文档库 最新最全的文档下载
当前位置:文档库 › 2016年河北单招物理模拟试题:电磁感应中的能量问题

2016年河北单招物理模拟试题:电磁感应中的能量问题

2016年河北单招物理模拟试题:电磁感应中的能量问题
2016年河北单招物理模拟试题:电磁感应中的能量问题

2016年河北单招物理模拟试题:电磁感应中的能量问题

【试题内容来自于相关网站和学校提供】

1:如图所示,两根足够长的平行光滑金属导轨与水平方向成θ角放置,下端接有电阻R,一根质量为m的导体棒垂直放置在导轨上,与导轨保持良好接触,匀强磁场垂直导轨平面向上,导体棒在外力作用下向上匀速运动。不计导体棒和导轨的电阻,则下列说法正确的是

A、拉力做的功等于棒的机械能的增量

B、合力对棒做的功等于棒动能的增量

C、拉力与棒受到的磁场力的合力为零

D、拉力对棒做的功与棒克服重力做功之差等于回路中产生的电能

2:如图,光滑斜面的倾角为,斜面上放置一矩形导体线框,边的边长为,边的边长为,线框的质量为,电阻为,线框通过绝缘细线绕过光滑的滑轮与重物相连,重物质量为,斜面上线(平行底边)的右方有垂直斜面向上的匀强磁场,磁感应强度为,如果线框从静止开始运动,进入磁场的最初一段时间是做匀速运动的,且线框的边始终平行底边,则下列说法正确的是()

A、线框进入磁场前运动的加速度为

B、线框进入磁场时匀速运动的速度为

C、线框做匀速运动的总时间为

D、该匀速运动过程产生的焦耳热为

3:如图所示,金属线框abcd置于光滑水平桌面上,其右方存在一个有理想边界的方向竖直向下的矩形匀强磁场区,磁场宽度大于线圈宽度。金属线框在水平恒力F作用下向右运动,ab边始终保持与磁场边界平行。ab边进入磁场时线框恰好能做匀速运动。则下列说法中正确的是

A、线框进入磁场过程,F做的功大于线框内增加的内能

B、线框完全处于磁场中的阶段,F做的功大于线框动能的增加量

C、线框穿出磁场过程中,F做的功等于线框中增加的内能

D、线框穿出磁场过程中,F做的功小于线框中增加的内能

4:如图所示,在垂直纸面向里,磁感应强度为B的匀强磁场区域中有一个均匀导线制成的单匝直角三角形线框。现用外力使线框以恒定的速度v沿垂直磁场方向向右运动,运动中线框的AB边始终与磁场右边界平行。已知AB=BC=l,线框导线的总电阻为R。则线框离开磁场的过程中()

A、线框中的电动势随时间均匀增大

B、通过线框截面的电荷量为

C、线框所受外力的最大值为

D、线框中的热功率与时间成正比

5:据某报刊报道,美国一家公司制成了一种不需要电池供电的“警示牌”,使用时它上面的英文字母“ON”发亮,对防止误触电起到了警示作用,它相当于我国的“小心触电”或“高压危险”一类的牌子。关于这则消息,正确的判断是()

A、没有工作电源,却能够使英文字母“ON”发亮,显然违背了能量转化与守恒定律,这是条假新闻,没有科学依据

B、这种牌子内部必定隐藏有太阳能电池为其供电,不然绝不会使英文字母“ON”发亮,这是条故弄玄虚的消息,但有科学依据

C、这种牌子内部必定有闭合电路,当它挂在有交变电流流过的输电线附近时,就会使英文字母“ON”发亮,这是

条真实的消息,有科学依据

D、这种牌子不论挂在有交变电流还是有稳恒电流流过的输电线附近,都会使英文字母“ON”发亮,这是条真实的消息,有科学依据

6:如图所示,将边长为L、总电阻为R的正方形闭合线圈,从磁感强度为B的匀强磁场中以速度v匀速拉出(磁场方向,垂直线圈平面)

(1)所用拉力F=。

(2)拉力F做的功W=。

(3)拉力F的功率P F=。

(4)线圈发热的功率P热=。

7:

(2015。上海单科)如图,金属环用轻绳悬挂,与长直螺线管共轴,并位于其左侧。若变阻器滑片向左移动,则金属环将向_______(填“左”或“右”)运动,并有_______(填“收缩”或“扩张”)趋势。

8:如图甲所示,一个n=10匝,面积为S=0.3m 2

的圆形金属线圈,其总电阻为R 1="2Ω," 与R 2=4Ω的电阻连接成闭合电路。线圈内存在方向垂直于纸面向里,磁感应强度按B 1="2t" + 3 (T)规律变化的磁场。电阻R 2两端通过金属导线分别与电容器C 的两极相连。电容器C 紧靠着带小孔a (只能容一个粒子通过)的固定绝缘弹性圆筒。圆筒内壁光滑,筒内有垂直水平面竖直向下的匀强磁场B 2,O 是圆筒的圆心,圆筒的内半径为r=0.4m 。

(1)金属线圈的感应电动势E 和电容器C 两板间的电压U; (2)在电容器C 内紧靠极板且正对a 孔的D 处有一个带正电的粒子从静止开始经电容器C 加速后从a 孔垂直磁场B 2并正对着圆心O 进入筒中,该带电粒子与圆筒壁碰撞四次后恰好又从小孔a 射出圆筒。已知粒子的比荷q/m=5×107

(C/kg ),该带电粒子每次与筒壁发生碰撞时电量和能量都不损失,不计粒子重力和空气阻力,则磁感应强度B 2多大(结果允许含有三角函数式)。

9:如图甲所示足够长的平行光滑金属导轨ab 、cd 倾斜放置,两导轨之间的距离为L =0.5m ,导轨平面与水平面间的夹角为θ=30°,导轨上端a 、c 之间连接有一阻值为R 1=4Ω的电阻,下端b 、d 之间接有一阻值为R 2=4Ω的小灯泡。有理想边界的匀强磁场垂直于导轨平面向上,虚线ef 为磁场的上边界,ij 为磁场的下边界,此区域内的感应强度B ,随时间t 变化的规律如图乙所示,现将一质量为m =0.2kg 的金属棒MN ,从距离磁场上边界ef 的一定距离处,从t =0时刻开始由静止释放,金属棒MN 从开始运动到经过磁场的下边界ij 的过程中,小灯泡的亮度始终不变。金属棒MN 在两轨道间的电阻r =1Ω,其余部分的电阻忽略不计,ef 、ij 边界均垂直于两导轨。重力加速度g =10m/s 2

。求:

(1)小灯泡的实际功率;

(2)金属棒MN 穿出磁场前的最大速率; (3)整个过程中小灯泡产生的热量。

10:(9分)在“测定直流电动机的效率”实验中,用如图所示的实物图测定一个额定电压U=6V、额定功率为3W 的直流电动机的机械效率。

(1)请根据实物连接图在方框中画出相应的电路图(电动机用表示)

(2)实验中保持电动机两端电压U恒为6V,重物每次匀速上升的高度h均为1.5m,所测物理量及测量结果如下表所示:

(3)在第5次实验中,电动机的输出功率是________;可估算出电动机线圈的电阻为____________Ω。

(4)从前4次的实验数据可以得出:UI (填“>”、“<”或“=”)。

11:两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L.导轨上面横放着两根导体棒ab 和cd,构成矩形回路,如图所示.两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd静止,

棒ab有指向棒cd的初速度v0.若两导体棒在运动中始终不接触,求:

(1)在运动中产生的焦耳热最多是多少?

(2)当ab棒的速度变为初速度的时,cd棒的加速度是多少?

12:设长为L的正确方形线框的电阻为R,将以恒定速度匀速穿过有界匀强磁场,磁场的磁感应强度为B,v的方向垂直于B,也垂直于磁场边界,磁场范围的宽度为d,如图所示,则,

(1)若L<d,求线框穿过磁场安培力所做的功;

(2)若L>d,求线框穿过磁场安培力所做的功。

13:两个沿竖直方向的磁感强度大小相等、方向相反的匀强磁场穿过光滑的水平桌面,它们的宽度均为L.质量为m、边长为L的平放在桌面上的正方形线圈的ab边与磁场边界ee′的距离为L,如图所示.线圈在恒力作用下由静止开始沿桌面加速运动,ab边进入右边的磁场时恰好做速度为v的匀速直线运动.求:

(1)当ab边刚越过ff′时线圈的加速度.

(2)当ab边运动到ff′与gg′之间的正中间位置时,线圈又恰好做匀速直线运动,从ab边刚越过ee′到达右边磁场正中间位置的过程中,线圈共产生多少热量?

14:如图所示,在磁感应强度大小为B、方向垂直向上的匀强磁场中,有一上、下两层均与水平面平行的“U”型

光滑金属导轨,在导轨面上各放一根完全相同的质量为的匀质金属杆和,开始时两根金属杆位于同一

竖起面内且杆与轨道垂直。设两导轨面相距为H,导轨宽为L,导轨足够长且电阻不计,金属杆单位长度的电阻为r。现有一质量为的不带电小球以水平向右的速度撞击杆的中点,撞击后小球反弹落到下层面上的C

点。C点与杆初始位置相距为S。求:

(1)回路内感应电流的最大值;

(2)整个运动过程中感应电流最多产生了多少热量;

(3)当杆与杆的速度比为时,受到的安培力大小。

15:某课外兴趣小组为研究感应器设计了如图所示的装置,光滑导轨MN、PQ倾斜固定,与足够长水平固定的光滑导轨MR、PS在M、P两点光滑连接,水平导轨处在竖直方向的匀强磁场中,在水平导轨两侧安装有“感应控制器”,其结构中包括感应器1、感应器2和锁定控制器,现将导体棒A垂直导轨放置在水平导轨上,并置于锁定控制器处,导体棒B 垂直放置在倾斜导轨某处,由静止释放,当导体棒B到达MP处时,被感应器1感应,并发送锁定信号到锁定控制器,瞬间锁定导体棒A,使其不得水平移动,当导体棒B运动到CD处时,被感应器2感应,并发送解锁信号到锁定控制器,瞬间解锁导体棒A,之后两导体棒在磁场中运动。如图所示,两导体棒

的质量为ma=mb=2kg,磁场的感应强度为B=1T,MP CD间的距离为L0=1m,导轨宽L=1m,两导体棒的电阻为

,导轨电阻不计,CD与AB间距离足够大,导体棒B释放的位置到水平导轨的高度H=0.8m,(g=10m/s2)求(计算结果保留两位有效数字)

【小题1】(1)导体棒到达感应器2处时的速度大小。

【小题2】(2)由于感应控制器的安装使系统多损失的机械能。

答案部分

1、B,D

本题考查的是电磁感应定律与力学的综合应用问题,导体棒在外力作用下向上匀速运动,则棒受力平衡,拉力F 等于重力沿斜面向下的分力加上安培力;C错误;不计导体棒和导轨的电阻,拉力的功与安培力的功之和等于棒的机械能的增量,A错误,合力对棒做的功等于棒动能的增量;B正确;拉力对棒做的功与棒克服重力做功之差等于回路中产生的电能,D正确;

2、D

线框进入磁场前受到绳子的拉力和重力沿斜面向下的分力,以线框和M为一个整体,由牛顿第二定律可知

,A错;线框进入磁场后受到沿斜面向下的安培力作用,以线

框和M为一整体,,B错;当线框完全进入磁场后磁通量不再

发生变化,不再产生感应电流,不再受安培力的作用,所以时间为,C错;匀速运动产生的感应电流为,由焦耳热公式可知D对;

3、D

线框匀速进入磁场由能的转化与守恒知F做的功等于线框内增加的内能,因此A错;线框完全处于磁场中的阶段,由动能定理知F做的功等于线框动能的增加量,则B错;因为磁场宽度大于线圈宽度,因此线框cd边进入磁场后线框做匀加速运动,因此线框穿出磁场过程中,线框所的安培力大于拉力,因此F做的功小于线框中增加的内能,则D对

4、A,B

三角形线框向外匀速运动的过程中,由于有效切割磁感线的长度,所以线框中感应电动势的大小

,故选项A正确;线框离开磁场的运动过程中,通过线圈的电荷量,选项B正确;当线框恰好刚要完全离开磁场时,线框有效切割磁感线的长度最大,则,选项C 错误;线框的热功率,选项D错误。

5、C

(考查电磁感应,联系实际,考查生活中的物理知识)根据法拉第电磁感应定律知,如果内部有闭合回路,当靠近变化的交变电流的输电线时,能产生感应电流供应字母发光,是可行的,C正确。

6、

根据法拉第电磁感应定律有:,安培力;

拉力F做的功;

拉力F的功率;

线圈发热的功率。

7、左收缩

滑片向左移动时,电阻减小,电流增大,穿过金属环的磁通量增加,根据楞次定律,金属环将向左运动,并有收缩趋势。

8、(1) 6V ;4V (2)或

试题分析:(1)线圈中产生的感应电动势E=V =6V

电容器C两板间电压U==4V

(2)据动能定理有,

带电粒子在磁场中作匀速圆周运动,

由于带电粒子与圆筒壁碰撞时无电量和能量损失,那么每次碰撞前后粒子速度大小不变、速度方向总是沿着圆筒半径方向,4个碰撞点与小孔a恰好将圆筒壁五等分,粒子在圆筒内的轨迹具有对称性,由5段相同的圆弧组成,

设每段轨迹圆弧对应的圆心角为,则由几何关系可得:

有两种情形符合题意(如图所示):

(ⅰ)情形1:每段轨迹圆弧对应的圆心角为

得:

(ⅱ)情形2:每段轨迹圆弧对应的圆心角为

将数据代式得:

考点:此题考查法拉第电磁感应定律、欧姆定律及动能定理;考查的物理模型是匀速圆周运动。

9、(1)1W (2)3m/s (3)1.08J

试题分析:(1)由于小灯泡的亮度始终不变,说明金属棒MN进入磁场后作匀速直线运动,速度达到最大,由平衡条件得:,得

小灯泡的电功率得:

(2)由闭合电路的欧姆定律得:

其中,总电阻

由法拉第电磁感应定律得:

由以上各式代入数据解得:

(3)金属棒进入磁场前,由牛顿第二定律得:

2

加速度a=gsin30°=5m/s

进入磁场前所用的时间:,得

设磁场区域的长度为x。在0-t1时间内,由法拉第电磁感应定律得:

金属棒MN进入磁场前,总电阻+

又感应电动势,所以

在磁场中运动的时间

整个过程中小灯泡产生的热量

代入数据解得:

考点:此题为电磁与力学部分的综合问题,主要考查法拉第电磁感应定律、牛顿定律及焦耳定律

10、(1)见下图(3)0 (4)>

试题分析:(1)根据实物图画电路图,滑动变阻器的接入方式为分压式,电流表接入方式为外接式。需要注意。(3)在第5次实验中,重物匀速上升的高度h为1.5m所用时间为,即没有上升,速度为0.即电动机没有拉动重物,所用没有做功。此时电动机消耗的电能全部转化为内能,电动机变为纯电阻电路,电阻

(4)第一组数据,,,即,分析其他数据也是

如此,因为电功率一部分消耗在内阻上转化为内能,其他部分才是转化为机械功率,所以。考点:测定直流电动机的效率实验探究

11、(1)

(2)

ab棒向cd棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流.ab棒受到与运动方向相反的安培力作用做减速运动,cd棒则在安培力作用下做加速运动.在ab棒的速度大于cd棒的速度时,回路总有感应电流,ab棒继续减速,cd棒继续加速.两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v做匀速运动.

(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有

1

根据能量守恒,整个过程中产生的总热量

2

(2)设ab棒的速度变为初速度的时,cd棒的速度为v′,则由动量守恒可知

3

此时回路中的感应电动势和感应电流分别为

4

5

此时cd棒所受的安培力

6

cd棒的加速度

7

由以上各式,可得

.

12、(1)若L<d,感应电动势E=BLv 1分

电流1分

安培力1分

安培力做的功3分

(2)若L<d,安培力做的功4分

13、(1)a==

方向与运动方向相反.

2

(2)Q=mv

(1)设恒力为F,由线圈开始运动到ab边进入磁场前瞬间,根据动能定理

W=ΔE k得F=①

ab边刚越过ee′未到达ff′时做匀速运动,处于平衡状态,磁场力大小F1=F,设磁感强度为B,线圈电阻为R,则

感应电动势E 1=BLv 磁场力F 1=BI 1L

因为I 1=

得F = ②

当ab 边刚越过ff ′地,ab 、cd 边感应电动势大小、方向相同,总电动势ε2=2ε1,电流I 2=2I 1 ③

故磁场力的合力F 2=4F 1 ④ 由牛顿第二定律和①、④式得

a ==

方向与运动方向相反.

(2)设ab 边运动到ff ′与gg ′正中间时速度为v 3,则感应电动势ε3=2BLv 3,磁场力大小F 3=

此时线圈又做匀速运动,磁场力的大小F 3=F ⑥

由②、⑤、⑥式得v 3= ⑦

根据动能定理W F -W B =ΔE k

根据能量守恒定律,从ab 边刚越过ee ′到达右侧磁场正中间过程中,线圈产生的热量与磁场力做的功大小相等,

得Q =FL +

mv 2

-

mv 2

3 ⑧

由①、⑦、⑧式得Q =mv 2

14、1)

(2)

(3)

1)对小球和杆A1组成的系统,由动量守恒定律,得:

①又s=vt

H=②由①②③式联立:

④回路内感应电动势的最大值E=BLv1⑤

回路内感应电流的最大值I=⑥

联立④⑤⑥式得:

回路内感应电流的最大值:I=

(2)对两棒组成的系统,由动量守恒定律,得:

由能量守恒定律可得整个运动过程中感应电流最多产生热量:

Q==

(3)由能量守恒定律,得:

又∶=1∶3

A2受到的安培力大小

15、

【小题1】(1)3.0m/s

【小题2】(2)1.2 J

考查电磁感应和动量能量的综合应用。考查的知识点有;电磁感应现象,楞次定律,法拉第电磁感应定律,动量守恒,动量定理,机械能守恒,能量守恒;综合性强;虽然过程中没有显示用到楞次定律,但分析过程已经渗透对这一知识点的考查,属重点知识点和综合分析能力的考查,难度在0.4左右。

【小题1】(1)解;导体棒B下滑的过程,由动能定理得

设由MP到以CD历时为t,则由法拉第电磁感应定律得

这一过程中的平均感应电动势大小为

又平均电流

对这一过程,由却是动量定理得,

以上各式联立可得,导体棒b到达CD时的速度大小为v1=3.0m/s

【小题2】导体棒a解除锁定后,两导体棒组成的系统动量守恒,设它们最终的共同速度大小为发v2

若没有安装感应控制器,则导体棒B到达MP后,两导体棒组成的系统动量即守恒。

设这样可能达到的共同速度为,则有

由能量守恒得由于安装感应控制器,使得系统多损失的机械能为

以上各式联立,并代入数据得

高中物理电磁感应综合问题

电磁感应综合问题 电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定 理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、 直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下 两个方面: (1)受力情况、运动情况的动态分析。思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。要画好受力图,抓住a=0时,速度v达最大值的特点。 (2)功能分析,电磁感应过程往往涉及多种能量形势的转化。例 如:如图所示中的金属棒ab沿导轨由静止下滑时,重力势能减小,一 部分用来克服安培力做功转化为感应电流的电能,最终在 R上转转化为焦耳热,另一部分转化为金属棒的动能.若 导轨足够长,棒最终达到稳定状态为匀速运动时,重力势 能用来克服安培力做功转化为感应电流的电能,因此,从 功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往 是解决电磁感应问题的重要途径. 【例1】如图1所示,矩形裸导线框长边的长度为2l,短边的长度 为l,在两个短边上均接有电阻R,其余部分电阻不计,导线框一长边

及x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l x B B 20π=。一光滑导体棒AB 及短边平行且 及长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求: (1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律; (2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。 答案:(1))()(sin v l t R l vt v l B F 203222220≤≤=π (2)R v l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导 轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一及水平面垂直的均匀磁场,磁感强度B=0.5T 。一质量为m=01kg 的金属杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下作匀变速直线运动,加速度大小为a=2m/s 2,方向及初速度方向相反,设导轨和金属杆的电阻都可以忽略,且接触良好。求: (1)电流为零时金属杆所处的位置; (2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向; (3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方

高考物理电磁感应现象的两类情况(大题培优)及答案

高考物理电磁感应现象的两类情况(大题培优)及答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

大学物理吴百诗习题答案电磁感应

大学物理吴百诗习题答案 电磁感应 LELE was finally revised on the morning of December 16, 2020

法拉第电磁感应定律 10-1如图10-1所示,一半径a =,电阻R =×10-3Ω的圆形导体回路置于均匀磁场中,磁场方向与回路面积的法向之间的夹角为π/3,若磁场变化的规律为 T 10)583()(42-?++=t t t B 求:(1)t =2s 时回路的感应电动势和感应电流; (2)最初2s 内通过回路截面的电量。 解:(1)θcos BS S B =?=Φ V 10)86(6.110)86()3 cos(d d cos d d 642--?+?-=?+?-=-=Φ- =t t a t B S t i π πθε s 2=t ,V 102.35-?-=i ε,A 102100.1102.32 3 5---?-=??-= =R I ε 负号表示i ε方向与确定n 的回路方向相反 (2)42 2123 112810 3.140.1()[(0)(2)]cos 4.410C 1102 i B B S q R R θ---???=Φ-Φ=-??==??? 10-2如图10-2所示,两个具有相同轴线的导线回路,其平面相互平行。大回路中有电流I , 小的回路在大的回路上面距离x 处,x >>R ,即I 在小线圈所围面积上产生的磁场可视为是均匀的。若 v dt dx =等速率变化,(1)试确定穿过小回路的磁通量Φ和x 之间的关系;(2)当x =NR (N 为一正数),求小回路内的感应电动势大小;(3)若v >0,确定小回路中感应电流方向。 解:(1)大回路电流I 在轴线上x 处的磁感应强度大小 2 02 232 2() IR B R x μ= +,方向竖直向上。 R x >>时,2 03 2IR B x μ= ,22 203 2IR r B S BS B r x πμπΦ=?==?= (2)224032i d dx IR r x dt dt πμε-Φ=-=,x NR =时,2024 32i Ir v R N πμε= 图 10-

高中物理-电磁感应知识点汇总

电磁感应 1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.★楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割

磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化; ②阻碍物体间的相对运动; ③阻碍原电流的变化(自感)。 ★★★★4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=nΔΦ/Δt 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。当B、L、v三者两两垂直时,感应电动势E=BLv。 (1)两个公式的选用方法E=nΔΦ/Δt计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsinθ中的v 若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。

近十年年高考物理电磁感应压轴题

θ v 0 y M a B 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =2.0m ,b =0.15m 、c =0.10m 。工作时,在通道内沿z 轴正方 向加B =8.0T 的匀强磁场;沿x 轴正方向加匀强电场,使两金属板间的电压U =99.6V ;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=0.22Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =5.0m /s 的速度匀速前进。若以船为参照物,海水以5.0m /s 的速率涌入进 水口由于通道的截面积小球进水口的截面积,在通道内海水速率增加到v d =8.0m /s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U /=U -U 感计算,海水受到电磁力的80%可以 转化为对船的推力。当船以v s =5.0m /s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b=9.6 V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2R = 23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2R 由于I 恒定 R /=v 0rt ∝t

(完整版)高中物理电磁感应习题及答案解析

高中物理总复习 —电磁感应 本卷共150分,一卷40分,二卷110分,限时120分钟。请各位同学认真答题,本卷后附答案及解析。 一、不定项选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的不得分. 1.图12-2,甲、乙两图为与匀强磁场垂直放置的两个金属框架,乙图除了一个电阻为零、自感系数为L的线圈外,其他部分与甲图都相同,导体AB以相同的加速度向右做匀加速直线运动。若位移相同,则() A.甲图中外力做功多B.两图中外力做功相同 C.乙图中外力做功多D.无法判断 2.图12-1,平行导轨间距为d,一端跨接一电阻为R,匀强磁场磁感强度为B,方向与导轨所在平面垂直。一根足够长的金属棒与导轨成θ角放置,金属棒与导轨的电阻不计。当金属棒沿垂直于棒的方向以速度v滑行时,通过电阻R的电流强度是() A. Bdv R B.sin Bdv R θ C.cos Bdv R θ D. sin Bdv Rθ 3.图12-3,在光滑水平面上的直线MN左侧有垂直于纸面向里的匀强磁场,右侧是无磁场空间。将两个大小相同的铜质矩形闭合线框由图示位置以同样的速度v向右完全拉出匀强磁场。已知制作这两只线框的铜质导线的横截面积之比是1:2.则拉出过程中下列说法中正确的是()A.所用拉力大小之比为2:1 R v a b θ d 图12-1 M v B

B .通过导线某一横截面的电荷量之比是1:1 C .拉力做功之比是1:4 D .线框中产生的电热之比为1:2 4. 图12-5,条形磁铁用细线悬挂在O 点。O 点正下方固定一个水平放置的铝线圈。让磁铁在竖直面内摆动,下列说法中正确的是 ( ) A .在磁铁摆动一个周期内,线圈内感应电流的方向改变2次 B .磁铁始终受到感应电流磁铁的斥力作用 C .磁铁所受到的感应电流对它的作用力始终是阻力 D .磁铁所受到的感应电流对它的作用力有时是阻力有时是动力 5. 两相同的白炽灯L 1和L 2,接到如图12-4的电路中,灯L 1与电容器串联,灯L 2与电感线圈串联,当a 、b 处接电压最大值为U m 、频率为f 的正弦交流电源时,两灯都发光,且亮度相同。更换一个新的正弦交流电源后,灯L 1的亮度大于大于灯L 2的亮度。新电源的电压最大值和频率可能是 ( ) A .最大值仍为U m ,而频率大于f B .最大值仍为U m ,而频率小于f C .最大值大于U m ,而频率仍为f D .最大值小于U m ,而频率仍为f 6.一飞机,在北京上空做飞行表演.当它沿西向东方向做飞行表演时(图12-6),飞行员左右两机翼端点哪一点电势高( ) A .飞行员右侧机翼电势低,左侧高 B .飞行员右侧机翼电势高,左侧电势低 C .两机翼电势一样高 D .条件不具备,无法判断 7.图12-7,设套在条形磁铁上的弹性金属导线圈Ⅰ突然缩小为线圈Ⅱ,则关于线圈的感应电流及其方向(从上往下看)应是( ) A .有顺时针方向的感应电流 B .有逆时针方向的感应电流 C .有先逆时针后顺时针方向的感应电流 D .无感应电流 8.图12-8,a 、b 是同种材料的等长导体棒,静止于水平面内的足够长的光滑平行导轨上,b 棒的质量是a 棒的两倍。匀强磁场竖直向下。若给a 棒以4.5J 的初动能,使之向左运动,不 L 1 L 2 图12-4 v 0 a b 图12-8 图12-6 S N O 图12-5 图12-7

2018年高考物理试题分类解析电磁感应

2018年高考物理试题分类解析:电磁感应 全国1卷 17.如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中心,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆。M端位于PQS上,O M与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B,现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B'(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则 B B ' 等于 A. 5 4 B. 3 2 C. 7 4 D.2 【解析】在过程Ⅰ中 R r B R t R E t I q 2 __4 1 π ? = ?Φ = = =,在过程Ⅱ中 2 2 1 ) ' (r B B R q π ? - = ?Φ =二者相等,解得 B B ' = 3 2 。 【答案】17.B 全国1卷 19.如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是 A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动 B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向 C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向

D .开关闭合并保持一段时间再断开后的瞬间,小磁针的N 极朝垂直纸面向外的方向转动 【解析】A .开关闭合后的瞬间,铁芯内磁通量向右并增加,根据楞次定律,左线圈感应电流方向在直导线从南向北,其磁场在其上方向里,所以小磁针的N 极朝垂直纸面向里的方向转动,A 正确; B 、 C 直导线无电流,小磁针恢复图中方向。 D .开关闭合并保持一段时间再断开后的瞬间,电流方向与A 相反,小磁针的N 极朝垂直纸面向外的方向转动,D 正确。 【答案】19.AD 全国2卷 18.如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域, 区域宽度均为l ,磁感应强度大小相等、方向交替向上向下。一边长为 3 2 l 的正方形金属线框在导轨上向左匀速运动,线框中感应电流i 随时间t 变化的正确图线可能是 【解析】如图情况下,电流方向为顺时针,当前边在向里的磁场时,电流方向为逆时针,但因为两导体棒之间距离为磁场宽度的 2 3 倍,所以有一段时间两个导体棒都在同一方向的磁场中,感应电流方向相反,总电流为0,所以选D. 【答案】18.D 全国3卷 20.如图(a ),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧。导线 PQ 中通有正弦交流电流i ,i 的变化如图(b )所示,规定从Q 到P 为电流的正方向。导线框R 中的感应电动势

高三物理电磁感应1

电磁感应 一. 典例精析 题型1.(楞次定律的应用和图像)如图甲所示,存在有界匀强磁场,磁感应强度大小均为B ,方向分别垂直纸面向里和向外,磁场宽度均为L ,在磁场区域的左侧相距为L 处,有一边长为L 的形导体线框,总电阻为R ,且线框平面与磁场方向垂直. 现使线框以速度v 匀速穿过磁场区域. 以初始位置为计时起点,规定电流逆时针方向时的电流和电动势方向为正,B 垂直纸面向里时为正,则以下关于线框中的感应电动势、磁通量、感应电流、和电功率的四个图象描述不正确的是 ( ) 解析:在第一段时间,磁通量等于零,感应电动势为零,感应电流为零,电功率为零。 在第二段时间,BLvt BS ==Φ,BLv E =,R BLv R E I = =,R BLv P 2)(=。 在第三段时间, BLvt BS 2==Φ,BLv E 2=,R BLv R E I 2==,R BLv P 2)2(= 在第四段时间, BLvt BS ==Φ,BLv E =,R E I =,R BLv P 2)(=。此题选B 。 规律总结:对应线圈穿过磁场产生感应电流的图像问题,应该注意以下几点:

⑴要划分每个不同的阶段,对每一过程采用楞次定律和法拉第电磁感应定律进行分析。 ⑵要根据有关物理规律找到物理量间的函数关系式,以便确定图像的形状。 ⑶线圈穿越方向相反的两磁场时,要注意有两条边都切割磁感线产生感应电动势。 题型2.(电磁感应中的动力学分析)如图所示,固定在绝缘水平面上的的金属框架cdef 处于竖直向下的匀强磁场中,金属棒ab 电阻为r ,跨在框架上,可以无摩擦地滑动,其余电阻不计.在t =0时刻,磁感应强度为B 0,adeb 恰好构成一个边长为L 的形.⑴若从t =0时刻起,磁感应强度均匀增加,增加率为k (T/s),用一个水平拉力让金属棒保持静止.在t =t 1时刻,所施加的对金属棒的水平拉力大小是多大?⑵若从t =0时刻起,磁感应强度逐渐减小,当金属棒以速度v 向右匀速运 动时,可以使金属棒中恰好不产生感应电流则磁感应强度B 应怎样随时间t 变化?写出B 与t 间的函数关系式. 解析: 规律总结: 题型3.(电磁感应中的能量问题)如图甲所示,相距为L 的光滑平行金属导轨水平放置,导轨一部分处在以OO ′为右边界匀强磁场中,匀强磁场的磁感应强度大小为B ,方向垂直导轨平面向下,导轨右侧接有定值电阻R ,导轨电阻忽略不计. 在距边界OO ′也为L 处垂直导轨放置一质量为m 、电阻r 的金属杆ab . B d c a b e f

高三物理电磁感应知识点

届高三物理电磁感应知识点 物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍 原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

高三物理电磁感应

高三物理电磁感应 (时间:60分钟总分:100分) 一、选择题(每小题5分,共35分) 1.要使b线圈中产生图示I方向的电流,可采用的办法有 [ ] A.闭合K瞬间 B.K闭合后把R的滑动片向右移 C.闭合K后把b向a靠近 D.闭合K后把a中铁芯从左边抽出 2.如图所示,一个闭合线圈放在匀强磁场中,线圈的轴线与磁场方向成30°角,磁感应强度B,随时间均匀变化,线圈导线电阻率不变,用下述哪个方法可使线圈上感应电流增加一倍[ ] A.把线圈匝数增加一倍 B.把线圈面积增加一倍 C.把线圈的半径增加一倍 D.改变线圈轴线对于磁场的方向 3.如图,与直导线AB共面的轻质闭合金属圆环竖直放置,两者彼此绝缘,环心位于AB的上方.当AB中通有由A至B的电流且强度不断增大的过程中,关于圆环运动情况以下叙述正确的是[ ]

A.向下平动 B.向上平动 C.转动:上半部向纸内,下半部向纸外 D.转动:下半部向纸内,上半部向纸外 4.如图所示,两个相互连接的金属环,已知大环电阻是小环电阻的1/4;当通过大环的磁通量变化率为△φ/△t时,大环的路端电压为U.,当通过小环的磁通量的变化率为△φ/△t时,小环的路端电压为(两环磁通的变化不同时发生)[ ] 5 如图所示,把线圈从匀强磁场中匀速拉出来,第一次以速率v拉出,第二 次以2v的速率拉出.如果其它条件都相同.设前后两次外力大小之比F1:F2=K;产生的热量之比Q1:Q2=M;通过线框导线截面的电量之比q1:q2=N.则 [ ] A. K=2:1,M=2:1,N=1:1 B. K=1:2,M=1:2,N=1:2 C. K=1:1,M=1:2,N=1:1 D. 以上结论都不正确 6 如图所示,要使金属环C向线圈A运动,导线AB在金属导轨上应 [ ]

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

9-1两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求小线圈回路中产生的感应电动势的大小. 解:在轴线上的磁场 () ()2 2 003 3 2 2 2 22IR IR B x R x R x μμ= ≈ >>+ 3 2 202x r IR BS πμφ= = v x r IR dt dx x r IR dt d 4 22042202332πμπμφ ε=--=-= 9-2如图所示,有一弯成θ 角的金属架COD 放在磁场中,磁感强度B ? 的方向垂直于金属架 COD 所在平面.一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v ?向右滑动,v ? 与 MN 垂直.设t =0时,x = 0.求当磁场分布均匀,且B ? 不随时间改变,框架内的感应电动势i ε. 解:12m B S B xy Φ=?=?,θtg x y ?=,vt x = 22212/()/i d dt d Bv t tg dt Bv t tg ε?θθ=-=-=?,电动势方向:由M 指向N 9-3 真空中,一无限长直导线,通有电流I ,一个与之共面的直角三角形线圈ABC 放置在此长直导线右侧。已知AC 边长为b ,且与长直导线平行,BC 边长为a ,如图所示。若线圈以垂直于导线方向的速度v 向右平移,当B 点与直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和方向。 解:当线圈ABC 向右平移时,AB 和AC 边中会产 生动生电动势。当C 点与长直导线的距离为d 时,AC 边所在位置磁感应强度大小为:02() I B a d μπ= + AC 中产生的动生电动势大小为: x r I R x v C D O x M θ B ? v ?

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

高中物理电磁感应专题复习

电磁感应·专题复习 一. 知识框架: 二. 知识点考试要求: 知识点 要求 1. 右手定则 B 2. 楞次定律 B 3. 法拉第电磁感应定律 B 4. 导体切割磁感线时的感应电动势 B 5. 自感现象 A 6. 自感系数 A 7. 自感现象的应用 A 三. 重点知识复习: 1. 产生感应电流的条件 (1)电路为闭合回路 (2)回路中磁通量发生变化?φ≠0 2. 自感电动势 (1)E L I t 自=? ?? (2)L —自感系数,由线圈本身物理条件(线圈的形状、长短、匝数,有无铁芯等)决定。 (2)自感电动势的作用:阻碍自感线圈所在电路中的电流变化。 (4)应用:<1>日光灯的启动是应用E 自 产生瞬时高压 <2>双线并绕制成定值电阻器,排除E 自 影响。 3. 法拉第电磁感应定律 (1)表达式:E N t =??φ N —线圈匝数;?φ—线圈磁通量的变化量,?t —磁通量变化时间。

(2)法拉第电磁感应定律的几个特殊情况: i )回路的一部分导体在磁场中运动,其运动方向与导体垂直,又跟磁感线方向垂直时,导体中的感应电动势为E B l v = 若运动方向与导体垂直,又与磁感线有一个夹角α时,导体中的感应电动势为:E B l v =s i n α ii )当线圈垂直磁场方向放置,线圈的面积S 保持不变,只是磁场的磁感强度均匀变化时线圈中的感应电动势为E B t S = ?? iii )若磁感应强度不变,而线圈的面积均匀变化时,线圈中的感应电动势为:E B S t =?? iv )当直导线在垂直匀强磁场的平面,绕其一端作匀速圆周运动时,导体中的感应电动势为:E Bl =12 2ω 注意: (1)E B l v =s i n α用于导线在磁场中切割磁感线情况下,感应电动势的计算,计算的是切割磁感线的导体上产生的感应电动势的瞬时值。 (2)E N t =??φ ,用于回路磁通量发生变化时,在回路中产生的感应电动势的平均值。 (3)若导体切割磁感线时产生的感应电动势不随时间变化时,也可应用E N t =??φ ,计算E 的瞬时值。 4. 引起回路磁通量变化的两种情况: (1)磁场的空间分布不变,而闭合回路的面积发生变化或导线在磁场中转动,改变了垂直磁场方向投影面积,引起闭合回路中磁通量的变化。 (2)闭合回路所围的面积不变,而空间分布的磁场发生变化,引起闭合回路中磁通量的变化。 5. 楞次定律的实质:能量的转化和守恒。 楞次定律也可理解为:感应电流的效果总是要反抗(或阻碍)产生感应电流的原因。 (1)阻碍原磁通量的变化或原磁场的变化 (2)阻碍相对运动,可理解为“来拒去留”。 (3)使线圈面积有扩大或缩小的趋势。 (4)阻碍原电流的变化(自感现象)。 6. 综合题型归纳 (1)右手定则和左手定则的综合问题 (2)应用楞次定律的综合问题 (3)回路的一部分导体作切割磁感线运动 (4)应用动能定理的电磁感应问题 (5)磁场均匀变化的电磁感应问题 (6)导体在磁场中绕某点转动 (7)线圈在磁场中转动的综合问题 (8)涉及以上题型的综合题 【典型例题】 例1. 如图12-9所示,平行导轨倾斜放置,倾角为θ=?37,匀强磁场的方向垂直于导轨平面,磁感强度B T =4,质量为m k g =10.的金属棒ab 直跨接在导轨上,ab 与导轨间的动摩擦因数μ=025.。ab 的电阻r =1Ω,平行导轨间的距离L m =05.,R R 1218== Ω,导轨电阻不计,求ab 在导轨上匀速下滑的速度多大?此时ab 所受

大学物理电磁学知识点汇总

稳恒电流 1.电流形成的条件、电流定义、单位、电流密度矢量、电流场(注意我们 又涉及到了场的概念) 2.电流连续性方程(注意和电荷守恒联系起来)、电流稳恒条件。 3.欧姆定律的两种表述(积分型、微分型)、电导、电阻定律、电阻、电 导率、电阻率、电阻温度系数、理解超导现象 4.电阻的计算(这是重点)。 5.金属导电的经典微观解释(了解)。 6.焦耳定律两种形式(积分、微分)。(这里要明白一点:微分型方程是 精确的,是强解。而积分方程是近似的,是弱解。) 7.电动势、电源的作用、电源做功。、 8.含源电路欧姆定律。 9.基尔霍夫定律(节点电流定律、环路电压定律。明白两者的物理基础。)习题:13.19;13.20 真空中的稳恒磁场 电磁学里面极为重要的一章 1. 几个概念:磁性、磁极、磁单极子、磁力、分子电流 2. 磁感应强度(定义、大小、方向、单位)、洛仑磁力(磁场对电荷的作用) 3. 毕奥-萨伐尔定律(稳恒电流元的磁场分布——实验定律)、磁场叠加原理(这是磁场的两大基本定律——对比电场的两大基本定律) 4. 毕奥-萨伐尔定律的应用(重点)。 5. 磁矩、螺线管磁场、运动电荷的磁场(和毕奥-萨伐尔定律等价——更基本) 6. 稳恒磁场的基本定理(高斯定理、安培环路定理——与电场对比) 7. 安培环路定理的应用(重要——求磁场强度) 8. 磁场对电流的作用(安培力、安培定律积分、微分形式)

9. 安培定律的应用(例14.2;平直导线相互作用、磁场对载流线圈的作用、磁力矩做功) 10. 电场对带电粒子的作用(电场力);磁场对带电粒子的作用(洛仑磁力);重力场对带电粒子的作用(引力)。 11. 三场作用叠加(霍尔效应、质谱仪、例14.4) 习题:14.20,14.22,14.27,14.32,14.46,14.47 磁介质(与电解质对比) 1.几个重要概念:磁化、附加磁场、相对磁导率、顺磁质、抗磁质、铁磁 质、弱磁质、强磁质。(请自己阅读并绘制磁场和电场相关概念和公式 的对照表) 2.磁性的起源(分子电流)、轨道磁矩、自旋磁矩、分子矩、顺磁质、抗 磁质的形成原理。 3.磁化强度、磁化电流、磁化面电流密度、束缚电流。 4.磁化强度和磁化电流的关系(微分关系、积分关系) 5.有磁介质存在时的磁场基本定理、磁场强度矢量H、有磁介质存在时的 安培环路定律(有电解质存在的安培环路定律)、磁化规律。 6.请比较B、H、M和E、D、P的关系。磁化率、相对磁导率、绝对磁导 率。 7.有磁介质存在的安培环路定理的应用(例15.1、例15.2)、有磁介质存 在的高斯定理。 8.铁磁质(起始磁化曲线、磁滞回线、饱和磁感应强度、起始磁导率、磁 滞效应、磁滞、剩磁、矫顽力、磁滞损耗、磁畴、居里点、软磁材料、 硬磁材料、矩磁材料)(了解) 习题: 15.11

(完整版)高中物理电磁感应习题及答案解析

高中物理总复习—电磁感应 本卷共150分,一卷40分,二卷110分,限时120分钟。请各位同学认真答题,本卷后附答案及解析。 一、不定项选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的不得分. 1.图12-2,甲、乙两图为与匀强磁场垂直放置的两个金属框架,乙图除了一个电阻为零、自感系数为L的线圈外,其他部分与甲图都相同,导体AB以相同的加速度向右做匀加速直线运动。若位移相同,则() A.甲图中外力做功多B.两图中外力做功相同 C.乙图中外力做功多D.无法判断 2.图12-1,平行导轨间距为d,一端跨接一电阻为R,匀强磁场磁感强度为B,方向与导轨所在平面垂直。一根足够长的金属棒与导轨成θ角放置,金属棒与导轨的电阻不计。当金属棒沿垂直于棒的方向以速度v滑行时,通过电阻R的电流强度是() A. Bdv R B.sin Bdv R θ C.cos Bdv R θ D. sin Bdv Rθ 3.图12-3,在光滑水平面上的直线MN左侧有垂直于纸面向里的匀强磁场,右侧是无磁场空间。将两个大小相同的铜质矩形闭合线框由图示位置以同样的速度v向右完全拉出匀强磁场。已知制作这两只线框的铜质导线的横截面积之比是1:2.则拉出过程中下列说法中正确的是()A.所用拉力大小之比为2:1 B.通过导线某一横截面的电荷量之比是1:1 C.拉力做功之比是1:4 D.线框中产生的电热之比为1:2 4.图12-5,条形磁铁用细线悬挂在O点。O点正下方固定一 个水平放置的铝线圈。让磁铁在竖直面内摆动,下列说法中正确的 是() R v a b θ d 图12-1 M N v B 图12-3

高三物理电磁感应知识点

2019届高三物理电磁感应知识点物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

大学物理知识题17电磁感应

班级______________学号____________姓名________________ 练习 十七 一、选择题 1. 如图所示,有一边长为1m 的立方体,处于沿y 轴指向的强度为0.2T 的均匀磁场中,导线a 、b 、c 都以50cm/s 的速度沿图中所示方向运动,则 ( ) (A)导线a 内等效非静电性场强的大小为0.1V/m ; (B)导线b 内等效非静电性场强的大小为零; (C)导线c 内等效非静电性场强的大小为0.2V/m ; (D)导线c 内等效非静电性场强的大小为0.1V/m 。 2. 如图所示,导线AB 在均匀磁场中作下列四种运动,(1)垂直于磁场作平动;(2)绕固定端A 作垂直于磁场转动;(3)绕其中心点O 作垂直于磁场转动;(4)绕通过中心 点O 的水平轴作平行于磁场的转动。关于导线AB 的感应电动势哪个结论是错误的? ( ) (A)(1)有感应电动势,A 端为高电势; (B)(2)有感应电动势,B 端为高电势; (C)(3)无感应电动势; (D)(4)无感应电动势。 (1) (2) (3) (4)

3. 一“探测线圈”由50匝导线组成,截面积S =4cm 2,电阻R =25 。若把探测线 圈在磁场中迅速翻转?90,测得通过线圈的电荷量为C 1045 -?=?q ,则磁感应强度B 的大小为 ( ) (A)0.01T ; (B)0.05T ; (C)0.1T ; (D)0.5T 。 4. 如图所示,一根长为1m 的细直棒ab ,绕垂直于棒且过其一端a 的轴以每秒2转的角速度旋转,棒的旋转平面垂直于0.5T 的均匀磁场,则在棒的中点,等效非静电性场强的大小和方向为( ) (A)314V/m ,方向由a 指向b ; (B)6.28 V/m ,方向由a 指向b ; (C)3.14 V/m ,方向由b 指向a ; (D)628 V/m ,方向由b 指向a 。 二、填空题 1. 电阻R =2Ω的闭合导体回路置于变化磁场中,通过回路包围面的磁通量与时间的关 系为)Wb (10)285(3 2-?-+=Φt t m ,则在t =2s 至t =3s 的时间内,流过回路导体横截 面的感应电荷=i q C 。 2. 半径为a 的无限长密绕螺线管,单位长度上的匝数为n ,螺线管导线中通过交变电流t I i ωsin 0=,则围在管外的同轴圆形回路(半径为r )上的感生电动势为 V 。 a b

相关文档
相关文档 最新文档