文档库 最新最全的文档下载
当前位置:文档库 › 专题三牛顿运动定律及其应用

专题三牛顿运动定律及其应用

专题三牛顿运动定律及其应用
专题三牛顿运动定律及其应用

2.动力学的两类基本问题

(1)已知物体的受力情况求物体的运动情况:

已知物体的受力情况,可以求出物体所受的合力,根据牛顿第二定律可求出物体的加速度,再知道物体的初始条件(初位置和初速度),根据运动学公式,就可以求出物体在任一时刻的速度和位移,也就可以求解物体的运动情况.

(2)已知物体的运动情况求物体的受力情况:

根据物体的运动情况,由运动学公式可以求出加速度,再根据F =ma 可确定物体的受力情况,从而求出未知的力或与力相关的某些物理量,如动摩擦因数、劲度系数、力的方向等.物体的运动情况由所受的力及物体运动的初始状态共同决定,无论哪种情况,联系力和运动的“桥梁”都是加速度.

3.超重和失重 (1)超重

①受力特点:合力的方向竖直向上.

②运动特点:向上加速运动或向下减速运动. (2)失重

①受力特点:合力方向竖直向下.

②运动特点:向下加速运动或向上减速运动. ③完全失重:只受重力作用.

动力学图象问题

动力学中的图象问题包括两种情况:一是根据受力情况确定加速度、速度随时间的变化情况;二是根据物体的运动情况分析物体的受力情况,求解问题的关键在于分析清楚物体的受力情况和运动情况.

【例1】如图甲所示,粗糙斜面与水平面的夹角为30°,质量为0.3 kg 的小物块静止在A 点.现有一沿斜面向上的恒定推力F 作用在小物块上,作用一段时间后撤去推力F ,小物块能达到的最高位置为C 点,小物块从A 到C 的v -t 图象如图乙所示.g 取10 m/s 2,则下列说法正确的是( )

A .小物块到C 点后将沿斜面下滑

B .小物块加速时的加速度是减速时加速度的1

3

C .小物块与斜面间的动摩擦因数为

32

D .推力F 的大小为6 N

【审题突破】 第一步:审题干→提取信息

(1)物块静止在A 点――→隐含

物块受力平衡―→物块受的最大静摩擦力不小于重力下滑分力. (2)由图象乙――→隐含

物块先做匀加速直线运动,后做匀减速直线运动. 第二步:审问题→明确解题思路

(1)比较物块加、减速时的加速度―→研究图象乙

――→斜率表示加速度

求得运动的加速度.

(2)求斜面的动摩擦因数μ―→选0.9~1.2 s 时间段为研究过程――→受力分析

由牛顿第二定律列方程―→μ. (3)求推力F ―→选0~0.9 s 时间段为研究过程――→受力分析

由牛顿第二定律列方程―→F .

答案 B

解析 撤去推力F 后,物块在滑动摩擦力作用下做匀减速直线运动,由v -t 图象求得小物块在加速和减速两个过程中的加速度大小分别为a 1=10

3 m/s 2,a 2=10 m/s 2,在匀减速直线运动过程中,由牛顿第二定

律可知mg sin30°+μmg cos30°=ma 2,μ=

3

3

,选项B 正确,C 错误;由此判断mg sin30°=F fm =μmg cos30°,因此小物块到达C 点后将静止在斜面上,选项A 错误;在匀加速阶段F -mg sin30°-μmg cos30°=ma 1,F =4 N ,选项D 错误.

处理动力学图象问题的一般思路

(1)依据题意,合理选取研究对象;

(2)对物体先受力分析,再分析其运动过程; (3)将物体的运动过程与图象对应起来;

(4)对于相对复杂的图象,可通过列解析式的方法进行判断.

【变式训练】1.一质点在外力作用下做直线运动,其速度v 随时间t 变化的图象如图.在图中标出的时刻中,质点所受合外力的方向与速度方向相同的有( )

A .t 1

B .t 2

C .t 3

D .t 4 答案 AC

解析 v -t 图象中,纵轴表示各时刻的速度,t 1、t 2时刻速度为正,t 3、t 4时刻速度为负,图线上各点

切线的斜率表示该时刻的加速度,t 1、t 4时刻加速度为正,t 2、t 3时刻加速度为负,根据牛顿第二定律,加速度与合外力方向相同,故t 1时刻合外力与速度均为正,t 3时刻合外力与速度均为负,A 、C 正确,B 、D 错误.

连接体问题

1.连接体是指运动中几个物体叠放在一起,或并排挤放在一起,或由绳子、细杆连接在一起的物体组.高中阶段主要处理加速度大小相同(或为零)的连接体问题.

2.连接体问题的处理方法

(1)整体法:把整个系统作为一个研究对象来分析的方法.不必考虑系统内力的影响,只考虑系统受到的外力,依据牛顿第二定律列方程求解.

(2)隔离法:把系统中的各个部分(或某一部分)隔离,作为一个单独的研究对象来分析的方法.此时系统的内力就有可能成为该研究对象的外力,在分析时应加以注意.然后依据牛顿第二定律列方程求解.

(3)整体法与隔离法的选用

求各部分加速度相同的连接体的加速度或合力时,优先考虑“整体法”,如果还要求物体之间的作用力,再用“隔离法”.在实际应用中,应根据具体情况,灵活交替使用这两种方法,不应拘泥于固定的模式.

【例2】 (多选)如图甲所示,A 、B 两物体叠放在光滑水平面上,对物体B 施加一水平变力F ,F -t 关系如图乙所示,两物体在变力F 作用下由静止开始运动且始终保持相对静止,则( )

A .t 0时刻,两物体之间的摩擦力最大

B .t 0时刻,两物体的速度方向开始改变

C .t 0~2t 0时间内,两物体之间的摩擦力逐渐增大

D .0~2t 0时间内,物体A 所受的摩擦力方向始终与变力F 的方向相同

【审题突破】 第一步:审题干→提取信息

(1)A 、B 两物体叠放在光滑水平面上――→隐含

F 为A 、B 所受的合外力两物体的加速度与F

成正比.

(2)两物体在变力F 作用下由静止开始运动且始终保持相对静止――→隐含

两物体加速度始终相同,可以整体分析.

第二步:审问题→明确解题思路 (1)求两物体的速度―→选两物体的整体为研究对象―→受力分析(重力、F N 、F )―→竖直方向平衡,水平方向有加速度―→列方程F =(m A +m B )a ―→判断a 的变化规律―→判断速度的变化.

(2)求两物体之间的摩擦力―→选物体A 为研究对象―→受力分析(重力、F N A 、F f )―→竖直方向受力平衡,水平方向有加速度―→列方程F f A =m A a ―→判断A 、C 、D 选项.

答案 CD

解析 两物体始终保持相对静止,故t 0时刻,两物体的加速度为零,两物体之间无摩擦力,A 错误;0~t 0时刻两物体做加速度减小的加速运动,t 0时刻速度达到最大,t 0~2t 0时间内两物体做加速度增大的减速运动,到2t 0时刻速度减到零,故0~2t 0时间内两物体的速度方向没有改变,B 错误;0~2t 0时间内物体A 所受的摩擦力方向始终与变力F 的方向相同,D 正确;两物体之间的摩擦力F f =m A a =m A F

m A +m B ,F f 随F

的变化而变化,C 正确.

整体法和隔离法的优点及使用条件

(1)整体法:

①优点:研究对象减少,忽略物体之间的相互作用力,方程数减少,求解简捷. ②条件:连接体中各物体具有共同的加速度. (2)隔离法:

①优点:易看清各个物体具体的受力情况.

②条件:当系统内各物体的加速度不同时,一般采用隔离法;求连接体内各物体间的相互作用力时必须用隔离法.

【变式训练】2.(多选)如图所示,A 、B 两物块的质量分别为2 m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为1

2μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .

现对A 施加一水平拉力F ,则( )

A .当F <2μmg 时,A 、

B 都相对地面静止

B .当F =52μmg 时,A 的加速度为1

3μg

C .当F >3μmg 时,A 相对B 滑动

D .无论F 为何值,B 的加速度不会超过1

2μg

答案 BCD

解析 A 、B 之间的最大静摩擦力为2μmg ,B 物块与地面间的最大静摩擦力为32μmg ,当3

2μmg <F <

2μmg 时,A 、B 相对地面滑动,A 错误.假设A 、B 之间为最大静摩擦力,一起运动,此时B 物块的加速度为f AB -f B =ma B ,解得a B =1

2μg ,D 项正确.以A 为研究对象,有F -f BA =2ma B ,解得F =3μmg ,所以

当F =52μmg 时,A 、B 一起运动,对整体有F -f B =3ma ,解得a =1

3μg ,B 项正确.当F >3μmg 时,A

相对B 滑动,C 项正确.

牛顿运动定律解决多过程问题

单物体多过程及多物体运动问题是高考命题热点,对于此类问题一定要注意寻找各物体间的联系并分析清楚各个过程的运动情况.

受力分析和运动过程分析是解决问题的关键,基本思路如图所示:

受力情况 求合外力 F 合

=ma 求加速度 运动学公式运动情况

(v 、x 、t )

【例3】如图所示,在高出水平地面h =1.8 m 的光滑平台上放置一质量M =2 kg 、由两种不同材料连接成一体的薄板A ,其右段长度l 1=0.2 m 且表面光滑,左段表面粗糙.在A 最右端放有可视为质点的物块B ,其质量m =1 kg.B 与A 左段间动摩擦因数μ=0.4.开始时二者均静止,先对A 施加F =20 N 水平向右的恒力,待B 脱离A (A 尚未露出平台)后,将A 取走.B 离开平台后的落地点与平台右边缘的水平距离x =1.2 m .(g 取10 m/s 2)求:

(1)B 离开平台时的速度v B .

(2)B 从开始运动到刚脱离A 时,B 运动的时间t B 和位移x B . (3)A 左段的长度l 2.

【审题突破】 1.关键:

(1)正确分析薄板A 两个过程的受力情况.

(2)B 从开始运动到刚脱离A 时, 两个物体运动时间相等.

2.技巧:

(1)先从物块B 离开平台做平抛运动入手求解v B .

(2)再研究物块B 在A 上滑动时做匀加速直线运动,由牛顿第二定律和运动学公式求时间t B 和位移x B . (3)最后研究薄板A 的两个运动过程,分别列牛顿第二定律和运动学公式求l 2. 答案 (1)2 m/s (2)0.5 s 0.5 m (3)1.5 m 解析 (1)物块B 离开平台后做平抛运动: x =v B t ,h =1

2

gt 2,可得v B =2 m/s

(2)物块B 与A 右端接触时处于静止状态,当B 与A 左端接触时做匀加速直线运动,设加速度为a B ,则μmg =ma B ,v B =a B t B ,又x B =1

2a B t 2B

,可得t B =0.5 s ,x B =0.5 m

(3)A 刚开始运动时,A 做匀加速直线运动,设加速度为a 1,B 刚开始运动时,A 的速度为v 1,加速度为a 2,则有F =Ma 1,v 21=2a 1l 1,F -μmg =Ma 2,l 2=v 1t B +12a 2t 2B -12

a B t 2

B ,可得l 2=1.5 m.

1.仔细审题,分析物体的受力及受力的变化情况,确定并划分出物体经历的每个不同的过程.

2.逐一分析各个过程中的受力情况和运动情况,以及总结前一过程和后一过程的状态有何特点. 3.前一个过程的结束就是后一个过程的开始,两个过程的交接点受力的变化、状态的特点是解题的关键.

4.合理选择规律,根据不同的运动过程选择合适的规律方程求解.

【变式训练】3.如图所示,水平传送带AB 长L =3.6 m ,沿顺时针方向以v 0=8 m/s 的速度匀速转动,BC 是一长s =2 m 的平台,与传送带水平连接于B 点,一倾角为37°的斜面CD 紧靠平台固定,斜面顶端与平台等高,一物块a 由A 处轻轻放上传送带,物块a 与传送带、BC 面间的动摩擦因数均为μ=0.5.当物块a 滑到C 点的同时,另一个物块b 以初速度v 1=6 m/s 沿斜面DC 向上运动,当其运动到最高点时恰好与物块a 相遇,物块a 与b 均可看成质点,g =10 m/s 2,求:

(1)物块a 运动到C 点时的速度大小v ;

(2)物块a 从A 运动到C 的时间t ; (3)物块b 与斜面间的动摩擦因数μ1. 答案 (1)4 m/s (2)1.6 s (3)0.5

解析 (1)分析清楚a 、b 两物体的受力情况和运动情况.

(2)当b 运动到最高点时恰好与a 相遇的意义是:b 与a 在斜面DC 上相遇时b 的速度刚好为零.

(1)由牛顿第二定律知物块a 在传送带和平台上的加速度大小均为a =f

m a =μg =5 m/s 2

令物块a 经时间t 1与传送带共速,则有v 0=at 1,发生的位移为x =v 0

2

t 1

联立并代入数值得x =6.4 m>3.6 m ,即物块a 在传送带上一直加速运动,到B 点时的速度设为v B ,则有v 2B =2aL ,即v B =6 m/s

而物块a 从B 到C 做匀减速运动,在C 点的速度设为v ,有v 2B -v 2

=2as ,代入数值得v =4 m/s. (2)物块a 从A 到B 有v B =at 1,得t 1=1.2 s 从B 到C 有v B =v +at 2,得t 2=0.4 s

则物块a 从A 运动到C 的时间t =t 1+t 2=1.6 s.

(3)物块a 离开C 点后做平抛运动而落在斜面上,有x =v t 3,y =12gt 23,tan θ=y

x 联立得t 3=0.6 s

由牛顿第二定律知物块b 在斜面上的加速度为a 1=m b g sin θ+μ1m b g cos θ

m b

由运动学规律知v 1=a 1t 3 联立并代入数值得μ1=0.5.

[突破审题·规范解答]

【例】 (17分)如图是利用传送带装运煤块的示意图.其中传送带长L =6 m ,倾角θ=37°,煤块与传送带间的动摩擦因数μ=0.8,传送带的主动轮和从动轮半径相等.主动轮轴顶端与运煤车底板间的竖直高度H =1.8 m ,与运煤车车厢中心的水平距离x =1.2 m .现在传送带底端由静止释放一些煤块(可视为质点),质量m =5 kg ,煤块在传送带的作用下运送到高处.要使煤块在轮的最高点水平抛出并落在车厢中心.取g =10 m/s 2,sin37°=0.6,cos37°=0.8.求:

(1)煤块在轮的最高点水平抛出时的速度. (2)主动轮和从动轮的半径R .

(3)电动机运送煤块多消耗的电能. 【规范解答】

答案 (1)2 m/s (2)0.4 m (3)350 J

解析 (1)煤块离开传送带后做平抛运动 水平方向x =v t ①(1分)

竖直方向H =1

2

gt 2②(1分)

代入数据得v =2 m/s ③(1分)

(2)要使煤块在轮的最高点做平抛运动,则煤块到达轮的最高点时对轮的压力为零.(1分) 由牛顿第二定律得: mg =m v 2

R

④(2分)

代入数据解得 R =0.4 m ⑤(1分)

(3)由牛顿第二定律F =ma 得

μmg cos θ-mg sin θ=ma ⑥(2分) 即a =0.4 m/s 2⑦(1分) 由v =v 0+at ,v 0=0得 煤块匀加速运动的时间 t ′=v

a

=5 s ⑧(1分)

煤块的位移x 1=1

2

at ′2=5 m ⑨(1分)

由于μ>tan37°,所以煤块将匀速运动到顶端.(1分) 由功能关系得传送带多消耗的电能

E =1

2m v 2+μmg cos37°(v t ′-x 1)+mgL sin37°⑩(2分)

代入数据,由以上各式得E =350 J(2分) 第一问:

(1)只列出①式和②式得2分,只得③式不得分. (2)列综合式v =x

g

2H

=2 m/s 给3分,答案错不得分. 建议:·在时间比较紧张的情况下,要尽量写出一些必要的关系式. ·要分步列式,不要只列综合式,力争多得步骤分.

第二问:

(1)仅写出“煤块到达轮的最高点时对轮的压力为零”得1分. (2)如果将④式写成:R =v 2

g

=0.4 m ,扣1分.

建议:·为了多得步骤分,对关键物理过程或状态的表述不能少.

·要列出物理定律、定理的原始表达式,若只写出变形式则影响得分. 第三问:

(1)将⑥⑦式合为a =μg cos θ-g sin θ=0.4 m/s 2扣1分.

(2)缺少文字表述“由于μ>tan37°,所以煤块将匀速运动到顶端”扣1分.

(3)如果将⑩式根据动能定理写成E -μmg cos37°(v t ′-x 1)-mgL sin37°=1

2m v 2-0同样给2分.

(4)将⑩式的理论依据错写成动能定理扣1分.

(5)如果将⑩式写成E -1

2m v 2=μmg cos37°(v t ′-x 1)+mgL sin37°没有理论依据不得分.

建议:·不要为了急于得出答案,只列出化简后的式子,否则会影响步骤得分. ·临界状态的判断是关键得分点,表述必须明确. ·理论依据与定量表达式一定要对应,避免张冠李戴.

1.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动).此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( )

A.m 2gh t +mg

B.m 2gh t -mg

C.m gh t +mg

D.m gh t -mg

答案 A

解析 方法一:设高空作业人员自由下落h 时的速度为v ,则v 2=2gh ,得v =2gh ,设安全带对人的

平均作用力为F ,由牛顿第二定律得F -mg =ma

又v =at

解得F =m 2gh

t

+mg .

方法二:由动量定理得(mg -F )t =0-m v ,得F =m 2gh

t

+mg .选项A 正确.

知识:自由落体运动的理解及牛顿第二定律的应用.能力:考查对自由落体运动和牛顿第二定律的分析综合能力.试题难度:较小.

2.一人乘电梯上楼,在竖直上升过程中加速度a 随时间t 变化的图线如图所示,以竖直向上为a 的正

方向,则人对地板的压力( )

A .t =2 s 时最大

B .t =2 s 时最小

C .t =8.5 s 时最大

D .t =8.5 s 时最小 答案 AD

解析 人受重力mg 和支持力F N 的作用,由牛顿第二定律得F N -mg =ma .由牛顿第三定律得人对地板的压力F ′N =F N =mg +ma .当t =2 s

时a 有最大值,F ′N 最大;当t =8.5 s 时,a 有最小值,F ′N 最小,选项A 、D 正确.知识:牛顿运动定律的应用、受力分析.能力:对a -t 图象的理解能力和对牛顿运动定律应用的推理能力.试题难度:较小.

3.如图,两平行的带电金属板水平放置.若在两板中间a 点从静止释放一带电微粒,微粒恰好保持静止状态.现将两板绕过a 点的轴(垂直于纸面)逆时针旋转45°,再由a 点从静止释放一同样的微粒,该

微粒将( )

A .保持静止状态

B .向左上方做匀加速运动

C .向正下方做匀加速运动

D .向左下方做匀加速运动 答案 D

解析 两板水平放置时,放置于两板间a 点的带电微粒保持静止,带电微粒受到的电场力与重力平衡.当将两板逆时针旋转45°时,电场力大小不变,方向逆时针偏转45°,受力如图,则其合力方向沿二力角平分线方向,微粒将向左下方做匀加速运动.选项D 正确.

知识:带电粒子在匀强电场中的受力与运动分析.能力:由受力情况判断运动情况的推理能力.试题难度:较小.

4.应用物理知识分析生活中的常见现象,可以使物理学习更加有趣和深入.例如平伸手掌托起物体,由静止开始竖直向上运动,直至将物体抛出.对此现象分析正确的是( )

A .手托物体向上运动的过程中,物体始终处于超重状态

B .手托物体向上运动的过程中,物体始终处于失重状态

C .在物体离开手的瞬间,物体的加速度大于重力加速度

D .在物体离开手的瞬间,手的加速度大于重力加速度 答案 D

解析 物体由静止开始向上运动时,物体和手掌先一起加速向上,物体处于超重状态,之后物体和手掌分离前,应减速向上,物体处于失重状态,故A 、B 均错误.当物体和手分离时,二者速度相同,又因均做减速运动,故分离条件为a 手>a 物,分离瞬间物体的加速度等于重力加速度,则手的加速度大于重力加速度,选项D 正确,C 错误.

1.如图所示,沿水平面运动的小车里有用轻质细线和轻质弹簧A 共同悬挂的小球,小车光滑底板上有用轻质弹簧B 拴着的物块,已知悬线和轻质弹簧A 与竖直方向夹角均为θ=30°,弹簧B 处于压缩状态,小球和物块质量均为m ,均相对小车静止,重力加速度为g ,则( )

A .小车一定水平向左做匀加速运动

B .弹簧A 一定处于拉伸状态

C .弹簧B 的弹力大小可能为

3

3

mg D .细线拉力有可能与弹簧B 的拉力相等 答案 C

解析 因弹簧B 处于压缩状态,所以物块的合力一定水平向左,即小车的加速度水平向左,即小车可能向左加速,也可能向右减速,A 错;当系统的加速度a =g tan θ,弹簧A 不受力作用,即处于原长状态,B 错;当a =g tan θ时,由牛顿第二定律知弹簧B 的弹力大小F =ma =

3

3

mg ,C 对;令细线对小球拉力为T ,弹簧A 、B 的弹力分别为F 1、F 2,则对小球水平方向有T sin θ-F 1sin θ=ma ,对物块F 2=ma ,所以T 一定大于F 2,D 错.

2. (多选)如图(a),一物块在t =0时刻滑上一固定斜面,其运动的v t 图线如图(b)所示.若重力加速度及图中的v 0、v 1、t 1均为已知量,则可求出( )

A .斜面的倾角

B .物块的质量

C .物块与斜面间的动摩擦因数

D .物块沿斜面向上滑行的最大高度

答案 ACD

解析 设物块的质量为m 、斜面的倾角为θ,物块与斜面间的动摩擦因数为μ,物块沿斜面上滑和下滑时的加速度大小分别为a 1和a 2,根据牛顿第二定律有:mg sin θ+μmg cos θ=ma 1,mg sin θ-μmg cos θ=ma 2.再结合v -t 图线斜率的物理意义有:a 1=v 0t 1,a 2=v 1

t 1.由上述四式可见,无法求出m ,可以求出θ、μ,

故B 错,A 、C 均正确.0~t 1时间内的v -t 图线与横轴包围的面积大小等于物块沿斜面上滑的最大距离,θ

已求出,故可以求出物块上滑的最大高度,故D 正确.

3. (多选)质量分别为M 和m 的物块形状大小均相同,将它们通过轻绳跨过光滑定滑轮连接,如图甲所示,绳子平行于倾角为α的斜面,M 恰好能静止在斜面上,不考虑M 、m 与斜面之间的摩擦.若互换两物块位置,按图乙放置,然后释放M ,斜面仍保持静止.则下列说法正确的是( )

A .轻绳的拉力等于Mg

B .轻绳的拉力等于mg

C .M 运动的加速度大小为(1-sin α)g

D .M 运动的加速度大小为

M -m

M

g 答案 BC

解析 互换位置前,M 静止在斜面上,则有:Mg sin α=mg ,互换位置后,对M 有Mg -T =Ma ,对m 有:T ′-mg sin α=ma ,又T =T ′,解得:a =(1-sin α)g ,T =mg ,故A 、D 错,B 、C 对.

4.三角形传送带以1 m/s 的速度逆时针匀速转动,两边的传送带长都是2 m 且与水平方向的夹角均为37°.现有两个小物块A 、B 从传送带顶端都以1 m/s 的初速度沿传送带下滑,物块与传送带间的动摩擦因数都是0.5,(g 取10 m/s 2,sin37°=0.6,cos37°=0.8)下列说法正确的是( )

A .物块A 先到达传送带底端

B .物块A 、B 同时到达传送带底端

C .传送带对物块A 、B 均做负功

D .物块A 、B 在传送带上的划痕长度之比为1∶3 答案 BCD

解析 因mg sin θ>μmg cos θ,物块A 、B 都以1 m/s 的初速度沿传送带下滑,则传送带对两物块的滑动摩擦力方向均沿斜面向上,大小也相等,故两物块沿斜面向下的加速度大小相同,滑到底端时位移大小相同,则所用时间也相同,故A 错误,B 正确;滑动摩擦力沿传送带向上,位移向下,摩擦力做负功,故C 正确;A 、B 两物块下滑时的加速度相同,下滑到底端的时间相同,由x =v 0t +1

2

at 2,a =g sin θ-μg cos

θ,得t =1 s ,传送带1 s 内运动的距离是1 m ,A 与传送带是同向运动,则A 在传送带上的划痕长度为(2

-1)m =1 m ,B 与传送带是反向运动的,则B 在传送带上的划痕长度为(2+1)m =3 m ,所以D 正确.

专题提升练习

一、选择题(共9小题,每小题6分,共54分.在每小题给出的四个选项中,第1~6小题只有一个选项符合题目要求,第7~9小题有多个选项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错或不答的得0分)

1.伽利略利用如图所示的装置做如下实验:小球从左侧斜面上的O 点由静止释放后运动至右侧斜面上升.斜面上先后铺垫三种粗糙程度逐渐减小的材料时,小球沿右侧斜面上升到的最高位置依次为1、2、3.对比三次实验结果,可直接得到的结论是( )

A .如果斜面光滑,小球可以上升到比O ′点更高的位置

B .如果小球不受力, 它将一直保持匀速运动或静止状态

C .小球受到斜面的阻力越小,其上升的位置越高

D .自由落体运动是匀变速直线运动

答案 C

解析 在此实验中,若斜面光滑,只有重力做功,机械能守恒,小球最高只能上升到O ′位置,A 项错误.此实验说明小球受到的阻力越小,机械能损失越少,上升的位置越高,但不能直接说明小球不受力时,它将一直保持匀速运动或静止状态,更不能直接说明自由落体运动是匀变速直线运动,所以C 项正确,B 、D 两项错误.

2.如图甲所示,在木箱内粗糙斜面上静止一个质量为m 的物体,木箱竖直向上运动的速度v 与时间t 的变化规律如图乙所示,物体始终相对斜面静止.斜面对物体的支持力和摩擦力分别为N 和f ,则下列说法正确的是( )

A .在0~t 1时间内,N 增大,f 减小

B .在0~t 1时间内,N 减小,f 增大

C .在t 1~t 2时间内,N 增大,f 增大

D .在t 1~t 2时间内,N 减小,f 减小 答案 D

解析 在0~t 1时间内,由图可知,物体做加速运动,加速度逐渐减小,设斜面倾角为θ,对物体受力分析,在竖直方向上有N cos θ+f sin θ-mg =ma 1,在水平方向上有N sin θ=f cos θ,因加速度减小,则支持力N 和摩擦力f 均减小.在t 1~t 2时间内,由图可知,物体做减速运动,加速度逐渐增大,对物体受力分析,在竖直方向上有mg -(N cos θ+f sin θ)=ma 2,在水平方向上有N sin θ=f cos θ,因加速度增大,则支持力N 和摩擦力f 均减小,故选D.

3.物块A 放置在与水平地面成30°角倾斜的木板上时,刚好可以沿斜面匀速下滑;若该木板与水平面成60°角倾斜,取g =10 m/s 2,则物块A 沿此斜面下滑的加速度大小为( )

A .53m/s 2

B .3 3 m/s 2

C .(5-3)m/s 2 D.1033

m/s 2

答案 D

解析 由物块在倾角为30°的木板上匀速下滑,得F f =mg sin θ,又F N1=mg cos30°,F f =μF N1,求得动摩擦因数μ=

33

;在倾角为60°的木板上物块加速下滑,有F N2=mg cos60°,mg sin60°-μF N2=ma ,求得a =10

3

3m/s 2,D 对.

4.下列关于力学及其发展历史,正确的说法是( )

A .牛顿根据伽利略等前辈的研究,用实验验证得出牛顿第一定律

B .牛顿通过研究发现物体受到的外力总是迫使其改变运动状态,而不是维持其运动状态

C .由牛顿第二定律得到m =F

a ,这说明物体的质量跟所受外力成正比,跟物体的加速度成反比

D .牛顿等物理学家建立的经典力学体系不但适用于宏观、低速研究领域,也能充分研究微观、高速运动的物体

答案 B

解析 因为不受力作用的物体是不存在的,所以牛顿第一定律是利用逻辑思维对事实进行分析的产物,不可能用实验直接验证,所以A 项错.牛顿研究发现力是改变物体运动状态的原因,而不是维持物体运动的原因,所以B 项正确;因为物体的质量由其所含物质的多少决定,与其他因素无关,所以C 项错;牛顿等物理学家建立的经典力学体系只适用于宏观、低速研究领域,当研究微观、高速运动的物体时用爱因斯坦相对论,所以D 项错.

5.质量不可忽略的小球与轻质弹簧相连,穿在光滑的杆上,杆与水平面的夹角为45°.弹簧下端固定于杆上,初始系统静止,现在将系统以加速度g 向右做匀加速运动,当地重力加速度为g .则( )

A .静止时,弹簧的弹力等于小球重力的一半

B .静止时,杆的弹力小于弹簧的弹力

C .加速时,弹簧的弹力等于零

D .加速时,弹簧的形变量是静止时的2倍 答案 C

解析 根据力的平衡,当系统静止时,小球受弹簧的弹力F =mg sin45°=22

mg ,此时杆对小球的弹力F N =mg cos45°=

2

2

mg ,与弹簧弹力大小相等,所以A 、B 项均错.当系统以加速度g 向右做匀加速运动时,对小球受力分析如图,则可知此时弹簧弹力为0,所以C 项正确,D 项错误.

6.如图所示,在光滑水平面上有一静止小车,小车质量为M =5 kg ,小车上静

止放置一质量为m =1 kg 的木块,木块和小车间的动摩擦因数为μ=0.2,用水平恒力F 拉动小车,下列关于木块的加速度a m 和小车的加速度a M ,可能正确的有( )

A .a

m =2 m/s 2,a M =1 m/s 2 B .a m =1 m/s 2,a M =2 m/s 2 C .a m =2 m/s 2,a M =4 m/s 2 D .a m =3 m/s 2,a M =5 m/s 2 答案 C

解析 本题考查牛顿第二定律的应用,意在考查考生合理选择研究对象以及应用牛顿第二定律解决问题的能力.当木块与小车间的摩擦力恰好达到最大值时,木块与小车加速度相同,木块的加速度最大,对木块,a m =μg =2 m/s 2为最大值且a m ≤a M ,故选项A 、D 错误;当木块的加速度为1 m/s 2时,木块与小车加速度相同,故选项B 错误;当a =2 m/s 2时,若木块相对小车发生滑动,小车的加速度随外力F 增大而增大,故选项C 正确.

7.在奥运会女子3米跳板比赛中,我国跳水名将吴敏霞获得金牌.经过对她跳水过程录像的分析,以吴敏霞(可视为质点)离开跳板时为计时起点,其运动过程的v -t 图象如图所示,则( )

A .t 1时刻开始进入水面

B .t 2时刻开始进入水面

C .t 3时刻已浮出水面

D .t 2~t 3的时间内,运动员处于超重状态 答案 BD

解析 本题考查v -t 图象、牛顿第二定律、超重和失重等知识点,意在利用体育项目为背景考查考生处理实际问题的能力.从开始到t 2时刻,v -t 图象为直线,说明整个过程中的加速度是相同的,所以在0~t 2时间内运动员在空中,处于完全失重状态,t 2之后进入水中,故选项A 错误,B 正确;t 3时刻,运动员的速度减小为零,此时运动员处于水下的最深处,没有浮出水面,所以选项C 错误;t 2~t 3时间内,运动员向下做减速运动,处于超重状态,选项D 正确.

8.如图所示,质量均为m 的木块A 和B 用一轻弹簧相连,竖直放在光滑的水平面上,木块A 上放有质量为2 m 的木块C ,三者均处于静止状态.现将木块C 迅速移开,若重力加速度为g ,则在木块C 移开的瞬间( )

A .木块

B 对水平面的压力迅速变为2mg B .弹簧的弹力大小为3mg

C .木块A 的加速度大小为2g

D .弹簧的弹性势能立即减小 答案 BC

解析 本题考查共点力的平衡条件及牛顿运动定律的综合应用,意在考查考生应用平衡条件和牛顿运动定律分析推理的能力.撤去木块C 前,由平衡条件可知,弹簧弹力为3 mg ,地面对B 的作用力为4 mg ,撤去木块C 瞬时,弹簧压缩量不变,弹力、弹性势能不变,选项D 错误;木块B 所受重力、弹力不变,故地面对B 的支持力也不变,选项A 错误;撤走木块C 后,对木块A 由牛顿第二定律有3mg -mg =ma ,解得a =2g ,选项C 正确.

9.如图,水平传送带A、B两端相距s=3.5 m,工件与传送带间的动摩擦因数μ=0.1.工件滑上A端的瞬时速度v A=4 m/s,到达B端的瞬时速度设为v B,则下列说法正确的是()

A.若传送带不动,则v B=3 m/s

B.若传送带以速度v=4 m/s逆时针匀速转动,则v B=3 m/s

C.若传送带以速度v=2 m/s顺时针匀速转动,则v B=3 m/s

D.若传送带以速度v=2 m/s顺时针匀速转动,则v B=2 m/s

答案ABC

解析本题考查牛顿运动定律的综合应用,意在考查考生对传送带模型的理解以及对力与运动关系的综合分析能力.由牛顿第二定律可知,工件在传送带上运动,摩擦力产生的加速度a=-μg=-1 m/s2,传送带不动或逆时针转动时,工件始终受摩擦力作用,有v2B-v2A=-2μgs,解得v B=3 m/s,选项A、B正确;若传送带以速度v=2 m/s顺时针匀速转动,则工件在传送带上运动的速度始终大于传送带的速度,工件受到的摩擦力方向始终向左且大小不变,即工件的加速度不变,综上所述v B=3 m/s,选项C正确,D错误.

二、计算题(共3小题,共56分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案不能得分,有数值计算的题,答案中必须明确写出数值和单位)

10.(16分)如图所示,质量分别为m1=3 kg和m2=1 kg的A、B放在固定在地面上的光滑斜面上,斜面倾角为θ=37°,A与B之间的动摩擦因数为μ=0.2,已知最大静摩擦力等于滑

动摩擦力.现对A施加一水平力F使A和B保持相对静止一起沿斜面运动,重力加

速度g=10 m/s2,sin37°=0.6,cos37°=0.8.求力F的大小范围.

答案17.5 N≤F≤42.5 N

解析物理学中的临界、极值问题是高考中的常见题型,临界点的确定是解决问题的基础,所涉及的内容往往与动力学密切相关,综合性强,对考生的能力要求高.

A与B之间的最大静摩擦力为

f m=μm2g=2 N(2分)

对物体B,水平方向的加速度为

a x=a m cosθ(2分)

f m=m2a x(2分)

a m=2.5 m/s2(1分)

若沿斜面向下加速,对A和B组成的整体有:

(m1+m2)g sinθ-F1cosθ=(m1+m2)a m(3分)

F1=17.5 N(1分)

若沿斜面向上加速,对A和B组成的整体有:

F2cosθ-(m1+m2)g sinθ=(m1+m2)a m(3分)

F2=42.5 N(1分)

所以力F的大小范围为17.5 N≤F≤42.5 N.(1分)

11.(18分)质量为3 kg的长木板A置于光滑的水平地面上,质量为2 kg的木块B(可视为质点)置于木板A的左端,在水平向右的力F作用下由静止开始运动,如图甲所示.A、B运动的加速度随时间变化的图象如图乙所示.(g取10 m/s2)求:

(1)木块与木块之间的动摩擦因数.(设最大静摩擦力

等于滑动摩擦力)

(2)4 s末A、B的速度.

(3)若6 s末木板和木块刚好分离,则木板的长度为多

少?

答案(1)0.3(2)4 m/s(3)4 m

解析(1)由图知4 s末A、B间达到最大静摩擦力,此时

a=2 m/s2(1分)

对应A板f=m A a=μm B g(3分)

A 、

B 间动摩擦因数μ=m A a

m B g

=0.3(2分)

(2)由图象知4 s 末二者的速度等于图线与坐标轴包围的面积(2分) v =12at 1=1

2×2×4 m/s =4 m/s(2分) (3)4 s 到6 s 末t 2=2 s

木板A 运动的位移x A =v t 2+12a A t 22(3分)

x B =v t 2+1

2a B t 22

(3分)

木板的长度l =x B -x A =4 m(2分) 12.(22分)如图所示,传送带与地面倾角θ=37°,从A 到B 长度为L =10.25 m ,传送带以v 0=10 m/s 的速率逆时针转动.在传送带上端A 无初速度地放一个质量为m =0.5 kg 的黑色煤块,它与传送带之间的动摩擦因数为μ=0.5.煤块在传送带上经过会留下黑色划痕,已知sin37°=0.6,cos37°=0.8,g =10 m/s 2.

(1)求煤块从A 到B 的时间.

(2)煤块从A 到B 的过程中传送带上形成划痕的长度. 答案 (1)1.5 s (2)5 m

解析 (1)煤块刚放上时,受到向下的摩擦力,由牛顿第二定律得: mg sin θ+μmg cos θ=ma 1(2分) 代入数据解得:a 1=10 m/s 2(1分) 达到和传送带速度相等的时间为

t 1=v 0

a 1

=1 s(2分)

煤块加速运动的位移为 x 1=12

a 1t 21=5 m <L (2分)

达到v 0后,煤块受到向上的摩擦力,由牛顿第二定律得: mg sin θ-μmg cos θ=ma 2(2分) a 2=2 m/s 2(1分)

第二次加速的位移: x 2=L -x 1=5.25 m(1分) x 2=v 0t 2+12a 2t 2

2(2分)

解得t 2=0.5 s(2分)

煤块从A 到B 的时间为 t =t 1+t 2=1.5 s(1分) (2)第一过程划痕长 L 1=v 0t 1-1

2a 1t 21=5 m(2分)

第二过程划痕长

L 2=x 2-v 0t 2=0.25 m(2分) 所以划痕总长为5 m(2分)

高考物理牛顿运动定律的应用练习题及答案

高考物理牛顿运动定律的应用练习题及答案 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。已知木板与物块间动摩擦因数μ1=3 ,木板与传送带间的动摩擦因数μ2= 3 4 ,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ; (3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。 【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲: 木块重力沿斜面的分力:1 sin 2 mg mg α= 斜面对木块的最大静摩擦力:13 cos 4 m f mg mg μα== 由于:sin m f mg α> 所以,小木块处于静止状态; (2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则 1cos sin mg mg ma μαα-=

木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()9 9.0N 8 m F M m g = += (3)因为F=10N>9N ,所以两者发生相对滑动 对小木块有:2 1cos sin 2.5m/s a g g μαα=-= 对长木棒受力如图丙所示 ()21sin cos cos F Mg M m g mg Ma αμαμα--+-'= 解得24.5m/s a =' 由几何关系有:221122 L a t at =-' 解得1t s = 全过程中产生的热量有两处,则 ()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα?? =+=+++ ??? 解得:12J Q =。 2.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s2)求: (1)长板2开始运动时的加速度大小;

牛顿运动定律的运用教案

牛顿运动定律的运用教 案 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

牛顿运动定律的应用 教学目标 一、知识目标 1.知道运用牛顿运动定律解题的方法 2.进一步学习对物体进行正确的受力分析 二、能力目标 1.培养学生分析问题和总结归纳的能力 2.培养学生运用所学知识解决实际问题的能力 三、德育目标 1.培养学生形成积极思维,解题规范的良好习惯 教学重点 应用牛顿运动定律解决的两类力学问题及这两类问题的基本方法 教学难点 应用牛顿运动定律解题的基本思路和方法 教学方法 实例分析发归纳法讲练结合法 教学过程 一、导入新课 通过前面几节课的学习,我们已学习了牛顿运动定律,本节课我们就来学习怎样运用牛顿运动定律解决动力学问题。 二、新课教学

(一)、牛顿运动定律解答的两类问题 1.牛顿运动定律确定了运动和力的关系,使我们能够把物体的受力情况和运动情况联系起来,由此用牛顿运动定律解决的问题可分为两类: a.已知物体的受力情况,确定物体的运动情况。 b.已知物体的运动情况,求解物体的受力情况 2.用投影片概括用牛顿运动定律解决两类问题的基本思路 已知物体的受力情况???→?=ma F 据 求得a ?→?据t v v s as v v at v v at v s t t t ......2210202020可求得???? ?????=-?→?+=+= 已知物体的运动情况???→?????→?=???????=-+=+=ma F as v v at v s at v v a t t 据据求得2221022 00求得物体的受力情况 3.总结 由上分析知,无论是哪种类型的题目,物体的加速度都是核心,是联结力和运动的桥梁。 (二)已知物体的受力情况,求解物体的运动情况 例1.如图所示,质量m=2Kg 的物体静止在光滑的水平地 面上,现对物体施加大小F=10N 与水平方向夹角θ= 370的斜向上的拉力,使物体向右做匀加速直线运动。已知sin370=,cos370=取g=10m/s 2,求物体5s 末的速度及5s 内的位移。 问:a.本题属于那一类动力学问题 (已知物体的受力情况,求解物体的运动情况) b.物体受到那些力的作用这些力关系如何 引导学生正确分析物体的受力情况,并画出物体受力示意图。

牛顿运动定律专题精修订

牛顿运动定律专题集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

牛顿运动定律专题 一、基础知识归纳 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。 理解要点: (1)运动是物体的一种属性,物体的运动不需要力来维持; (2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:t v a ??=,有速度变化就一定有加速度,所以 可以说:力是使物体产生加速度的原因。(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。); (3)定律说明了任何物体都有一个极其重要的属性——惯性;一切物体都有保持原有运动状态的性质,这就是惯性。惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。质量是物体惯性大小的量度。 (4)牛顿第一定律描述的是物体在不受任何外力时的状态。而不受外力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律; (5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F =0时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。公式F=ma. 理解要点:

应用牛顿运动定律解决“四类”热点问题

专题强化三应用牛顿运动定律解决“四类”热点问题 专题解读 1.本专题是应用动力学方法分析动力学图象问题、连接体问题、临界和极值问题以及多运动过程问题.在高考中主要以选择题形式考查,且每年都有命题. 2.学好本专题可以培养同学们的分析推理能力、应用数学知识和方法解决物理问题的能力. 3.本专题用到的规律和方法有:整体法和隔离法、牛顿运动定律和运动学公式、临界条件和相关的数学知识. 1.常见图象 v-t图象、a-t图象、F-t图象、F-a图象等. 2.题型分类 (1)已知物体受到的力随时间变化的图线,要求分析物体的运动情况. (2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况. (3)由已知条件确定某物理量的变化图象. 3.解题策略 (1)分清图象的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点. (2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等. (3)明确能从图象中获得哪些信息:把图象与具体的题意、情景结合起来,应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断. 例1(多选)(2019·全国卷Ⅲ·20)如图1(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t=0时,木板开始受到水平外力F的作用,在t=4 s时撤去外力.细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取10 m/s2.由题给数据可以得出() A.木板的质量为1 kg B.2~4 s内,力F的大小为0.4 N C.0~2 s内,力F的大小保持不变 D.物块与木板之间的动摩擦因数为0.2

牛顿运动定律-经典习题汇总

牛顿运动定律经典练习题 一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3, 则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与 水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) 第 5 题 第 6 题

专题 牛顿运动定律的综合应用

专题1牛顿运动定律的综合应用 动力学中的图象问题 1.常见的动力学图象及问题类型 2.解题策略——数形结合解决动力学图象问题 (1)在图象问题中,无论是读图还是作图,都应尽量先建立函数关系,进而明确“图象与公式”“图象与规律”间的关系;然后根据函数关系读取图象信息或描点作图。 (2)读图时,要注意图线的起点、斜率、截距、折点以及图线与横坐标轴包围的“面积”等所表示的物理意义,尽可能多地提取有效信息。 考向动力学中的v-t图象 【例1】(多选)(2015·全国Ⅰ卷,20)如图1甲,一物块在t=0时刻滑上一固定斜面,其运动的v-t图线如图乙所示。若重力加速度及图中的v0、v1、t1均为已知量,则可求出() 图1 A.斜面的倾角 B.物块的质量 C.物块与斜面间的动摩擦因数 D.物块沿斜面向上滑行的最大高度 解析由v-t图象可求物块沿斜面向上滑行时的加速度大小为a=v0 t1 ,根据牛顿

第二定律得mg sin θ+μmg cos θ=ma ,即g sin θ+μg cos θ=v 0t 1。同理向下滑行时g sin θ-μg cos θ=v 1t 1,两式联立得sin θ=v 0+v 12gt 1,μ=v 0-v 12gt 1 cos θ,可见能计算出斜面的倾斜角度θ以及动摩擦因数,选项A 、C 正确;物块滑上斜面时的初速度v 0已知, 向上滑行过程为匀减速直线运动,末速度为0,那么平均速度为v 02,所以沿斜面向上滑行的最远距离为s =v 02t 1,根据斜面的倾斜角度可计算出向上滑行的最大高 度为s sin θ=v 02t 1×v 0+v 12gt 1 =v 0(v 0+v 1)4g ,选项D 正确;仅根据v -t 图象无法求出物块的质量,选项B 错误。 答案 ACD 考向 动力学中的F -t 图象 【例2】 (多选)(2019·全国Ⅲ卷,20)如图2(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。t =0时,木板开始受到水平外力F 的作用,在t =4 s 时撤去外力。细绳对物块的拉力f 随时间t 变化的关系如图(b)所示,木板的速度v 与时间t 的关系如图(c)所示。木板与实验台之间的摩擦可以忽略。重力加速度取10 m/s 2。由题给数据可以得出( ) 图2 A.木板的质量为1 kg B.2 s ~4 s 内,力F 的大小为0.4 N C.0~2 s 内,力F 的大小保持不变 D.物块与木板之间的动摩擦因数为0.2

应用牛顿运动定律解题的方法和步骤

§3.4应用牛顿运动定律解题的方法和步骤 应用牛顿运动定律的基本方法是隔离法,再配合正交坐标运用分量形式求解。 解题的基本步骤如下: (1)选取隔离体,即确定研究对象 一般在求某力时,就以此力的受力体为研究对象,在求某物体的运动情况时,就以此物体为研究对象。有几个物体相互作用,要求它们之间的相互作用力,则必须将相互作用的物体隔离开来,取其中一物体作研究对象。有时,某些力不能直接用受力体作研究对象求出,这时可以考虑选取施力物体作为研究对象,如求人在变速运动的升降机内地板的压力,因为地板受力较为复杂,故采用人作为研究对象为好。 在选取隔离体时,采用整体法还是隔离法要灵活运用。如图3-4-1要求质量分别为M 和m 的两物体组成的系统的加速度a ,有 两种方法,一种是将两物体隔离,得方程为 ma T mg =- Ma Mg T =-μ 另—种方法是将整个系统作为研究对象,得方 程为 a M m Mg mg )(+=-μ 显然,如果只求系统的加速度,则第二种方法好;如果还要求绳的张力,则需采用前一种方法。 (2)分析物体受力情况:分析物体受力是解动力学问题的一个关键,必须牢牢 图3-4-1

掌握。 ①一般顺序:在一般情况下,分析物体受力的顺序是先场力,如重力、电场力等,再弹力,如压力、张力等,然后是摩擦力。并配合作物体的受力示意图。 大小和方向不受其它力和物体运动状态影响的力叫主动力,如重力、库仑力;大小和主向与主动力和物体运动状态有密切联系的力叫被动力或约束力,如支持力、摩擦力。这就决定了分析受力的顺序。如物体在地球附近不论是静止还是加速运动,它受的重力总是不变的;放在水平桌面上的物体对桌面的压力就与它们在竖直方向上有无加速度有关,而滑动摩擦力总是与压力成正比。 ②关于合力与分力:分析物体受力时,只在合力或两个分力中取其一,不能 同时取而说它受到三个力的作用。一般情况下选取合Array力,如物体在斜面上受到重力,一般不说它受到下滑力 和垂直面的两个力。在—些特殊情况下,物体其合力不 图3-4-2 能先确定,则可用两分力来代替它,如图3-4-2横杆左 端所接铰链对它的力方向不能明确之前,可用水平和竖直方向上的两个分力来表示,最后再求出这两个分力的合力来。 ③关于内力与外力:在运用牛顿第二定律时,内力是不可能对整个物体产生加速度的,选取几个物体的组合为研究对象时,这几个物体之间的相互作用力不能列入方程中。要求它们之间的相互作用,必须将它们隔离分析才行,此时内力转化成外力。 ④关于作用力与反作用力:物体之间的相互作用力总是成对出现,我们要分 清受力体与施力体。在列方程解题时,对一对相互作用力一般采用同一字线表示。在不考虑绳的质量时,由同一根绳拉两个物体的力经常作为一对相互作用力处

牛顿运动定律的应用

第3讲牛顿运动定律的应用 ★考情直播 1.考纲解读 考纲内容能力要求考向定位 1.牛顿定律的应用 2.超重与失重 3.力学单位制1.能利用牛顿第二定 律求解已知受力求运 动和已知运动求受力 的两类动力学问题 2.了解超重、失重现 象,掌握超重、失重、 完全失重的本质 3.了解基本单位和导 出单位,了解国际单 位制 牛顿第二定律的应 用在近几年高考中出 现的频率较高,属于 Ⅱ级要求,主要涉及 到两种典型的动力学 问题,特别是传送带、 相对滑动的系统、弹 簧等问题更是命题的 重点.这些问题都能 很好的考查考试的思 维能力和综合分析能 力. 考点一已知受力求运动 [特别提醒] 已知物体的受力情况求物体运动情况:首先要确定研究对象,对物体进行受力分析,作出受力图,建立坐标系,进行力的正交分解,然后根据牛顿第二定律求加速度a,再根据运动学公式求运动中的某一物理量. 一轻质光滑的定滑轮,一条不可伸长的轻

绳绕过定滑轮分别与物块A 、B 相连,细绳处于伸直状态,物块A 和B 的质量分别为m A =8kg 和m B =2kg ,物块A 与水平桌面间的动摩擦因数μ=0.1,物块B 距地面的高度h =0.15m.桌面上部分的绳足够长.现将物块B 从h 高处由静止释放,直到A 停止运动.求A 在水平桌面上运动的时间.(g=10m/s 2) [解析]对B 研究,由牛顿第二定律得m B g-T=m B a 1 同理,对A :T-f =m A a 1 A N f μ= 0=-g m N A A 代入数值解得21/2.1s m a = B 做匀加速直线运2112 1t a h =;11t a v = 解得s t 5.01= s m v /6.0= B 落地后,A 在摩擦力作用下做匀减速运动2a m f A = ;2 1a v t = 解得:s t 6.02= s t t t 1.121=+= [方法技巧] 本题特别应注意研究对象和研究过程的选取,在B 着地之前,B 处于失重状态,千万不可认为A 所受绳子的拉力和B 的重力相等.当然B 着地之前,我们也可以把A 、B 视为一整体,根据牛顿第二定律求加速度,同学们不妨一试. 考点二 已知运动求受力 [例2]某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多

上海高三物理复习牛顿运动定律专题

第三章牛顿运动定律专题 考试内容和要求 一.牛顿运动定律 1.牛顿第一定律 (1)第一定律的内容:任何物体都保持或的状态,直到有迫使它改变这种状态为止。牛顿第一定律指出了力不是产生速度的原因,也不是维持速度的原因,力是改变的原因,也就是产生的原因。 (2)惯性:物体保持的性质叫做惯性。牛顿第一定律揭示了一切物体都有惯性,惯性是物体的固有性质,与外部条件无关,因此该定律也叫做惯性定律。 【典型例题】 1.(2005广东)一汽车在路面情况相同的公路上直线行驶,下面关于车速、惯性、质量和滑行路程的讨论,正确的是() (A)车速越大,它的惯性越大

(B)质量越大,它的惯性越大 (C)车速越大,刹车后滑行的路程越长 (D)车速越大,刹车后滑行的路程越长,所以惯性越大 2.(2006广东)下列对运动的认识不正确的是() (A)亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动 (B)伽利略认为力不是维持物体速度的原因 (C)牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动 (D)伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去 3.(2003上海理综)科学思维和科学方法是我们 认识世界的基本手段。在研究和解决问题过程中, 不仅需要相应的知识,还要注意运用科学的方法。 理想实验有时更能深刻地反映自然规律。伽利略 设想了一个理想实验,如图所示,其中有一个是经验 事实,其余是推论。 ①减小第二个斜面的倾角,小球在这斜面上仍然要达到原来的高度; ②两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面; ③如果没有摩擦,小球将上升到原来释放的高度; ④继续减小第二个斜面的倾角,最后使它成水平面,小球要沿水平面做持续的匀速运动。 请将上述理想实验的设想步骤按照正确的顺序排列(只要填写序号即可)。在上述的设想步骤中,有的属于可靠的事实,有的则是理想化的推论。 下列关于事实和推论的分类正确的是() (A)①是事实,②③④是推论 (B)②是事实,①③④是推论 (C)③是事实,①②④是推论 (D)④是事实,①②③是推论 2.牛顿第二定律 (1)第二定律的内容:物体运动的加速度同成正比,同成反比,而且加速度方向与力的方向一致。ΣF=ma (2)1牛顿=1千克·米/秒2

高考物理牛顿运动定律的应用专题训练答案及解析

高考物理牛顿运动定律的应用专题训练答案及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求 (1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度; (3)木板右端离墙壁的最终距离. 【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】 (1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s = 木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m s g s μ-= 解得20.4μ= 木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212 x vt at =+ 带入可得21/a m s = 木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ= (2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214 /3 a m s = 对滑块,则有加速度2 24/a m s = 滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =- =末速度18 /3 v m s =

高中物理牛顿运动定律的应用专题训练答案及解析

高中物理牛顿运动定律的应用专题训练答案及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x=L?x 相对滑动产生的热量为: Q=μmg△x 代值解得: Q=0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m,质量M=0.5kg的薄木板,木板的最右端叠放质量为m=0.3kg的小木块.对木板施加一沿传送带向上的恒力F,同时让传送 带逆时针转动,运行速度v=1.0m/s。已知木板与物块间动摩擦因数μ1= 3 2 ,木板与传送 带间的动摩擦因数μ2=3 ,取g=10m/s2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m; (3)若F=10N,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q。 【答案】(1)木块处于静止状态;(2)9.0N(3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲:

牛顿运动定律专题(一)

牛顿运动定律专题(一) 知识达标: 1、下列说法正确的是…………………………………() A、甲主动推乙,甲对乙的作用力的发生先于乙对甲的作用力 B、施力物体必然也是受力物体 C、地球对人的吸引力显然要比人对地球的吸引力大得多 D、以卵击石,卵破碎,说明石块对卵的作用力大于卵对石块的作用力 2、关于惯性下列说法中正确的是…………………………………………() A、物体不受力或所受的合外力为零才能保持匀速直线运动状态或静止状态,因此只有此时物体才有惯性 B、物体加速度越大,说明它的速度改变得越快,因此加速度大的物体惯性小; C、行驶的火车速度大,刹车后向前运动距离长,这说明物体速度越大,惯性越大 D、物体惯性的大小仅由质量决定,与物体的运动状态和受力情况无关 3、一小球用一细绳悬挂于天花板上,以下几种说法正确的是………………………() A、小球所受的重力和细绳对它的拉力是一对作用力和反作用力 B、小球对细绳的拉力就是小球所受的重力 C、小球所受的重力的反作用力作用在地球上 D、小球所受重力的反作用力作用在细绳上 4、当作用在物体上的合外力不为零时,下面结论正确的是……………………() A、物体的速度大小一定发生变化 B、物体的速度方向一定发生变化 C、物体的速度不一定发生变化 D、物体的速度一定发生变化 5、关于超重和失重的说法中正确的是…………………………………() A、超重就是物体受到的重力增加了 B、失重就是物体受到的重力减少了 C、完全失重就是物体的重力全部消失了 D、不论超重、失重还是完全失重,物体所受重力不变 6、在升降机内,一人站在磅秤上,发现自己的体重减少了20%,于是他作出了下列判断,你认为正确的是() A、升降机以0.8g的加速度加速上升 B、升降机以0.2g的加速度加速下降 C、升降机以0.2g的加速度减速上升 D、升降机以0.8g的加速度减速下降 7、2001年1月,我国又成功进行“神舟二号”宇宙飞船的航行,失重实验是至关宇宙员生命安全的重要实验,宇宙飞船 在下列哪种状态下会发生失重现象………………………() A、匀速上升 B、匀速圆周运动 C、起飞阶段 D、着陆阶段 经典题型: 一、牛顿第二定律结合正交分解 例:1、细线悬挂的小球相对于小车静止,并与竖直方向成θ角,求小车运动的加速度。 2、如图,斜面固定,物体在水平推力F作用下沿斜面上滑,已知物体质量m,斜面倾角 θ,动摩擦因数μ和物体小球加速度a,求水平推力F的大小。 练习:1、如图,已知θ=300,斜杆固定,穿过斜杆的小球质量m=1kg,斜杆与小球动摩擦因数μ= √3/6,竖直向上的力F=20N,求小球的加速度a=?

高中物理牛顿运动定律的应用专题训练答案

高中物理牛顿运动定律的应用专题训练答案 一、高中物理精讲专题测试牛顿运动定律的应用 1.在一个水平面上建立x 轴,在过原点O 垂直于x 轴的平面的右侧空间有一个匀强电场,场强大小E=6.0×105 N/C ,方向与x 轴正方向相同,在原点O 处放一个质量m=0.01 kg 带负电荷的绝缘物块,其带电荷量q = -5×10- 8 C .物块与水平面间的动摩擦因数μ=0.2,给 物块一个沿x 轴正方向的初速度v 0=2 m/s.如图所示.试求: (1)物块沿x 轴正方向运动的加速度; (2)物块沿x 轴正方向运动的最远距离; (3)物体运动的总时间为多长? 【答案】(1)5 m/s 2 (2)0.4 m (3)1.74 s 【解析】 【分析】 带负电的物块以初速度v 0沿x 轴正方向进入电场中,受到向左的电场力和滑动摩擦力作用,做匀减速运动,当速度为零时运动到最远处,根据动能定理列式求解;分三段进行研究:在电场中物块向右匀减速运动,向左匀加速运动,离开电场后匀减速运动.根据运动学公式和牛顿第二定律结合列式,求出各段时间,即可得到总时间. 【详解】 (1)由牛顿第二定律可得mg Eq ma μ+= ,得25m/s a = (2)物块进入电场向右运动的过程,根据动能定理得:()2101 02 mg Eq s mv μ-+=-. 代入数据,得:s 1=0.4m (3)物块先向右作匀减速直线运动,根据:00111??22 t v v v s t t +==,得:t 1=0.4s 接着物块向左作匀加速直线运动:221m/s qE mg a m =μ-=. 根据:21221 2 s a t = 得220.2t s = 物块离开电场后,向左作匀减速运动:232m/s mg a g m μμ=-=-=- 根据:3322a t a t = 解得30.2t s = 物块运动的总时间为:123 1.74t t t t s =++= 【点睛】 本题首先要理清物块的运动过程,运用动能定理、牛顿第二定律和运动学公式结合进行求解.

牛顿运动定律试题及标准答案

高一物理牛顿运动定律测试 一、选择题:(每题5分,共50分)每小题有一个或几个正确选项。 1.下列说法正确的是 A.力是物体运动的原因B.力是维持物体运动的原因 C.力是物体产生加速度的原因D.力是使物体惯性改变的原因 2.下列说法正确的是 A.加速行驶的汽车比它减速行驶时的惯性小 B.静止的火车启动时速度变化缓慢,是因为火车静止时惯性大 C.已知月球上的重力加速度是地球上的1/6,故一个物体从地球移到月球惯性减小为1/6 D.为了减小机器运转时振动,采用螺钉将其固定在地面上,这是为了增大惯性 3.在国际单位制中,力学的三个基本单位是 A.kg 、m 、m / s2 B.kg 、 m / s 、 N C.kg 、m 、 s D.kg、 m / s2 、N 4.下列对牛顿第二定律表达式F=ma及其变形公式的理解,正确的是()A.由F=ma可知,物体所受的合外力与物体的质量成正比,与物体的加速度成正比 B.由m=F/a可知,物体的质量与其所受合外力成正比,与其运动加速度成反比 C.由a=F/m可知,物体的加速度与其所受合外力成正比,与其质量成反比 D.由m=F/a可知,物体的质量可以通过测量它的加速度和它受到的合外力而求得 5.大小分别为1N和7N的两个力作用在一个质量为1kg的物体上,物体能获得的最小加速度和最大加速度分别是 A.1 m / s2和7 m / s2 B.5m / s2和8m / s2 C.6 m / s2和8 m / s2 D.0 m / s2和8m / s2 6.弹簧秤的秤钩上挂一个物体,在下列情况下,弹簧秤的读数大于物体重力的是A.以一定的加速度竖直加速上升B.以一定的加速度竖直减速上升 C.以一定的加速度竖直加速下降D.以一定的加速度竖直减速下降 7.一物体以 7 m/ s2的加速度竖直下落时,物体受到的空气阻力大小是 ( g取10 m/ s2 ) A.是物体重力的0.3倍 B.是物体重力的0.7倍 C.是物体重力的1.7倍 D.物体质量未知,无法判断

牛顿运动定律图像专题一

牛顿运动定律图像专题一 1、一个质量为m的木块静止在光滑水平面上,某时刻开始受到如图所示的水平拉力的作用,下列说确的是() A.4t0时刻木块的速度为 B.4t0时刻水平拉力的瞬时功率为 C.0到4t0时间,木块的位移大小为 D.0到4t0时间,,木块的位移大小为5F0t02/m 1、【答案】D 【解析】 考点:牛顿第二定律;匀变速直线运动的位移与时间的关系. 专题:牛顿运动定律综合专题. 分析:根据牛顿第二定律求出加速度,结合运动学公式求出瞬时速度的大小和位移的大小,根据力和位移求出水平拉力做功大小. 解答:解:A、0﹣2t0的加速度,则2t0末的速度,匀减速 运动的加速度大小,则4t0末的速度v2=v1﹣a2?2t0=,则4t0时刻水平拉力的瞬时功率P=,故A、B错误. C、0﹣2t0的位移=,2t0﹣4t0的位移 =,则位移x=,故C错误. D、0到4t0时间,水平拉力做功,故D正确.

故选:D. 点评:本题考查了牛顿第二定律和运动学公式的综合运用,知道加速度是联系力学和运动学的桥梁. 2、如右下图甲所示,一个质量为3kg的物体放在粗糙水平地面上,从零时刻起,物体在水平力F作用下由静止开始做直线运动.在0~3s时间物体的加速度a随时间t的变化规律如右下图乙所示.则( ) A.F的最大值为12 N B.0~1s和2~3s物体加速度的方向相反 C.3s末物体的速度最大,最大速度为8m/s D.在0~1s物体做匀加速运动,2~3s 物体做匀减速运动 【答案】C 【解析】【命题立意】旨在考查牛顿第二定律的理解,运动图象的理解和应用 A加速度最大为4 m/s2,合力最大为4N,但有摩擦力,B 0~1s和2~3s物体加速度都是正值,方向相同,C梯形的面积是最大速度,类比匀变速的面积相当于位移,D物体一直做加速做加速直线运动,但加速度先增大,又不变,最后减少 3、质点所受的合外力F随时间变化的规律如图所示,力的方向始终在一直线上.已知t=0时质点的速度为零.在图示的t1、t2、t3和t4各时刻中,质点的速度最大的时刻是() A.t1 B.t2 C.t3 D.t4 【答案】B 【解析】考点:牛顿第二定律;匀变速直线运动的速度与时间的关系. 专题:牛顿运动定律综合专题. 分析:通过分析质点的运动情况,确定速度如何变化. 解答:解:由力的图象分析可知: 在0∽t1时间,质点向正方向做加速度增大的加速运动. 在t1∽t2时间,质点向正方向做加速度减小的加速运动. 在t2∽t3时间,质点向正方向做加速度增大的减速运动.

牛顿运动定律应用

高考第一轮复习---牛顿运动定律考点例析 牛顿三个运动定律是力学的基础,对整个物理学也有重大意义。本章考查的重点是牛顿第二定律,而牛顿第一定律和第三定律在牛顿第二定律的应用中得到了完美的体现。从近几年高考看,要求准确理解牛顿第一定律;加深理解牛顿第二定律,熟练掌握其应用,尤其是物体受力分析的方法;理解牛顿第三定律;理解和掌握运动和力的关系;理解超重和失重。本章内容的高考试题每年都有,对本章内容单独命题大多以选择、填空形式出现,趋向于用牛顿运动定律解决生活、科技、生产实际问题。经常与电场、磁场联系,构成难度较大的综合性试题,运动学的知识往往和牛顿运动定律连为一体,考查推理能力和综合分析能力。如:2000年上海物理试题第21题(风洞实验)、2001年全国物理试题第8题(惯性制导系统)、2001年上海物理试题第8题(升降机下落)、2001年上海物理试题第20题(轻绳和轻弹簧的辩析纠错题)、2002年理科综合全国卷第26题(蹦床运动)、2003年全国春季理综第16题(滑冰运动)、2004年全国理综四第19题(猫在木板上跑动)等等。同学们只要把任何一套高考试题拿来研究,总会发现有与牛顿定律有关的试题。 一、夯实基础知识 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x=ma x, F y=ma y,F z=ma z;(4)牛顿第二定律F=ma定义了力的基本单位——牛顿(定义使质量为1kg 的物体产生1m/s2的加速度的作用力为1N,即1N=1kg.m/s2. 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。 对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互

最新高考物理牛顿运动定律的应用试题经典

最新高考物理牛顿运动定律的应用试题经典 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:, (1)A 、B 两球开始运动时的加速度. (2)A 、B 两球落地时的动能. (3)A 、B 两球损失的机械能总量. 【答案】(1)2 5m/s A a =27.5m/s B a = (2)850J kB E = (3)250J 【解析】 【详解】 (1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得: 对A :A A A A m g f m a -= 对B :B B B B m g f m a -= A B f f = 0.5A A f m g = 联立以上方程得:2 5m/s A a = 27.5m/s B a = (2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动 则有:212A A h a t = 21 2 B B h a t = A B H h h =+ A A V a t = B B V a t = 联立得:2s t =,10m A h =, 15m B h =,10m/s A V =,15m/s B V = A 、 B 落地时的动能分别为kA E 、kB E ,由机械能守恒,则有: 21()2 kA A A A A E m v m g H h = +- 400J kA E =

高中物理牛顿运动定律基础练习题

牛顿运动定律 第一课时牛顿运动定律 一、基础知识回顾: 1、牛顿第一定律 一切物体总保持,直到有外力迫使它改变这种状态为止。 注意:(1)牛顿第一定律进一步揭示了力不是维持物体运动(物体速度)的原因,而是物体运动状态(物体速度)的原因,换言之,力是产生的原因。(2)牛顿第一定律不是实验定律,它是以伽利略的“理想实验“为基础,经过科学抽象,归纳推理而总结出来的。 2、惯性 物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。 3、对牛顿第一运动定律的理解 (1)运动是物体的一种属性,物体的运动不需要力来维持。 (2)它定性地揭示了运动与力的关系,力是改变物体运动状态的原因,是使物体产生加速度的原因。 (3)定律说明了任何物体都有一个极其重要的性质——惯性。 (4)牛顿第一定律揭示了静止状态和匀速直线运动状态的等价性。 4、对物体的惯性的理解 (1)惯性是物体总有保持自己原来状态(速度)的本性,是物体的固有属性,不能克服和避免。 (2)惯性只与物体本身有关而与物体是否运动,是否受力无关。任何物体无论它运动还是静止,无论运动状态是改变还是不改变,物体都有惯性,且物体质量不变惯性不变。质量是物体惯性的唯一量度。 (3)物体惯性的大小是描述物体保持原来运动状态的本领强弱。物体惯性(质量)大,保持原来的运动状态的本领强,物体的运动状态难改变,反之物体的运动状态易改变。(4)惯性不是力。 5、牛顿第二定律的内容和公式 物体的加速度跟成正比,跟成反比,加速度的方向跟合外力方向相同。公式是:a=F合/ m 或F合 =ma 6、对牛顿第二定律的理解 (1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律得出物体的运动规律。反过来,知道运动规律可以根据牛顿第二运动定律得出物体的受力情况,在牛顿第二运动定律的数学表达式F合=ma中,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。 (2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度。(3)牛顿第二定律公式:F合=ma是矢量式,F、a都是矢量且方向相同。 (4)牛顿第二定律F合=ma定义了力的单位:“牛顿”。 7、牛顿第三定律的内容 两个物体之间的作用力与反作用力总是大小相等、方向相反,作用在同一条直线上 8、对牛顿第三定律的理解 (1)作用力和反作用力的同时性。它们是同时产生同时变化,同时消失,不是先有作

相关文档
相关文档 最新文档