文档库 最新最全的文档下载
当前位置:文档库 › 11单层站调试方法

11单层站调试方法

11单层站调试方法
11单层站调试方法

11-层/站调试

电梯运行层站为2层2站时,进行以下自学习调试步骤:(其它调试方法相同)

1)必须将V1上换速信号(I2.6)短接

2)使电梯越过上层平层板后撞到上限位停车。

3)若电梯没有越过上平层板就撞到上限位会导致井道自学习无法成功,此时需

要将限位开关上移100mm安装,或将平层板的位置适当向下调整,以满足2)的要求。

4)进行井道自学习。

5)恢复V1上换速信号(I2.6)接线,恢复平层板位置。

具体调试方法如下:

11.1 在进行自学习运行调试时,首先需要确认以下参数是否设置完成。

根据层站高度、电梯运行额定速度确定Speed参数的选择:

SPEED:电梯额定速度,V<1.5m/S时,微机只输出一个速度信号V1;

电梯自学习时,运行速度为设置的检修速度Vn(通常设置为300mm/s)。

11.2以上参数确信设置无误后,还需要检测以下信号的连接。

(1)、换速开关、限位开关安装位置。

A、安装位置参考图如下:

按照标准文件正确安装换速开关的位置,调试方法同第7章《自学习运行》。

B、确认井道信号动作正确:

在主控制器的IO菜单中监测其信号动作是否正确:

电梯运行,处于井道中部使换速信号均有效,这时

电梯上行时,输入点2.6顺序断开;

电梯下行时,输入点2.7顺序断开;

(2)、门区开关的安装。

MPK708A系统使用的门区板长度为220mm,本系统对门区开关的安装提出了严格的要求:检修运行至层站平层,使轿门、厅门地砍保持平齐(误差为±1mm),这时安装

调整井道门区板,使门区开关检测位置位于门区板的中间位置。如果门区板位置没有

安装理想,会影响平层精度的调整进度。

(3)、在检修运行过程中,同时可以观察主控制器输入菜单门区信号(1.6)是否动作正确。

如发现问题及时排除。

(4)、使上限位开关上移100mm安装。在自学习运行到顶层时出门区开关。也可将上层平层板位置适当向下进行调整。

(5)、TEST运行到下端站门区。等待激活自学习运行。

11.3 启动自学习运行

以上步骤执行以后,可以进行自学习运行。

通过菜单CONFIG/LEARNING启动自学习运行。

在运行过程中,门区信号、换速距离均被主控制器记录。自学习运行可以通过

Inspection/Test运行人为或者被系统故障中断。

11.4上述操作完成以后,恢复限位开关的安装,或平层板的安装位置。

智能变电站对于继电保护工作的影响

智能变电站是一种新型的低碳环保可靠的智能设备,主要特点是形成了全站信息的数字化传输和通信的网络化以及达到了信息的共享,采集,测量,控制和保护等功能都能够自动完成,并能够全天候的自动控制变电站运行状态,自动分析并调节的变电站。 智能化是变电站的一个最明显的发展趋势,从现在的技术层面来说,智能化的变电站的组建需要电子互感器,智能开关等一系列的先进的智能化设备,还需要一系列的系统的构建才能实现真正的智能化,并实现变电站智能信息的共享的现代变电站。 变电站的智能化是一个不断发展的过程。就目前技术发展现状而言,智能化变电站是:由电子式互感器、智能化开关等智能化一次设备、网络化二次设备分层构建,建立在iec 61850通信规范基础上,能够实现变电站内智能电气设备间信息共享和互操作的现代化变电站。信息采集、传输、处理、输出过程完全数字化的变电站,设备间交换的信息用数字编码表示。 1 传统变电站与智能变电站工作方式的不同 1.1 传统变电站的工作方式 1.1.1 对新建的变电站或者新的电网线路进行继电保护相关设备的调试和验收是很有必要的。在这个过程中,继电保护班的人会和相关班组的人以及送变电工作人员一起对继电保护相关的信号系统进行检验和测试,其目的是保证继电保护装置能够正确的进行继电保护反应,设备动作与采集信息能够相互对应。整定值的确定也很重要,整定值是继电保护人员对设备进行整定的基本依据。 1.1.2 一旦发现电网中有变电站或者线路运行方式发生了改变,就必须根据工作条例对相关的继电保护设备进行调节。例如,有时候会出现保护整定值发生改变的事情,这就需要继电保护的人员对继电保护设备进行重新的定值,定值后要进行一系列的测试,在确保合格之后就可以应用在电网中去。 1.1.3 在变电站的日常运行中,对继电保护设备的维护是很重要的,继电保护人员需要定期的对设备进行测试。一旦在日常的常规测试中发现了问题,就必须立即停止使用有故障的继电保护装置,在处理完成测试合格之后,才可以继续使用。 1.1.4 一旦发生系统故障,这对继电保护设备是很重大的故障,肯定会导致继电保护装置的动作不对应,一旦发生这种情况,就需要立即对继电保护设备进行抢修,使其尽快恢复正常工作。 1.2 智能电网的继保技术带来的挑战 智能电网改变了传统的继电保护工作方式,从技术上说,主要是先进的信息综合测控技术和保护技术的使用,为继电保护工作进行了较大的变化。 继电保护伴随着wams系统的建设势必会经历一次巨大的变革,变电站信息采集中心在未来肯定会建立在智能化变电站中,并且可以通过系统收集到的数据进行智能化的保护。而且,在拥有了广域的保护系统之后,会将各个系统的部分元件相互联系起来,并给这些继电保护设备带来一次根本性的改变。 当然,为了加强对继电保护信息的管理工作,很有必要建设继电保护的管理系统,这个系统是作为变电站综合信息管理系统中的一部分存在的,主要进行继电保护信息的管理和调度工作。这些新的技术,设备的使用都需要继电保护工作人员重新开始学习并掌握整套系统的操作知识,并要学习相关设备的简单维修和检修等。 1.2.1 智能电网的继电保护装备和以前的传统的设备有很大的不同,无论在构造上还是运行的原理上都有区别,因此,需要很长时间去学习并熟悉掌握。由于继保系统构成的原理与现有保护设备有所不同,可能将使用到广域信息采集系统,而保护动作原理也不单使用本元件的信息,因此新的继保设备的使用方法也将与现有保护设备不同。如果对新设备不熟悉,将无法进行日常的管理和维护。因此,继保班工作人员需要对新设备的原理、构成、使用方法进行系统的学习。 1.2.2 智能电网中的继保设备,其保护调试方式与现有继保设备不同。 智能电网的继电保护在运行的时候,是多条线路和设备的保护相互配合进行的,而且调度的过程和传统的调度方式也不一样,这就需要继电保护工作人员,要重新认识设备,并在厂家的指导下进行学习和培训。 1.2.3 在日常的运行方式上,智能电网和传统电网是不同的。在智能变电站中,广域的保护比传统的保护复杂的多,智能变电站需要的是多个线路和设备的共同配合运行。当然,在智能电网中,一旦电网运行的方式发生变化,继电保护人员也会做一些工作,只是和传统的继电保护相比,智能变电站所需要工作人员做的工作就很少,这主要是因为智能变电站的智能化控制和自动调节能力很强,减少了很多人为的操作。 1.2.4 在巡检方式上,智能电网和传统电网的继电保护设备也有很大不同。智能变电站自身具有二次设备的自动诊断技术,这对继电保护设备的巡检是一个巨大的进步,这样一来,就减少了很多的继电保护人员的巡检工作。传统的电网继电保护故障巡

EDI调试方法

E-CELL MK-2TM模块系统 模块可能需要先再生,再生时只需如常一样操作启动系统.但将产水排放直至合格为止,再生时产水电导率将从小于1MOHM/CM升高到大于16MOHM/CM. 通常开始都手动方式启动,但当流量和压力都设定好了以后,系统就可以自动运行,希望尽量以自动方式运行,来用PLC监控以便在操作条件不安全时停机. 4.2启动: 一旦模块系统具备启动条件,浓水管必须先用符合进水要求的已经充分冲洗的反渗透产水来灌满.开始运行后,浓水电导率将会升高.为了系统有效工作,浓水电导率应控制在150~600μs/㎝,因此某事情况下运行时需要在浓水管路中投入盐液以提高电导率. 启动前需要检查以下事项: 1.E-C ELL MK-2TM 模块端板间距 2.模块所有进出水接口都与系统管道连接好 3.电源、水的预处理及废水处理系统可以连续运行 4.管道已经冲洗完毕 5.现场电器接线已经测试完毕 6.所有阀门全部关闭 7.泵和整流器都处于”关闭”状态 8.安全设备已经安装并可以使用 启动的基本步骤有: 1.用符合进水条件的水充满系统 2.设定产水流量 3.启动循环泵并确定浓水流量 4.设定浓水排放流量 5.设定浓水进水压力 6.设定浓水出水压力 7.设定极水流量 8.启动整流器 浓水管路充水压力应低于40PSI(2.7BAR)充满→一旦水流连续流过浓水排放阀并没有气泡→灌泵. 调试步骤: ●确定淡水流量 1.将淡水进水阀门开启10~20% 2.关闭产水出口阀门 3.缓慢开启淡水进水阀门MK 4.调节产水排放阀门使每个MK-2模块淡水流量为1.70~3.41M3/H ●确定浓水和极水流量 1.关小浓水进水阀门使开度为10~20% 2.确定浓水循环泵进水阀门已打开 3.将浓水循环泵出口阀门开25% 4.关闭浓水旁路阀 5.确认浓水补充阀门开启

液压系统调节方法

拖泵及泵车液压系统调节方法 一、目的: 本调节方法适用所有砼泵系列产品,其中调试前的准备要求有质保人员确认后方可进行下一步。 二、应用范围: 所有砼泵系列产品 三、调节步骤 (一)调试前准备 1、加注AW46液压油,应用滤油机进行加油。 2、加注润滑脂,夏季用"00"型,冬季用"000"型,摇动润滑脂泵,使润滑脂达到各润滑点 3、水箱(洗涤室)必须加满清水 4、泵车及柴油机拖泵:旋转减速机加注齿轮油,将柴油箱加满柴油,向柴油机中加入机油至规定高度,向柴油机水箱中加入防冻液 5、电动机拖泵:电机输出轴旋转方向的确定,点动启动按钮,电机运转1-2秒,从泵座的观察口看电机输出轴的旋转方向——从电机轴端看电机为逆时针方向旋转,若电机旋转方向不对,则将电源任意两相交换位置接上即可 6、在主阀块至主油缸之间串入滤油车(左右各一台) 7、检查主油泵吸油自封装置是否处于开启位置。 8、检查臂架泵吸油管路上闸阀是否处于全开位置。 9、拧开主油泵、臂架泵壳体上的螺堵,排出空气,直到螺口冒油时再将螺堵拧紧。 10、蓄能器充氮气至气压为6MPa,并将蓄能器泄油球阀关死。 11、将主溢流阀及辅阀组上溢流阀全部拧松。 (二)、限幅脉冲值、时间及日期的设定 1、近控操作

控制面板图 Ⅰ、DS300文本显示器+车下操作盒界面 DS300A文本显示器操作 控制面板上装有触摸式按钮的文本显示器其中正泵、反泵、遥控/近控切换、讯响、油压表开关(ALM)可以直接操作,其它功能都由ESC键、Enter键、上翻键、下翻键、左翻键、右翻键结合文本显示器画面进行操作。现将各功能操作分述如下: 1、按钮操作 (ALM)按钮:(ALM)按钮为压力表开关按钮。主系统压力表及臂架系统压力表平时是处于关闭状态,需要观察主系统或臂架系统压力时,按下(ALM)按钮,压力表开关打开,压力表开始指示,延时2分钟后自动关闭。 遥控/近控切换按钮:用来进行遥控与近控的切换,每按一下,就改变当前工作状态,文本显示器的屏幕上显示“当前状态:遥控状态或近控状态”,表示系统已处于遥控或近控状态。 正泵按钮:当按下正泵按钮时,发动机升速,当转速升至设定转速时,开始正泵,再次按时,正泵停止,同时发动机自动降到怠速。文本显示器的屏幕上显示“当前状态:正泵”表示系统处于正泵工作状态。 反泵按钮:当按下反泵按钮时,发动机升速,当转速升至设定转速时,开始反泵,再次按时,反泵停止,同时发动机自动降到怠速。文本显示器的屏幕上显示“当前状态:反泵”表示系统处于反泵工作状态。按钮左上角信号灯亮时,表示系统处于反泵工作状态。反泵有优先,即在正泵工作状态时,按反泵按钮,系统立即转入反泵,再次按反泵按钮,系统又恢复到正泵状态。此功能主要是保证在出现堵管时能以最快的速度处理。 讯响按钮:按住按钮,喇叭和蜂鸣器鸣叫,松开按钮,讯响停止。 2.文本显示器画面操作 根据画面上的提示进行相应的操作:初始化设定、参数设定和功能操作: 1)初始化设置 当向PLC中新输入程序后,文本显示器立即显示下列信息: A)请选择底盘:五十铃、volvo、奔驰 按提示选择正确的底盘型号,按ENTER确认后,进入下一个选择: B)请选择分动箱类型:进口分动箱、国产分动箱 按提示选择正确的底盘型号,按ENTER确认后,进入下一个选择: C)请选择水泵马达类型:低速水泵马达、高速水泵马达 按提示选择正确的底盘型号,按ENTER确认后,进入下一个提示界面:

智能变电站继电保护设备的运行和维护探讨

智能变电站继电保护设备的运行和维护探讨 发表时间:2019-05-05T16:03:51.633Z 来源:《电力设备》2018年第31期作者:张宏利[导读] 摘要:当前,我国智能变电站数量已经超过1万座,取得了很多进步和发展,技术不断创新,其表现出来的智能性和综合性也越来越强。 (国网扎赉特旗供电公司内蒙古自治区兴安盟扎赉特旗 137600)摘要:当前,我国智能变电站数量已经超过1万座,取得了很多进步和发展,技术不断创新,其表现出来的智能性和综合性也越来越强。同时为确保系统运行的安全性和可靠性,对智能变电站继电保护设备的运行和维护也提出了更高的要求,通过引入更多先进的智能保护技术,以促进智能变电站的进一步发展。 关键词:智能变电站;继电保护设备;运行和维护继电保护系统直接保障智能变电站设备的安全运行,相比于传统变电站,智能变电站继电保护设备呈现出自动化与信息化的特点,这对运行维护工作提出更多的要求。运行维护工作中要考虑实际情况,选择合适的切入点,提高运行维护质量,本文就此展开论述。 1智能变电站概述 现阶段,智能变电站已经成为了电网的重要一环,主要运用了先进的科学技术和设备,构建了一个智能化的管理平台,实现了对一次设备和二次设备的数字化、信息化管理,其运行稳定、功能多样、安全可靠,具有着广阔的发展前景,为社会经济的发展做出了卓越的贡献。目前我国电网建设中大力提倡智能变电站的推广,对智能变电站继电保护设备的运行和维护也引起了相关人员的高度重视,可以说,唯有将继电保护设备的运维工作落到实处,才能保证管理的实效性,在此情况下电网运行效率和运行效益也会得到进一步的提升。 2智能变电站继电保护设备存在的问题智能变电站同综自变电站在继电保护原理上是一致的,只在具体设备的实现形式上有所不同。 (1)电流电压模拟量通过合并单元接入保护装置,保护装置通过智能终端实现保护跳合闸功能,两者之间的联系由传统的二次电缆变成光纤回路。 (2)合并单元、智能终端故障后可能会影响多台保护装置,在智能变电站中,合并单元、智能终端不仅仅是只对应一个保护装置,也存在一对多的情况。如一套220kV线路合并单元故障时,会对220kV线路保护、220kV母差保护产生影响,影响范围广。 (3)合并单元、智能终端大部分情况下需要与一次设备组屏并放置于室外,这样一来,容易出现潮湿、腐蚀等状况,从而导致设备加速老化。 (4)由于合并单元、智能终端不配备液晶,导致合并单元、智能终端的某些故障现象无法直观地显现,只能通过厂家来处理,延长了保护影响时间、增加了维护成本。 3智能变电站继电保护设备的运行和维护策略 3.1健全规章制度及人员管理 通过积极顺应企业健康发展的模式,将购置部门与维修部门积极配合,长效完成继电设施的管理使用以及后续维修工作。从而促进继电设施的使用效率,延长设备的使用寿命,获取更好地经济效益。具体的落实方式应该包括以下几个方面:第一,提高工作运行制度的精细化,具体应该将工作进行细化,从而做好各项协调工作,有效降低工作重点额失误,提高工作效率;第二,完善工作任务的分配情况,通过落实到人,有效消除管理漏洞;第三,制定相应的奖惩制度、检查制度以及考核制度,从而充分调动工作人员的积极性,确保精细化管理工作有序进行。 3.2正常运行状态下的维护保养 (1)提高专业认识,加强维护意识。参与智能变电站继电保护设备运行维护的相关人员,必须保证对该设备的各结构层有较高的熟悉度,以便能够在维护工作中更好的发现不良情况,及时做出预防控制。同时,维护保养人员在巡检过程中,需要对继电保护设备的数据信息进行记录,并将获取到的数据信息上报存储,并对这些数据信息做深入分析,以便从数据信息中发现存在的故障隐患。如果系统在运行过程中,出现断路器自动断开的现象,证明系统运行过程中存在着某种故障,此时为确保系统运行的安全性,相关技术人员应当引起重视,加强对系统运行参数的分析,找出可能存在隐患的地方。 (2)对继电保护设备的维护。结合智能变电站继电保护设备的日常维护经验来看,在继电保护设备中较容易出现故障的地方主要表现在继电保护装置、监控系统、网络交换机等方面。因此,在日常维护中应主要做好这些维护工作。 3.3异常运行状态下的维修处理 3.3.1公用信号转发网络设备故障维修 公用信号转发网络设备在运行过程中如果出现故障,将会对许多变电站继电保护设备的运行造成影响,使稳定性和可靠性降低。从实际运行状况看,该故障对变压器保护、过负荷联切等有着较大影响。在对该类型故障的排除过程中,首先要明确故障影响的具体范围,然后对网络运行结构做深入分析,最后采取针对性措施处理故障,确保继电保护设备能够正常工作。 3.3.2信号转发网络设备故障维修 对于这类型故障,主要通过网络图数据资料进行故障分析,从数据资料中找到相关的内容信息,可以确定故障发生的具体位置,确定引发故障的原因,然后采取相应的维修处理措施。例如,某智能变电站继电保护设备出现GOOSE(Generic Object Oriented Substation Event,面向通用对象的变电站事件)连接故障,则可以确定原信号转发网络设备的连接保护处于异常状态。此时需要对造成该故障现象的具体原因做进一步分析,然后针对故障原因制定解决措施,让问题得以高效解决。 3.3.3智能终端故障维修 智能终端设备主要被应用在智能变电站设备跳合闸控制当中,如果它在运行中出现故障,就会使智能变电站设备跳合闸处于控制失效的状态,无法对智能变电站系统提供保护。因此,根据其实际功能也可以较为快速的对故障做出判断,如果发现智能变电站所有设备跳合闸处于失控状态,就可以判断故障发生位置为智能终端。此时为保障系统运行的安全性,需立即将智能终端的出口板退出,以让设备跳合闸恢复正常工作。然后再查找引发智能终端故障的原因,使系统恢复到正常的工作状态。 3.3.4间隔合并单元故障维

液压系统一般调试步骤及方法

1.试压 系统的压力试验应在安装完毕组成系统,并冲洗合格后进行。 (1)试验压力在一般情况下应符合以下规定。 1)试验压力应符合规定:小于16MPa时,;16~时,; 大于时,。 2)在冲击大或压力变化剧烈的回路中,其试验压力应大于峰值压力。 (2)系统在充液前,其清洁度应符合规定。所充液压油(液)的规格、品种及特性等均应符合使用说明书的规定;充液时应多次开启排气口,把空气排除干净(当有油液从排气阀中喷出时,即可认为空气已排除干净),同时将节流阀打开。 (3)系统中的液压缸、液压马达、伺服阀、压力继电器、压力传感器以及蓄能器等均不得参加压力试验。 (4)试验压力应逐级升高,每升高一级宜稳压2~3min,达到试验压力后,持压10min,然后降至工作压力,进行全面检查,以系统所有焊缝、接口和密封处无漏油,管道无永久变形为合格。 (5)系统中出现不正常声响时,应立即停止试验。处理故障必须先卸压。如有焊缝需要重焊,必须将该管卸下,并在除净油液后方可焊接。 (6)压力试验期间,不得锤击管道,并在试验区域的5m范围内不得进行明火作业或重噪声作业。 2.调整和试运转 液压系统的调试应在相关的土建、机械、电气、仪表以及安全防护等工程确认具备试车条件后进行。 系统调试一般应按泵站调试、系统压力调试和执行元件速度调试的顺序进

行,并应配合机械的单部件调试、单机调试、区域联动、机组联动的调试顺序。 (1)泵站调试 启动液压泵,进油(液)压力应符合说明书的规定:泵进口油温不得大于60℃,且不得低于15℃;过滤器不得吸入空气,先空转10~20min,再调整溢流阀(或调压阀)逐渐分档升压(每档3~5MPa,每档时间10min)到溢流阀调节值。升压中应多次开启系统放气口将空气排除。 1)蓄能器 a.气囊式、活塞式和气液直接接触式蓄能器应按设计规定的气体介质和预充压力充气;气囊式蓄能器必须在充油(最好在安装)之前充气。充气应缓慢,充气后必须检查充气阀是否漏气;气液直接接触式和活塞式蓄能器应在充油之后,并在其液位监控装置调试完毕后充气。 b.重力式蓄能器宜在液压泵负荷试运转后进行调试,在充油升压或卸压时,应缓慢进行;配重升降导轨间隙必须一致,散装配重应均匀分布;配重的重量和液位监控装置的调试均应符合设计要求。 2)油箱附件 a.油箱的液位开关必须按设计高度定位。当液位变动超过规定高度时,应能立即发出报警信号并实现规定的联锁动作。 b.调试油温监控装置前应先检查油箱上的温度表是否完好;油温监控装置调试后应使油箱的油温控制在规定范围内。当油温超过规定范围时,应发出规定的报警信号。 泵站调试应在工作压力下运转2h后进行。要求泵壳温度不超过70℃,泵轴颈及泵体各结合面无漏油及异常的噪声和振动;如为变量泵,则其调节装置应灵活可靠。

CSC数字式母线保护装置调试方法

C S C-150数字式母线保护装置 调试方法 1. 概述 CSC-150母线保护装置是适用于750kV及以下电压等级,包括单母线、单母分段、双母线、双母分段及一个半断路器等多种接线型式的数字式成套母线保护装置(以下简称装置或产品)。装置最大接入单元为24个(包括线路、元件、母联及分段开关),主要功能包括虚拟电流比相突变量保护、常规比率制动式电流差动保护、断路器失灵保护、母联充电保护、母联失灵及死区保护、母联过流保护、母联非全相保护。装置由一个8U保护机箱和一个4U 辅助机箱构成,8U保护机箱共配置18个插件,包括8个交流插件、启动CPU插件、保护CPU插件、管理插件(MASTER)、开入插件1、开出插件1(含一块正板和一块副板)、开出插件2、开出插件3(含一块正板和一块副板)及电源插件;4U辅助机箱共配置7个插件,包括隔离刀闸辅助触点转接板(2块)、开入插件2、开入插件3、开入插件4、开入插件5、开入插件6,对需要模拟盘显示的用户还会配置一块模拟盘开关位置转接板。 2. 调试与检验项目 2.1 通电前检查 2.2 直流稳压电源通电检查 2.3 绝缘电阻及工频耐压试验 2.4 固化CPU软件 2.5 装置上电设置 a) 设置投入运行的CPU; b) 设置装置时钟; c) 检查软件版本号及CRC校验码; d) 整定系统定值; e) 设置保护功能压板; f) 整定保护定值。 g) 装置开入开出自检功能 2.6 打印功能检查 2.7 开入检查 2.8 开出传动试验

2.9 模拟量检查 a) 零漂调整与检查; b) 刻度调整与检查; c) 电流、电压线性度检查; d) 电流、电压回路极性检查; e) 模入量与测量量检查。 2.10 保护功能试验 a) 各种保护动作值检验和动作时间测量。 b) 整组试验。 2.11 直流电源断续试验 2.12 高温连续通电试验 2.13 定值安全值固化 3. 检验步骤及方法 3.1 通电前检查 a) 检查装置面板型号标示、灯光标示、背板端子贴图、端子号标示、装置铭牌标注完整、正确。 b) 对照装置的分板材料表,逐个检查各插件上元器件应与其分板材料表相一致,印刷电路板应无机械损伤或变形,所有元件的焊接质量良好,各电气元件应无相碰,断线或脱焊现象。 c) 各插件拔、插灵活,插件和插座之间定位良好,插入深度合适;大电流端子的短接片在插件插入时应能顶开。 d) 交流插件上的TA和TV规格应与要求的参数相符。 e) 检查各插件的跳线均应符合表1、表2和表3要求。 表1 CPU板跳线说明

实验一 Keil软件的使用及简单程序的调试方法

实验一 Keil软件的使用及简单程序的调试方法 一、实验目的 掌握Keil的使用方法和建立一个完整的单片机汇编语言程序的调试过程及方法。 二、实验器材 计算机1台 三、实验内容 1.Keil的使用方法。 2.建立一个单片机汇编语言程序的调试过程及方法 四、实验步骤 1.Keil的使用方法。Keil C51 软件是众多单片机应用开发的优秀软件之一,它集编辑,编译,仿真于一体,支持汇编,PLM 语言和C 语言的程序设计,界面友好,易学易用。启动Keil 后的界面如下: 几秒钟后即进入Keil的编辑界面。用户便可建立项目及应用程序。 2.简单程序的调试方法 Keil是通过项目工程来管理汇编程序的。因此在调试程序前必须建立一个工程,工程

名称及保存位置由用户来指定,注意每位同学的工程名称用“学号姓名实验*”来命名。 (1)建立一工程 单击Project菜单,在弹出的下拉菜单中选中New Project选项。并在弹出的对话框中确定保存的位置及工程名称。 又弹出一对话框,要求用户选择相应的硬件CPU及相关设置。选择Atmel公司的AT89C51单片机。如下图所示 单击“确定”后在弹出的对话框中行选择“否”即工程建好了,但该工程没有任何语句,需要再建一个程序文件并将其添加到此工程中。 (2)建一文件 单击“File”/“New”命令,则弹出文件的编辑窗口,此时该文件还没有指明其文件名称及保存位置,该文件还没有加载到所建立的工程中。单击“File”/“Save”命令在弹出的对话框中指明文件的类型为.ASM汇编型及文件名后单击“保存”即可进行汇编源文件的编辑。如下图所示。

液压站常见故障及处理方法

液压站常见故障及处理方法 目前提升机是我国矿井提升机制动装置大多采用液压盘式闸制动装置,该装置由液压站与盘形闸和电控系统组成。其中液压站是机制动系统的驱动和调节压力机构,液压站的稳定可靠运行是矿井安全提升的必要保证,其性能和质量直接影响设备和人身的安全。使用表明恒减速控制液压站,在紧急制动时,能使平均制动力矩随负载变化而变化,能实现恒减速控制,符合提升系统恒减速要求。但由于该液压制动系统和控制系统较为复杂,使用与维护不当会出现制动减速度超限和制动力矩不足等多种故障,以致造成严重后果。 一提升机液压站的作用 提升机液压站可作为盘型制动器提供不同的油压值的压力油,以获得不同的制动力矩。在事故状态下,可以使制动器的油压迅速降到预先调定的某一值,经过延时后,制动器的油压迅速回到零,使制动达到全制动状态。供给单绳双滚筒提升机调绳装置所需要的压力油。 二提升机液压站常见故障分析及处理办法 2.1 漏油及油压不稳长期使用后,安全制动装置中的各集油路之间,以及阀与集油路间大量泄漏,且油压下降导致松不开阀,原因是它们之间的螺钉松动,将螺钉拧紧即可消除故障;油压不稳原因是液压系统中混入空气,应排除空气,或是电液调压装置线圈的电流滤波不好,线圈上下振动,造成油压不稳,加装电解电容器加强滤波即可。 2.2 油压值不能保证原因是系统内有空气吸入,油箱内的油有好多

泡沫,或者是溢流阀、电磁换向阀内泄漏大,处理方法:检查油泵吸油口是否泄漏;油泵吸油处管接头是否拧紧;吸油过滤器的螺钉是否拧紧;检查吸油过滤器到油泵吸油口处的管路是否漏气;检查油泵端盖螺钉是否拧紧;清洗溢流阀阀芯,如果阀芯在阀体内活动不灵活,可以用手拿住阀芯在体内来回研磨;清洗电磁换向阀阀芯,要求阀芯在阀体内运动灵活,保证工作时阀芯到位。 2.3 零油压制动器不松闸系统没有压力的原因:油泵旋转方向反了或油泵没有输出液;电液比例装置上的溢流阀阀芯卡死,阻尼孔堵塞;油泵吸油口不畅通,吸油过滤器堵塞;压力阀内有脏物,锥阀关不住。处理方法:纠正泵的旋转方向,排除油泵故障;把溢流阀拆开清洗,要求做到阀芯在阀体内运动灵活,用压缩空气把阻尼孔吹通;清洗过滤器滤芯,并检查吸油管路是否堵塞;拆开压力阀,把锥阀芯取下来清洗。 2.4 残压过大残压过大会使制动器失去作用,其主要原因是:电液调压装置的控制杆上的档板离喷嘴距离太小;溢流阀节流孔太大。处理方法:将控制杆上档板调整或更换;将溢流阀节流孔更换直径小一些的节流孔。 2.5 二级制动油压值保压性能故障产生二级制动油压值保压故障的原因有:油路块上的大溢流阀内有脏物卡住使阀芯关不严;单向节流截止阀开口太大,油大量泄出;电磁换向阀内有脏物,内泄漏太大。针对这一类故障可先取下阀芯清洗,去掉脏物,使阀芯到位,然后调整单向节流截止阀,使其开口尽量开得小,起到节流与补油作用。

CB调试方法

CSC-103B数字式超高压线路 保护装置 调试方法 CSC-103B数字式超高压线路 保护装置 调试方法 编制:王晶 校核:伍叶凯 标准化审查:梁路辉 审定:徐振宇 版本号: 出版日期:2004-07-30

1.目的 检测CSC-103B数字式超高压线路保护装置各插件元器件好坏及焊接质量,并进行整机调试,插件的硬件及回路的正确性检查,装置操作和保护功能的基本检查。 2.参考文件 《CSC-103B保护装置原理图》 《CSC-100B数字式超高压线路保护装置说明书》 技术管理室下发的《版本说明》 QB/ QB/ 3.硬件检查 3.1.所需设备和工具 CSC-103B线路保护装置一台,包括以下插件: 一块交流插件 两块保护CPU插件, 一块Master插件 一块MMI插件; 二块开入插件; 三块开出插件; 一块电源插件; 级以上测试仪一台 万用表一只 放大镜一只 打印机一台 3.2.单板焊接质量检查 直接观察或用放大镜检查各插件上有无元器件焊反、焊错、漏焊或虚焊现象。

3.3.通电前,外观和插件检查 3.3.1.检查本装置所有互感器的屏蔽层的接地线均已可靠接 地,装置外壳已可靠接地 3.3.2.检查装置面板型号标示、灯光标示、背板端子贴图、端 子号标示、装置铭牌标注完整、正确。参考最新的有效 图纸。 3.3.3.各插件拔、插灵活,插件和插座之间定位良好,插入深 度合适。大电流端子的短接片在插件插入时应能顶开。 3.3. 4.各插件跳线及短接线连接设置正确。 各插件跳线的设置要求: a)CPU1:在CPU的把手侧,有AD3、AD2、AD1、AD0四组跳线插针。跳线插针旁边标 有“H”和“L”两个符号,分别表示高电平和低电平。此CPU要求AD3、AD2、 AD1、AD0四个跳线插针设置成低电平。地址可以用四个二进制表示为0000(数值 0)。 CPU板上与光纤通信有关的两组跳线为: 1组(对应通道A):J9、J10、J11 2组(对应通道B):J12、J13、J14? 。 J9(J12) ---?软件/硬件控制选择。置“低”,时钟方式和通信速率由软件定值 中的控制字设置,J10(J13)、J11(J14)两位跳线不起作用;置“高”,时钟 方式和通信速率由J10(J13)、J11(J14)两位跳线来设置。 J10(J13 )--- 主/从时钟选择。在硬件控制模式下( J9(J12)置“高”), J10(J13)置“高”,装置光纤通信采用主时钟方式;置“低”,装置光纤通信 采用从时钟方式。 J11(J14) --- 64kbps/2Mbps选择。在硬件控制模式下( J9(J12)置“高”), J11(J14)置“高”,装置光纤通信速率采用64kbps;置“低”,装置光纤通信 速率采用2Mbps。 装置出厂时必须将上述两组跳线都依次设为:低、高、高。即装置

智能变电站技术及其对继电保护的影响 尹利阳

智能变电站技术及其对继电保护的影响尹利阳 发表时间:2018-11-14T20:02:15.473Z 来源:《基层建设》2018年第28期作者:尹利阳 [导读] 摘要:在智能变电站正常运行过程中,需要加强继电保护装置的维护和维修,及时发现故障,保证智能变电站技术在继电保护中的有效应用。 天津送变电工程有限公司天津 300161 摘要:在智能变电站正常运行过程中,需要加强继电保护装置的维护和维修,及时发现故障,保证智能变电站技术在继电保护中的有效应用。本文首先分析了智能变电站技术的概念及特点浅析,接下来介绍了智能变电站技术在继电保护中影响及作用,最后详细阐述了提高智能变电站继电保护系统的可靠性措施,希望通过本文的分析研究,给行业内人士以借鉴和启发。 关键词:智能变电站技术;继电保护;作用影响 引言 智能变电站是以信息技术、通讯技术为基础的,并具有电网实时自动控制、智能调节、在线分析决策和协同互动等高级功能的智能化变电站。在我国经济快速发展背景下,智能变电站技术得到较为广阔的发展空间,其对电网系统的继电保护也起到了巨大的影响与作用。 1智能变电站技术的概念及特点浅析 1.1 智能变电站技术的概念分析 从整体结构上讲,智能变电站主要包含了信息平台及高压设备两类核心设备。其中信息平台主要又包含了三个核心部分,即一体化监控系统(主要功能收集信息并有效整合信息)、虚拟装置及数字化工具(实现信号类型转换及数字化服务)、数据通讯网关机(提供数据服务并实现数据优化与远程浏览)。从信息平台的功能来看,主要也有两个方面的功能,其一,纵向来说即是实现信息的标准化,即将收集及分析的信息源格式进行统一,并实现对上层应用支撑的透明化;其二,从横向来讲,则是实现信息的统一化,即通过通讯技术将信息进行有效传输,从而实现信息共享功能。智能变电站的高压设备,主要由电子互感器、智能变压器、智能开关等构成。其中电子互感器的主要作用即是将电网系统的各个元器件进行有效连接,并实现数据共享,从而提高智能变电站在调节过程中的系统协调性。而智能变压器,则主要通过连接通信光纤,从而实现对变压器实时状态的监管(主要监测电压、功率等信息),一旦变压器运行状态发生异常时,便由信息平台发出预警信息,控制系统则能够及时的接受信息并进行判别处理,以此有效降低了变压器的管理成本。而智能高压开关设备,则是具有电子设备、传感器和执行器等设备的高性能自动化开展,其能够通过监测诊断电网设备的实时状态,并及时的切断出现故障的设备,以此有效保护电网系统的安全。 1.2 智能变电站的特点分析 首先从结构上来看,智能变电站系统主要分为过程层、间隔层、站控层三层。其中过程层主要又是由智能组件、智能终端等设备构成。过程层的主要作用即在于实现电能分配、变换以及计量与控制。间隔层主要则是由继电保护装置、故障录波等设备构成,其主要功能则在于使用间隔数据控制该间隔的电网设备功能。最后站控层则主要由通讯系统、控制系统等子系统构成,其主要功能在于完成数据采集和监视控制(SCA—DA)以及保护信息管理等。从优势层面上讲,智能变电站则主要具有以下特点:其一,智能变电站具有高效环保的特点。主要表现为光纤线代替了传统电力系统使用的电缆线这样就极大的降低了安装成本,此外采取高集成度的电子元件又能够降低能耗。其二,交互性与协同性,即智能变电站能够通过信息交有效发挥了电网系统的反馈调节功能,并将各个子系统连接起来提升了调节效率。 2智能变电站技术在继电保护中影响及作用 2.1对电网数据保护系统建设的影响 从继电保护的数据信息与保护原理的角度来看,智能变电站技术相对于传统变电站技术有了很大的突破,其对继电保护的影响也是十分明显,总结起来大抵有以下重要的影响:智能变电站技术采用的电子互感技术首先是解决了电磁互感技术对电网系统性能的影响问题,这为电网系统数据保护及继电保护的准确性奠定了基础。然而电子互感技术由于其信息的交互与传递等性能,偶尔会导致数据延迟,这也为继电保护造成了异性的影响。但总体上讲,电子互感技术在电网建设中的信息深入评估、响应速度层面具有明显的优势,也对继电保护产生了积极的影响与作用。 2.2电网保护技术层面建设的影响 继电保护设备是间隔层的重要组织结构,其主要在间隔层对一次设备进行控制。传统电网建设中采取电缆作为继电保护信息传统媒介极大的影响了其对以此设备进行控制的效率。然而智能变电站技术使用的光纤信息传输技术,有效将间隔层的各个设备联系在了一起,并实现了信息的高速传输与交互作用。如此一来,电网系统的继电保护工作的反映决策也将变得更加高速,并还能进行综合性的分析管理,从而进行相对全面的保护。此外智能变电站使用的计算联网管理技术,也改变了传统变电站人工发出指令的管理模式,这样就能够提升电网系统继电保护命令发送的效率。最后,智能变电站技术打破了电网系统继电保护中采样、数据传输、保护一体化模式,有效实现了数据动态传输与调整,从而提升电网系统继电保护技术的协调性能。 2.3继电保护调试与维修影响与作用 智能变电站技术的应用不仅改变了电网系统继电保护技术的实现机制,同时对电网系统的调试与维护方面也具有较为深远的影响。首选智能变电站检测数据的实时传输与分析,改善了电网系统继电保护周期维护和测试方法存在的滞后性。其次智能变电站提供的全面的检测数据为电网系统继电保护装置的维修与检测提供了直观的参考,这样就极大的方便了电网系统继电保护装置的维修操作。最后智能变电站的设计维护和调试工作需要多方参与者共同商量研究,对拟定的方案进行反复的协调和修正,这样才能够更好的确保电网系统继电保护工作的顺利进行,并且更好的防范电网运行中的安全隐患。 3提高智能变电站继电保护系统的可靠性措施 电压限定延时。在智能变电站正常运行中,可 能会因为电流等因素出现外部断路的故障,使得负荷电流现象出现,引起跳闸,这就严重制约了继电保护系统的可靠性运行。因此,在变电站运行中可以运用电压限定延时的方式,这样可以及时测量变电站中线路的电流。一旦发现有负荷电流,系统就会及时发出警报,为继电保护系统的正常运行提供保障。完善线路保护方案。目前变电站线路中对电力系统的保护都是通过纵联差动的方式进行的,因此,对于电力系统的变电站、发电厂、高低压配电等,要不断完善其配电线路保护方案,为电力系统的稳定运行提供保障,提高继电保护的可

实验一-Keil软件的使用及简单程序的调试方法

实验一Keil软件的使用及简单程序的调试方法 一、实验目的 掌握Keil的使用方法和建立一个完整的单片机汇编语言程序的调试过程及方法。 二、实验器材 计算机1台 三、实验内容 1.Keil的使用方法。 2.建立一个单片机汇编语言程序的调试过程及方法 四、实验步骤 1.Keil的使用方法。Keil C51 软件是众多单片机应用开发的优秀软件之一,它集编辑,编译,仿真于一体,支持汇编,PLM 语言和C 语言的程序设计,界面友好,易学易用。启动Keil 后的界面如下:

几秒钟后即进入Keil的编辑界面。用户便可建立项目及应用程序。 2.简单程序的调试方法 Keil是通过项目工程来管理汇编程序的。因此在调试程序前必须建立一个工程,工程名称及保存位置由用户来指定,注意每位同学的工程名称用“学号姓名实验*”来命名。 (1)建立一工程 单击Project菜单,在弹出的下拉菜单中选中New Project选项。并在弹出的对话框中确定保存的位置及工程名称。 又弹出一对话框,要求用户选择相应的硬件CPU及相关设置。选择Atmel公司的AT89C51单片机。如下图所示

单击“确定”后在弹出的对话框中行选择“否”即工程建好了,但该工程没有任何语句,需要再建一个程序文件并将其添加到此工程中。 (2)建一文件 单击“File”/“New”命令,则弹出文件的编辑窗口,此时该文件还没有指明其文件名称及保存位置,该文件还没有加载到所建立的工程中。单击“File”/“Save”命令在弹出的对话框中指明文件的类型为.ASM汇编型及文件名后单击“保存”即可进行汇编源文件的编辑。如下图所示。 (3)将文件添加到工程中 单击“T arget 1”前的“+”号则展开后变成“-”号,并右键单击“Source Group 1”在弹出的下拉菜单中执行“Add Files to Group ‘Source Group 1’”命令并弹出对话框在该对话框中的“文件类型”下拉列表中选择“Asm source file”后找到要添加的文件名并选中,单击“Add”即可。

保护装置实用调试技巧

RCS-978主变保护装置调试方法 一、装置铭牌对数: 装置型号:RCS-978 版本号:1.10 CPU 校验码:F1565E26 管理序号:SUBQ 00090844 二、装置调试技巧: 变压器参数计算: 项目 高压侧(I 侧) 中压侧(II 侧) 低压侧(III 侧) 变压器全容量e S 180MV A 电压等级e U 220kV 115kV 10.5kV 接线方式 Y 0 Y 0 Δ-11 各侧TA 变比TA n 1200A/5A 1250A/5A 3000A/5A 变压器一次额定电流 472A 904A 9897A 试验项目 一、 纵差保护定值检验 1、差动速断定值校验 2、差动启动值校验 3、比率制动特性校验 4、二次谐波制动特性校验 计算数值:各侧额定 电流 计算公式:nTA Un S Ie **3 其中:S 为容量,Un 为各侧额定电压,nTA 为各侧额定电流 计算数据:I 1e =180*103/(1.732*220*240)=1.96A I 2e =180*103/(1.732*115*250)=3.61A I 3e =180*103/(1.732*10.5*600)=16.5A 各侧平衡 系数k 高压侧(I 侧) 中压侧(II 侧) 低压侧(III 侧) 4.000 2.177 0.476 试验项目一 差动速断定值校验 整定定值 (举例) 差动速断电流定值:5Ie , 试验条件 1. 硬压板设置:投入主保护压板 1LP2、退出其他功能压板 2. 软压板设置:投入主保护软压板 3. 控制字设置:“差动速断”置“1” 计算方法 计算公式:I=m*I zd 注:m 为系数 计算数值: 单相校验法: 高压侧Izd=5I 1e =5*1.96*1.5=14.7A

音频的基本调试方法

音频的基本调试方法 目录 一:音频的基本调试方法 (1) 1.1:需要调试的音频基本项如下 (1) 1.2:MTK调试音量大小的基本方法 (2) 1.2.1:进入META调试: (2) 1.2.2:工程模式的调试方法(*#3646633#) (4) 1.3:音频测试的基本方法 (5) 1.3.1用声压计测试声压(MIDI和MP3): (5) 1.3.2用示波器测量功率(MIDI,MP3,Receiver, Headset) (5) 1.3.3用数字万用表测量功率 (6) 1.4回音抑制 (7) 1.4.1普通通话时的回音: (7) 1.4.2蓝牙通话的回音 (7) 1.5 EQ均衡器的设置 (8) 二:音频器件的基本选型 (9) 三:音腔的评审 (9) 四:音频曲线的调试-CTA (9) 4.1CTA测试项目 (9) 4.2调试步骤 (10) 附录1:各项MTK音频的参考值 (13) 附录2:NXP各项音频设置 (14)

一:音频的基本调试方法 1.1:需要调试的音频基本项如下(√需要调试;X不需要调试) 具体的调试点在middle(level=3)和MAX(level=6)两点如下图,其余等级基本平分就好。

1.2:MTK调试音量大小的基本方法 1.2.1:进入META调试: 进入META在Audio tool的custom volume setting 里面设置,如图。 通过设计ADC(0-255)值来调节寄存器的值,从而调整增益。 其调试方法就是调节各选项卡里面的数值,通过不断调整及测试来确定最终的音频参数,其中值得注意的几项如下: 1:MIDI Melody下的level0-level6是用来调整MIDI铃声的大小(音源为手机内置的铃声), 2:MP3 MP3(音源在T卡上)的调节在16Level下的Max melody volume gain里面,所以音量只能设置最大值。

液压站液压成套系统使用步骤

液压站液压成套系统使用步骤 一、液压站、液压成套系统介绍 液压传动是以液压为工作介质,利用液体的压力能来实现运动和力的一种传动方式。它的基本原理为帕斯卡原理,在密闭的容器内液体依靠密封容积的变化传递运动,依靠液体的压力传递动力。下面介绍一下液压传动中常用到的专业术语及其解释。 1、额定压力:能连续使用的最高压力。单位:MPa 2、流量:一般指液压泵在单位时间内输出液体的体积。单位:L/min 3、额定流量:是指泵在正常工作条件下,按试验标准规定(如额定压力和额定转速下)必须保证的流量。 4、排量:容积式液压泵(或马达)每转输出(或输入)的液体体积。单位:ml/r 5、液压马达:用于液压回路的能做连续旋转运动的执行元件。 6、双作用缸:能由活塞的一侧输入压力油的液压缸。 7、单作用缸:只能由活塞的一侧输入压力油的液压缸 8、液压缸行程:指活塞杆的动作长度,带缓冲装置的液压缸,包括缓冲长度。 9、进口节流方式:节流阀装在执行元件进口侧管路中,通过节流阀调节动作速度的方式。 10、出口节流方式:节流阀装在执行元件出口侧管路中,通过节流阀调节动作速度的方式。 11、背压:是指在液压回路的回油侧或压力作用向相反方向所形成的压力。有一定的背压能使液压缸运动更平稳。 12、卸荷:使液压泵在输出压力为零或者输出量接近为零的状态工作。 13、保压:一般指系统动力源停止工作或系统不供给执行元件压力时,执行元件能在一定的时间里继续保持足够的压力。 液压系统的作用,相当于心脏之于人的作用。心脏是人身体中最重要的一个器官,相当于人的动力源,提供压力把血液运行至身体各个部分,而液压系统的主要功用是提供压力,输送液压轴,液压油进入油缸的腔内(分无杆腔及有杆腔),控制油缸活塞杆伸出或缩回来执行各种动作。 液压系统通常都是由液压元件(动力元件、执行元件、控制元件、辅助元

收音机调试步骤及调试方法.

收音机调试步骤及调试方法 一.AM、IF中频调试 1、仪器接线图 扫频仪频标点频率为:450KHZ、455KHZ 、460KHZ或460KHZ、465KHZ 、 470KHZ。 扫频仪 1、检波输出 2、3正负电源4、RF信号输入5、检波输入(INPUT)6频标点 信号输入(PUISE INPUT)7、水平信号输入(HOR、INPUT) 2:测试点及信号的连接: A:正负电源测试点(如电路板中的CD4两端或AC输入端) 正负电源测试点从线路中的正负供电端的测试点输入。 B:RF射频信号输入(如CD2003的○4脚输入)。 RF射频信号由扫频仪输出后接到衰减器输入端,经衰减器衰减后输出端接到测试架上的RF输入端,在测试架上再串联一个10PF 的瓷片电容后,从电路中的变频输出端加入RF信号 将AM的振荡信号短路(即PVC的振荡联短路),或将AM天线RF输入端与高频地短路,(如CD2003○16与PVC地脚短路。) C:检波输出端(如CD2003○11脚为检波输出端) 从IC检波输出端串一个103或104的瓷片电容接到测试架上的OUT输出端。再连接到显示器前面的INPUT端口上以观察波形。

3.调试方法及调试标准 将收音机的电源开关打开并将波段开关切换到AM波段状态,调整中频中周磁帽使波形幅度达到最大(一般为原色或黄色的中周), 并且以水平线Y轴为基准点,看波形的左右两半边的弧度应基本对 称,以确保基增益达到最大、选择性达到最佳。如图 标准:波形左右两边的弧度基本等等幅相对称, 455KHZ频率在 波形顶端为最理想,偏差不超过±5KHZ。。如果中频无须调试的,则 经标准样机的波形幅度为参考,观察每台机的波形幅度不应小于标准 样机的幅度的3-5DB,一般在显示器上相差为一个方格。 二、FM IF中频调试 1、器接线图 ①扫频仪频率分别为10.6MHZ,10.7MHZ,10.8MHZ至少三个频率点。 1、检波输出 2、3正负电源4、RF信号输入5、检波输入(INPUT)6频标 点信号输入(PUISE INPUT)7、水平信号输入(HOR、INPUT) ②测试点及信号连接;

相关文档
相关文档 最新文档