文档库 最新最全的文档下载
当前位置:文档库 › 矿井瓦斯涌出量预测方法A

矿井瓦斯涌出量预测方法A

矿井瓦斯涌出量预测方法A
矿井瓦斯涌出量预测方法A

矿井瓦斯涌出量预测方

法A

文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

矿井瓦斯涌出量预测方法

AQ 1018-2006

国家安全生产监督管理总局2006-02-27发布 2006-05-01实施

前言

本标准的附录A、附录B、附录C、附录D均为资料性附录。

本标准由国家安全生产监督管理总局提出。

本标准由国家安全生产监督管理总局归口。

本标准起草单位:煤炭科学研究总院抚顺分院。

本标准主要起草人:姜文忠、秦玉金、闫斌移、薛军峰

1 范围

本标准规定了采用分源预测法与矿山统计法进行矿井瓦斯涌出量预测的方法。

本标准适用于新建矿井、生产矿井新水平延深、新采区以及采掘工作面(放顶煤工作面除外)的瓦斯涌出量预测。

2 规范性引用文件

下列文件中的条款通过本标准的引用成为本标准的条款。凡是注册日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达。

MT/T 77煤层气测定方法(解吸法)

《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程》

3 术语及定义

矿井瓦斯涌出量预测 prediction of mine gas emission rate

计算出矿井在一定生产时期、生产方式和配产条件下的瓦斯涌出量,并绘制反映瓦斯涌出规律的涌出量等值线图。

矿井瓦斯涌出量 absolute gas emission rate

单位时间内从煤层以及采落的煤(岩)体涌入矿井中的气体总量,矿井进行瓦斯抽放时包括抽放瓦斯量。

绝对瓦斯涌出量 absolute gas emission rate

单位时间内从煤层和岩层以及采落的煤(岩)体所涌出的瓦斯量,单位采用m2/min。

相对瓦斯涌出量 relative gas emission rate

平均每产1t煤所涌出的瓦斯量,单位为m2/t

矿山统计法 statistical predicted method of mine gas

根据对本矿井或邻近矿井实际瓦斯涌出资料的统计分析得同的矿井瓦斯涌出量随开采深度变化的规律,预测新井或新水平瓦斯的方法。

分源预测法 predicted method by different gas source

根据时间和地点的不同,分成数个向矿井涌出的与瓦斯源,在分别对这些瓦斯涌出源进行预测的基础上得出矿井瓦斯涌出量的方法。

4 一般要求

新建矿井或生产矿井新水平,都必须进行瓦斯涌出量预测,以确定新矿井、新水平、新采区投产后瓦斯涌出量大小,作为矿井和采区通风设计、瓦斯抽放及瓦斯管理的依据。

矿井瓦斯涌出量预测采用分源预测法或矿山统计法。

矿井瓦斯涌出量预测应包括以下资料:

a) 矿井采掘设计说明书:

1) 开拓、开采系统图、采掘接替计划;

2) 采煤方法、通风方式;

3) 掘进巷道参数、煤巷平均掘进速度;

4) 矿井、采区、回采工作面及掘进工作面产量。

b) 矿井地质报告:

1) 地层剖面图、柱状图等;

2) 各煤层和煤夹层的厚度、煤层间距离及顶、底板岩性。

c) 煤层瓦斯含量测定结果、风化带深度及瓦斯含量等值线图;

d) 邻近矿井和本矿井已采水平、采区(盘区)以及采掘工作面瓦斯涌出测定结果;

e) 煤的工业分析指标(灰分、水分、挥发分和密度)以及煤质牌号。

新建矿井或生产矿井新水平瓦斯涌出量预测由具有国家规定资质的专业机构和生产单位共同完成,预测结果经专家审定后以报告形式提供给生产单位和有关部门。

5 矿井瓦斯涌出量预测方法

分源预测法

矿井瓦斯涌出构成关系

矿井瓦斯涌出构成关系如图1所示。

图1 矿井瓦斯涌出构成关系关系图

回采工作面瓦斯涌出量

回采工作面瓦斯涌出量预测用相对瓦斯涌出量表达,以24 h为一个预测圆班,采用式(1)计算。

式中:

q采——回采工作面相对瓦斯涌出量,m3/t;

q1——开采层相对瓦斯涌出量,m3/t;

q2——邻近层相对瓦斯涌出量,m3/t。

开采层和邻近层相对瓦斯涌出量计算方法见附录A。

掘进工作面瓦斯涌出量

掘进工作面瓦斯涌出量预测用绝对瓦斯涌出量表达,采用式(2)计算。

式中:

q掘——掘进工作面绝对瓦斯涌出量,m3/min;

q3——掘进工作面巷道煤壁绝对瓦斯涌出量,m3/min;

q4——掘进工作面落煤绝对瓦斯涌出量,m3/min。

掘进工作面巷道煤壁和落煤瓦斯涌出量计算方法见附录B。

生产采区瓦斯涌出量

生产采区瓦斯涌出量采用式(3)计算。

式中:

q区——生产采区相对瓦斯涌出量,m3/t;

K'——生产采区内采空区瓦斯涌出系数,如无实测值可参照附录D选取;

q采i——第i个回采工作面相对瓦斯涌出量,m3/t;

A i——第i个回采工作面的日产量,t;

q掘i——第i个掘进工作面绝对瓦斯涌出量,m3/min;

A o——生产采区平均日产量,t。

矿井瓦斯涌出量

矿井瓦斯涌出量采用式(4)计算。

式中:

q井——矿井相对瓦斯涌出量,m3/t;

q区i——第i个生产采区相对瓦斯涌出量,m3/t;

A oi——第i个生产采区平均日产量,t;

K"——已采采空区瓦斯涌出系数,如无实测值可参照附录D选取。

瓦斯不均衡性涌出

考虑各区域瓦斯涌出的不均衡性,利用分源预测法预测的各区域的瓦斯涌出量需乘以瓦斯涌出不均衡系数K n,如无实测值可参照附录D选取。

矿山统计法

采用矿山统计法必须具备所要预测的矿井或采区煤层开采顺序、采煤方法、顶板管理、地质构造、煤层赋存、煤质等与生产矿井或生产区域相同或类似的条件。

矿山统计法预测瓦斯涌出量外推范围沿垂深不超过200 m,沿煤层倾斜方向不超过600 m。

矿井相对瓦斯涌出量与开采深度的关系由式(5)表示。

式中:

q——矿井相对瓦斯涌出量,m3/t;

H——开采深度,m;

H o——瓦斯风化带深度,m;

a——相对瓦斯涌出量随开采深度的变化梯度,m/(m3t-1)。

a) a值确定

1) 当有瓦斯风化带以下两个水平的实际相对瓦斯涌出量资料时,a值由式(6)确定。

式中:

H2——瓦斯带内2水平的开采深度,m;

H1——瓦斯带内1水平的开采深度,m;

q2——在H2深度开采时的相对瓦斯涌出量,m3/t;

q1——在H1深度开采时的相对瓦斯涌出量,m3/t。

2) 当有瓦斯风化带以下多个水平的实际相对瓦斯涌出量的资料时,a的加权平均值由式(7)确定。

式中:

H i——第i个水平的开采深度,m;

q i——第i个水平的相对瓦斯涌出量,m3/t;

n——统计的开采水平个数。

b) H0

1) H0可由式(8)确定。

式中符号同前。

2)根据实测煤层瓦斯基本参数确定,瓦斯风化带的下部边界可参照下列条件确定:

甲烷及重烃的浓度之和占气体组分的80%(按体积);

瓦斯压力P=~;

相对瓦斯涌出量q CH4=2m3/t~3m3/t;

煤层的瓦斯含量:

W=长焰煤)

? W=气煤)

? W=肥、焦煤)

? W=瘦煤)

? W=贫煤)

? W=无烟煤)

当矿井相对瓦斯涌出量与开采深度之间不呈线性关系时,即a值不是常数时,应首先根据实测资料确定a值与开采深度的变化规律,然后再进行预测。

附录 A

(资料性附录)

开采层和邻近层瓦斯涌出量计算方法

开采层瓦斯涌出量

薄及中厚煤层不分层开采时,开采层瓦斯涌出量可由式计算。

式中:

q1——开采层相对瓦斯涌出量,m3/t;

K1——围岩瓦斯涌出系数;K1值选取范围为~;全部陷落法管理顶板,碳质组分较多的围岩,K1取;局部充填法管理顶板K1取;全部充填法管理顶板K1取;砂质泥岩等致密性围岩K1取值可偏小;

K2——工作面丢煤瓦斯涌出系数,用回采率的倒数来计算;

K3——采区内准备巷道预排瓦斯对开采层瓦斯涌出影响系数,如无实测值可按参照附录D选取;

m——开采层厚度,m;

M——工作面采高,m;

W0——煤层原始瓦斯含量,m3/t,参照附录C选取;

W c——运出矿井后煤的残存瓦斯含量,m3/t,如无实测值可参照附录C选取。

厚煤层分层开采时,开采层瓦斯涌出量计算采用式计算。

式中:

K f——取决于煤层分层数量和顺序的分层瓦斯涌出系数,如无实测值可按参照附录D选取;其他符号意义同前。

邻近层瓦斯涌出量

邻近层瓦斯涌出量采用式计算。

式中:

q2——邻近层相对瓦斯涌出量,m3/t;

m i——第i个邻近层煤层厚度,m;

M——工作面采高,m;

ηi——第i个邻近层瓦斯排放率,%,如无实测值可参照附录D选取;

W0i——第i个邻近层煤层原始瓦斯含量,m3/t,如无实测值可参照开采层选取;

W ci——第i个邻近层煤层残存瓦斯含量,m3/t,如无实测值可参照开采层选取。

附录 B

(资料性附录)

掘进工作面煤壁和落煤瓦斯涌出量计算方法

掘进巷道煤壁瓦斯涌出量

掘进巷道煤壁瓦斯涌出量采用式计算。

式中:

q3——掘进巷道煤壁瓦斯涌出量,m3/min;

D——巷道断面内暴露煤壁面的周边长度,m;对于薄及中厚煤层,D=2m o,m o为开采层厚度;对于厚煤层,D=2h+b,h及b分别为巷道的高度及宽度;

υ——巷道平均掘进速度,m/min;

L——巷道长度,m;

q0——煤壁瓦斯涌出强度,m3/(m2?min),如无实测值可参考式计算。

式中:

q0——巷道煤壁瓦斯涌出量初速度,m3/(m2?min):

V r——煤中挥发分含量,%;

W0——煤层原始瓦斯含量,m3/t,参照附录C选取。

掘进落煤的瓦斯涌出量

掘进巷道落煤的瓦斯涌出量采用式计算。

式中:

q4——掘进巷道落煤的瓦斯涌出量,m3/min:

S——掘进巷道断面积,m2;

υ——巷道平均掘进速度,m/min;

γ——煤的密度,t/m3;

W0——煤层原始瓦斯含量,m3/t,参照附录C选取;

W c——运出矿井后煤的残存瓦斯含量,m3/t,如无实测值可按参照附录C选取。

附录C

(资料性附录)

煤层原始瓦斯含量和残存瓦斯含量的选定

煤层瓦斯含量值是分源预测矿井瓦斯涌出量的核心参数,因此要求瓦斯含量测值尽可能接近真值。

煤层原始瓦斯含量的测定与计算可采用直接法(地勘钻孔解吸法)进行测定与计算,参见煤层气测定方法(解吸法)(MT/T77—94)。

地勘钻孔解吸法测定煤层瓦斯含量时,当钻孔深度小于500m时,按MT/T77—94标准测定瓦斯含量;当钻孔深度500m~1000m或煤的解吸性能很强时,测定值必须进行校正。

直接法测定的煤层瓦斯含量应与邻近生产矿井和已生产水平井下钻孔解吸法或间接法测定的瓦斯含量对比。

煤的残存瓦斯含量W c。高变质煤瓦斯含量>10m3/和低变质煤的W c值可按表选取;瓦斯含量<10m3/的高变质煤的W c值可按式()选取。

瓦斯含量<10m3/的高变质煤的W c按式()计算。

式中:

W c——煤层残存瓦斯含量,m3/;

W0——煤层原始瓦斯含量,m3/。

附录D

(资料性附录)

分源预测法各种系数的确定

采面巷道预排瓦斯影响系数K3

采用长壁后退式回采时,K3按式()计算。

K3=(L-2h)/L…………()

采用长壁前进式回采时,如上部相邻工作面已采,则K3=1;上部相邻工作面未采,K3按式()计算。

式中:

L——工作面长度,m;

h——掘进巷道预排等值宽度,m,如无实测值可按表取值;

b——巷道宽度,m。

分层开采第i分层瓦斯涌出量系数K fi

分层(两层或三层)开采时,K fi按表取值;分层(四层)开采时,K fi值按表取值。

两个分层开采三个分层开采

K f1K f2K f1K f2K f3

fi

邻近层受采动影响瓦斯排放率K i

当邻近层位于冒落带中时,K i=1。

当采高小于时,K i按式()计算或按图选取。

式中:

h i——第i邻近层与开采层垂直距离,m;

h p——受采动影响顶底板岩层形成贯穿裂隙,邻近层向工作面释放卸压瓦斯的岩层破坏范围,m。

1-上邻近层;2-缓倾斜煤层下邻近层;3-倾斜、急倾斜煤层下邻近层。

图邻近层瓦斯排放率与层间距的关系曲线

开采层顶、底板的破坏影响范围h p按《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程》中附录六的方法计算。

当采高大于时,K i按式()计算。

式中:

h i——第i邻近层与开采层垂直距离,m;

M——工作面采高,m。

L——工作面长度,m。

采空区瓦斯涌出系数K′、K″

采空区瓦斯涌出系数K′、K″按表选取。

瓦斯涌出不均衡系数K n

瓦斯涌出不均衡系数为该区域内最高瓦斯涌出量与平均瓦斯涌出量的比值。回采工作面或掘进工作面瓦斯涌出不均衡系数取K n=~或实际计算值。矿井或采构瓦斯涌出不均衡系数取K n=~或实际计算值。

基于人工神经网络的煤与瓦斯突出预测正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 基于人工神经网络的煤与瓦斯突出预测正式版

基于人工神经网络的煤与瓦斯突出预 测正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 随着我国煤炭科学技术的迅速发展,在煤与瓦斯突出预测方面取得了突出进展,提出了许多预测煤与瓦斯突出的方法和指标,如基于煤体破裂过程中的声发射和电磁辐射现象的非接触式预测方法;根据工作面打钻时的钻屑量、瓦斯涌出量及解吸量进行的接触式预测方法;以及其它预测指标等。但是这些方法和指标主要是使用回归分析的方法得出的,它考虑的是影响煤与瓦斯突出的个别是或重要因素,没有全面考虑影响煤与瓦斯突出的因素,致使突出敏感指标因地而异,突出临界值

随矿井不同而变化。因此,预测结果常常不很准确。 人工神经网络技术(ANN)的飞速发展,基于人工神经网络的预测煤与瓦斯突出预测已经能够达到很高的预测精度,优于其它预测方法,完全可以满足煤矿煤与瓦斯突出预测精度的要求。 1 影响煤与瓦斯突出事故的因素 (1)煤层瓦斯压力。原始瓦斯压力越高,煤体内的瓦斯含量越大,煤体破裂时单位面积裂隙上涌出的瓦斯量就越多,裂隙中就越可能积聚起较高的瓦斯压力,从而越可能撕裂煤体,并将撕裂形成的球盖状煤壳抛向巷道。 (2)围岩的透气性系数。围岩的透气

关于排放瓦斯浓度的控制方法

关于排放瓦斯浓度的控制方法 1.1瓦斯浓度的控制 《规程》第146条规定,如果停风区中,瓦斯浓度超过1%或二氧化碳浓度超过1.5%时,必须制定排除瓦斯或二氧化碳的安全措施,控制风流,使排出的风流在同全风压风流混合处的瓦斯和二氧化碳浓度都不得超过1.5%,回风系统内还必须停电撤人。只有经过瓦斯检查,证实恢复通风的巷道风流中瓦斯浓度不超过1%和二氧化碳浓度不超过1.5%时,方可人工恢复局部通风机供风的巷道中一切电气设备的供电。而《执行说明》第42条规定,必须使独头巷道排出的风流在全风压风流混合处的瓦斯浓度不超过1%,二氧化碳浓度不超过1.5%。对于全风压混合处瓦斯浓度的规定,《规程》与《执行说明》规定不一,现场执行的标准也不一样。应当说明,排出风流中瓦斯浓度越低越安全,但相应的排放时间较长,对于一些瓦斯涌出量较大的掘进工作面,正常生产时,回风流中的瓦斯浓度就接近1%,排放过程中独头巷道本身尚有大量瓦斯涌出,若将全风压混合处瓦斯浓度按不超过1%来执行,所需要的排放时间过长,对井下其它地方生产的影响更大,有些矿井基本上到了无法执行的地步,于是出现一些抵触情绪,干脆不按规定执行,快速排放,浓度也就无数值上的控制,处理不妥就可能酿成事故。笔者认为,将全风压混合处瓦

斯浓度严格控制在1.5%以下,比较现实,办法是在混合处设瓦斯探头,进行报警断电。 1.2控制排放瓦斯的方法 为使排放瓦斯风流在同全风压风流混合后,其中的瓦斯浓度不超限,必须采取控制排放方法,严禁“一风吹”,现场采取的控制方法主要有: (1)增阻限风法。增阻限风法的实质就是增加局部通风机的工作风阻,以限制局部通风机的风量,达到控制排放瓦斯的目的。主要方法有2种,一是在局部通风机入风口用木板阻挡;二是在风机出风侧用绳子捆绑。 (2)分风限风法。分风限风法的实质是让风流分岔,只让部分风流通过风筒进入独头巷道以排放瓦斯,另一股风流则同全风压风流一起稀释排放出来的瓦斯。主要有2种:一是在风机出风侧设“三通”,通过调节2个阀门的开启程度来控制进入独头巷道的风量;另一种是将风筒在风机出风口断开,调节对口位置以控制送入独头巷道的风量。 (3)逐段排放法。逐段排放法是指在独头巷道内将风筒断开,将独头巷道内积存的瓦斯由外向里逐段排放出来。

2017年小常煤矿瓦斯抽采达标能力核定报告

郊区三元南耀小常煤业 矿井瓦斯抽采达标能力核定报告 批准: 审核: 编写: 通风科 2016年10

郊区三元南耀小常煤业 矿井瓦斯抽采达标能力核定报告 第一章矿井概况及瓦斯赋存情况 一、矿井概况 郊区三元南耀小常煤业(以下称小常煤业)为地方国有企业。位于市郊区侯北庄镇,行政区划属市郊区。根据《煤矿生产能力核定标准》要求,煤矿各主要生产系统及环节其能力应当满足煤矿核定生产能力的需要,以煤矿最薄弱的生产系统能力为最终的核定生产能力。按照实事求是、保障安全、有效利用的原则,结合标准档次,就近下靠。根据省煤炭工业厅《关于郊区三元南耀小常煤业核定生产能力的批复》(晋煤行发〔2013〕1862号)文件,该矿井核定生产能力为210万t/a。 根据省煤炭工业厅文件晋煤瓦发〔2012〕1239号文件《关于郊区三元南耀小常煤业3号煤层矿井瓦斯涌出量预测的批复》,小常煤业以180万t/a 产量开采3号煤层时,矿井最大相对瓦斯涌出量为19.99m3/t,最大绝对瓦斯涌出量为75.74m3/min,批复结论为高瓦斯矿井。 二、矿井开拓及开采 矿井为立井开拓。井田共有三个井筒:主立井、副立井、回风立井。 主立井,井口坐标X=4011157.81,Y=19681399.57,Z=922.09。净直径5m,净断面19.625m2,混凝土浇筑,垂深320m。担负全矿井的提煤、回风任务,井筒设梯子间。为矿井一个安全出口。 副立井:X=4011217.10、Y=19681367.97、Z=922.38。井筒净直径5.5m,净断面23.746m2,混凝土浇筑,垂深342.78m。担负全矿井矸石提升和升降

矿井瓦斯涌出量预测计算公式

一、预测原则 1、根据矿井瓦斯涌出量预测方法(AQ 1018-2006标准)。 2、本矿井处于基建阶段,瓦斯涌出主要来源为回采工作面、煤巷掘进面及煤壁涌出。 3、岩巷瓦斯涌出量一般按照工作面配风量和工作面瓦斯浓度进行计算。 4、全矿井的瓦斯涌出量由煤、岩巷掘进工作面、其他巷道或硐室和瓦斯抽采量组成。 二、预测依据 1、回采工作面瓦斯涌出量 回采工作面瓦斯涌出量预测用相对瓦斯涌出量表达,以24h 为一个预测圆班,采用式(1-1)计算。 21q q q +=采 式 (1-1) 式中: q 采一回采工作面相对瓦斯涌出量,m 3/t ; q 1一开采层相对瓦斯涌出量,m 3/t ; q 2一邻近层相对瓦斯涌出量,m 3/t 。 开采层和邻近层相对瓦斯涌出量计算方法如下: a.不分层开采时,开采层瓦斯涌出量由式(1-2)计算: ()c W W M m k k k q -????=03211 式(1-2) 式中: q 1一开采层相对瓦斯涌出量,m 3/t ; K 1一围岩瓦斯涌出系数,取; K 2—工作面丢煤瓦斯涌出系数,取; K 3—采区内准备巷道预排瓦斯对开采层瓦斯涌出影响系数,取;

m 一开采层厚度,6m ; M 一工作面采高,; W 0—煤层原始瓦斯含量,m 3 /t ; Wc —运出矿井后煤的残存瓦斯含量,m 3/t 。 b. 未开采邻近层,故不计算邻近层瓦斯涌出量。 2、掘进工作面煤壁和落煤瓦斯涌出量 a.掘进巷道煤壁瓦斯涌出量 掘进巷道煤壁瓦斯涌出量采用式(1-1)计算。 30q 1)D v q =??? (1-1) 式中: q 3—掘进巷道煤壁瓦斯涌出量,m 3/min ; D —巷道断面内暴露煤壁面的周边长度,m ;本矿主采3#煤层,煤层平均厚度为;对于厚煤层,D=2h+b ,h 及b 分别为巷道的高度及宽度。 υ—巷道平均掘进速度,m /min ; L —巷道长度,m ; q 0—煤壁瓦斯涌出强度,m 3/(m 2min),如无实测值可参考式(1-2)计算。 q 0= [(Vr )2+]W 0 (1-2) 式中: q 0 — 巷道煤壁瓦斯涌出量初速度,m 3/(m 2min): V r — 煤中挥发分含量,%,古城煤矿3#煤层挥发份经煤炭工业厅综合测试中心鉴定为%。 W 0 — 煤层原始瓦斯含量,m 3/t 。 b. 掘进落煤的瓦斯涌出量 掘进巷道落煤的瓦斯涌出量采用式(1-3)计算。 q 4=S·v ·γ·(W 0-W c ) (1-3) 式中:q 4 —— 掘进巷道落煤的瓦斯涌出量,m 3/min; S —— 掘进巷道断面积,m 2;

煤与瓦斯突出的预测及防治措施详细版

文件编号:GD/FS-4282 (解决方案范本系列) 煤与瓦斯突出的预测及防 治措施详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

煤与瓦斯突出的预测及防治措施详 细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 1 煤与瓦斯突出的机理、类型与一般规律 1 1 煤与瓦斯突出的机理 许多国家对煤与瓦斯突出机理的研究都很重视,并取得了一定成果,但由于突出机理的复杂性及突出现象的多样性,目前对突出机理的认识仍处于假说阶段。国外对煤与瓦斯突出机理的认识可归纳为4种:地应力假说、瓦斯作用假说、化学本质假说和综合作用假说。 我国从60年代起就对突出煤层的应力状态、瓦斯赋存状态、煤的物理力学性能等开展了一系列的研究,根据现场资料和实验研究对突出机理进行了探

讨,提出了新的见解和观点,概括起来主要有中心扩张学说、流变假说、二相液体假说、固流耦合失稳理论、球壳失稳理论等。此外中国科学院力学研究所从力学角度对突出过程做了大量的研究工作,并提出了突出破坏过程及瓦斯渗流的机制方程。 1 2 煤与瓦斯突出的类型 煤与瓦斯的突出包括:煤与甲烷突出、岩石与甲烷突出、煤与CO2突出、岩石与CO2突出等。由于突出时的原动力和所表现现象的不同,煤与瓦斯突出可分为突出、倾出、压出3种情况。 1 3 煤与瓦斯突出的一般规律 (1)突出的次数和强度随开采的深度增加而增加; (2)突出多发生在地质构造地区,如褶曲、断层处及岩浆侵入地区;

保护层开采工作面瓦斯涌出量预测_戴广龙

第32卷第4期煤 炭 学 报V o.l 32 N o .4 2007年 4月 J OURNAL OF CH I N A COAL SOC I ETY A pr . 2007  文章编号:0253-9993(2007)04-0382-04 保护层开采工作面瓦斯涌出量预测 戴广龙1 ,汪有清1 ,张纯如2 ,李庆明2 ,邵广印 2 (1.安徽理工大学资源开发与管理工程系,安徽淮南 232001;2.淮南矿业集团谢桥煤矿,安徽淮南 232001) 摘 要:分析了分源法预测保护层工作面瓦斯涌出量理论和保护层开采时上覆煤岩层采动裂隙的分布,然后应用分源法预测了谢桥矿1242(1)保护层开采工作面瓦斯涌出量,预测结果为 15.93~17.22m 3 /m in ,误差为3.3%~4.5%.关键词:保护层开采;瓦斯涌出量;预测;瓦斯治理中图分类号:TD712.5 文献标识码:A 收稿日期:2006-06-26 责任编辑:毕永华 基金项目:安徽省高校科技创新团队计划资助项目(矿业安全技术2006KJ005Td );安徽省自然科学基金资助项目(070414171) 作者简介:戴广龙(1962-),男,安徽霍邱人,教授.E -m ail :g l dai @aust .edu .cn Forecast of the gas effused fro m the face i n protecti ve sea m DA I Guang -long 1 ,WANG You -qing 1 ,Z HANG Chun -r u 2 ,LI Q ing -m ing 2 ,SHAO Guang -y in 2 (1.D epart men t of Res our ces E xpl or a ti on and M anage m e n t E ngineeri ng ,Anhu i Un i versit y of S cie n c e and Technol og y ,Hua i nan 232001,Ch i na ;2. X ie qiao M i ne ,Huainan M i n i ng (Gr oup )Co .Lt d.,Hua i nan 232001,Ch i na ) Abst ract :The t h eo r y o f forecasting gas seepage fro m differen t sources at pro t e c tive face was ana l y zed and t h e rule of cranny distribution on the top of cove rw as g iven .Then the forecasted gas flo w fro m the pr o tecti v e face 1242(1) of X ieqiao M ine is bet w een 15.93and 17.22m 3 /m in ,and t h e err o r is 3.3%~4.5%.K ey w ords :ex tract p r o tec tive sea m ;gas e m ission flo w ;f o recast ;gas contr o l 随着煤矿开采深度的增加,开采规模不断扩大,煤矿安全生产问题变得越来越突出,成为制约矿井高产高效的主要因素,尤其是在开采低透气性高瓦斯有突出危险的煤层过程中,煤与瓦斯突出是严重威胁煤矿安全生产的自然灾害之一.目前,公认为开采不具高瓦斯和突出危险性的保护层是有效减少或消除被保护层煤与瓦斯突出危险性的有效措施.开采保护层的目的是对被保护层卸压,释放被保护层的弹性潜能,增大煤层的透气性,有利于煤层气的运移和解吸,降低被保护层的瓦斯含量及内能.在《煤矿安全规程》中也明确规定:“在开采具有煤与瓦斯突出煤层群时,必须首先开采保护层”.由于保护层的开采,造成邻近层煤层卸压,致使裂隙范围内的卸压瓦斯涌入开采工作面,为了确保回采工作面的安全生产,所以对保护层的开采工作面瓦斯来源分析以及瓦斯涌出量的预测变得尤为重要. 1 分源法预测保护层开采工作面瓦斯涌出量理论 分源法预测矿井瓦斯涌出量亦称瓦斯含量法预测矿井瓦斯涌出量.该预测法的实质是按照矿井生产过程中瓦斯涌出源的多少、各个瓦斯源涌出瓦斯量的大小,来预计该矿井各个时期(如投产期、达标期、萎缩期等)的瓦斯涌出量.各个瓦斯源涌出瓦斯量的大小是以煤层瓦斯含量、瓦斯涌出规律及煤层开采技术条件为基础进行计算确定的.根据煤炭科学研究总院抚顺分院的研究,矿井瓦斯涌出的源、汇关系如图1所示.

防突瓦斯主要参数实验步骤与计算方法

防突瓦斯主要参数的实验方法、数据计算与步骤 实验一瓦斯放散初速度△P的实验室测定 一实验目的 掌握煤的瓦斯放散初速度(△P)的测定方法 二实验方法与步骤 煤的瓦斯放散初速度(△P)是表征含瓦斯煤层暴露时放散瓦斯快慢(即从吸附转化为游离状态)的一个指标。目前,△P只能在实验室进行测定,主要步骤为: ⑴采样在煤层新鲜暴露面或通过打钻采取煤样250g,并附标签注明采样地点、层位、采样时间等。 ⑵制样将所采煤样进行粉碎,筛分出粒度为0.2~0.5mm的煤样。每一个煤样取2个试样,每个试样重3.5g。 ⑶测定 ①把2个试样用漏斗分别装入△P测定仪的2个试样瓶中; ②启动真空泵对试样脱气1.5h; ③脱气1.5h后关闭真空泵,将甲烷瓶与试样瓶连接,充气(充气压力 0.1MPa)使煤样吸附瓦斯1.5h; ④关闭试样瓶和甲烷瓶阀门,使试样瓶和甲烷瓶隔离; ⑤开动真空泵对仪器管道死空间进行脱气,使U型管泵真空计两端泵面相平;

⑥停止真空泵,关闭仪器死空间通往真空泵的阀门,打开试样瓶的阀门,使煤样与仪器被抽空的死空间相连并同时启动秒表计时,10s时关闭阀门,读出汞柱计两端汞柱差P1(mm),45s时再打开阀门,60s时关闭阀门,再一次读出汞柱计两端差P2(mm)。 ⑷计算 ①瓦斯放散初速度△P=P2-P1; ②同一煤样的两个试样测出的△P值之差不应大于1,否则需要重新测定。

试验二煤的坚固性系数f值得测定方法 一实验目的 掌握煤的坚固性系数(f)的测定方法 二仪器及用具 捣碎筒、计量筒,分样筛(孔径20mm,30mm和0.5mm各一个),天平(最大称量1000g,感量0.5g),小锤,漏斗、容器。 三采样及制样 沿新暴露的煤层厚度的上、中、下部各采样块度为10cm左右的煤样两块,在地面。煤样采出后用塑料袋包严,以防止分化。将煤样用小锤碎制成20~30mm的小块用孔径20或30mm的筛子筛选。称取制备好的试样50g为一份,每5份为一组,共三组。 四测定步骤 将捣碎筒放置在水泥地板或2cm厚的铁板上,放入试样一份,将2.4kg重锤提高到600mm高度,使其自由落下冲击试样,每份冲击3次,把5份捣碎后的试样装在同一容器中; 把每组(5份)捣碎后的试样一起倒入孔径0.5mm分样筛中筛分,筛至不再漏下煤粉为止; 把筛下的粉末用漏斗装入计量筒内,敲打使之密实,插入具有刻度的活塞尺与筒内粉末面接触,在计量筒口相平出读取数L。 五坚固性系数的计算 坚固性系数按下式计算: 20 f/ l n 式中f-坚固性系数; n-每份试样冲击次数,次; l-每组试样筛下煤粉的计量高度,mm。 测定平行样3组(每组5份),取算数平均值,计算结果取一位小数。

矿井瓦斯涌出量预测论

平煤三矿十采区瓦斯涌出量预测 摘要: 通过对平煤三矿的实际考察,收集了该矿大量的瓦斯资料和地质资料,经过整理分析得到各种地质条件、各种开采条件下的实际瓦斯涌出量。同时结合已学的瓦斯基本理论,根据瓦斯原始含量、矿井开拓方式、煤层赋存及煤质、煤层瓦斯含量分布规律等条件,运用分源法对该矿十采区瓦斯涌出量进行预测;通过对本采区的瓦斯涌出量预测对该采区的通风设计,瓦斯抽放设计与瓦斯管理提供技术支持,对该矿瓦斯防治工作具有一定的指导意义。 关键词: 瓦斯含量平煤三矿分源预测法瓦斯涌出量

THE NO.3 MINE OF PINGMEI GROUP THE NO.10 PICK AREA GAS TO WELL UP Abstract: Through to the even coal three ores actual inspections, has collected this ore massive gas material and the geological data, obtains under each geological condition, each kind of mining condition actual gas after the reorganization analysis wells up the out put. Simultaneously unifies already study the gas elementary theory, according to the gas primitive content, the mine pit development way, the coal bed tax saves and the anthrax, condition and so on coal bed gas content distribution rule, the utilization device source law ten picks the area gas to this ore to well up the output to carry on the forecast; Through to this picks the area the gas to well up the output to forecast to should pick the area to ventilate the design, the gas pulls out puts the design and the gas management provides the technical support, has the certain instruction significance to this ore gas preventing and controlling work. Key word: The gas content even;the NO.3 mine of pingmei group ; device sources pre-measurement; gas wells up the output

煤与瓦斯突出预测敏感指标及其临界值的确定方法

应用技术 煤与瓦斯突出预测敏感指标及其 临界值的确定方法 赵旭生1,2,董银生3,岳超平2 (1.山东科技大学资源与环境学院,山东青岛266510; 2.煤炭科学研究总院重庆分院,重庆400037; 3.宁夏煤矿安全监察局银南分局,宁夏银川751411) 摘 要:论述了突出预测敏感指标及其临界值的概念、判断原则和确定方法,结合大湾矿的实践,介绍了一种集历史资料统计、实验室和现场试验相结合的突出预测敏感指标及其临界值的确定过程、步骤和方法,对钻屑瓦斯解吸指标K 1、钻孔瓦斯涌出初速度及其衰减指标、钻粉量、炮后30min 吨煤瓦斯涌出量指标V 30和综合指标R 的敏感性进行了考察,并在此基础上研究和确定了K 1指标和V 30指标的临界值。 关键词:突出危险性预测;敏感指标;临界值;确定方法 中图分类号:T D713+.2 文献标识码:C 文章编号:1008-4495(2007)03-0028-03 收稿日期:2006-09-05 工作面煤与瓦斯突出(以下简称突出)危险性预 测和防突措施效果检验是突出矿井进行防突管理的 两项关键工作。目前我国大多数突出矿井,在进行 突出危险性预测时所采用的预测指标及其临界值基 本上都是按照《防治煤与瓦斯突出细则》所推荐的。 但是,针对不同的矿井或煤层,突出预测指标的敏感 性及其临界值可能是不同的,甚至存在很大的差异。 矿井在使用中应通过现场试验,摸索和确定适合本 矿煤层实际情况的突出预测指标及其临界值。否 则,可能因为指标不敏感或临界值不合适而造成预 测结果的不准确,导致误判,结果发生突出事故或增 加不必要的防突措施工程。所以,确定矿井突出预 测敏感指标及其临界值是防突工作中一项十分重要 的内容。1 预测敏感指标的概念及确定方法突出预测敏感指标是指针对某一煤层进行突出危险性预测时,在目前技术水平条件下能够较为明显地区分突出危险和非突出危险的指标[1]。煤与瓦斯突出是一种复杂的瓦斯动力现象,是由地应力、瓦斯及煤的物理力学性质3种因素综合作用的结果。理想的预测指标应是能够完全反映引发突出的3个因素,而实际上,目前常用的预测指标 仅是间接和部分反映这3个突出预测因素。对不同矿井、煤层或区域,突出的主导因素有所不同,3种因素在导致突出作用中的贡献比重有所不同。所以,主要反映突出3因素中某1个因素或两方面因素的不同指标,其预测突出危险的敏感性会有所不同。同时,预测指标还在一定程度上或多或少地受到现场测试条件、仪器性能、操作人员责任心等外部条件和人为因素的影响,使测定出的指标值影响因素复杂,从而影响指标的敏感性。判断一种指标是否敏感,主要考虑两个方面的因素:一是指标值的大小是否随着突出危险性的大小明显变化;二是影响指标值大小的突出危险因素是否大于测定误差等外部条件和人为因素。具体确定时可根据在有无突出危险时的指标值大小及其变 化幅度,以及测试环境、手段、人员水平等引起的测 定误差大小等判断,如在突出危险区与非危险区、突 出点附近与正常带、打钻时喷孔等动力现象(严重度 与频度等)与正常时、措施前后等测值的变化情况, 以及测值统计结果分布规律、指标与其他敏感指标 的对比等进行判断。所以预测敏感指标,必须通过 对各种指标的实际考察,结合本矿煤层或区域的具 体测试条件来确定,其敏感指标既能体现出本矿煤 层的突出主导因素,又适应矿井的具体测试条件, 从而较好地符合矿井实际。 ? 82?

矿井瓦斯涌出量预测计算公式

矿井瓦斯涌出量预测计 算公式 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

一、预测原则 1、根据矿井瓦斯涌出量预测方法(AQ1018-2006标准)。 2、本矿井处于基建阶段,瓦斯涌出主要来源为回采工作面、煤巷掘进面及煤壁涌出。 3、岩巷瓦斯涌出量一般按照工作面配风量和工作面瓦斯浓度进行计算。 4、全矿井的瓦斯涌出量由煤、岩巷掘进工作面、其他巷道或硐室和瓦斯抽采量组成。 二、预测依据 1、回采工作面瓦斯涌出量 回采工作面瓦斯涌出量预测用相对瓦斯涌出量表达,以24h 为一个预测圆班,采用式(1- 1)计算。 21q q q +=采式(1-1) 式中: q 采一回采工作面相对瓦斯涌出量,m 3/t ; q 1一开采层相对瓦斯涌出量,m 3/t ; q 2一邻近层相对瓦斯涌出量,m 3/t 。 开采层和邻近层相对瓦斯涌出量计算方法如下: a.不分层开采时,开采层瓦斯涌出量由式(1-2)计算: ()c W W M m k k k q -????=03211式(1-2) 式中: q 1一开采层相对瓦斯涌出量,m 3/t ; K 1一围岩瓦斯涌出系数,取1.2; K 2—工作面丢煤瓦斯涌出系数,取1.18; K 3—采区内准备巷道预排瓦斯对开采层瓦斯涌出影响系数,取0.83; m 一开采层厚度,6m ; M 一工作面采高,3.5m ; W 0—煤层原始瓦斯含量,m 3/t ; Wc —运出矿井后煤的残存瓦斯含量,m 3/t 。

b.未开采邻近层,故不计算邻近层瓦斯涌出量。 2、掘进工作面煤壁和落煤瓦斯涌出量 a.掘进巷道煤壁瓦斯涌出量 掘进巷道煤壁瓦斯涌出量采用式(1-1)计算。 30q 1)D v q =???(1-1) 式中: q 3—掘进巷道煤壁瓦斯涌出量,m 3/min ; D —巷道断面内暴露煤壁面的周边长度,m ;本矿主采3#煤层,煤层平均厚度为6.27m ;对于厚煤层,D=2h+b ,h 及b 分别为巷道的高度及宽度。 υ—巷道平均掘进速度,m /min ; L —巷道长度,m ; q 0—煤壁瓦斯涌出强度,m 3/(m 2?min),如无实测值可参考式(1-2)计算。 q 0=0.026[0.0004(Vr )2 +0.16]W 0 (1-2) 式中: q 0—巷道煤壁瓦斯涌出量初速度,m 3/(m 2?min): V r —煤中挥发分含量,%,古城煤矿3#煤层挥发份经煤炭工业厅综合测试中心鉴定为11.49%。 W 0—煤层原始瓦斯含量,m 3/t 。 b.掘进落煤的瓦斯涌出量 掘进巷道落煤的瓦斯涌出量采用式(1-3)计算。 q 4=S·v ·γ·(W 0-W c )(1-3) 式中:q 4——掘进巷道落煤的瓦斯涌出量,m 3/min; S ——掘进巷道断面积,m 2; υ——巷道平均掘进速度,m/min ; γ——煤的密度,t /m 3; W 0——煤层原始瓦斯含量,m 3/t; W c ——运出矿井后煤的残存瓦斯含量,m 3/t 。

矿井瓦斯涌出量预测方法A

矿井瓦斯涌出量预测方 法A 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

矿井瓦斯涌出量预测方法 AQ 1018-2006 国家安全生产监督管理总局2006-02-27发布 2006-05-01实施 前言 本标准的附录A、附录B、附录C、附录D均为资料性附录。 本标准由国家安全生产监督管理总局提出。 本标准由国家安全生产监督管理总局归口。 本标准起草单位:煤炭科学研究总院抚顺分院。 本标准主要起草人:姜文忠、秦玉金、闫斌移、薛军峰 1 范围 本标准规定了采用分源预测法与矿山统计法进行矿井瓦斯涌出量预测的方法。 本标准适用于新建矿井、生产矿井新水平延深、新采区以及采掘工作面(放顶煤工作面除外)的瓦斯涌出量预测。 2 规范性引用文件 下列文件中的条款通过本标准的引用成为本标准的条款。凡是注册日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达。 MT/T 77煤层气测定方法(解吸法) 《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程》 3 术语及定义 矿井瓦斯涌出量预测 prediction of mine gas emission rate 计算出矿井在一定生产时期、生产方式和配产条件下的瓦斯涌出量,并绘制反映瓦斯涌出规律的涌出量等值线图。 矿井瓦斯涌出量 absolute gas emission rate 单位时间内从煤层以及采落的煤(岩)体涌入矿井中的气体总量,矿井进行瓦斯抽放时包括抽放瓦斯量。 绝对瓦斯涌出量 absolute gas emission rate 单位时间内从煤层和岩层以及采落的煤(岩)体所涌出的瓦斯量,单位采用m2/min。 相对瓦斯涌出量 relative gas emission rate 平均每产1t煤所涌出的瓦斯量,单位为m2/t 矿山统计法 statistical predicted method of mine gas 根据对本矿井或邻近矿井实际瓦斯涌出资料的统计分析得同的矿井瓦斯涌出量随开采深度变化的规律,预测新井或新水平瓦斯的方法。 分源预测法 predicted method by different gas source

瓦斯涌出量计算办法 Microsoft Word 文档

虬髯客 矿井瓦斯涌出量预测方法 虬髯客https://www.wendangku.net/doc/2210892438.html,/qiuranke000 2009-03-06 13:20:35 矿井瓦斯涌出量预测方法 AQ 1018-2006 国家安全生产监督管理总局2006-02-27发布2006-05-01实施 前言 本标准的附录A、附录B、附录C、附录D均为资料性附录。 本标准由国家安全生产监督管理总局提出。 本标准由国家安全生产监督管理总局归口。 本标准起草单位:煤炭科学研究总院抚顺分院。 本标准主要起草人:姜文忠、秦玉金、闫斌移、薛军峰 1 范围 本标准规定了采用分源预测法与矿山统计法进行矿井瓦斯涌出量预测的方法。 本标准适用于新建矿井、生产矿井新水平延深、新采区以及采掘工作面(放顶煤工作面除外)的瓦斯涌出量预测。 2 规范性引用文件 下列文件中的条款通过本标准的引用成为本标准的条款。凡是注册日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达。 MT/T 77煤层气测定方法(解吸法) 《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程》 3 术语及定义 3.1矿井瓦斯涌出量预测prediction of mine gas emission rate 计算出矿井在一定生产时期、生产方式和配产条件下的瓦斯涌出量,并绘制反映瓦斯涌出规律的涌出量等值线图。 3.2矿井瓦斯涌出量absolute gas emission rate

单位时间内从煤层以及采落的煤(岩)体涌入矿井中的气体总量,矿井进行瓦斯抽放时包括抽放瓦斯量。 3.3绝对瓦斯涌出量absolute gas emission rate 单位时间内从煤层和岩层以及采落的煤(岩)体所涌出的瓦斯量,单位采用m2/min。3.4相对瓦斯涌出量relative gas emission rate 平均每产1t煤所涌出的瓦斯量,单位为m2/t 3.5 矿山统计法statistical predicted method of mine gas 根据对本矿井或邻近矿井实际瓦斯涌出资料的统计分析得同的矿井瓦斯涌出量随开采深度变化的规律,预测新井或新水平瓦斯的方法。 3.6分源预测法predicted method by different gas source 根据时间和地点的不同,分成数个向矿井涌出的与瓦斯源,在分别对这些瓦斯涌出源进行预测的基础上得出矿井瓦斯涌出量的方法。 4 一般要求 4.1 新建矿井或生产矿井新水平,都必须进行瓦斯涌出量预测,以确定新矿井、新水平、新采区投产后瓦斯涌出量大小,作为矿井和采区通风设计、瓦斯抽放及瓦斯管理的依据。 4.2 矿井瓦斯涌出量预测采用分源预测法或矿山统计法。 4.3 矿井瓦斯涌出量预测应包括以下资料: a) 矿井采掘设计说明书: 1) 开拓、开采系统图、采掘接替计划; 2) 采煤方法、通风方式; 3) 掘进巷道参数、煤巷平均掘进速度; 4) 矿井、采区、回采工作面及掘进工作面产量。 b) 矿井地质报告: 1) 地层剖面图、柱状图等; 2) 各煤层和煤夹层的厚度、煤层间距离及顶、底板岩性。 c) 煤层瓦斯含量测定结果、风化带深度及瓦斯含量等值线图;

矿井瓦斯涌出量预测计算公式

矿井瓦斯涌出量预测计算 公式 Prepared on 22 November 2020

一、预测原则 1、根据矿井瓦斯涌出量预测方法(AQ 1018-2006标准)。 2、本矿井处于基建阶段,瓦斯涌出主要来源为回采工作面、煤巷掘进面及煤壁涌出。 3、岩巷瓦斯涌出量一般按照工作面配风量和工作面瓦斯浓度进行计算。 4、全矿井的瓦斯涌出量由煤、岩巷掘进工作面、其他巷道或硐室和瓦斯抽采量组成。 二、预测依据 1、回采工作面瓦斯涌出量 回采工作面瓦斯涌出量预测用相对瓦斯涌出量表达,以24h 为一个预测圆班,采用式(1-1)计算。 21q q q +=采 式(1-1) 式中: q 采一回采工作面相对瓦斯涌出量,m 3/t ; q 1一开采层相对瓦斯涌出量,m 3/t ; q 2一邻近层相对瓦斯涌出量,m 3/t 。 开采层和邻近层相对瓦斯涌出量计算方法如下: a.不分层开采时,开采层瓦斯涌出量由式(1-2)计算: ()c W W M m k k k q -????=03211 式(1-2) 式中: q 1一开采层相对瓦斯涌出量,m 3/t ; K 1一围岩瓦斯涌出系数,取; K 2—工作面丢煤瓦斯涌出系数,取; K 3—采区内准备巷道预排瓦斯对开采层瓦斯涌出影响系数,取; m 一开采层厚度,6m ; M 一工作面采高,; W 0—煤层原始瓦斯含量,m 3/t ; Wc —运出矿井后煤的残存瓦斯含量,m 3/t 。

b. 未开采邻近层,故不计算邻近层瓦斯涌出量。 2、掘进工作面煤壁和落煤瓦斯涌出量 a.掘进巷道煤壁瓦斯涌出量 掘进巷道煤壁瓦斯涌出量采用式(1-1)计算。 30q 1)D v q =??? (1-1) 式中: q 3—掘进巷道煤壁瓦斯涌出量,m 3/min ; D —巷道断面内暴露煤壁面的周边长度,m ;本矿主采3#煤层,煤层平均厚度为;对于厚煤层,D =2h+b ,h 及b 分别为巷道的高度及宽度。 υ—巷道平均掘进速度,m /min ; L —巷道长度,m ; q 0—煤壁瓦斯涌出强度,m 3/(m 2min ),如无实测值可参考式(1-2)计算。 q 0= [(Vr )2+]W 0 (1-2) 式中: q 0 — 巷道煤壁瓦斯涌出量初速度,m 3/(m 2min ): V r — 煤中挥发分含量,%,古城煤矿3#煤层挥发份经煤炭工业厅综合测试中心鉴定为%。 W 0 — 煤层原始瓦斯含量,m 3/t 。 b. 掘进落煤的瓦斯涌出量 掘进巷道落煤的瓦斯涌出量采用式(1-3)计算。 q 4=S·v ·γ·(W 0-W c ) (1-3) 式中:q 4 —— 掘进巷道落煤的瓦斯涌出量,m 3/min ; S —— 掘进巷道断面积,m 2; υ —— 巷道平均掘进速度,m /min ; γ —— 煤的密度,t /m 3; W 0 —— 煤层原始瓦斯含量,m 3/t ; W c —— 运出矿井后煤的残存瓦斯含量,m 3/t 。

矿井瓦斯涌出量预测计算公式定稿版

矿井瓦斯涌出量预测计算公式精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

一、预测原则 1、根据矿井瓦斯涌出量预测方法(AQ 1018-2006标准)。 2、本矿井处于基建阶段,瓦斯涌出主要来源为回采工作面、煤巷掘进面及煤壁涌出。 3、岩巷瓦斯涌出量一般按照工作面配风量和工作面瓦斯浓度进行计算。 4、全矿井的瓦斯涌出量由煤、岩巷掘进工作面、其他巷道或硐室和瓦斯抽采量组成。 二、预测依据 1、回采工作面瓦斯涌出量 回采工作面瓦斯涌出量预测用相对瓦斯涌出量表达,以24h 为一个预测圆班,采用式(1-1)计算。 21q q q +=采 式(1-1) 式中: q 采一回采工作面相对瓦斯涌出量,m 3/t ; q 1一开采层相对瓦斯涌出量,m 3/t ; q 2一邻近层相对瓦斯涌出量,m 3/t 。 开采层和邻近层相对瓦斯涌出量计算方法如下: a.不分层开采时,开采层瓦斯涌出量由式(1-2)计算: ()c W W M m k k k q -????=03211 式(1-2) 式中:

q 1一开采层相对瓦斯涌出量,m 3 /t ; K 1一围岩瓦斯涌出系数,取1.2; K 2—工作面丢煤瓦斯涌出系数,取1.18; K 3—采区内准备巷道预排瓦斯对开采层瓦斯涌出影响系数,取0.83; m 一开采层厚度,6m ; M 一工作面采高,3.5m ; W 0—煤层原始瓦斯含量,m 3/t ; Wc —运出矿井后煤的残存瓦斯含量,m 3/t 。 b. 未开采邻近层,故不计算邻近层瓦斯涌出量。 2、掘进工作面煤壁和落煤瓦斯涌出量 a.掘进巷道煤壁瓦斯涌出量 掘进巷道煤壁瓦斯涌出量采用式(1-1)计算。 30q 1)D v q =??? (1-1) 式中: q 3—掘进巷道煤壁瓦斯涌出量,m 3/min ; D —巷道断面内暴露煤壁面的周边长度,m ;本矿主采3#煤层,煤层平均厚度为6.27m ;对于厚煤层,D=2h+b ,h 及b 分别为巷道的高度及宽度。 υ—巷道平均掘进速度,m /min ; L —巷道长度,m ; q 0—煤壁瓦斯涌出强度,m 3/(m 2min),如无实测值可参考式(1-2)计算。

基于人工神经网络的煤与瓦斯突出预测(最新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 基于人工神经网络的煤与瓦斯 突出预测(最新版) Safety management is an important part of production management. Safety and production are in the implementation process

基于人工神经网络的煤与瓦斯突出预测 (最新版) 随着我国煤炭科学技术的迅速发展,在煤与瓦斯突出预测方面取得了突出进展,提出了许多预测煤与瓦斯突出的方法和指标,如基于煤体破裂过程中的声发射和电磁辐射现象的非接触式预测方法;根据工作面打钻时的钻屑量、瓦斯涌出量及解吸量进行的接触式预测方法;以及其它预测指标等。但是这些方法和指标主要是使用回归分析的方法得出的,它考虑的是影响煤与瓦斯突出的个别是或重要因素,没有全面考虑影响煤与瓦斯突出的因素,致使突出敏感指标因地而异,突出临界值随矿井不同而变化。因此,预测结果常常不很准确。 人工神经网络技术(ANN)的飞速发展,基于人工神经网络的预测煤与瓦斯突出预测已经能够达到很高的预测精度,优于其它预测

方法,完全可以满足煤矿煤与瓦斯突出预测精度的要求。 1影响煤与瓦斯突出事故的因素 (1)煤层瓦斯压力。原始瓦斯压力越高,煤体内的瓦斯含量越大,煤体破裂时单位面积裂隙上涌出的瓦斯量就越多,裂隙中就越可能积聚起较高的瓦斯压力,从而越可能撕裂煤体,并将撕裂形成的球盖状煤壳抛向巷道。 (2)围岩的透气性系数。围岩的透气性系数越大,越有利于煤层中瓦斯泄漏,在同样瓦斯压力下,煤层中赋存的瓦斯越小。 (3)构造煤的类型。构造煤是煤与瓦斯突出的必要条件,不同类型构造煤具有不同的突出危险性。 (4)瓦斯放散初速度。煤样放散瓦斯快慢的程度用△P值表示,其大小与煤的微孔隙结构,孔隙表面性质和孔隙大小有关,随构造煤破坏类型的增高,△P值也增高。 (5)软分层煤厚。由下式可以看出,煤体撕裂后形成的球盖状煤壳曲率半径Ri 及煤壳所对的中心角Φi

煤与瓦斯突出的预测及防治措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.煤与瓦斯突出的预测及防治措施正式版

煤与瓦斯突出的预测及防治措施正式 版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 1 煤与瓦斯突出的机理、类型与一般规律 1 1 煤与瓦斯突出的机理 许多国家对煤与瓦斯突出机理的研究都很重视,并取得了一定成果,但由于突出机理的复杂性及突出现象的多样性,目前对突出机理的认识仍处于假说阶段。国外对煤与瓦斯突出机理的认识可归纳为4种:地应力假说、瓦斯作用假说、化学本质假说和综合作用假说。 我国从60年代起就对突出煤层的应力状态、瓦斯赋存状态、煤的物理力学性能

等开展了一系列的研究,根据现场资料和实验研究对突出机理进行了探讨,提出了新的见解和观点,概括起来主要有中心扩张学说、流变假说、二相液体假说、固流耦合失稳理论、球壳失稳理论等。此外中国科学院力学研究所从力学角度对突出过程做了大量的研究工作,并提出了突出破坏过程及瓦斯渗流的机制方程。 1 2 煤与瓦斯突出的类型 煤与瓦斯的突出包括:煤与甲烷突出、岩石与甲烷突出、煤与CO2突出、岩石与CO2突出等。由于突出时的原动力和所表现现象的不同,煤与瓦斯突出可分为突出、倾出、压出3种情况。 1 3 煤与瓦斯突出的一般规律

掘进工作面实际需要风量计算

掘进工作面实际需要风量计算? 答:每个掘进工作面实际需要风量,应按瓦斯涌出量、二氧化碳涌出量、人员和爆破后的有害气体产生量以及局部通风机的吸风量等规定分别进行计算,然后取其中最大值。 ①照瓦斯涌出量计算 ②Q掘=100×qCH4×KCH4 ③式中: ④Q掘——掘进工作面实际需要风量,m3/min; ⑤q CH4——掘进工作面回风巷风流中平均绝对瓦斯涌 出量,m3/min。抽放矿井的瓦斯涌出量,应扣除瓦斯抽放量进行计算; KCH4——掘进工作面瓦斯涌出不均匀的备用风量系数,正常生产条件下,连续观测1个月,日最大绝对瓦斯涌出量与月平均日瓦斯绝对涌出量的比值; 100——按掘进工作面回风流中瓦斯浓度不应超过1%的换算系数。 ②按照二氧化碳涌出量计算 Q掘=67×qCO2×KCO2 式中: Q掘——掘进工作面实际需要风量,m3/min; qCO2——掘进工作面回风巷风流中平均绝对二氧化碳涌出量,m3/min;

KCO2——掘进工作面二氧化碳涌出不均匀的备用风量系数,正常生产条件下,连续观测1个月,日最大绝对二氧化碳涌出量与月平均日二氧化碳绝对涌出量的比值;67——按掘进工作面回风流中二氧化碳浓度不应超过1.5%的换算系数。 ③按炸药量计算 a)一级煤矿许用炸药:Q掘≥25A b)二、三级煤矿许用炸药:Q掘≥10A 式中: Q掘——掘进工作面实际需要风量,m3/min; A——掘进工作面一次爆破所用的最大炸药量,Kg;25——每千克一级煤矿许用炸药需风量,m3/min;10——每千克二、三级煤矿许用炸药需风量,m3/min。 按上述条件计算的最大值,确定局部通风机吸风量。 ④按局部通风机实际吸风量计算 a)无瓦斯涌出的岩巷:Q掘=Q扇×I+60×0.15S b)有瓦斯涌出的岩巷、半煤岩巷和煤巷:Q掘=Q扇×I+60×0.25S 式中: Q掘——掘进工作面实际需要风量,m3/min; Q扇——局部通风机实际吸风量,m3/min; I——掘进工作面同时通风的局部通风机台数;

相关文档
相关文档 最新文档