总称。其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。 一、选择填空题 1.(1)已知正三棱柱ABC —A 1B 1C 1中,A 1B ⊥CB 1,则 A 1 B 与A C 1所成的角为( ) (A )450 (B )600 (C )900 (D )1200 (2)已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A . 1 3 B C D . 23 (3)Rt ABC ?的斜边在平面α内,顶点A 在α外,BAC ∠在平面α内的射影是BA C '∠,则 BA C '∠的范围是________________。 (4)从平面α外一点P 向平面α引垂线和斜线,A 为垂足,B 为斜足,射线BC α?,这时 PBC ∠为钝角,设,PBC x ABC y ∠=∠=,则( ) A.x y > B.x y = C.x y < D.,x y 的大小关系不确定 (5)相交成60°的两条直线与一个平面α所成的角都是45°,那么这两条直线在平面α内的 射影所成的角是( ) A .30° B .45° C .60° D .90° (6)一条与平面相交的线段,其长度为10cm ,两端点到平面的距离分别是2cm ,3cm ,这条线 段与平面α所成的角是 ;若一条线段与平面不相交,两端点到平面的距离分别是2cm ,3cm ,则线段所在直线与平面α所成的角是 。 (7)PA 、PB 、PC 是从P 点引出的三条射线,每两条夹角都是60°,那么直线PC 与平面PAB 所成角的余弦值是( ) A B A 1 1

立体几何三视图(高考题精选)

三视图强化练习 (13北京)10.某四棱锥的三视图如图所示,则该四棱锥的体积为。 (12北京)7.某三棱锥的三视图如图所示,该三梭锥的表面积是() A. 28+65 B. 30+65 C. 56+ 125 D. 60+125 (11北京理)7.某四面体的三视图如图所示,该四面体四个面的面积中,最大的是 A.8 B.C.10 D. (11北京文)5.某四棱锥的三视图如图所示,该四棱锥的表面积是 A.32 B.C.48 D.

(13辽宁)(13)某几何体的三视图如图所示,则该几何体的体积是 . (13重庆)5、某几何体的三视图如题()5图所示,则该几何体的体积为( ) A 、 5603 B 、580 3 C 、200 D 、 240 (13湖北)8、一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( ) A. 1243V V V V <<< B. 1324V V V V <<< C. 2134V V V V <<< D. 2314V V V V <<<

(13全国新课标1)8、某几何体的三视图如图所示,则该几何体的体积为 16+ (A)8π 8+ (B)8π 16+ (C)π61 8+ (D)16π -中的坐标分别是(1,0,1),(13全国新课标2)7、一个四面体的顶点在空间直角坐标系O xyz (1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为() (A) (B) (C) (D) (12天津)(10)一个几何体的三视图如图所示(单位:m),则该几何体的体积3 m. (11东城二模)(4)如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为2,那么这个几何体的体积为

立体几何复习专题(空间角)(学生卷)

专题一:空间角 一、基础梳理 1.两条异面直线所成的角 (1)异面直线所成的角的范围:(0, ]2 π 。 (2)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直。两条异面直线,a b 垂直,记作a b ⊥。 (3)求异面直线所成的角的方法: (1)通过平移,在一条直线上(或空间)找一点,过该点作另一(或两条)直线的平行线; (2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求。 平移技巧有:平行四边形对边平移、三角形中位线平移、补形平移技巧等。 2.直线和平面所成的角(简称“线面角”) (1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角。 一直线垂直于平面,所成的角是直角;一直线平行于平面或在平面内,所成角为0?角。 直线和平面所成角范围:[0, 2 π]。 (2)最小角定理:斜线和平面所成角是这条斜线和平面内 经过斜足的直线所成的一切角中最小的角。 (3)公式:已知平面α的斜线a 与α内一直线b 相交成θ角, 且a 上的射影c 与b 相交成?2角, 则有θ??cos cos cos 21= 。 内的射影所成角,是这条斜线和这个平面内的任一条直 线所成角中最小的角。 3.二面角 (1)二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面。若棱为l ,两个面分别为,αβ的二面角记为l αβ--。 (2)二面角的平面角: 过二面角的棱上的一点O 分别在两个半平面内...... 作棱的两条垂线,OA OB ,则AOB ∠叫做二面角 l αβ--的平面角。 说明:①二面角的平面角范围是[]0,π,因此二面 角有锐二面角、直二面角与钝二面角之分。 ②二面角的平面角为直角时,则称为直二面角, 组成直二面角的两个平面互相垂直。 (3)二面角的求法:(一)直接法:作二面角的平面角的作法:①定义法;②棱的垂面法;③三垂线定理或逆定理法;(注意一些常见模型的二面角的平面角的作法) (二)间接法:面积射影定理的方法。 (4)面积射影定理: 面积射影定理:已知ABC ?的边BC 在平面α内,顶点A α?。设ABC ?的面积为S ,它在平 ?2?1c b a θP αO A B l B' O' A' B O A βα

高中数学立体几何三视图练习题

立体几何-三视图练习题 1.下列四个几何体中,每个几何体的三视图中有且仅有两个视图相同的是( ). A .①② B .①③ C .③④ D .②④ 2.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( ). 3.一个几何体的三视图如图所示,则该几何体的直观图可以是 ( ) 4.在一个几何体的三视图中,正(主)视图和俯视图如图所示,则相应的侧(左)视图可以为( ). 5.如图,直观图所示的原平面图形是( ) A.任意四边形 B.直角梯形 C.任意梯形 D.等腰梯形 6.将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )

7. 一个多面体的三视图分别为正方形、等腰三角形和矩形,如图所示,则该多面体的体积为( ) A .24 cm 3 B .48 cm 3 C .32 cm 3 D .28 cm 3 第7题 第8题 8.若正四棱锥的正(主) 视图和俯视图如图所示,则该几何体的表面积是( ). A .4 B .4+410 C .8 D .4+411 9.如下图是某几何体的三视图,其中正(主)视图是腰长为2的等腰三角形,侧(左)视图是半径为1的半圆,则该几何体的体积是( ). A .π B ..π 3 C .3π D .3π3 第9题 第10题 10.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( ) A. 34000cm 3 B.3 8000cm 3 C.32000cm D.34000cm 11.3 ,且一个内角为60o 的菱形,俯视图为正方形,那么这个几何体的表面积为( ) A .23 B .43 C . 4 D . 8 E F D I A H G B C E F D A B C 侧视 图1 图2 B E A . B E B . B E C . B E D .

届高三文科数学立体几何空间角专题复习

届高三文科数学立体几何空间角专题复习 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

2015届高三文科数学立体几何空间角专题复习 考点1:两异面直线所成的角 例1.如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 (Ⅰ)求异面直线A 1M 和C 1D 1所成的角的正切值; (Ⅱ)证明:平面ABM ⊥平面A 1B 1M 1 例2.(2010全国卷1文数)直三棱柱111ABC A B C -中,若 90BAC ∠=?,1AB AC AA ==,则异面直线1BA 与1AC 所成的 角等于( C ) (A) 30° (B) 45° (C) 60° (D) 90° 变式训练: 1.(2009全国卷Ⅱ文)已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 中点,则异面直线BE 与1CD 所形成角的余弦值为( C ) (A ) 1010 (B) 15 (C ) 31010 (D) 35 2.如图,直三棱柱111ABC A B C -,90BCA ?∠=,点1D 、1F 分别是11A B 、11A C 的中点, 1BC CA CC ==,则1BD 与1AF 所成角的余弦值是( ) A . 1030 B .21 C .15 30 D . 10 15 3.(2012年高考(陕西理))如图,在空间直角坐标系中有直三棱 111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为 ( ) A . 55 B . 53 C . 5 5 D .35 第3题图 第4题图 第5题图 4.(2007全国Ⅰ·文)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线 1A B 与1AD 所成角的余弦值为( )

立体几何之空间夹角

第26练“空间角”攻略 [题型分析·高考展望]空间角包括异面直线所成得角,线面角以及二面角,在高考中频繁出现,也就是高考立体几何题目中得难点所在.掌握好本节内容,首先要理解这些角得概念,其次要弄清这些角得范围,最后再求解这些角.在未来得高考中,空间角将就是高考考查得重点,借助向量求空间角,将就是解决这类题目得主要方法. 体验高考 1.(2015·浙江)如图,已知△ABC,D就是AB得中点,沿直线CD将△ACD翻折成△A′CD,所成二面角A′—CD—B得平面角为α,则() A.∠A′DB≤α B.∠A′DB≥α C.∠A′CB≤α D.∠A′CB≥α 2.(2016·课标全国乙)平面α过正方体ABCD—A1B1C1D1得顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角得正弦值为() A、B、\f(2) 2 C、 3 3D、 3.(2016·课标全国丙)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC得中点. (1)证明MN∥平面PAB; (2)求直线AN与平面PMN所成角得正弦值. 高考必会题型 题型一异面直线所成得角 例1在棱长为a得正方体ABCD-A1B1C1D1中,求异面直线BA1与AC所成得角. 变式训练1(2015·浙江)如图,三棱锥A—BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N 分别就是AD,BC得中点,则异面直线AN,CM所成得角得余弦值就是________. 题型二直线与平面所成得角 例2 如图,已知四棱锥P-ABCD得底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH就是四棱锥得高,E为AD得中点.(1)证明:PE⊥BC; (2)若∠APB=∠ADB=60°,求直线P A与平面PEH所成角得正弦值. 变式训练2 如图,平面ABDE⊥平面ABC,△ABC就是等腰直角三角形,AB=BC=4,四边形ABDE就是直角梯形,BD∥AE,BD⊥BA,BD=错误!AE=2,点O、M分别为CE、AB得中点. (1)求证:OD∥平面ABC;(2)求直线CD与平面ODM所成角得正弦值;

2007-2018全国高考立体几何三视图汇总(文科)

2007-2018全国高考立体几何三视图汇总 1.【2007年新课标文8】已知某个几何体的三视图如下,根据图中标出 的尺寸(单位:cm ),可得这个几何体的体积是( B ) A .34000cm 3 B .38000cm 3 C .32000cm D .34000cm 2.【2009年新课标文11】一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )为( A ) (A )48122+ (B )48242+ (C )36122+ (D )36242+ 3.【2012年新课标卷文7】如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为( B ) A .6 B .9 C .12 D .18 20 20 正视图 20侧视图 10 10 20 俯视图

4.【2013年新课标卷Ⅰ文11】某几何体的三视图如图所示,则该几何体的体积为( A ) A .168π+ B .88π+ C .1616π+ D .816π+ 5.【2013年新课标卷Ⅱ文9】一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( A ) (A) (B) (C) (D) 6. 【2014新课标卷Ⅰ卷文8】如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( B ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 7. 【2015年新课标Ⅰ卷文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( B ) (A )1 (B )2 (C )4 (D )8

立体几何专题复习空间角的求法(三)

立体几何专题复习-----空间角的求法(三) (一)异面直线所成的角: 定义:已知两条异面直线a,b,经过空间任一点0作直线a //a,b //b, a ,b■所成的角的大小与点0的选择无关,把a,b?所成的锐角(或直角)叫异面直线a,b所成的角(或夹角)?为了简便,点0通常取在异面直线的一条上? (1)平移法:即根据定义,以“运动”的观点,用“平移转化”的方法,使之成为相交直线所成的角。 (2)异面直线所成的角的范围:(0,—]. 2 (3)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直?两条异面直线a,b垂直,记作a_b. (4)求异面直线所成的角的方法: 法1:通过平移,在一条直线上找一点,过该点做另一直线的平行线; 法2;找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求+ (二)直线和平面所成的角 1.线面角的定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角 2.记作:二;3 、范围:0,】1; 当一条直线垂直于平面时,所成的角二 2 即直线与平面垂直; 2 当一条直线平行于平面或在平面内,所成角为二二0。 3.求线面角的一般步骤: (1)经过斜线上一点作面的垂线;(2)找出斜线在平面内的射影,从而找出线 I 面角;(3)解直角三角形。cos^=L,sin日 l l (三)二面角 1.二面角的平面角: (1)过二面角的棱上的一点O分别在两个半平面内作棱的两条垂线 OA,OB,则AOB叫做二面角〉-丨- 一:的平面角. (2)一个平面垂直于二面角〉-丨- 1的棱丨,且与两半平面交线分别为0A,0B,0 为垂足,则.A0B也是〉-丨- 1的平面角* 说明:(1)二面角的平面角范围是[0:,180打; (2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平

立体几何-空间角题型

立体几何-空间角求法题型 空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。空间角是线线成角、线面成角、面面成角的总称。其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。 空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。下面针对几何法举例说明。 一、异面直线所成的角: 【例】如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =, 12AA =。E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。求直线1EC 与1FD 所成的角的余弦值。 解:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。 在Rt △BE 1F 中, 2222115126E F E F BF = += += 。 在Rt △D 1DE 1中, 222221111112 2 2 13214 D E DE DD AE AD DD =+=++=++= 在Rt △D 1DF 中,22 11222222124224 FD FD DD CF CD DD =+=++=++= 在△E 1FD 1中,由余弦定理得:

222111111111cos 2D E FD E F E D F D E FD +-∠==?? ∴直线1EC 与1FD 所成的角的余弦值为 14 。 可见,“转化”是求异面直线所成角的关键。平移线段法,或化为向量的夹角。 一般地,异面直线l 1、l 2的夹角的余弦为: cos AC BD AC BD β?=?u u u r u u u r u u u r u u u r 。 二、线面角 【例】已知直三棱柱111,,ABC A B C AB AC F -=为1BB 上一点, 12,BF BC a FB a ===。 (1)若D 为BC 的中点,E 为AD 上不同于A D 、的任意一点,证明:1EF FC ⊥; (2)若113A B a =,求1FC 与平面11AA B B 所成角的正弦值。 提示:(1)转证线面垂直;证明FC1与面ADF 垂直(2)sin θ=。 三、二面角的求法: 几何法:二面角转化为其平面角,要掌握以下三种基本做法: ①直接利用定义,图(1)。 ②利用三垂线定理及其逆定理,图(2)最常用。 ③作棱的垂面,图(3)。 A B F C E 1 A 1 B 1 C D

立体几何三视图(高考题精选)

三视图强化练习 (13 ) 10 . 某四棱锥的三视图如图所示,则该四棱锥的体积为 (12) 7.某三棱锥的三视图如图所示,该三梭锥的表面积是( A. 28+6 ..5 B. 30+6 5 C. 56+ 12 (11理)7?某四面体的三视图如图所示,该四面体四个面的面积中,最大的是 A . 8 B. 6 ■ 2 C. 10 D. 8.2 (11文)5.某四棱锥的三视图如图所示,该四棱锥的表面积是 5 D.60+12 , 5 A. 32 B . 16+16 - 2 C . 48D. 16+32 - 2 )

(13)某几何体的三视图如图所示,则该几何体的体积是 & 一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积 分别记为 V ,V 2,V 3,V 4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面 (13) (13) 5、某几何体的三视图如题 560 580 240 5图所示,则该几何体的体积为( C 、200 —— I (13) 体,则有( A. V V 2 V 4 V 3 B. V 1 V 3 V 2 V 4 C. V 2 V 1 V 3 V 4 D. V 2 V 3 V 1 V 4

(11东城二模)(4)如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三 角形,如果直角三角形的直角边长为 2,那么这个几何体的体积为 (13全国新课标1) 8、某几何体的三视图如图所示,则该几何体的体积为 (A) 16 8 n (B) 8 8 n (C ) 16 16 n (D) 8 16n (13全国新课标2) 7、一个四面体的顶点在空间直角坐标系 O xyz 中的坐标分别是(1,0,1), (1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以 zOx 平面为投影面,则得 (B) (12) ( 10)一个几何体的三视图如图所示 (单 则该几何体的体积 (D)

相关文档
相关文档 最新文档