文档库 最新最全的文档下载
当前位置:文档库 › 电机数学模型与仿真(浙江大学)

电机数学模型与仿真(浙江大学)

电机数学模型与仿真(浙江大学)
电机数学模型与仿真(浙江大学)

2.1同步发电机数学模型及运行特性

2.1同步发电机数学模型及运行特性 本节主要阐述同步发电机稳态数学模型及运行特性:包括向量图、等值电路与功率方程以及功角特性。 2.1.1 同步发电机稳态数学模型 理想电机假设: 1)电机铁心部分的导磁系数为常数; 2)电机定子三相绕组完全对称,在空间上互差120度,转子在结构上对本身的直轴和交轴完全对称; 3)定子电流在空气隙中产生正弦分布的磁势,转子绕组和定子绕组间的互感磁通也在空气隙中按正弦规率分布; 4)定子及转子的槽和通风沟不影响定子及转子的电感,即认为电机的定子及转子具有光滑的表面。 同步电动机是一种交流电机,主要做发电机用,也可做电动机用,一般用于功率较大,转速不要求调节的生产机械,例如大型水泵,空压机和矿井通风机等。近年由于永磁材料和电子技术的发展,微型同步电机得到越来越广泛的应用。同步电动机的特点之一是稳定运行时的转速n与定子电流的频率f1之间有严格不变的关系,即同步电动机的转速n与旋转磁场的转速n0相同。“同步”之名由此而来。 同步发电机是电力系统中的电源,它的稳态特性与暂态行为在电力系统中具有支配地位。虽然在电机学中已经学过同步电机,但那时侧重于基本电磁关系,而现在则从系统运行的角度审视发电机组。 1.同步发电机的相量图 设发电机以滞后功率因数运行,三相同步发电机正常运行时,定子某一相空载电势Eq,输出电压或端电压U和输出电流I间的相位关系如图2-1所示。δ是Eq领先U的角度,称为功角,是功率因数角,即U与I的相位差, Eq与q轴(横轴或交轴)重合,d为纵轴或直轴。U和I的d、q分量为: 图 2-1电势电压相量图 电机学课程中已经讨论过,端电压和电流的分量与Eq间的关系为: (2-3)

同步电机数学模型地建立和仿真

同步电机数学模型的建立和仿真 :包邻淋 专业:控制工程 学号:1402094

摘要 (3) 1同步电机数学模型的建立 (4) 1.1模型的导出思路 (4) 1.2变量置换用的表达式 (5) 1.4电机实用模型 (6) 1.5电机实用模型的状态空间表达式 (8) 1.6电机模型参数的确定 (10) 2 同步电机数学模型的仿真 (13) 2.1同步发电机仿真模型 (13) 2.2不同阶次模型的仿真分析 (14) 参考文献 (17)

摘要 一般发电机存在临诸多问题,建立精确地描述同步发电机的数学模型是十分必要的[1]。电力系统数字仿真因具有不受原型系统规模和结构复杂性限制,能保证被研究系统的安全性,且具有良好的经济性、方便性等优点。 常用的同步发电机数学模型由同步发电机电路方程及转子运动方程两部分组成。同步发电机电路方程又分为基本方程和导出模型两类[4]。对于不同的假设条件,同步发电机模型可作不同程度的简化,因此同步发电机的导出模型也有不同的形式。同一假设条件下,不同的同步发电机数学模型,其主要区别在于电机的转子绕组数,有d,q,f,D,Q5个绕组的电压方程和磁链方程,外加2个转子运动方程,则称之为转子7阶模型[5]。如果转子绕组数减少,则发电机方程组的阶数也相应减少。 本文通过MATLAB/simulink进行仿真计算,比较采用不同的同步发电机模型时,对系统的稳定性分析的影响。在此基础上提出在不同情况下进行电力系统仿真计算选取同步发电机数学模型的方法。

1同步电机数学模型的建立 1.1模型的导出思路 由于定转子间的相对运动,基于空间静止不动的三相坐标系所建立的原始方程,磁链方程式中会出现变系数,这对方程组的求解和模型的建立造成了很大的困难。现在通用的方法是对原始方程做d q变换(又称为派克变换),将原方程从a b c三相静止不动坐标系变为与转子相对静止的d q坐标系。 基本方程中有d,q,f,D,Q5个绕组的电压方程和磁链方程,外加2个转子运动方程,若设,则原方程为5阶,若转子运动方程为,;所含变量为,。。在化为实用模型时 和保留,用取代,再用5个磁链方程消去3个转子电流,以及2个定子磁链,而 则用实用变量代替。 经过上述思路导出的实用模型,除了以及引入的等效实用变量之外方程中系数都是同步电机技术参数中的电抗和时间

无刷直流电机数学模型(完整版)

电机数学模型 以二相导通星形三相六状态为例,分析BLDC的数学模型及电磁转矩等特性。为了便于分析,假定: a)三相绕组完全对称,气隙磁场为方波,定子电流、转子磁场分布皆对称; b)忽略齿槽、换相过程和电枢反应等的影响; c)电枢绕组在定子内表面均匀连续分布; d)磁路不饱和,不计涡流和磁滞损耗。 则三相绕组的电压平衡方程可表示为: 错误!未找到引用源。(1) 式中:错误!未找到引用源。为定子相绕组电压(V);错误!未找到引用源。为定子相绕组电流(A);错误!未找到引用源。为定子相绕组电动势(V);L为每相绕组的自感(H);M为每相绕组间的互感(H);p为微分算子p=d/dt。 三相绕组为星形连接,且没有中线,则有 错误!未找到引用源。(2) 错误!未找到引用源。(3) 得到最终电压方程: 错误!未找到引用源。(4) e c c 图.无刷直流电机的等效电路 无刷直流电机的电磁转矩方程与普通直流电动机相似,其电磁转矩大小与磁通和电流幅值成正比 错误!未找到引用源。(5) 所以控制逆变器输出方波电流的幅值即可以控制BLDC电机的转矩。为产生恒定的电磁转矩,要求定子电流为方波,反电动势为梯形波,且在每半个周期内,方波电流的持续时间为120°电角度,梯形波反电动势的平顶部分也为120°

电角度,两者应严格同步。由于在任何时刻,定子只有两相导通,则:电磁功率可表示为: 错误!未找到引用源。(6) 电磁转矩又可表示为: 错误!未找到引用源。(7) 无刷直流电机的运动方程为: 错误!未找到引用源。(8) 其中错误!未找到引用源。为电磁转矩;错误!未找到引用源。为负载转矩;B为阻尼系数;错误!未找到引用源。为电机机械转速;J为电机的转动惯量。 传递函数: 无刷直流电机的运行特性和传统直流电机基本相同,其动态结构图可以采用直流电机通用的动态结构图,如图所示: 图2.无刷直流电机动态结构图 由无刷直流电机动态结构图可求得其传递函数为: 式中: K1为电动势传递系数,错误!未找到引用源。,Ce 为电动势系数; K2为转矩传递函数,错误!未找到引用源。,R 为电动机内阻,Ct 为转矩系数;T m为电机时间常数,错误!未找到引用源。,G 为转子重量,D 为转子直径。基于MATLAB的BLDC系统模型的建立 在Matlab中进行BLDC建模仿真方法的研究已受到广泛关注,已有提出采用节点电流法对电机控制系统进行分析,通过列写m文件,建立BLDC仿真模型,

无刷双馈电机的数学模型和基于Simulink4的仿真

第27卷第4期2004年8月 鞍山科技大学学报 Jou rnal of A n shan U n iversity of Science and T echno logy V o l.27N o.4 A ug.,2004无刷双馈电机的数学模型和 基于Si m u link4的仿真 陈海朋1,李 岩1,韩 伟2 (1.鞍山科技大学电子与信息工程学院,辽宁鞍山 114044;2.鞍山供电公司,辽宁鞍山 114001) 摘 要:无刷双馈电机是一种在许多方面都有着很好应用前景的新型电机.本文重新推导了无刷双馈电机的数学模型,并在M A TLAB S I M UL I N K环境下建立了仿真模型,为进一步构成控制系统,进行系统分析与设计奠定了基础. 关键词:级联式双馈电机;数学模型;仿真 中图分类号:TM301.2 文献标识码:A 文章编号:167224410(2004)0420273205 双馈电机又称异步化同步电机[1],与变频器一起可以实现机电系统的柔性连接,对提高电力系统的稳定性有重要意义.双馈电机可以在各种负荷下实现大范围的无级调速,将其用于风机、泵类负载时,具有显著的节能效果,同时也大大降低了所需变频器的功率.在可调速的电气转动方式中,这种调速方式的效率很高[2].特别是无触点双馈电机具有良好的应用前景. 目前国内外对无刷双馈电机的研究已从对电机结构的改进阶段发展到建立比较准确的实用模型阶段.可以看出,现有的无刷双馈电机的数学模型大多建立在d q0坐标轴系基础之上[3],并且在把电机内的电量折算到d q0坐标轴系时,往往取其综合矢量方向为q轴方向,这与当前教材不一致.而且,以往对无刷双馈电机的仿真程序大部分是用C或FO R TAN语言编写,这些语言对编制和调试矩阵运算、微分方程解法等程序很不方便. 针对上述情况,本文重新推导了无刷双馈电机的数学模型.并且以该数学模型为基础,利用M A TALB S I M U L I N K中的S函数和电源模块集(Pow er system b lock set),建立了无刷双馈电机的仿真模型,实现了该仿真模型与电源模块之间的耦合. 1 无刷双馈电机与级联式双馈电机的工作原理 级联式双馈电机(CD FM)与无刷双馈电机(BD FM)的结构相似,都相当于2台绕线式异步电机串级而成,具有2套分离的定子绕组,2套转子绕组.只是无刷双馈电机相当于2台绕线式异步电机同轴串级而成,并且2套转子绕组反相序联接,其结构如图1所示. 为分析方便,假定无刷双馈电机由极对数分别为p A,p B的绕线式异步电机A和B组成.电机A的定子直接与三相工频电网相连,电机内部磁场相互作用关系如图2所示.图中f A,f B分别为两定子绕组的供电频率,H z;f r A,f r B分别为两转子绕组感应电势的频率,H z;n为转子转速,r m in. 稳态运行时,无刷双馈电机的转速为 n=60(f A-f B) (p A+p B)(1) 收稿日期:2004203211. 作者简介:陈海朋(1978-),男,黑龙江兰西人,2001级研究生.

异步电机数学模型

异步电机的数学模型是一个高阶、非线性、强耦合的多变量系统[1]。在研究异步电机的多变量数学模型时,常作如下假设: (1)三相绕组在空间对称互差 120,磁势在空间按正弦分布; (2)忽略铁芯损耗; (3)不考虑磁路饱和,即认为各绕组间互感和自感都是线性的; (4)不考虑温度和频率变化对电机参数的影响。 异步电机在两相静止坐标系上的数学模型: 仿真的基本思想是利用物理的或数学的模型来类比模仿现实过程,以寻求过程和规律。在实际过程中,系统可能太复杂,无法求得其解析解,可以通过仿真求得其数值解。计算机仿真是利用计算机对所研究系统的结构、功能和行为以及参与系统控制的主动者——人的思维过程和行为,进行动态性的比较和模仿,利用建立的仿真模型对系统进行研究和分析,并可将系统过程演示出来。 系统仿真软件MATLAB 不但在数值计算和符号计算方面具有强大的功能,而且在计算结果的分析和数据可视化方面有着其他类似软件难以匹敌的优势。界面友好,编程效率高,扩展性强。MATLAB 提供的SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包。SIMULINK 的目的是让用户能够把更多的精力投入到模型设计本身。它提供了一些基本的模块,这些模块放在浏览器里面,用户可以随时调用。当模型构造之后,用户可以进行仿真,等待结果,或者改变参数,再进行仿真。异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,其动态和静态特性都相当复杂。以下将介绍用SIMULINK 如何来建立三相异步电机的计算机仿真模型,为以后的系统仿真做好准备。 经过三相静止/两相静止坐标变换及两相旋转/两相静止坐标变换,可得异步电机在两相静止坐标系上的数学模型。 电压方程: ?????? ? ???????????????????+--+++=??????????????βαβαβαβαωωωωr r s s r r r m m r r r r m r m m S m S r r s s i i i i P L R L P L L L P L R L P L P L P L R P L P L R u u u u 22110000

大学第五届大学生数学建模竞赛题目 (1)

浙江大学第五届大学生数学建模竞赛题目 (A题、B题) 1.各参赛队可在公布的A、B两题中任选一题作答,在规定时间内完成论文。论文应包括 模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面,并附主要程序代码。 2.答卷用白色A4纸打印,上下左右各留出2.5厘米的页边距。论文第一页为封面,各参 赛队需从浙江大学数学建模实践基地网站https://www.wendangku.net/doc/2316440636.html,/mmb上下载答卷封面,如实填写后作为封面与论文全文装订成册. 论文题目和摘要写在论文第二页上,从第三页开始是论文正文。论文从第二页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。 3.论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。 4.论文题目用3号黑体字、一级标题用4号黑体字,并居中。论文中其他汉字一律采用小 4号黑色宋体字,行距用单倍行距。 5.提请各参赛队注意:摘要在整篇论文评阅中占有重要权重,请认真书写摘要(注意篇幅 不能超过一页)。评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。 6.论文请于5月23日上午9:00-11:00期间交到以下地点之一: (1)玉泉校区欧阳纯美 数学楼104室(2)紫金港校区理学院学生会办公室(蓝田学园四舍104室)。 7.各参赛队应严格遵守竞赛规则,比赛开始后不得更换队员,不得与队外任何人(包括在 网上)讨论。 8.引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的 表述方式, 在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年。 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日)。 9.请各参赛队妥善保管有关参赛资料(包括源程序等),以便答辩及异议期质询所用。10.本次竞赛题目版权属浙江大学数学建模实践基地所有,未经许可,不得转载。

电机学 第四章 交流绕组的共同问题

第四章 交流绕组的共同问题 一、填空 1. 一台50Hz 的三相电机通以60 Hz 的三相对称电流,并保持电流有效值不变,此时三相 基波合成旋转磁势的幅值大小 ,转速 ,极数 。 答:不变,变大,不变。 2. ★单相绕组的基波磁势是 ,它可以分解成大小 ,转 向 ,转速 的两个旋转磁势。 答:脉振磁势,相等,相反,相等。 3. 有一个三相双层叠绕组,2p=4, Q=36, 支路数a=1,那么极距τ= 槽,每极每相槽 数q= ,槽距角α= ,分布因数1d k = ,18y =,节距因数1p k = ,绕组因数1w k = 。 答:9,3,20°,0.96,0.98,0.94 4. ★若消除相电势中ν次谐波,在采用短距方法中,节距1y = τ。 答:νν1- 5. ★三相对称绕组通过三相对称电流,顺时针相序(a-b-c-a ),其中t i a ωsin 10=,当Ia=10A 时,三相基波合成磁势的幅值应位于 ;当Ia =-5A 时,其幅值位于 。 答:A 相绕组轴线处,B 相绕组轴线处。 6. ★将一台三相交流电机的三相绕组串联起来,通交流电,则合成磁势 为 。 答:脉振磁势。 7. ★对称交流绕组通以正弦交流电时,υ次谐波磁势的转速为 。 答:νs n 8. 三相合成磁动势中的五次空间磁势谐波,在气隙空间以 基波旋转磁动势的转 速旋转,转向与基波转向 ,在定子绕组中,感应电势的频率为 , 要消除它定子绕组节距 1y = 。 答:1/5,相反,f 1,45τ 9. ★★设基波极距为τ,基波电势频率为f ,则同步电机转子磁极磁场的3次谐波极距 为 ;在电枢绕组中所感应的电势频率为 ;如3次谐波相电势有效值为E 3,则线电势有效值为 ;同步电机三相电枢绕组中一相单独流过电流时,所产生的3次谐波磁势表达式为 。三相绕组流过对称三相电流时3次谐波磁势幅值为 。 答:3τ,3f,0,3F cos3cos x t φπ ωτ,0 10. ★某三相两极电机中,有一个表达式为δ=F COS (5ωt+ 7θS )的气隙磁势波,这表明: 产生该磁势波的电流频率为基波电流频率的 倍;该磁势的极对数为 ;在空间的转速为 ;在电枢绕组中所感应的电势的频率为 。 答:5,7p,s n 75,15f 二、选择填空

经典-同步电机模型的MATLAB仿真h

安徽工业大学工商学院课程设计(论文)同步电机模型的MATLAB仿真 学生姓名:李春笋 学号:111842161 专业班级:气1142 指导教师:范国伟 2013年12月20日

摘要 采用电力电子变频装置实现电压频率协调控制,改变了同步电机历来的恒速运行不能调速的面貌,使它和异步电机一样成为调速电机大家庭的一员。本文针对同步电机中具有代表性的凸极机,在忽略了一部分对误差影响较小而使算法复杂度大大增加的因素(如谐波磁势等),对其内部电流、电压、磁通、磁链及转矩的相互关系进行了一系列定量分析,建立了简化的基于abc三相变量上的数学模型,并将其进行派克变换,转换成易于计算机控制的d/q坐标下的模型。再使用MATLAB中用于仿真模拟系统的SIMULINK 对系统的各个部分进行封装及连接,系统总体分为电源、abc/dq转换器、电机内部模拟、控制反馈四个主要部分,并为其设计了专用的模块,同时对其中的一系列参数进行了配置。系统启动仿真后,在经历了一开始的振荡后,各输出相对于输出时间的响应较稳定。关键词:同步电机 d/q模型 MATLAB SIMULINK 仿真。 The Simulation Platform of Synchronous Machine by MATLAB Abstract: The utilization of transducer realizes the control of voltage’s frequency. It changes the situation that Synchronous Machine is always running with constant speed. Just like Asynchronous Machine, Synchronous machine can also be viewed as a member of the timing machine. This thesis intends to aim at the typical salient pole machine in Synchronous Machine. Some quantitative analysis are made on relations of salient pole machine among current, voltage, flux, flux linkage and torque, under the condition that some factors such as harmonic electric potential are ignored. These factors have less influence on error but greatly increase complexity of arithmetic. Thus, simplified mathematic model is established on the basis of a, b, c three phase variables. By the Park transformation, this model is transformed to d, q model which, is easy to be controlled by computer. Simulink is used to masking and linking all the parts of the system. The system can be divided into four main parts, namely power system, abc/dq transformation, simulation model of the machine and feedback control. Special blocks are designed for the four parts and a series of parameters in these parts are configured. The results of simulation show that each output has a satisfactory response when there is disturbance. Key Words: Synchronous Machine Simulation d/q Model MATLAB SIMULINK

电机学复习重点整理

第一章变压器 1.变压器基本工作原理,基本结构、主要额定值 变压器是利用电磁感应原理将一种电压等级的交流电能变换为另一种同频率且不同电压等级的交流电能的静止电气设备,它在电力系统,变电所以及工厂供配电中得到了广泛的应用,以满足电能的传输,分配和使用。变压器的原理是基于电磁感应定律,因此磁场是变压器的工作媒介 变压器基本结构组成: 猜测可能出填空题或选择题 三相变压器按照磁路可分为三相组式变压器和三相芯式变压器两类 变压器的型号和额定值 ~

考法:例如解释S9-1250/10的各项数值的含义 2.变压器空载和负载运行时的电磁状况;空载电流的组成、作用、性质。变压器一次侧接到额定频率和额定电压的交流电源上,其二次侧开路,这种运行状态称为变压器的空载运行。 变压器空载运行原理图 、 变压器一次绕组接交流电源,二次绕组接负载的运行方式, 称为变压器的负载运行方式。 变压器负载运行原理图 实际运行的电力变压器的磁路总是工作在饱和状态下。 通过磁化曲线推得的电流波形可以发现: 空载电流(即励磁电流)呈尖顶波,除了基波外, 还有较强的三次谐波和其他高次谐波。

21 21N N E E = ; 产生主磁通所需要的电流称为励磁电流,用m i 表示; 同理产生主磁通的磁动势称为励磁磁动势,用 m F 表示。 变压器铁芯上仅有一次绕组空载电流0i 所形成的磁动势0F , 即空载电流0i 建立主磁通,所以空载电流0i 就是励磁电流m i ,即m 0i i = 同理,空载磁动势0F 就是励磁磁动势,即m 0F F =或m 101i N i N = 因为空载时,变压器一次绕组实际上是一个铁芯线圈, 空载电流的大小主要决定于铁芯线圈的电抗和铁芯损耗。 铁芯线圈的电抗正比于线圈匝数的平方和磁路的磁导。 因此,空载电流的大小与铁芯的磁化性能,饱和程度有密切的关系。 3. } 4. 变压器变比的定义;磁动式平衡关系的物理含义,用此平衡关系分析变压器 的能量传递;变压器折算概念和变压器折算方法,变压器基本方程组、等效电路和相量图 在变压器中,一次绕组的感应电动势1E 与二次绕组的感应电动势2E 之比称为变比,用k 表示,即k = 变压器负载运行时,作用于变压器磁路上111N I F ? =和222N I F ? =两个磁动势。 对于电力变压器,由于其一次侧绕组漏阻抗压降很小,负载时仍有 m 111fN 44.4E U φ=≈,故变压器负载运行时铁芯中与1E 相对应的主磁通? m φ近似等 于空载时的主磁通,从而产生? m φ的合成磁动势与空载磁动势近似相等,即 m 021F F F F ==+ m 1012211I N I N I N I N ? ?? ? ==+ 变压器空载运行时的电压平衡方程

同步电机数学模型的建立和仿真

同步电机数学模型的建立和仿真 姓名:包邻淋 专业:控制工程 学号:1402094

摘要 (3) 1同步电机数学模型的建立 (4) 1.1模型的导出思路 (4) 1.2变量置换用的表达式 (5) 1.4电机实用模型 (6) 1.5电机实用模型的状态空间表达式 (8) 1.6电机模型参数的确定 (10) 2 同步电机数学模型的仿真 (13) 2.1同步发电机仿真模型 (13) 2.2不同阶次模型的仿真分析 (14) 参考文献 (17)

摘要 一般发电机存在临诸多问题,建立精确地描述同步发电机的数学模型是十分必要的[1]。电力系统数字仿真因具有不受原型系统规模和结构复杂性限制,能保证被研究系统的安全性,且具有良好的经济性、方便性等优点。 常用的同步发电机数学模型由同步发电机电路方程及转子运动方程两部分组成。同步发电机电路方程又分为基本方程和导出模型两类[4]。对于不同的假设条件,同步发电机模型可作不同程度的简化,因此同步发电机的导出模型也有不同的形式。同一假设条件下,不同的同步发电机数学模型,其主要区别在于电机的转子绕组数,有d,q,f,D,Q5个绕组的电压方程和磁链方程,外加2个转子运动方程,则称之为转子7阶模型[5]。如果转子绕组数减少,则发电机方程组的阶数也相应减少。 本文通过MATLAB/simulink进行仿真计算,比较采用不同的同步发电机模型时,对系统的稳定性分析的影响。在此基础上提出在不同情况下进行电力系统仿真计算选取同步发电机数学模型的方法。

1同步电机数学模型的建立 1.1模型的导出思路 由于定转子间的相对运动,基于空间静止不动的三相坐标系所建立的原始方程,磁链方程式中会出现变系数,这对方程组的求解和模型的建立造成了很大的困难。现在通用的方法是对原始方程做d q变换(又称为派克变换),将原方程从a b c三相静止不动坐标系变为与转子相对静止的d q坐标系。 基本方程中有d,q,f,D,Q5个绕组的电压方程和磁链方程,外加2个转子运动方程,若设,则原方程为5阶,若转子运动方程为,;所含变量为,。。在化为实用模型时 和保留,用取代,再用5个磁链方程消去3个转子电流,以及2个定子磁链,而 则用实用变量代替。 经过上述思路导出的实用模型,除了以及引入的等效实用变量之外方程中系数都是同步电机技术参数中的电抗和时间

异步电动机动态数学模型的建模与仿真.docx

目录 1 设计意义及要求 (3) 1.1设计意义 (3) 1.2设计要求 (3) 2 异步电动机动态数学模型 (4) 2. 1 异步电动机动态数学模型的性质 (4) 2. 2 异步电动机的三相数学模型 (5) 2.3坐标变换 (7) 2. 3.1坐标变换的基本思路 (7) 2. 3.2三相 - 两相变换( 3 / 2 变换) (7) 2. 3.3静止两相 - 旋转正交变换( 2 s / 2 r 变换) ...................................... 2.4状态方程 (10) 3 模型建立 (12) 3. 1 ACMo t o r 模块 (12) 3.2坐标变换模块 (13) 3. 2.1 3/ 2 t r a n s f o r m 模块 (13) 3. 2.22s/2rtransform 模块 (13) 3. 2.32r / 2s t r an s f or m 模块 (14) 3. 2.4 2/ 3 t r a n s f o r m 模块 (15) 3. 2.5 3/ 2 r t r a ns f o r m 模块 (16) 3.3仿真原理图 (17) 4 仿真结果及分析 (20) 5 结论 ........................................................ 参考文献..................................................... 摘要 对一个物理对象的数学模型,在不改变控制对象物理特性的前提下采用一定的变换手段,可以获得相对简单的数学描述,以简化对控制对象的控制。对异步电机的数学分析也不例外,在分析异步电机的数学模型时主要用到的是坐标变换。

清华大学电力系统 同步发电机的数学模型21

长江三峡水电枢纽

同步汽轮发电机的转子同步水轮发电机的转子气隙 定子 同步发电机的FLASH.SWF 11

定子上3个等效绕组 a 相绕组 b 相绕组 c 相绕组 转子上3个等效绕组 同步发电机简化为:定子3个绕组、转子3个绕组、气隙、定子铁心、转子铁心组成的6绕组电磁系统励磁绕组 d 轴等效的阻尼绕组轴等效的阻尼绕组Q 15d 轴 q 轴120度 120度 120度 定子、转子铁心同轴(忽略定、转θ sin )M F =磁动势零点 θ 的,无饱和,无磁滞和涡流损耗,

19 磁链与电流、电压的参考正方向 1、设转子逆时针旋转为旋转正方向; 3、定子三相绕组端电压的极性与相电流正方向按发电机惯例来定义,即 正值电流i a 从端电压u a 的正极流出发电机,b 、c 相类似。 定子绕组的正电流产生负的磁链!! 2、定子三相绕组磁链ψa ,ψb ,ψc 的正方向与a 、b 、c 三轴正方向一致; + -21 5、d轴上的励磁绕组f、阻磁链正方向与d轴磁链正方向与q轴的正方向一致;正电流由端电压,因此绕组电阻: a 相绕组 b 相绕组 c 相绕组 +

26 励磁绕组d 轴阻尼绕组 轴阻尼绕组 绕组、 28 绕组的磁链方程-6个 定子绕组的磁链a 相绕组的磁链= a 相绕组电流产生的自磁链+ b 相绕组电流产生的互磁链+ c 相绕组电流产生的互磁链+励磁绕组电流产生的互磁链+D 绕组电流产生的互磁链 + Q 绕组电流产生的互磁链

31 转子绕组的磁链励磁绕组的磁链= a 相绕组电流产生的互磁链+ b 相绕组电流产生的互磁链+ c 相绕组电流产生的互磁链+励磁绕组电流产生的自磁链+D 绕组电流产生的互磁链+ Q 绕组电流产生的互磁链 36 a 相绕组磁路磁阻(磁导)的变化与转子d 轴与a 相绕组轴线的夹角θa (=ωt )有关 磁路的磁导λaa ,自感L aa 为θa 的周 期函数,周期为π。 θa θa =±π/2 磁路磁导最小,自感最小 a θa =0,π磁路磁导最大,自感最大 a

同步电机数学模型

同步电机的基本方程式及数学模型 派克方程 1.1 理想电机假设 (1)电机磁铁部分的磁导率为常数,因此可以忽略掉磁滞、磁饱和的影响,也不计涡流及集肤效应作用等的影响; (2)定子的三个绕组的位置在空间互相相差120°电角度,3个绕组在结构上完全相同。同时,他们均在气隙中产生正弦分布的磁动势; (3)定子及转子的槽及通风沟等不影响电机定子及转子的电感,因此认为电机的定子及转子具有光滑的表面; 为了分析计算,还需要设定绕组电流、磁链正方向。 1.2 abc 坐标下的有名值方程 同步电机共有6个绕组分别为:定子绕组a,b,c ,转子励磁绕组f ,转子d 轴阻尼绕组D 以及转子q 轴阻尼绕组Q 。需要求出每个绕组的电压、电流和磁链未知数,因此一共需要18个方程才能求解。 电压方程: 00 a a a a b b b b c c c c f f f f D D D D Q Q Q Q u p r i u p r i u p r i u p r i u p r i u p r i ψψψψψψ=-?? =-??=-?=-?? =-≡??=-≡? D 绕组与Q 绕组均为无外接电源闭合绕组,因此电压均为0,从而上式中一共有8个方 程。 磁链方程: 11a a aa ab ac af aD aQ b b ba bb bc bf bD bQ c c ca cb cc cf cD cQ f f fa fb fc ff fD fQ Da Db Dc Df DD DQ D D Qa Qb Qc Qf QD QQ Q Q i L L L L L L i L L L L L L i L L L L L L i L L L L L L L L L L L L i L L L L L L i L ψψψψψψ-???? ??????? ?-??????????-??????=? ????? ?????? ??????????????? ????? =(33)12(33)21(33)22(33)abc fDQ i L L L i ????-???????????? 在电感矩阵中(针对凸极机),定子绕组自感和互感参数是随转子位置而变化的参数, 而在转子绕组中,转子的自感和互感参数均为常数,而且D 轴与Q 轴正交,则D 轴绕组与Q 轴绕组互感为0。定子与转子之间的互感参数显然是随转子位置变化的参数。

电机学概念以及公式总结

一、直流电机 A. 主要概念 1. 换向器、电刷、电枢接触压降 2 U b 2. 极数和极对数 3. 主磁极、励磁绕组 4. 电枢、电枢铁心、电枢绕组 5. 额定值 6. 元件 7. 单叠、单波绕组 8. 第1 节距、第 2 节距、合成节距、换向器节距 9. 并联支路对数 a 10. 绕组展开图 11. 励磁与励磁方式 12. 空载磁场、主磁通、漏磁通、磁化曲线、每级磁通 13. 电枢磁场 14. (交轴、直轴)电枢反应及其性质、几何中性线、物理中性线、移刷 15. 反电势常数C E、转矩常数C T 16. 电磁功率Pem 电枢铜耗pCua 励磁铜耗pCuf 电机铁耗pFe 机械损耗pmec 附加损耗pad 输出机械功率P2 可变损耗、不变损耗、空载损耗 17. 直流电动机(DM )的工作特性 18. 串励电动机的“飞速”或“飞车” 19. 电动机的机械特性、自然机械特性、人工机械特性、硬特性、软特性 20. 稳定性 21. DM 的启动方法:直接启动、电枢回路串电阻启动、降压启动 22. DM 的调速方法:电枢回路串电阻、调励磁、调端电压 23. DM 的制动方法:能耗制动、反接制动、回馈制动 B. 主要公式: 发电机:P N=U N I N (输出电功率) 电动机:P N=U N I N ηN (输出机械功率)

反电势: E C n E C E pN a 60a 电磁转矩: T C I em T a C T pN a 2 a 直流电动机(DM )电势平衡方程:U E I a R a C EΦn I a R a DM 的输入电功率P1 : P UI U (I a I f ) UI a UI f (E I a R a )I a UI f 1 2 EI I R UI P p p a a a f em Cua Cuf P P p p 1 em Cua Cuf P P p p p em 2 Fe mec ad T T T J DM 的转矩方程: 2 0 em d dt DM 的效率:P P p p 2 1 100% 100% (1 ) 100% P P P p 1 1 2 他励DM 的转速调整率:n n n 0 N n N 100% U I a(R R ) U R R a j a j DM 的机械特性: 2 em n T C C C C ΦΦΦ E E E T . 并联DM 的理想空载转速n0: 二、变压器 A. 主要概念 1. 单相、三相;变压器组、心式变压器;电力变压器、互感器;干式、油浸式变压器 2. 铁心柱、轭部 3. 额定容量、一次侧、二次侧 4. 高压绕组、低压绕组 5. 空载运行,主磁通、漏磁通 1 及其区别,主磁路、漏磁路

电机数学模型matlab仿真作业

MATLAB在异步电机仿真中的应用 摘要:在同步旋转坐标系上(M、 T 坐标系) 推导出异步电机数学模型, 并应用 MATLAB/ SIMULINK 对其进行实际仿真,并且运用电机的参数验证了所建模型的正确性,并得出电机转速、电机稳定运行三相电流、电机转矩图。 关键词:仿真异步电机数学模型 MATLAB 一、引言 Matlab 语言是一种面向科学工程计算的高级语言,它集科学计算自动控制信号处理神经网络图像处理等功能于一体,是一种高级的数学分析与运算软件,可用作动态系统的建模和仿真。 目前,电机控制系统越来越复杂,不断有新的控制算法被采用仿真是对其进行研究的一个重要的不可缺少的手段 Matlab 的仿真研究功能成功方便地应用到各种科研过程中。 本文将结合Matlab/Simulink 的特点,介绍异步电动机在同步旋转坐标系(M 、T 坐标系)的数学建模与仿真方法在建模与仿真之后,可利用Simulink 将模型封装起来,使用时只需调用该模型并输入电机参数即可,为变频调速系统及控制方法的仿真研究提供了一种性能可靠使用方便的电机通用仿真模型。 异步电机的动态模型是高阶、非线性、强耦合的多变量系统 ,通过坐标变换的方法对其进行简化后 , 模型简单得多, 但其非线性、多变量的本质并未改变。描述电机的仍是一组高阶、变系数的微分方程,用传统的方法对其进行仿真分析并非易事。为了解决这一难题,本文利用异步电动机在同步旋转坐标系上(M、T 坐标系)的电压方程、磁链方程、转矩方程、运动方程实现了异步电动机的模型。 建立好数学模型之后。利用MATLAB/SIMULINK仿真软件成功搭建在同步旋转坐标系下的电机的数学模型。使得模型的建立更加简洁、明了,充分利用MATLAB/ SIMULINK提供的模块,建立了普通异步电动机的仿真模型,并对实际电机进行了仿真。 二、异步电机的仿真数学模型 利用MATLAB 进行电机运行状态仿真,最为关键的是建立起一个方便于仿真的电机模型。在本文的实例中,将在同步旋转两相坐标系下对一个直接接入三相电网的异步鼠笼电机建立一个可方便用于SIMULINK仿真的电机模型。 为了区分于一般的同步旋转 d、q 坐标系统,这里采用M、T坐标轴代替d、 q轴,且令M 轴与电机中转子总磁链ψ 2方向一致(转子总磁链ψ 2 等于气隙磁链 ψ g 与转了漏磁链ψ 21 之和),即把M轴定向到ψ 2 的方向。由于ψ 2 固定在M轴方 向上,所以转子磁链在T轴方向上就没有分量, 即ψ M2=ψ 2 。而转换到两相同步旋

直流电动机数学模型的建立

直流电动机数学模型的建立

直流电动机数学模型的建立 4.1 数学模型的建立 建立电动机动态数学模型的方法的要点是:首先列写出电动机主电路电压平衡方程式,轴上力矩平衡方程式和励磁电路电压平衡方程式等基本关系式,加以整理,然后进行拉普拉斯变换,根据此变换,即可求出电动机的动态结构图和传递函数的表达式[1,10]。 图4—1 上图为一他励直流电动机的等效电路,其中: a U E----分别为电动机电枢端电压和反电势; d I f I ---电动机电枢电流和励磁电流; a R a L ---电枢电路电阻和电感; f R f L ---励磁电路电阻和电感; f U -------电动机的励磁电压; ω-------电动机的角速度; J--------电动机轴上的转动惯量; e T l T ----电动机转矩和负载阻转矩。 4.1.1 写出平衡方程式、拉普拉斯变换 由上图可写出下列基本关系式: a U -E= a R (1+a T S ?) d I e T -l T =J ?S ? ω

f U = f R ()f f I T S ??+1 E= ω ωφ???=??f e I M p K Te= d f d m I I M p I K ???=??φ 其中:a a a R L T = 为电枢电路时间常数;f f f R L T = 为励磁电路时间常数;p 为电动机磁极对数;M 为励磁绕组和电枢绕组的互感; 4.1.2 动态结构图 将S=d/dt 看作算子,则上述诸式也就是它们的拉氏变换。所以由上式可画出直流电动机的结构。如图4—2所示。 图4—2 如果将讨论的问题限制在稳态工作点附近的小偏差情况,经过化简,可得此时系统的增量方程为:d a a a I T S R E U ??+?=-)1( ω ??=-S J T T l e f f f f I T S R U ??+?=)1( 0Ω???+???=f f I M p I M p E ω 0 0d f d f e I I M p I I M p T ???+???= 为简化起见,式中表示增量的下标1已删去。由诸式可画出直流电动机在独立电枢电压和磁场控制下的动态结构图如下所示:

永磁同步电机数学模型推导

PMSM 电机在旋转dq 坐标系中定子电压和定子磁链方程为 d d s d q q q s q d d d d f q q q d u R i dt d u R i dt L i L i ψωψψωψψψψ? =+-?? ? =++?? =+??=? (1) d u ,q u 为d 、q 轴的定子电压; d L ,q L 为d 、q 轴的电枢电感,对于隐极电机来说d L =q L =L ; d i ,q i 为d 、q 轴的电枢电流; d ψ,q ψ为d 、q 轴的定子磁链; s R 为电枢绕组电阻; f ψ为永磁铁产生的磁链,为常量; ω为电机电角速度,有r p ωω=,p 为电机的极对数,r ω为电机转子角速度; 由式(1)推出: 11d s d r q d q f s r d q r q di R i p i u dt L L di p R p i i u dt L L L ωψωω-?=++??? --?=-+++?? (2) PMSM 电机在旋转dq 坐标系中电磁转矩方程为 () ()1.5 1.5 1.5e d q q d d q d q f q f q T p i i p L L i i i p i ψψψψ=-??=-+??= (3) PMSM 电机的转子动力学方程为 r e m r d T T b J dt ωω--= (4) e T 为电机的电磁转矩; m T 为电机的负载扭矩; b 为电机的阻尼系数; J 为电机的转动惯量;

由式(3)式(4)可以推出 1.5f m r q r p T d b i dt J J J ψωω--=++ (5) 状态方程为 X AX Bu C =++ 选取,d d q q r i u X i u u ω?? ?? ? == ? ??? ? ?? ,由式(2)式(5)推出 10 001,0,01.5000s r f s r m f R p L L p R A p B C L L L T p b J J J ωψωψ???? -?? ? ? ? ? ? ? ? ? =---== ? ? ? ? ? ? ? ? ?-?? ? ??? ? ?

异步电动机数学模型仿真

异步电机动态数学模型仿真报告 姓名: 石俊 学号: 1107040155 专业: 电气工程及其自动化 1. 鼠笼异步电动机参数: 额定功率P N =3kW ,额定电压U N =380V ,额定电流I N =6.9A ,额定转速n N =1400r/min ,额定频率f N =50Hz ,定子绕组Y 联结。定子电阻R s =1.85Ω,转子电阻R r =2.658Ω,定子自感L s =0.294H ,转子自感L r =0.2898H ,定、转子互感L m =0.2838H ,转子参数已折合到定子侧,系统的转动惯量J=0.1284kgm 2。 2. 公式推导 状态方程s r ω--i ψ为状态变量 状态变量: T r d r q s d s q i i ωψψ ??=??X (式1) 输入变量: 1 T s d s q L u u T ω??=??U 输出变量: []T r ωψ=Y (式2) ()1 r q s q s s q m i L i L ψ= - (式3) rq i = ()1 sq s sq m L i L ψ- e T =()p sd sd s sd sq sd sq S sd sq n i L i i i L i i ψψ- -+ (式4) =()p sq sd sd sq n i i ψψ- rd ψ=r s r sd sd m m L L L i L L σψ-+ (式5) rq ψ=r s r sq sq m m L L L i L L σ ψ-+ 状态方程: d dt ω=()2 p p sq sd sd sq L n n i i T ψψ-- JJ (式6) sd d dt ψ=1S sd sq sd R i u ωψ-++ sd d dt ψ=1S sq sd sq R i u ωψ--+ sd di dt =()1 11 s r r s sd sd sq sd sq r r s s r s R L R L u i i L T L L L L ψωψωωσσσσ++-+-+

相关文档
相关文档 最新文档