文档库 最新最全的文档下载
当前位置:文档库 › 高频电子线路课程设计完整版

高频电子线路课程设计完整版

高频电子线路课程设计完整版
高频电子线路课程设计完整版

目录

1选题意义 (2)

2总体方案 (3)

3调幅半导体收音机的工作原理 (4)

3.1调幅的过程 (4)

3.2调幅收音机的工作原理 (5)

3.3调幅收音机的电路模块 (6)

3.3.1输入回路 (6)

3.3.2 变频级回路 (7)

3.3.3中频放大、自动增益控制电路 (9)

3.3.4 检波回路 (11)

3.3.5低放级回路 (11)

3.3.6功率放大回路 (11)

4收音机的调试 (13)

4.1调整三极管的静态工作点 (13)

4.1.1.三极管静态工作点的选取 (13)

4.1.2.静态工作点调整前的检查 (14)

4.1.3.静态工作点的测量与调整 (14)

4.2中频频率调整 (15)

4.2.1.信号通路检查 (15)

4.2.2.不用仪器调整中频 (16)

4.3接收频率范围的调整(或称频率覆盖调整) (16)

4.4统调(灵敏度调整) (17)

4.4.1.低频端的统调 (17)

4.4.2.高频端的统调 (17)

5课程设计体会 (18)

6参考文献 (19)

附图 (20)

1选题意义

通过动手做课程设计可以联系课堂所学知识,增强查阅、收集、整理、吸收消化资料的能力,为毕业设计做好必要的准备。而我选调幅半导体收音机原理及其调试是因为之前实习的时候做的是收音机,对其比较熟悉并且想再次巩固一下。

目前调幅式收音机,一般都采用超外差式,它具有灵敏度高、工作稳定、选择性好及失真度小等优点。

图1 收音机基本原理方框简图

天线的作用就是接收空间电磁波,让它在天线回路中产生信号电动势。由于空间有许许多多电台发送的电磁波,它们都有自己的固定频率,这些电磁波都同时被天线接收下来,如果不加选择地将这些信号还原为声音,那么这些声音就变成噪音。因此必须设法从天线接收下来的许多信号中选出所要收听的电台。在接收机中选台主要是利用不同电台发送的电磁波频率不同的特点来进行的,在收音机中这一任务是由电感线圈和可变电容器组成的谐振电路来完成的,通常称它为调谐电路。由调谐电路选择出的所需要的电台信号是已调幅的高频信号,虽然它被音频信号调制,但喇叭无法将这种信号还原成声音,因此,必须从高频信号中把音频信号分离出来,这个分离过程称为解调;解调就是解除调制的意思,通常称检波。在收音机中,检波是由半导体器件二极管或三极管来完成。调幅的高频信号经检波还原出音频信号,然后送往喇叭,喇叭将音频信号还原为声音。这就是无线电接收的最基本原理。

收音机接收天线将广播电台播发的高频的调幅波接收下来,通过变频级把外来的各调幅波信号变换成一个低频和高攀之间的固定频率—465KHz(中频),然后进行放大,再由检波级检出音频信号,送入低频放大级放大,推动喇叭发声。不是把接收天线接收下来的高频调幅波直接放大去检出音频信号(直放式)。它由输入回路高放混频级、一级中放、二级中放、前置低放兼检波级、低放级和公放级等部分组成,接受频率范围为535KHZ~1605KHZ的中波段。

2总体方案

调幅收音机是将所要收听的电台在调谐电路里调好以后,经过电路本身的作用,就变成另外一个预先确定好的频率(在我国为465KHz),然后再进行放大和检波。这个固定的频率,是由差频的作用产生的。如果我们在收音机内制造—个振荡电波(通常称为本机振荡),使它和外来高频调幅信号同时送到一个晶体管内混合,这种工作叫混频。由于晶体管的非线性作用导致混频的结果就会产生一个新的频率,这就是外差作用。采用了这种电路的收音机叫外差式收音机,混频和振荡的工作,合称变频。外差作用产生出来的差频,习惯上我们采用易于控制的一种频率,它比高频较低,但比音频高,这就是常说的中间频率,简称中频。任何电台的频率,由于都变成了中频,放大起来就能得到相同的放大量。调谐回路的输出,进入混频级的是高频调制信号,即载波与其携带的音频信号。经过混频,输出载波的波形变得很稀疏其频率降低了,但音频信号的形状没有变。通常将这个过程(混濒和本振的作用)叫做变频。变频仅仅是载波频率变低了,并且无论输入信号频率如何变化最终都变为465KHz,而音频信号(包络线的形状)没变。混频器输出的携音频包络的中频信号由中频放大电路进行一级、两级甚至三级中频放大,从而使得到达二极管检波器的中频信号振幅足够大。二极管将中频信号振幅的包络检波出来,这个包络就是我们需要的音频信号。音频信号最后交给低放级放大到我们需要的电平强度,然后推动扬声器发出足够的音量。若要求超外差式收音机得到更高的灵敏度,在调谐回路与混频之间还可以加入高频放大级然后再去混频。

3调幅半导体收音机的工作原理

3.1调幅的过程

所谓调幅就是使高频振荡电流的振幅随着调制信号的变化而变化。图2所示,是音频信号调制高频振荡电流各主要过程的信号波形图。在图2中,(a)图表示一个音频信号电流,(b)图表示一个高频振荡器产生的高频等幅振荡信号。(c)图表示(a)图信号调制(b)图高频振荡信号幅度的已调制高频振荡信号。可以看出,被调幅后的高频振荡电流它的振幅包络线中沿高频振荡电流正负峰点所连接的虚线]跟音频电流的变化规律完全一样,高频振荡电流振幅的变化正比于音频信号的幅度,振幅变化的周期等于音频信号的周期。

图2

图2表示了调幅广播的示意过程。声音由话筒转变为音频电信号,经放大后送到调制器,高频振荡器的产生高频率等幅振荡信号也送到调制器。在调制器中,高频振荡电流被音频信号调幅,调幅后的高频信号经高频放大后送往发射天线,然后由发射天线向四周空间发射电磁波。由于该电磁波已受信号调幅,所以称它为调幅波。

图3

3.2调幅收音机的工作原理

图4

图4为调幅超外差收音机的工作原理方框图,天线接收到的高频信号通过输入电路与收音机的本机振荡频率(其频率较外来高频信号高一个固定中频,我国中频标准规定为465KHZ)一起送入变频管内混合——变频,在变频级的负载回路(选频)产生一个新频率即通过差频产生的中频,中频只改变了载波的频率,原来的音频包络线并没有改变,中频信号可以更好地得到放大,中频信号经检波并滤除高频信号。再经低放,功率放大后,推动扬声器发出声音。

调幅收音机的工作原理过程为:将所要收听的电台在调谐电路里调好以后,经过电路本身的作用,就变成另外一个预先确定好的频率(在我国为465KHz),然后

再进行放大和检波。这个固定的频率,是由差频的作用产生的。如果我们在收音机内制造—个振荡电波(通常称为本机振荡),使它和外来高频调幅信号同时送到一个晶体管内混合,这种工作叫混频。由于晶体管的非线性作用导致混频的结果就会产生一个新的频率,这就是外差作用。采用了这种电路的收音机叫外差式收音机,混频和振荡的工作,合称变频。外差作用产生出来的差频,习惯上我们采用易于控制的一种频率,它比高频较低,但比音频高,这就是常说的中间频率,简称中频。任何电台的频率,由于都变成了中频,放大起来就能得到相同的放大量。调谐回路的输出,进入混频级的是高频调制信号,即载波与其携带的音频信号。经过混频,输出载波的波形变得很稀疏其频率降低了,但音频信号的形状没有变。通常将这个过程(混濒和本振的作用)叫做变频。变频仅仅是载波频率变低了,并且无论输入信号频率如何变化最终都变为465KHz,而音频信号(包络线的形状)没变。混频器输出的携音频包络的中频信号由中频放大电路进行一级、两级甚至三级中频放大,从而使得到达二极管检波器的中频信号振幅足够大。二极管将中频信号振幅的包络检波出来,这个包络就是我们需要的音频信号。音频信号最后交给低放级放大到我们需要的电平强度,然后推动扬声器发出足够的音量。若要求超外差式收音机得到更高的灵敏度,在调谐回路与混频之间还可以加入高频放大级然后再去混频。

3.3调幅收音机的电路模块

根据超外差收音机的原理,我们可以将图表3所示的电路分成以下几个模块:输入回路、变频回路(包括本振电路、混频电路和选频电路)、中频放大(中放)回路、检波及AGC回路、低放级回路、功放级回路。

3.3.1输入回路

图5 输入回路

从磁性天线感应的调幅信号送入C1a、C2和L1组成的输入回路进行调谐,选出所需接收的电台信号,通过互感耦合送入变频管T1的基极

3.3.2 变频级回路

图6 变频电路原理图

变频级电路的本振和混频,要求由一只三极管担任(自激式变频电路)。由于三极管的放大作用和非线形特性,所以可以获得频率变换作用。可选择“共基调发变压器耦合振荡器”。

按本设计要求,在图2中c u为外来中波信号调幅波,载频为f

c

(535~1605KHz);

u l 为本机振荡电压信号(等幅波),f

l

应为1MHz~2MHz。

两个信号同时在晶体管内混合,通过晶体管的非线性作用产生f

l+

f

c

的各次谐波,

在通过中频变压器的选频耦合作用,选出频率为f

l+f

c

=465KHz的中频调幅波,如图7

所示。

中频465KHz

中频调幅波

图7混频示意图

选择共基调发振荡电路的原因是该电路对外来信号与本机振荡电路之间的牵连干扰最小,工作稳定,可比共射式获得较高的频率。它的振荡调谐回路接在发射极与地

之间,基极通过C

5高频接地,振荡变压器的反馈线圈(L

4

)接在集极与地之间,如

c u

图8所示。

图8 共基调发振荡电路示意图

变频管选择3AG1型能满足要求,其CEO I 应该小,静态工作点C I 的选择不能过大或过小。C I 大,噪声大;C I 小,噪声小。但变频增益是随I C 改变的。典型变频级一般在0.2~1mA 之间有一个最大值。统筹考虑,C I 设计在0.5mA 左右为宜。本机振荡电压的强弱直接影响到反映管子变频放大能力的跨导,存在着一个最佳本振电压值。若振荡电压值过小,一旦电池电压下降,就会停振;若过大,在高端会产生寄生振荡,由于管子自给偏压作用,会使管子正常导通时间减少。本振电压一般选择在100mV 左右,由于采取的是共基电路,它的输入电阻低,如果本机振荡调谐回路直接并入,会使调谐回路的品质因素降低,振荡减弱,波形变坏,甚至停振。为提高振荡电路的性能,L 3要采取部分接入的方式,使折合到振荡调谐回路的阻抗增加到

21312/)eb N N r (。L

4

不能接反,否则变成负反馈,不能起振。

变频级是由一只晶体管T1同时起本振和混频作用的自激式变频电路。本振回路由L2、C7、C5、C1b 组成,它是互感耦合共基调射式的LC 振荡电路。L2抽头是为了减小晶体管的输入阻抗对振荡回路的影响。本振信号通过耦合电容C4从T1的射极注入,它与输入回路耦合到T1管基极的高频调幅信号在T1管中混频,由集电极调谐回路(中周)选出二者的差频即465kHz 的中频信号,然后再将中频信号送入中放电路去放大。

为了提高电路的稳定性,兼顾变频和振荡性能,静态工作电流一般取为0.3~0.4mA 。为了保证在电源电压降低时,本机振荡仍能稳定工作,变频级基极偏置电路

采用了相应的稳压措施,即利用两只硅二极管D1、D2进行稳压 3.3.3中频放大、自动增益控制电路(如图 9所示)。

图9 中放级电路原理示意

中放级可采用两极单调谐中频放大。变频级输出中频调幅波信号由T 3次级送到VT 2的基极,进行放大,放大后的中频信号再送到VT 3的基极,由T 5次级输出被放大的信号。三个中频变压器(T3、T4、T5)都应当准确地调谐在465KHz 。若三个中频变压器的槽路频率参差不齐,不仅灵敏度低,而且选择性差,甚至无法收听。中频变压器采取降压变压器,其初级线圈L 5要采用部分接入方式(道理同本振调谐电路)见图10。

图10 中频变压器接法示意图

这种接法以减少晶体管输出导纳对谐振回路的 影响,初级选取适当的接入系

数使晶体管的输出阻抗与中频变压器阻抗近似匹配,以获得较大的功率增益;中

的频变压器初、次级变比以各自负载选取,减小负载对谐振回路的影响。但选择L

5

接入系数及压降比时,不仅考虑到选择性,还要兼顾到增益和通频带。两级工作点的选择要有所区别,由于第一级总是带有自动增益控制电路,该级C I的选取要考虑到在功率增益变化比较急剧处,应选的比较小;但C I太小,功率增益也太小,整机性能随着电池电压变化时,稳定性就很差。综合考虑,对于3AG1型管选为0.4mA 左右。第二级C I应考虑充分利用功率增益,则选择功率增益已接近饱和处的C I值可选1mA左右。

次级送到检波二极管的中频信号被截去了负半周,变成了正半周的调幅脉动T

5

信号,再选择合适的电容量,滤掉残余的中频信号,取出音频成分送到低放级检波输出的脉动音频信号经R F、C8(C8可选几十微法)滤波得到的直流成分作为自动增益(AGC)电压,使第一中放基极得到反向偏置,当外来信号强弱变化时,自动地稳定中放级的增益。从图6可见,使用的是PNP型中放管,需要“+”的AGC 电压。检波二极管不能接反,否则AGC电压极性变反,达不到自动控制中放管增益的作用,可产生自激、哨叫。

中放级由T2、T3组成两级单调谐中频选频放大电路。各中频变压器均调谐于465kHz的中频频率上,以提高整机的灵敏度、选择性和减小失真。第一级中放(T2)加有自动增益控制,以使强、弱台信号得以均衡,维持输出稳定。中放管采用了硅管,其温度稳定性较好,所以采用了固定偏置电路。T2管因加有自动增益控制,静态电流不宜过大,一般取0.2~0.6mA;T3管主要要提高增益,以提供检波级所必须的功率,故静态电流取得较大些在0.5~0.8mA范围。为了有效地抑制强信号中放级还加了二极管D3作为强信号阻尼二次AGC控制。

3.3.4检波回路

经中频放大级放大了的中频信号,由中频变压器送至检波二极管D4进行检波。检波后的残余中频及高次谐波由C14C13和R8组成的RCπ型滤波电路予以滤除。音频信号由C15耦合到低放级去放大。电位器Rw是音量调节电位器兼作电源开关。检波后的直流成分经R4、C8组成的退耦电路送到T2的基极作为AGC控制之用。

3.3.5低放级回路

从检波级输出的音频信号,还需要进行放大再送到喇叭。为了获得较大的增益,

前级低频放大通常选用两级。要求第二级能满足推动末级功率放大器的输入信号强度,要有一定的功率输出,该激励可选择变压器耦合的放大器。如图11所示。以上各级静态工作点V E 值以电源电压而定,VT 1、VT 2、VT 5的V E 可取电源电压的1/5左右。

图11 低放激励原理图

T4为低频放大级,接成固定偏置电路,工作电流一般取0.5~1mA 范围。 功放输出级为典型的OT 电路,由T5、T6和T7等组成。其中T5为激励级,T6、T7为互补推挽输出级。R15、R16为激励级T5的偏置电阻;R18使T6、T7两管基极保持固定的电位差,改变R18可改变输出级的静态工作点。输出级工作电流一般取1.5~5mA 范围。C16为交流负反馈电容,C19为输出电容,C12、R14、C20为电源去耦电路的电容、电阻。另外,输出级T6、T7的中点电位(3v )可由R16来调节。 3.3.6功率放大回路

它将前级的信号再加以放大,以达到规定的功率输出,去推动喇叭发声,可选

择我们熟悉的OTL 电路。

低频放大电路的设计,是根据要求的输出功率、选择的电源电压、喇叭的交流电阻,从后向前进行。确定输出功率后进行功放管的选择,应通过手册查出功放管主要极限参数。例:小功率晶体管3AX31B 的极限参数:P CM ≥125mW ,I CM ≥125mA ,BV CEO ≥12V 。末级一对功放管的β、CEO I 及正向基极—发射级电阻R BE 等都要对称(保证误差在20%以内)。

如果以高频管代替低频管,用于小信号前置放大级是可以的,但是大信号运用时,功率嫌得不够,整机失真将增大。静态电流一般取3~5mA 左右,它的大小影响着输出功率,失真和效率。

激励级要求输出功率较小,一般甲类放大器能满足要求。可求出输出级的功率增益,根据所要求的输出功率指标及输入变压器的效率η求出激励级的输出功率,定出交流电压幅值U m 及交流电流的幅值I cm ,求出变比K 及I CQ 。 功率放大至低放前级要加入合适的负反馈。

对于两级以上的放大器,公共电源往往会造成寄生耦合。当电池内阻上产生的信号相位恰好和它原来的信号电压相位相同时,就会产生正反馈,正反馈电压比输入电压大时,就会产生自激振荡。电池越旧,其内阻就越大,就越容易产生寄生耦合。最后一级输出最强,对前级影响最大,应着重考虑末级的信号电流影响。消除这些寄生偶合的方法(退耦)是在电池的两端并联电容器(C 21)旁路掉原来通过电池内阻的大部分的信号电流。但各级共用一个电源,级与级间并未隔开,应在前、后级间加入退耦电路(电阻R 16,C 17),如图12所示。

16

R

图12退耦分析图

退耦电阻和退耦电容越大越好,但R 1s 不能太大,否则直流压降太大,致使前级需要直流电压降低过多,一般取100~470Ω之间,退耦电容C 21、C 17选为50~200μF 之间。因为大电容分布电感较大,对于高频有较大的感抗,可以在退耦电解电容两端再并一个小电容(例:并一个0.01μF 的电容)。对于其它因素产生的寄生耦合,可以通过屏蔽、妥善布线等手段解决。

4 收音机的调试

收音机机芯装配完后,经过反复检查,确实认为没有装错即可进行收音机的调整。收音机的调整主要有如下几个方面内容:

(1)三极管静态工作点调整。它主要是通过改变三极管上偏置电阻的阻值,使三极管静态工作在最佳状态。

(2)中频频率的调整。它是通过改变中频变压器的电感量,使与它相并联的电容器组成的并联谐振电路,其谐振频率为465kHz。

(3)接收频率范围调整。它是通过改变中波振荡线圈的电感量和本机振荡回路的微调电容器来实现收音机接收的中波频率范围为530~1605kHz。

(4)统调,也称灵敏度调整。它是通过调整天线线圈在磁棒上的位置(改变天线

线圈的电感量)和输入回路微调电容使收音机在接收频率范围内始终有f

振-f

=465kHz。

4.1调整三极管的静态工作点

4.1.1.三极管静态工作点的选取

收音机质量的优劣与三极管静态工作点的调整关系很大,因此,进行收音机的调整首先必须调整好各级静态工作电流。

变频三极管的静态工作电流调大一些,收音机的本机振荡相对强些,但混频效果差些,对应三极管的噪声也相应增加;若工作电流调得太小,噪声虽然可以减小,但电源电压稍降低时,本机振荡不易起振。

中放三极管加有自动增益控制,所以工作电流不宜调得太大。静态工作电流调得太大自动增益控制效果差,但静态工作电流也不能调得太小,因为工作电流太小,一中放功率增益小,整机增益就不高,特别是在电池电压变化时,整机性能变化显著,收音机稳定性变差。

中放三极管静态工作电流可取大一点,以便获得较高的功率增益,但是若三极管集电极静态工作电流大于lmA时,中放功率增益增大不了多少,所以中放静态工作电流通常取lmA左右。

前置低放(BG

6

)一般静态工作电流调2~3mA。由于该级要求在失真较小的前提下尽量能提高功率增益,所以静态工作电流可适当大些。

推挽功率放大级的静态工作电流主要用于克服交越失真(对应喇叭发出的声音像口吃似的)。

因此,静态工作电流不能调的太大,否则将增加电源的功率损耗,使功放级效率降低。一般调整原则是在不引起交越失真的前提下三极管静态工作电流尽可能调小。

4.1.2.静态工作点调整前的检查

静态工作点调整前的检查也称作通电前检查,其目的是为了防止收音机元件装错或元器件不良在通电时引起整机总电流太大而将电池耗尽或将元件损坏。因此,在通电前首先不装入电池,闭合收音机电源开关,用万用表R×100档测量电池极板,红表笔接收音机负极板,黑表笔接正极板正常电阻值约为700Ω。若电阻值约为0Ω,说明印刷电路板中有短路,可能故障是R17电阻以前的线路板电源负极走线与电源正极(地)短路,或电解电容器C

16

击穿。若电阻值基本正常,断开电源开关装入电池,将万用表拨置500mA档,将表笔并联于电源开关两端,正常电流在10mA左右。

若测得电流值很大,上百mA,则是C

16击穿或R

17

电阻之前的电源供电回路短路;若

测得电流大于10mA并伴随着通电时间而增加,故障元件是C

16

极性接反;若电流值

为20~30mA,可能故障是前置放大器不良,这时整机电流不是很大,所以可以通电进行偏置调整和故障检修。

4.1.3.静态工作点的测量与调整

测量三极管静态工作点是在无交流信号输人的前提条件下进行的,因此,测量低频放大器时必须使音量控制电位器置最小的位置。测量变频、中放电路时必须用

一根导线短路天线线圈的次级L

2

(1)功放级静态工作点的测量与调整。

将万用表拨至500mA电流档,测量功放级I

c7、I

c8

的静态工作电流,正常电流值

为2~6mA(这时万用表应退至10mA档测量)。若电流约为80mA左右,则是输入变压

器次级断线,或BG

7、BG

8

不良;若电流在6~30mA之间,则短接电路板为测量功放

级静态电流而开的槽口,用万用表电压档测量中点电压,正常电压值为电源电压的

一半。若中点电压不正常,故障是BG

7、BG

8

,不对称且三极管性能差;若电流约为

0mA,同时中点电压正常,故障是BG

7、BG

8

同时接错,集电极与发射极对调。

(2)前置低放静态工作点的测量。

将万用表拨置直流2.5V档,万用表黑表笔接地(电源的负极),红表笔接BG

6

射极,测量BG

6发射极对地电压,正常电压为U

e6

=0.6~0.7V。

(3)中放级静态工作点的测量。

将万用表拨置直流2.5V电压档,测量BG

2发射极对地电压,正常时U

e2

=0.6~

0.8V。若电压略偏离正常值可调整R

4电阻值,通常R

4

电阻值减小U

e2

电压值变得更

低,反之亦然。若U

e2正常,则测量BG

3

发射极对地电压,正常电压值为U

e3

=0.6~0.7V。

若U

e3不正常检查B

4

次级和B

5

初级绕组是否断线, R

8

是否不良,若上述元件都正常

则故障元件是BG

3

不良。

(4)变频级静态工作点的测量与调整。

测量BG

1发射极对地电压,正常电压值为U

e1

=0.6~1.0V。若电压略偏离正常值,

可调整R

1电阻的阻值,通常R

1

阻值减小U

e1

变得更低,反之亦然。若电压不正常,

采用直流等效电路的方法,然后进行检查。

收音机静态工作点调整结束,卸下短路L

2

的短路线。

本级电源电压

集电极回路最大电流=

集电极负载电阻+发射极电阻

这样才有能力通过测量静态工作点判断电路的工作状态。

若在调整过程中,发现上偏置电阻阻值很大时,集电极电流仍较大,但该电流值可以调小,则要重点检查,下偏置电阻是否开路;发射极电阻是否短路。若该电流无法调小,则要检查三极管是否击穿,耦合电容是否击穿、漏电或接反。若上偏置电阻阻值需要调得很小,才能达到规定的发射极电压值,则要着重检查三极管的发射极与集电极是否接反,三极管的β值是否太小。

若没有改变三极管偏置电阻的阻值,却发现发射极电压(或集电极电流)忽大忽

小地变化,这时要检查是否有外来信号输入,三极管的I

ceo

是否太大等。

若在调整三极管的偏置过程中偏置电阻的阻值刚略有变动时,发射极电压(或集电极电流)不是缓缓发生变化,而是突然变化,则可能故障是电位器或微调电阻接触不良或电路产生振荡,若振荡发生在低频放大电路可将输入变压器初级线圈引脚对调,破坏振荡的相位条件。

4.2中频频率调整

4.2.1.信号通路检查

收音机各级静态工作点调整结束,将音量控制电位器顺时针旋置最大,在正常

情况下喇叭应有声音。若喇叭无声,可用干扰法检查故障部位。首先用镊子碰BG

5基极,若喇叭无声,故障是喇叭不良;若喇叭有声,可用镊子碰W电位器中心滑动

片。此时若仍无声,故障是C

10

不良;若有声,故障是检波电路或检波前的电路工作

不良。

接通电源并将音量开至最大,判断变频级振荡电路是否起振用万用表电压档测

BG

1

发射极对地电压的同时用一根导线短路中波振荡线圈次级,如图6-2-9所示。短路时万用表指示的电压值要发生微弱的变化。若电压值没有变化,说明变频电路中本机振荡电路不工作,可能故障是三极管装错,将低频三极管当高频三极管用,或

C 3不良。对于C

3

不良可用一个0.01uF的瓷介电容在路与C

3

并联试一试。若并上电

容时电路工作正常,则故障是与其相并联的电容器不良;若电路仍不起振,一般故障是振荡线圈开路或振荡线圈相位接反。若检查发现变频电路中本机振荡电路工作正常,在确认天线线圈L

1

没有开路的前提下,喇叭无声是中频放大电路工作不良引

起的。由于中频放大电路旁路电容C

4C

5

、C

8

失效只能使收音机灵敏度低而不会引起

收音机无声,所以故障是与中频变压器相并联的谐振电容不良或电容量不正确,否则即为中频变压器不良。为了判断哪个中频变压器或电容不良,可用干扰法进行检

查。分别用镊子碰BG

3、BG

2

的基极,先碰BG

3

基极。若喇叭无声,检查B

5

中周中的C

和B

5;若喇叭有声,再碰BG

2

基极。若此时喇叭无声,检查B

4

中周中的C和B

4

;若

喇叭有声检查B

3中周中的C和B

3

4.2.2.不用仪器调整中频

收音机静态工作点调整好后,一般都能收到一些电台信号。这时若用导线短接双连可变电容器的振荡连C

10

时,接收的电台信号消失,说明收音机变频电路工作正常,可以进行中频调整。

调整中频,就是调整收音机上各中频变压器的电感量,使它与其相并联的电容器组成的谐振电路谐振于465kHz中频频率上。一般中频变压器出厂时都已校准过,但新安装的收音机由于与它相并联的电容器存在容量误差,印刷电路板线路间存在分布电容,所以会将造成各中频变压器不同时谐振在同一个频率上,因此新装配的收音机要进行中频调整。由上所述可知,这种调整原则上是不能大范围调整中频变压器的磁帽位置,即不行将中频变压器的磁帽旋得很进去(这时对应电感量最大)或旋得很出来(这时对应电感量小)。

4.3接收频率范围的调整(或称频率覆盖调整)

中频变压器谐振频率校准后,将调谐拨盘直接紧固在双连可变电容器的轴柄上,然后用M2×5的沉头螺钉紧固好,将机芯装入机壳内并用两个M3×5头螺钉将它紧固在机壳上。调整调谐拨盘,确认指针指示范围为530—1605kHz。接通电源,调谐拨盘使拨盘指针指示在刻度盘低频端现正在播音的电台频率上(可取一架成品收音机进行比较),例如640kHz。用无感螺丝刀调整中波振荡线圈B

2

的磁帽,使收音机收到该电台信号。同样,调谐拨盘使拨盘指针指示在刻度盘高频端现正在播音的电台频率上,使收音机收到该电台信号,用剪刀剪去拉出的导线,这样反复调整一两次,确认收音机中波接收频率为530—1605kHz,则收音机接收频率范围调整就结束了。

4.4统调(灵敏度调整)

统调也叫做“跟踪”,目的就是使双连可变电容器不论旋转任何角度,天线线圈

的谐振频率和本机振荡回路的频率差值都等于465kHz,即f

振-f

=465kHz。满足这

种关系时,我们称两个谐振回路同步。这样就可在下一级中频放大器中得到最大放大量,从而得到最高灵敏度。

但是,在实际调整中要做到两个谐振回路同步是很困难的。所以一般只要在三点频率上即低频端600kHz附近、中频端1000kHz附近、高频端1500kHz附近实现同步,就可以认为在整个中波接收范围内基本同步。调整方法如下:

4.4.1.低频端的统调

在刻度盘频率低端选一个电台,如640kHz的电台,听到该电台的播音后,移动B

线圈在磁棒上的位置,使听到的广播声音最大声为止。

4.4.2.高频端的统调

在刻度盘频率高端选一个电台,如1330kHz的电台,听到这个电台的播音后调

整C

2微调电容器,如果C

2

是拉线微调电容,就要边拉出动片金属丝,边听广播声音

的变化,直到声音最大为止。因为高端、低端的调整相互之间有点影响,所以高低端统调要重复几次,使高端、低端都达到最好的状况,这时用剪刀剪掉拉线电容器多余的金属丝。

在统调时,应注意随时调节音量电位器到合适的音量,使调整时收音机声音大小变化能清楚地分辨出。

5 课程设计体会

选定题目,再一次从理论到实践,把所学的知识运用到实际中,解决实际问题,需要有综合与创新能力,而我在这方面有所欠缺。因此,在这次课程设计中这两个能力得到培养,不但巩固了以前所学到的知识,而且学到了许多课外知识。通过这次课程设计,我懂得了理论与实际相结合的重要性,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考能力。在设计的过程中难免会遇到各种各样的问题,同时在设计的过程中也发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固。通过这次课程设计之后,我一定把以前所学过的知识重新温故

总之,为了完成这次高频课程设计报告,我着实付出了很大努力也花费了不少时间,因此当这份报告最终完成时,我有一种心中石头落了地的感觉,因为我付出了艰苦的努力,同时我也无法发言时内心的喜悦之情,因为我的努力得到了回报,我也学到了知识。另外这次高频课程设计也激发了我学习高频的兴趣,这只是一个起点,今后我还要认真努力地学习高频!

“雄关漫道真如铁,而今迈步从头越”,这次高频课设虽已结束,但我的人生设计才刚刚开始,在这期间我尝到了苦尽甘来的滋味,困难重重但我一一解决,感谢我的指导老师,也感谢帮助我的同学们。

6参考文献

(1) 董在望 . 《通信电路原理》. 高等教育出版社1989年11月

(2) 张肃文,路兆雄. 《高频电子线路》. 高等教育出版社 2006年5月

(3)毕满清. 《电子工艺实习教程》. 国防工业出版 2003年5月

(4)严一白,王家伟. 《电子技术实习教程》. 上海交通大学出版社 2004年3月

(5)程一炜,李娜. 《电子工艺技术入门》. 化学工业出版社 2007年

附图

6

54391K R 1

2.7K

R 20.022U

C 24.7U

C 40.01U

C 3

0.01U

C 10(黑)

(白)

(绿)

150K R 3510

R 84.7K R P 0.01U C 5

4.7K

C 80.033U C 630K R 497K R 5100U

C 7

6200

R 7

I N 4148V 7

0.01U

C 92.55m m

E a

8E S

3V E C T 1

T 2

T 3

T 4

L F 10-1

L F 10-1

L F 10-2

V 1V 2V 3V 4V 5V 63G D 201

3G D 201

3G D 201

3G D 201

90139013

S

T 6T 5

C 1b 3/60P

高频电子线路课程设计.

目录 一设计总体思路及比较 (2) 二单元电路思路 (6) 输入回路 (6) 本机荡回路 (8) 中频滤波器匹配参数 (10) 限频电路 (12) 鉴频电路 (13) 低频放大电路 (14) 三总结体会 (15) 四总原理图 (16) 参考资料 (17)

第一章设计总体思路及方案比较 一.调频收音机的主要指标 调频接收机的主要指标有: 1工作频率范围 接收系统可以接受到的无线电波的频率范围称为接收机的工作频率范围。接受系统的工作频率必须与发射机的工作频率工作频率相对应。调频接收机的频率范围为88~108MH,是因为调频广播收音机的工作范围也为88~108MH。 2 灵敏度 接收系统接受微弱信号的能力称为灵敏度。一般用输入信号电压的大小来表示。接收的输入信号越小,灵敏度越高。调频接收机的灵敏度一般为5~30uv。 3选择性 接收系统从各种信号和干扰信号中选出所需信号,抑制不需要的信号的能力称为选择性,单位用dB表示,dB数越高,选择性越好。调频接收机的中频干扰应大于50dB。 4 频率特性 接收系统的频率响应范围称为频率特性或通频带。 5 输出功率 负载输出的最大不失真功率称为输出功率。

二调频接收机的系统方框图 调频接收机的系统方框图如所示,它是由输入回路,高频放大器,混频器,本机振荡,中频放大器,鉴频器,低频放大器等电路组成。其工作原理是:天线接受到的高频信号,经输入调谐回路选频为f1,再经高频放大器放大进入混频级。本机振荡器输出的另一高频f2也进入混频级,则混频级的输出为含有f1、f2、(f1+f2)、(f2-f1)等频率分量的信号。混频级的输出接调频回路选出中频信号(f2-f1),再经中频放大器放大,获得足够高增益,然后鉴频器解调出低频调制信号,由低频功放级放大。 三MC3362芯片特点 MC3362是低功耗窄带双变频超外差式调频接收机系统集成电路,它的片内包含两个本征,两个混频器,两个中放和正交鉴频等功能电路。MC3362的接收频率可达450MHz,采用内部本征时,也可

高频电子线路教学大纲

四川科技职业学院 《高频电子线路》课程教学大纲 一、课程的基本情况 课程中文名称:高频电子线路 课程英文名称:High frequency electronic circuits 课程代码: 课程性质:必修 课程学时:64 课程学分:4 适用专业:电子信息工程技术、通信技术 先修课程:高等数学,电路分析,模拟电子技术 二、教学目标 《高频电子线路》是一门理论性和实践性都很强的专业课程。掌握高频电子信息产生、发射、接收的原理与方法,理解高频电子器件和高频电路的工作原理;掌握高频电子线路的基本组成、分析和计算方法;掌握高频电子线路的识图、作图和简单设计方法;了解高频电子线路的最新发展动态,为后续电子课程的学习打下基础 三、教学内容与要求 1.了解通信系统组成,掌握非线性电路与选频电路的分析方法,熟悉晶体管高频等效模型。 2.清楚高频小信号选频放大器的一般模型与任务,重点掌握晶体管谐振放大器,熟悉放大器的稳定性。 3.了解放大器内部噪声的来源、性质,熟悉元件噪声模型,熟知信噪比、噪声系数的概念,并会简单计算。 4.了解高频功率放大器的应用,熟知丙类谐振放大器的工作原理,会分析该放大器的工作状态,熟知其高频特性。了解有关高频功率放大器的一些新技术。 5.熟知反馈型自激振荡器的工作原理,重点掌握LC正弦波振荡器,会分析电路、定量计算、确定主要参数。应知道石英晶振的相关知识。 6.必须熟知调制、解调的相关重要概念,熟知幅度(角度)调制(解调)的常用电路,熟练掌握相关基本数学计算。 7.清楚混频(变频)的概念,熟知变频干扰。 8. 熟知电子线路中三种常用的反馈控制电路:AGC、AFC、APC。重点掌握锁相环路(PLL即APC)的工作原理。 第一章绪论

高频电子线路实验说明书

高频电子线路实验 说明书

实验要求(电信111班) l.实验前必须充分预习,完成指定的预习任务。预习要求如下: 1)认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的估算。 2)完成各实验“预习要求”中指定的内容。 3)熟悉实验任务。 4)复习实验中所用各仪器的使用方法及注意事项。 2.使用仪器和学习机前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。 3.实验时接线要认真,相互仔细检查,确定无误才能接通电源,初学或没有把握应经指导教师审查同意后再接通电源。 4.高频电路实验注意: 1)将实验板插入主机插座后,即已接通地线,但实验板所需的正负电源则要另外使用导线进行连接。 2)由于高频电路频率较高,分布参数及相互感应的影响较大。因此在接线时连接线要尽可能短。接地点必须接触良好。以减少干扰。 3)做放大器实验时如发现波形削顶失真甚至变成方波,应检查工作点设置是否正确,或输入信号是否过大。

5.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应即关断电源,保持现场,报告指导教师。找出原因、排除故障,经指导教师同意再继续实验。 6.实验过程中需要改接线时,应关断电源后才能拆、接线。 7.实验过程中应仔细观察实验现象,认真记录实验结果(数据、波形、现象)。所记录的实验结果经指导教师审阅签字后再拆除实验线路。 8.实验结束后,必须关断电源、拔出电源插头,并将仪器、设备、工具、导线等按规定整理。 9.实验后每个同学必须按要求独立完成实验报告。 实验一调谐放大器 一、实验目的

1、熟悉电子元器件和高频电路实验箱。 2、熟悉谐振回路的幅频特性分析一通频带与选择性。 3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。 4、熟悉和了解放大器的动态范围及其测试方法。 二、实验仪器 1、双踪示波器 2、扫频仪 3、高频信号发生器 4、毫伏表 5、万用表 6、实验板1 三、预习要求 1、复习谐振回路的工作原理。 2、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。 3、实验电路中,若电感量L=1uh,回路总电容C=220pf (分布电容包括在内),计算回路中心频率 f 0 。图1-1 单调谐回路谐振放大器原理图 四、实验内容及步骤 (一)单调谐回路谐振放大器

高频电子线路教学大纲

《高频电子线路》教学大纲 英文名称:High Frequency Electronic Circuits 学分:3学分学时:48学时理论学时:40学时实验学时:8学时 教学对象:电子信息工程、电子信息科学与技术专业的本科生 先修课程:电路分析、信号与系统、低频电子线路 教学目的: 本课程是通信工程专业本科生的一门专业基础课程。它阐述的通信电路已广泛用于各种频段的信号传送。通过本课程的学习,使学生熟悉并掌握高频电子线路的工作原理和分析方法,能够对主要功能电路进行分析和设计,并具备根据生产实践要求、用这些单元电路构成电子电路系统的能力,为后续专业课程打下较坚实的技术理论基础。 教学要求: 本课程的先修课程为大学物理、电路、信号与系统、低频电子线路。它的目的主要向学生介绍无线通信系统中功能电路的原理,注重加强基础,对电子电路基本单元电路的基本概念、基本原理、基本分析方法进行详细的讲解,并指出每章的重点和难点部分。通过纳入电子技术的最新发展成果,注重理论联系实际,启迪学生的思维,加深学生对有关概念、内容和方法的理解,使学生理解并掌握简单电子电路系统的分析方法与设计方法。 教学内容: 绪论(1学时) 基本要求: 本章要了解通信系统的基本组成、基本工作原理、电路系统的非线性及本课程的特点。 重点: 建立起通信系统的基本概念,认识本课程的特点。 难点: 电路系统的非线性。 第一章LC谐振回路(4学时) 1. LC谐振回路的选频特性和阻抗变换特性 2.集中选频滤波器 3.电噪声 4.反馈控制电路原理及其分析方法

基本要求: 掌握LC串并联回路的组成、原理及特性;掌握LC阻抗变换电路的结构、分析方法;了解常用集中选频滤波器的特点和使用方法;了解电噪声的概念和来源,了解噪声温度的概念,掌握噪声系数的定义和计算;了解反馈控制电路的概念。 重点: 掌握LC串并联回路的组成、原理及特性;掌握LC阻抗变换电路的结构、分析方法;掌握噪声系数的定义和计算。 难点: LC谐振回路中谐振电导(电阻)、品质因数的计算,接入系数的计算。 第二章高频小信号放大电路(5学时) 1.谐振放大器 单管单调谐放大器、多级单凋谐放大器、谐振放大器的稳定性 2.宽频带放大器 展宽放大器频带的方法 基本要求: 掌握高频小信号调谐放大器的组成、工作原理和分析方法;了解调谐放大器不稳定的原因及解决方法。 重点: 高频单调谐放大器的等效电路、性能指标要求及分析。 难点: 高频单调谐放大器的的指标分析。 第三章高频功率放大电路(6学时) 1.丙类谐振功率放大电路 丙类谐振功率放大电路的工作原理、性能分忻,直流馈电线路与匹配网络 2.宽带高频功率放大电路与功率合成电路 基本要求: 了解高频功率放大器中的功能和性能指标;掌握丙类调谐功率放大器的电路组成、工作原理和分析方法;了解传输线变压器的特性和应用;了解功率合成技术。 重点: 掌握丙类调谐功率放大器的电路组成、工作原理和分析方法;了解传输线变压器的特点;了解功率合成技术。 难点: 丙类谐振功率放大电路的性能分忻。 第四章正弦波振荡器(4学时)

高频电子线路课程标准

课程标准 课程名称:高频电子线路 课程代码:05034 适用专业:应用电子技术、通信技术学时:72 学分:4.5 制订人: 审核:

兰州资源环境职业技术学院《高频电子技术》课程标准 课程代码:05034 课程名称:高频电子线路 英文名称:High Frequency Electronic Circuits 课程性质:职业技术学习领域 总学时:72 理论学时:54 实验(训)学时:18 适用专业:应用电子技术、通信技术 第一部分课程定位与设计 一、课程性质 本课程的目的是使学生掌握各种高频电子线路模型、电路的工作原理和性能、电路的分析方法和各种电路的内在联系,以期达到能运用各种高频电路的能力。同时也为专业课和其它电子信息学科的学习打下必要的基础,培养学生分析问题、解决问题的能力。 本课程是高等职业技术学院通信技术、应用电子技术等专业的一门专业基础课,为后续学习专业课打下良好的基础。 二、课程作用 本课程旨在讲述非线性电路的分析方法及其在通信领域的应用。学完课程后,学生应能建立非线性的概念,在掌握模拟通信系统的组成和工作原理的同时,分析、设计电路的能力与专业素养也将得以提高。 三、前导后续课程 本课程是应用电子专业和通信技术专业的核心课程,其前导课程是《电路分析》、《信号与系统》及《模拟电子技术》,学生只有在掌握基本的电路模块及低频电子线路的分析方法的基础上,才能进一步学习本课程的理论及非线性电路的分析方法。 四、设计理念和思路 本课程的设计思路是以培养应用型高职高专人才为指导思想,通过本门课程的学习,使学生在掌握高频非线性电路知识的同时,能够掌握更多的相关知识,使学生可以面向应用岗位。根据这一指导思想,将通信系统中所涉及到的发送设备和接收设备

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器 一、实验目的 1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计 算。 2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影 响。 3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、 熟悉振荡器模块各元件及其作用。 2、 进行LC 振荡器波段工作研究。 3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、 测试LC 振荡器的频率稳定度。 三、实验仪器 1、模块 3 1块 2、频率计模块 1块 3、双踪示波器 1台 4、万用表 1块 四、基本原理 实验原理图见下页图1。 将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。 ) 14(121 0CC C L f += π 振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数 F= 32.0470 220220 3311≈+=+C C C 振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经

N3调谐放大,再经变压器耦合从P1输出。 图1 正弦波振荡器(4.5MHz ) 五、实验步骤 1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 (1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。 (2)改变上偏置电位器W1,记下N1发射极电流I eo (=11 R V e ,R11=1K)(将万用表红 表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频率和最低频率填于表3中。 六、实验结果 1、步骤2振荡幅度V P-P 见表1.

中北大学高频电子线路实验报告

中北大学 高频电子线路实验报告 班级: 姓名: 学号: 时间: 实验一低电平振幅调制器(利用乘法器)

一、实验目的 1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与 过程,并研究已调波与二输入信号的关系。 2.掌握测量调幅系数的方法。 3.通过实验中波形的变换,学会分析实验现象。 二、预习要求 1.预习幅度调制器有关知识。 2.认真阅读实验指导书,了解实验原理及内容,分析实验电路中用1496乘 法器调制的工作原理,并分析计算各引出脚的直流电压。 3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。 三、实验仪器设备 1.双踪示波器。 2.SP1461型高频信号发生器。 3.万用表。 4.TPE-GP4高频综合实验箱(实 验区域:乘法器调幅电路) 四、实验电路说明 图 幅度调制就是载波的振幅受 调制信号的控制作周期性的变化。 变化的周期与调制信号周期相同。 即振幅变化与调制信 号的振幅成正比。通常称高频信号为载波5-1 1496芯片内部电路图 信号,低频信号为调制信号,调幅器即为 产生调幅信号的装置。 本实验采用集成模拟乘法器1496来构成调幅器,图5-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。D、V7、V8为差动放大器V5、V6的恒流源。进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接 1KΩ电阻,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集

高频电子线路课程设计

课程设计 2012年2月24日

课程设计任务书 课程高频电子线路 题目高频功率放大器的设计 专业电子信息工程姓名学号 主要内容、基本要求、主要参考资料等 1、主要内容 利用所学的高频电路知识,设计一个高频功率放大器。通过本次电路设计,掌握高频谐振功率放大器的设计方法、电路调谐及测试技术。加深对高频电子线路课程理论知识的理解,提高电路设计及电子实践能力。 2、基本要求 设计一个高频功率放大器,主要技术指标为: (1) 工作中心频率 06.5MHz f=; (2) 输出功率100mW A P≥; (3) 负载电阻75 L R=Ω; (4) 效率60% η>。 3、主要参考资料 [1] 阳昌汉. 高频电子线路. 哈尔滨:高等教育出版社,2006. [2] 张肃文,陆兆雄. 高频电子线路(第三版). 北京:高等教育出版社,1993. [3] 谢自美. 电子线路设计·实验·测试. 武汉:华中科技大学出版社,2000. [4] 高吉祥. 电子技术基础实验与课程设计. 北京:电子工业出版社,2002.完成期限2月20日-2月24日 指导教师 专业负责人 2012 年 2 月17 日

一、电路基本原理 1.选题背景 无线电通信的任务是传送信息。为了有效的实现远距离传输,通常是用要传送的信息对叫高频率的载频信号进行调幅或调频,经过高频功率放大达到较大功率,再通过天线辐射出去。高频功率放大器的功能是用小功率的高频输入信号去控制高频功率放大器,将直流电源供给的能量转换为大功率的高频能量输出,它是无线电发送设备的重要组成部分。高频功率放大器不仅仅应用于各种类型的发射机中,而且高频加热装置、高频换流器、微波炉等许多电子设备中都得到了广泛的应用。 2.工作原理 在通信电路中,高频功率放大器的效率是一个突出的问题,其效率的高低与放大器的工作状态有直接的关系。放大器件的工作状态可分为甲类、乙类、丙类等,提高功率放大器效率的主要途径是使放大器件工作在乙类、丙类状态,但这些工作状态下放大器的输出电流与输入电压间存在很严重的非线性失真。低频功率放大器因其信号的频率覆盖系数很大,不能采用谐振回路作负载,因此一般工作在甲类状态;采用推挽电路时可以工作在乙类状态;高频功率放大器因其信号的频率覆盖系数小,可以采用谐振回路作负载,故通常工作在丙类状态,通过谐振回路的选频作用,可以滤除放大器的集电极电流中的谐波成分,选出基波从而消除非线性失真。因此,高频功率放大器具有比低频功率放大器更高的效率。根据放大器电流导通角θ的范围,电流导通角θ越小,放大器的效率η越高。基于这一特点,高频功率放大器一般都工作在丙类状态。 丙类功率放大器在直流电源CC V 、偏置电压BB V 、输入电压cos b bm u U t ω=,晶体管和谐振于ω的并联谐振回路的谐振电阻p R 确定的条件下,放大器各级电压的关系如图1所示。 图1 各级电压与电流波形 (a) (b)

高频电子线路课程教学大纲-山东大学

高频电子线路课程教学大纲 一、课程的性质和目的 本课程是通信专业与电子信息专业的一门专业基础课。课程目的在于使学生通过本课程的学习,获得和掌握通信电路的基本理论、基本知识与分析方法,为学习后继课程和从事专业工作打下基础。 二、课程的基本要求 通过本课程的教学,要求学生掌握各种通信电路单元的工作原理,熟悉常用电路的组成形式,对电路参数进行计算和分析,通过试验,对电路进行计算和测量。 三、课程内容与要求 第一章绪论(4学时) 1、学习目的和要求 通过学习了无线电通信的发展历史,我国的通信产业现状,无线电通信系统的基本组成,明白本课程的学习方法。 2、课程内容 (1)无线电的发展历史与现状 (2)无线电信号的特点 (3)无线通信系统的基本组成 (4)调制解调的概念,载波 3、考核知识点和考核要求

(1)识记:电波传播,频段,载波,调制解调。 (2)领会:无线通信系统的基本组成,本课程的学习方法。 第二章高频电路基础(10学时) 1、学习目的和要求 通过本章学习,掌握电子元器件的高频特性,熟悉常用的元器件的高频性能。熟悉电子噪声的特性及分析解决方法,噪声系数的计算。 2、课程内容 (1)高频电路中的有源器件 (2)无源器件和组件 (3)电子噪声 (4)噪声系数的计算和测量 3、考核知识点和考核要求 (1)识记:高频等效,线性电路,非线性电路,通频带,噪声系数。 (2)领会:谐振电路的计算,噪声系数的计算,通频带意义。 第三章高频谐振放大器(12学时) 1、学习目的和要求 通过本章学习,掌握高频功率放大电路的工作原理,掌握电路的分析方法和一般计算。掌握高频功率放大器的外部特性,熟悉匹配电路,会分析实际电路。 2、课程内容 (1)高频小信号放大器 (2)高频功率放大电路的工作原理、性能分析。 (3)高频功率放大器的高频效应和实际电路; (4)高频功率放大器的功率合成; 3、考核知识点和考核要求

高频电子线路设计

电子线路课程设计总结报告 学生姓名: 学号: 专业:电子信息工程 班级: 报告成绩: 评阅时间: 教师签字: 河北工业大学信息学院 2015年3月

课题名称:小功率调幅AM 发射机设计 内容摘要:小功率调幅AM 发射机在现代通信系统中应用广泛,小功率调幅AM 发射机的设计包括主振级、缓冲级、高频放大级、音频放大级、振幅调制级、高频功率放大级六个部分的电路设计和参数选择,且还考虑到各个单元电路之间的耦合关系,并结合Multisim 软件进行了各部分的调试与仿真,得到了整机电路。理论上满足了最基本的小功率调幅发射机的设计要求。 一、设计内容及要求 1、设计内容 小功率调幅AM 发射机的设计 2、设计的技术指标: 载波频率 Z MH 10=c f 载波频率稳定度 α≥3 -10 输出功率 mW 2000≥P 负载电阻 Ω=50A R 输出信号带宽 Z kH 9=BW (双边带) 残波辐射 dB 40≤ 单音调幅系数 8.0=a m 平均调幅系数 ≥m 0.3 发射效率 %50≥η 二、方案选择及系统框图 1、方案选择 (1)主振级 方案1:采用LC 三点式正弦波振荡器,由于电容三点式振荡器的输出波形比电感三点式振荡器的 输出波形好,最高工作频率一般比电感三点式振荡器的高。另外,在电容三点式振荡器中,极间电容与电容并联,频率变化不改变电抗的性质。因此振荡器的电路型式一般采用电容三点式。在频率稳定度要求不高的情况下,可以采用普通三点式电路、克拉泼电路、西勒电路。 方案2:采用晶体振荡器,晶体振荡器比普通的三点式振荡器具有更高的频率稳定度,频率稳定度可达到10 -10数量级,波形失真也比较小。在频率稳定度要求较高的电路中,可以采用晶体振荡器作为主 振级,比如石英晶体振荡器。 方案3:采用RC 正弦波振荡器,RC 振荡电路中没有谐振回路,主要有电阻和电容组成,因此一般不采用RC 正弦波振荡器作为主振器。

高频电子线路实验合集

实验名称:高频小信号放大器 系别:计算机系年级:2015 专业:电子信息工程 班级:学号: 姓名: 成绩: 任课教师: 2015年月日

实验一高频小信号放大器 一、实验目的 1、掌握小信号调谐放大器的基本工作原理; 2、掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 3、了解高频小信号放大器动态围的测试方法; 二、主要仪器设备 在计算机上用仿真软件模拟现实的效果, 通过采用仿真技术,虚拟构建一个直观、可视化的2D、3D 实验环境,从而达到对实验现象和实验结果的虚拟仿真以及对现实实验的操作,为处于不同时间、空间的实验者提供虚拟仿真的实验环境,使学习者仿佛置身其中,对仪器、设备、容等实验项目进行互动操作和练习。 二、实验原理 二、实验步骤

1、绘制电路 利用Mulisim软件绘制如图1-1所示的单调谐高频小信号实验电路。 图1-1 单调谐高频小信号实验电路 2、用示波器观察输入和输出波形; 输入波形:

输出波形: 3、利用软件中的波特测试仪观察通频带。

5.实验数据处理与分析 根据电路中选频网络参数值,计算该电路的谐振频率ωp ; s rad CL w p /936.210 58010 2001 16 12 =???= = -- 通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。 ,708.356uV V I = ,544.1mV V O = === 357 .0544 .10I O v V V A 4.325 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v 相应的图,根据图粗略计算出通频带。 f 0(KHz ) 65 75 165 265 365 465 1065 1665 226 5 2865 3465 4065 U 0 (mv) 0.97 7 1.064 1.39 2 1.48 3 1.528 1.54 8 1.45 7 1.28 2 1.09 5 0479 0.84 0 0.74 7 A V 2.73 6 2.974 3.89 9 4.154 4.280 4.33 6 4.08 1 3.59 1 3.06 7 1.34 1 2.35 2 2.09 2 (5)在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

高频电子线路设计(三极管混频器的设计)

通信电子线路课程设计说明书 三极管混频器 院、部:电气与信息工程学院 学生姓名:蔡双 指导教师:俞斌职称讲师 专业:电子信息工程 班级:电子1002 完成时间:2012-12-20

摘要 随着社会的发展,现代化通讯在我们的生活中显得越来越重要。混频器在通信工程和无线电技术中,得到非常广泛的应用,混频器是高频集成电路接收系统中必不可少的部件。要传输的基带信号都要经过频率的转换变成高频已调信号,才能在空中无线传输,在接收端将接收的已调信号要进行解调得到有用信号,然而在解调过程中,接收的已调高频信号也要经过频率的转换,变成相应的中频信号,这就要用到混频器。其原理是运用一个相乘器件将本地振荡信号与调制信号相乘,经过选频回路选出差频项(中频),在超外差式接收机中,混频器应用十分广泛,如:AM广播接收机将已调振幅信号535K~1605KHZ要变成465KHZ的中频信号;还有移动通信中的一次混频、二次混频等。由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 关键词混频器;中频信号;选频回路

ABSTRACT With the development of society, the modernization of communication in our life becomes more and more important. Mixer in communication engineering and radio technology, widely used, the mixer is high frequency integrated circuit receiving system essential components. To transmit baseband signal to go through frequency conversion into a high frequency modulated signal, can in the air, wireless transmission, at the receiving end receives the modulated signal to demodulate the received useful signal, however in the demodulation process, receives the modulated high frequency signal to go through frequency conversion, into the corresponding intermediate frequency signal, this will be used mixer. Its principle is to use a multiplication device will be local oscillation signal and modulated signal by frequency selective circuit multiplication, choose the difference frequency term (MF ), in a superheterodyne receiver, mixer, a wide range of applications, such as: AM radio receiver will be modulated amplitude signal 535K ~ 1605KHZ to become 465KHZ intermediate frequency signal; and mobile communication a mixer, a two mixer etc.. Therefore, the mixer circuit is the application of electronic technology and radio professional must grasp the key circuit. Key words mixer;intermediate frequency signal;frequency selective circuit

电子工程专业、通信工程专业课程简介解析

电子工程专业、通信工程专业课程简介 ENC9105 工程设计导论Introduction to Engineering Design (2学分) 本课程先讨论工程师的角色和职责,然后以一个小日常用品的创新设计过程为载体让学生学习使用一些会议、组织、计划、决策方面的工具,并作一些书面和口头报告的练习,为今后学习和工作打基础。 CST9910 C语言程序设计C Language Programming (3学分)本课程是工学院非计算机专业一年级学生的必修课,旨在培养学生运用计算机程序设计解决实际问题的初步能力。本课程主要介绍C语言的数据描述、控制结构和结构化程序设计方法,以及解决数值计算、数据处理中常见问题的典型算法结构。通过对本课程的学习,学生应能掌握C语言的基本语法和结构化程序设计方法,并具有运用C语言编程解决实际问题的一般能力,为今后相关课程的学习和专业相关计算机应用问题的解决奠定基础。 ENC9301工程师职业道德与责任Ethics and Professionalism of Engineers (1学分) 本课程介绍工程师在社会发展中所扮演的角色、工程师的社会责任、职业道德以及工程师对于公众健康、安全、环境和可持续发展的责任。并讨论工程师与环境、环境保护、领导才能、社会平等、工程法律基础、专业注册机构和工程职业法令等方面的问题。 ENC8000 创新设计项目Innovative Design (1学分) 本课程为跨学科的团队合作项目,鼓励学生参加全国、省“挑战杯”竞赛、全国电子设计竞赛、ACM国际大学生程序竞赛、广东省高校软件杯比赛、广东省大学生程序设计竞赛等各种竞赛,以科研立项为基础,以创新学分为激励机制,充分发挥广大学生参加科技创新项目的积极性,培养学生的工程实践与科技创新能力,全面提高学生的综合能力与素质。 ENC9120生物学导论An Introduction to Biology (1学分)本课程通过专题讲座等形式介绍生物学各主要分支的基础知识和发展动态,使学生深入了解生命的本质、生物学的研究方法及生物学与社会发展息息相关,提高学生对该门学科的认识,拓展知识面,启发思维和创新意识。 ENC9110 化学导论Introduction to Chemistry (1学分) 介绍化学的发展历史和在科技发展中的重要作用;化学大学生培养中的重要作用;化学与人类衣、食、住、行的密切关系;学习方法和注意事项;充分调动学生学习本课程的积极主动性,激发学生学习化学的兴趣。正确理解化学学科对经济建设及其他学科发展的重要作用,培养学生正确的学习目的和人生观。 EEG7001-7003电子通信工程系统项目I-III Electricity and Communication Engineering Project I-III (3学分) 本课程通过介绍实际产品与所学课程之间的关系,介绍基于EIP-CDIO理念的课程体系的结构,使学生一开始就以一个工程师的角度去面对专业课的学习任务,从而增强学习的自觉性和学习的兴趣。在此基础上,要求学生本着创新的原则,以团队合作的方式,在导师组的指导下开展新型电子或通信产品的构思与设计,并通过后续课程的学习和二三级项目的实践,不断完善对该产品的设计。并通过一个项目的构思、设计和实施的全过程,培养和锻炼学生的调研能力、自学能力、分析能力、创新能力、实践探索能力、动手能力、沟通表达能力以及良好的团队协作意识。 EEG8010微机控制与检测项目Microcomputer Control and Detection Project (1学分) 该课程是继“微机原理与接口技术”课之后开出的二级项目。其目的是训练学生综合运用学过的知识,独立设计综合性的微机接口系统。要求系统地提出设计思想、选定设计方案并进行整体设计,包括硬件电路原理分析和软件框图及说明,并解决安装与调试中遇到的问题。

高频电子线路课程设计方案docx

高 频 电 子 线 路 课 程 设 计 设计题目:小功率调幅发射机的设计 目录 摘要 (3) 1.调幅发射机的主要性能指标 (4)

2.调幅发射机的原理和框图 (4) 2.1调幅发射机方框 图 (4) 2.2调幅发射机的电路形式及工作原理 (5) 2.2.1高频振荡器电路 (5) 2.2.2隔离放大电路 (6) 2.2.3受调放大级电路 (6) 2.2.4 话筒和音频放大电路 (7) 2.2.5 传输线与天线 (8) 2.2.6 功率放大级电路 (8) 2.2.7 传输线与天线 (9) 3.电路调试 (9) 3.1 本振级调试 (9)

3.2 放大级调试 (9) 3.3 末级调试 (9) 3.4 通调 (9) 4.心得体会 (10) 参考文献 (12) 附录一 (13) 附录二 (14) 摘要 小功率调幅发射机常用于通信系统和其他无线电系统中,特别是在中短波广播通信的领域里更是得到了广泛应用。原因是调幅发

射机实现条幅简便,调制所占的频带宽,并且与之对应的调幅接收设备简单,所以调幅发射机广泛用于广播发射。 本课题的设计目的是要求掌握最基本的小功率调幅发射系统的设计、调试与安装对各级电路进行详细的探讨。 【关键词】:小功率调幅发射机设计调试 1、调幅发射机的主要性能指标

由于调幅发射机实现调幅简便,调制所占的频带窄,并且与之 对应的调幅接收设备简单,所以调幅发射机广泛地应用于广播发射。调幅发射机的主要性能指标如下: 工作频率范围:调幅制一般适用于中、短波广播通信,其工作 频率范围为300kHz~30MHz。 发射功率:一般是指发射机送到天线上的功率。只有当天线的 长度与发射频率的波长可比拟时,天线才能有效地把载波发射出去。 调幅系数:调幅系数ma是调制信号控制载波电压振幅变化的系数,ma的取值范围为0~1,通常以百分数的形式表示,即0%~100%。 非线性失真<包络失真):调制器的调制特性不能跟调制电压线 性变化而引起已调波的包络失真为调幅发射机的非线性失真,一般 要求小于10%。 线性失真:保持调制电压振幅不变,改变调制频率引起的调幅 度特性变化称为线性失真。 噪声电平:噪声电平是指没有调制信号时,由噪声产生的调制 度与信号最大时间的调幅度比,广播发射机的噪声电平要求小于 0.1%,一般通信机的噪声电平要求小于1%。 2、调幅发射机的原理和框图 2.1 调幅发射机方框图 一条调幅发射机的组成框图如下图图2-1所示,

高频电子线路课程教学大纲

《高频电子线路》课程教学大纲 一、《高频电子线路》课程说明 (一)课程代码: (二)课程英文名称:Radio-frequency Electronic Circuits (三)开课对象:电子信息工程、通信工程本科 (四)课程性质: 《高频电子线路》是电子信息工程本科专业的专业必修课。本课程是一门实践性很强的核心基础课程,也是有关的工程技术人员和相关专业的技术人员的必修课程,它是研究无线电通信系统中的关于信号的产生、发射、传输和接收即信号传输与处理的一门科学。其先修课程有:《高等数学》、《电路分析》、《模拟电子线路》和《信号与系统》。 (五)教学内容 《高频电子线路》主要介绍无线电信号传输与处理的具体基本单元电路的基本原理以及应用于通信系统、高频设备中的高频电子线路的组成、原理、分析、设计方法, 为进一步学习通信原理、电视原理等课程奠定理论基础。 通过本课程的学习,要求学生掌握高频电子线路的基本概念和基本理论,以非线性电路为主,学习谐振动率放大电路、正弦波振荡电路、振幅调制、解调与混频电路、角度调制与解调电路和反馈控制电路原理、分析方法及其应用,具有一定的分析和解决具体问题的能力。 (六)教学时数 教学时数:80学时 学分数:4 学分 教学时数具体分配:

(七)教学方式 以多媒体教学手段为主要形式的课堂教学。 (八)考核方式和成绩记载说明 考核方式为考试。严格考核学生出勤情况,达到学籍管理规定的旷课量取消考试资格。综合成绩根据平时成绩、实验成绩和期末成绩评定,平时成绩占20% ,实验成绩占20%,期末成绩占60% 。 二、讲授大纲与各章的基本要求 绪论 教学要点: 通过本章的教学使学生初步了解无线电通信发展简史;掌握无线电通信系统基本组成及相关概念,信号的频谱与调制等特性,了解学习的对象及任务。 教学时数:2学时 教学内容: 1、通信系统组成 2、信号、频谱与调制及发射机和接收机的组成 3、课程特点、本书的研究对象及任务 考核要求: 1、通信系统组成(识记) 2、信号、频谱与调制及发射机和接收机的组成(领会) 3、课程特点、本书的研究对象及任务(识记) 第一章高频谐振放大器 教学要点: 通过本章的教学使学生了解高频电路中的元件(电容、电阻、电感等)的特性;熟练掌握LC回路的选频特性与阻抗变换电路、抽头并联振荡回路、石英晶体谐振器的特性;掌握高频小信号谐振放大器的工作原理、性能分析、稳定性;了解多级谐振放大器;了解集中选频滤波器等;掌握电子噪声的来源与特性。 教学时数:12学时 教学内容: 1、LC选频网络

高频电子线路课程设计概述

高频电子线路课程设计报告 (2014-2015年度第一学期) 题目: AM 波的调制与解调 学院:信息科学技术学院 专业:通信工程B班 姓名: 学号: 组员: 指导老师: 2014年11月7日

目录 一、摘要 (3) 二、设计指标 (4) 三、原理概述及框图 (4) 四、实际电路设计 (6) 五、设计评价 (20) 六、心得体会 (21) 七、参考文献 (21)

一、内容摘要 本文用10Multisim 设计并仿真了AM 波的调制与解调,在调制单元先设 计了一个振荡器产生MHz f 5.30=的载波信号,然后与频率KHz f 10=Ω的调制信号经过一个集电极调幅电路产生了一个AM 信号,在解调单元,将调制单元输出的AM 信号通过一个包络检波电路将调制信号从AM 信号中提取出来。最后再设计一个低通滤波器,将高于调制信号频率的噪声滤除。 在设计单元电路时,对每部分的电路设置参数,进行仿真、调参,对结果进行分析,由于后续电路或者负载的影响会导致电路参数的设计与实际参数有差距,再设置一个缓冲电路以减小后级电路对前级的影响,然后在考虑实际参数的基础上观察波形是否失真从而选出合理的原件数值,反复调试后,得出结果和心得体会。 【关键词】:AM 波 调制解调 集电极调幅 低通滤波器 仿真 二、设计指标 设计AM 波的调制解调电路,要求分别设计高频振荡器、集电极调幅电路、

包络检波电路和低通滤波器。通过信号发生器产生一个调制信号与振荡器产生的高频载波加入集电极电路,输出一个载波幅度随着调制信号变化的调幅信号,将该调幅信号加入包络检波器,输出原调制信号,考虑到输出信号中会带有噪 声,故在调制信号输出前增加了一个RC低通滤波器滤除噪声,且在电路前后级又加了一个缓冲级电路用来减少后级电路对前级的影响。 各项参数设计指标如下: 输入调制信号:100KHZ 5V 正弦波 调制载波信号:1MHZ 4mV 正弦波 解调载波信号:100KHZ 4.5V 正弦波 三、原理概述及框图 设计原理总框图 图一设计原理总框图 3.1 AM波调制原理

高频电子线路实验

实验一低电平振幅调制器(利用乘法器) 一、实验目的 1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与 过程,并研究已调波与二输入信号的关系。 2.掌握测量调幅系数的方法。 3.通过实验中波形的变换,学会分析实验现象。 二、预习要求 1.预习幅度调制器有关知识。 2.认真阅读实验指导书,了解实验原理及内容,分析实验电路中用1496乘 法器调制的工作原理,并分析计算各引出脚的直流电压。 3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。 三、实验仪器设备 1.双踪示波器。 2.SP1461型高频信号发生器。 3.万用表。 4.TPE-GP4高频综合实验箱(实 验区域:乘法器调幅电路) 四、实验电路说明 图 幅度调制就是载波的振幅受 调制信号的控制作周期性的变化。 变化的周期与调制信号周期相同。 即振幅变化与调制信 号的振幅成正比。通常称高频信号为载波图1 1496芯片内部电路图 信号,低频信号为调制信号,调幅器即为 产生调幅信号的装置。 本实验采用集成模拟乘法器1496来构成调幅器,图1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。

D、V7、V8为差动放大器V5、V6的恒流源。进行调幅时,载波信号加在V1-V4 的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接 1KΩ电阻,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。 用1496集成电路构成的调幅器电路图如图2所示,图中R P5002用来调节引出脚①、④之间的平衡,R P5001用来调节⑧、⑩脚之间的平衡,三极管V5001为射极跟随器,以提高调幅器带负载的能力。 五、实验内容及步骤 实验电路见图2 构成的调幅器 1.直流调制特性的测量 1)载波输入端平衡调节:在调制信号输入端P5002加入峰值为100mv, 频率为1KHz的正弦信号,调节Rp5001电位器使输出端信号最小,然 后去掉输入信号。 2)在载波输入端P5001加峰值为10mv,频率为100KHz的正弦信号,用 万用表测量A、B之间的电压V AB,用示波器观察OUT输出端的波形,

高频电子线路课程设计完整版

目录 1选题意义 (2) 2总体方案 (3) 3调幅半导体收音机的工作原理 (4) 3.1调幅的过程 (4) 3.2调幅收音机的工作原理 (5) 3.3调幅收音机的电路模块 (6) 3.3.1输入回路 (6) 3.3.2 变频级回路 (7) 3.3.3中频放大、自动增益控制电路 (9) 3.3.4 检波回路 (11) 3.3.5低放级回路 (11) 3.3.6功率放大回路 (11) 4收音机的调试 (13) 4.1调整三极管的静态工作点 (13) 4.1.1.三极管静态工作点的选取 (13) 4.1.2.静态工作点调整前的检查 (14) 4.1.3.静态工作点的测量与调整 (14) 4.2中频频率调整 (15) 4.2.1.信号通路检查 (15) 4.2.2.不用仪器调整中频 (16) 4.3接收频率范围的调整(或称频率覆盖调整) (16) 4.4统调(灵敏度调整) (17) 4.4.1.低频端的统调 (17) 4.4.2.高频端的统调 (17) 5课程设计体会 (18) 6参考文献 (19) 附图 (20)

1选题意义 通过动手做课程设计可以联系课堂所学知识,增强查阅、收集、整理、吸收消化资料的能力,为毕业设计做好必要的准备。而我选调幅半导体收音机原理及其调试是因为之前实习的时候做的是收音机,对其比较熟悉并且想再次巩固一下。 目前调幅式收音机,一般都采用超外差式,它具有灵敏度高、工作稳定、选择性好及失真度小等优点。 图1 收音机基本原理方框简图 天线的作用就是接收空间电磁波,让它在天线回路中产生信号电动势。由于空间有许许多多电台发送的电磁波,它们都有自己的固定频率,这些电磁波都同时被天线接收下来,如果不加选择地将这些信号还原为声音,那么这些声音就变成噪音。因此必须设法从天线接收下来的许多信号中选出所要收听的电台。在接收机中选台主要是利用不同电台发送的电磁波频率不同的特点来进行的,在收音机中这一任务是由电感线圈和可变电容器组成的谐振电路来完成的,通常称它为调谐电路。由调谐电路选择出的所需要的电台信号是已调幅的高频信号,虽然它被音频信号调制,但喇叭无法将这种信号还原成声音,因此,必须从高频信号中把音频信号分离出来,这个分离过程称为解调;解调就是解除调制的意思,通常称检波。在收音机中,检波是由半导体器件二极管或三极管来完成。调幅的高频信号经检波还原出音频信号,然后送往喇叭,喇叭将音频信号还原为声音。这就是无线电接收的最基本原理。 收音机接收天线将广播电台播发的高频的调幅波接收下来,通过变频级把外来的各调幅波信号变换成一个低频和高攀之间的固定频率—465KHz(中频),然后进行放大,再由检波级检出音频信号,送入低频放大级放大,推动喇叭发声。不是把接收天线接收下来的高频调幅波直接放大去检出音频信号(直放式)。它由输入回路高放混频级、一级中放、二级中放、前置低放兼检波级、低放级和公放级等部分组成,接受频率范围为535KHZ~1605KHZ的中波段。

相关文档
相关文档 最新文档