文档库 最新最全的文档下载
当前位置:文档库 › 二重积分的概念及性质

二重积分的概念及性质

二重积分的概念及性质
二重积分的概念及性质

二重积分的概念及性质

前面我们已经知道了,定积分与曲边梯形的面积有关。下面我们通过曲顶柱体的体积来引出二重积分的概念,在此我们不作详述,请大家参考有关书籍。

二重积分的定义

设z=f(x,y)为有界闭区域(σ)上的有界函数:

(1)把区域(σ)任意划分成n个子域(△σk)(k=1,2,3,…,n),其面积记作△σk(k=1,2,3,…,n);

(2)在每一个子域(△σk)上任取一点,作乘积;

(3)把所有这些乘积相加,即作出和数

(4)记子域的最大直径d.如果不论子域怎样划分以及怎样选取,上述和数当n→+∞且d→0时的极限存在,那末称此极限为函数f(x,y)在区域(σ)上的二重积分.记作:

即:=

其中x与y称为积分变量,函数f(x,y)称为被积函数,f(x,y)dσ称为被积表达式,(σ)称为积分区域.

关于二重积分的问题

对于二重积分的定义,我们并没有f(x,y)≥0的限.容易看出,当f(x,y)≥0时,二重积分在几何上就是以z=f(x,y)为曲顶,以(σ)为底且母线平行于z轴的曲顶柱体的体积。

上述就是二重积分的几何意义。

如果被积函数f(x,y)在积分区域(σ)上连续,那末二重积分必定存在。

二重积分的性质

(1).被积函数中的常数因子可以提到二重积分符号外面去.

(2).有限个函数代数和的二重积分等于各函数二重积分的代数和.

(3).如果把积分区域(σ)分成两个子域(σ1)与(σ2),即(σ)=(σ1)+(σ2),那末:

(4).如果在(σ)上有f(x,y)≤g(x,y),那末:

(5).设f(x,y)在闭域(σ)上连续,则在(σ)上至少存在一点(ξ,η),使

其中σ是区域(σ)的面积.

二重积分的计算法

直角坐标系中的计算方法

这里我们采取的方法是累次积分法。也就是先把x看成常量,对y进行积分,然后在对x进行积分,或者是先把y看成常量,对x进行积分,然后在对y进行积分。为此我们有积分公式,如下:

在这里我们可能会有这个问题:累次积分的上下限是怎么确定的呢?

累次积分上下限的确定方法

我们先来对区域作些补充说明:如果经过区域(σ)内任意一点(即不是区域边界上的点)作平行于y轴(或x 轴)的直线,且此直线交(σ)的边界不超过两点,那末称(σ)为沿y轴(x轴)方向的正规区域.如果(σ)即是沿y轴方向也是沿x轴方向的正规区域,那末(σ)就称为正规区域.下图所示的即为正规区域:

关于累次积分上下限的取法如下所述:

(1).如果(σ)为沿y轴方向的正规区域,那末二重积分可化为先对y再对x的累次积分.其中对y的积分下限是(σ)的下部边界曲线所对应的函数y1(x),积分上限是上部边界曲线所对应的函数y2(x).对x的积分下限与上限分别是(σ)的最左与最右点的横坐标a与b.

(2).如果(σ)为沿x轴方向的正规区域,那末二重积分可化为先对x再对y的累次积分.其中对x的积分下限是(σ)的左部边界曲线所对应的函数x1(y),积分上限是右部边界曲线所对应的函数x2(y).对y的积分下限与上限分别是(σ)的最低与最高点的横坐标c与d.

(3).如果(σ)为正规区域,那末累次积分可以交换积分次序。

(4).如果(σ)既不是沿y轴方向的正规区域,也不是沿x轴方向的正规区域,那末总可以把它化分成几块沿y

轴方向的正规区域或沿x轴方向的正规区域,然后根据积分的性质即可求解积分.

例题:求二重积分,其中(σ)是由所围成的区域。

解答:因为是正规区域,所以我们可先对y后对x积分,也可先对x后对y积分。这里我们采用前者先对y后对x积分:

极坐标系中的计算法

如果二重积分的被积函数和积分区域(σ)的边界方程均由极坐标的形式给出,那末我们如何计算呢?下面我们给出极坐标系中二重积分的计算公式.

如果极点O在(σ)的外部,区域(σ)用不等式表示为R1(θ)≤ρ≤R2(θ),α≤θ≤β,则积分公式如下:

如果极点O在(σ)的内部,区域(σ)的边界方程为ρ=R(θ),0≤θ≤2π,则积分公式如下:

如果极点O在(σ)的边界上,边界方程为ρ=R(θ),θ1≤θ≤θ2,则积分公式如下:

有了上面这些公式,一些在直角坐标系中不易积出而在极坐标系中易积出的函数,我们就可以把它转化

为在极坐标系中的积分即可,反之依然。

注:直角坐标与极坐标的转换公式为:

例题:求,其中(σ)是圆环a2≤x2+y2≤b2

解答:由于积分域由同心圆围成以及被积函数的形式,显然,这个二重积分化为极坐标计算比较方便。

把,dσ=ρdρdθ代入,即可转化为极坐标系的积分形式。如下:

在对其进行累次积分计算:

三重积分及其计算法

二重积分的被积函数是一个二元函数,它的积分域是—平面区域.如果考虑三元函数f(x,y,z)在一空间区域(V)上的积分,就可得到三重积分的概念。

三重积分的概念

设函数u=f(x,y,z)在空间有界闭区域(V)任意划分成n个子域(△V1),(△V2),(△V3),…,(△V n),它们的体积分别

记作△V k(k=1,2,…,n).在每一个子域上任取一点,并作和数

如果不论△V k怎样划分,点怎样选取,当n→+∞而且最大的子域直径δ→0时,这个和数的极

限都存在,那末此极限就称为函数在域(V)上的三重积分,记作:

即:

如果f(x,y,z)在域(V)上连续,那末此三重积分一定存在。

对于三重积分没有直观的几何意义,但它却有着各种不同的物理意义。

直角坐标系中三重积分的计算方法

这里我们直接给出三重积分的计算公式,具体它是怎样得来的,请大家参照有关书籍。

直角坐标系中三重积分的计算公式为:

此公式是把一个三重积分转化为一个定积分与一个二重积分的问题,根据我们前面所学的结论即可求出。

例题:求,其中(V)是由平面x=0,y=0,z=0及x+y+z=1所围成的区域.

解答:把I化为先对z积分,再对y和x积分的累次积分,那末应把(V)投影到xOy平面上,求出投影域(σ),

它就是

平面x+y+z=1与xOy平面的交线和x轴、y轴所围成的三角区域.

我们为了确定出对z积分限,在(σ)固定点(x,y),通过此点作一条平行于z的直线,它与(V)上下边界的交点的竖坐标:z=0与z=1-x-y,这就是对z积分的下限与上限,于是由积分公式得:

其中(σ)为平面区域:x≥0,y≥0,x+y≤1,如下图红色阴影部分所示:

再把(σ)域上的二重积分化成先对y后对x的累次积分,得:

柱面坐标系中三重积分的计算法

我们先来学习一下空间中的点用极坐标的表示方法。

平面上点P可以用极坐标(ρ,θ)来确定,因此空间中的点P可用数组(ρ,θ,z)来表示.显然,空间的点P与数组(ρ,θ,z)之间的对应关系是一一对应关系,数组(ρ,θ,z)称为空间点P的柱面坐标.它与直角坐标的关系为:

构成柱面坐标系的三族坐标面分别为:

ρ=常数:以z轴为对称轴的同轴圆柱面族,

θ=常数:通过z轴的半平面族,

z =常数:与z轴垂直的平面族.

因此,每三个这样的坐标面确定着空间的唯一的一点,由于利用了圆柱面,所以称为柱面坐标。柱面坐标系下三重积分的计算公式为:

此处我们不在举例。

第五章_第一节_不定积分的概念、性质.

经济数学——微积分 4 不定积分的概念与性质 原函数与不定积分的概念 不定积分的几何意义 基本积分表 不定积分的性质 小结思考题 经济数学——积分 二—原函数与不定积分的概念 定义如果在区I 刖内,可导函数尸(X)的 导函数为/(X ),即 We/,都有F\x) = f(x) 或 dF(x) = /(x)dx,那么函数F(x)就称为/(x) 或f(x)dx 在区间 /内原函数?(primitive furwtion ) 例(sinx) =cosx sinx 是 cos 兀的原函数. (inx) =— (X >0) X In X 是1在区间((),+oo)内的原函数. X 第一节 五、

定理原函数存在定理: 如果函数八X)在区间内连续, 那么在区 间^内存在可导函数F(x), 使Hxef,都有F\x) = f(x). 简言之:连续函数一定有原函数. 问题:(1)原函数是否唯一? (2)若不唯一它们之间有什么联系? 1 f 例(sinx) =cosx (sinx + C) =cosx (C为任意常数) 经济数学一微积分 关于原函数的说明: (1) (2) 证 说明F(x)+c是f (兀舶全部原粛或 经济数学一微积分

经济数学——微积分 不定积分(indefinite integral )的定义: 在区间/内,函数/(兀)的带有任意 常数项的原函数称为/(兀)在区I 可内的 不定积分,记为f/(xMr ? 经济数学——微积分 6 =X% /. fx^dx =—— 十 C. J 」 6 例2求f --------- dr. J 1 + X- / J 解?/ (arctanx)= ,, I ‘ 1 + 疋 心& =皿2 被积函数 『积分号 积分变量 寒积表达式 F(x)

二重积分的概念

第一节 二重积分的概念与性质 一、内容要点 1、引例 例1曲顶柱体的体积 例2平面薄片的质量 通过两个实际意义不同的例子,引出所求量可归结为同一形式的和式的极限,进而一般地抽象出二重积分的定义。 2、二重积分的概念:注意讲清楚定义中两个“任意性”及和式极限中各符号的意义。 3、二重积分的性质1-6,注意将其与定积分性质加以比较。 例3关于估值定理的应用 例4关于中值定理的应用 4、二重积分的几何意义——曲顶柱体的体积。 二、教学要求和注意点 理解二重积分,了解重积分的性质,了解二重积分的中值定理。 第二节 二重积分的计算法 一、内容要点 利用直角坐标计算二重积分 1、从几何入手,利用计算“平行截面面积为已知的立体的体积”方法,将二重分化为二次积分: ①若D 为X —型区域:{}b x a x y x y x ≤≤≤≤),()(),(21?? 则 ????=D x x b a dy y x f dx d y x f )()(21),(),(??σ ②若D 为Y —型区域:{}d y c y x y y x ≤≤≤≤),()(),(21?? 则 ????=D y y d c dx y x f dy d y x f )()(21),(),(??σ ③若D 既非X —型,又非Y —型区域,则将D 划分为若干子区域,使每一个子区域为X —型或Y —型。 2、介绍“对称性”在二重积分计算中的应用。 例1化二重积分为二次积分并求值,通过例子说明确定积分限的方法。 例2更换积分次序并计算,通过该例说明选择积分次序的重要性。

例3关于利用对称性计算二重积分的例子。 例4被积函数为绝对值函数、符号函数,取最大值或最小值等函数的例子。 利用极坐标计算二重积分 1、介绍极坐标下二重积分的换元公式。 2、何时选用极坐标进行计算,一般说来,当积分域D 的边界曲线用极坐标方程表示比较简单或被积函数用极坐标表示比较简单,可考虑用积坐标计算。 3、确定积分上下限的办法。 例1将直角坐标系下的二次积分化为极坐标系下的二次积分 例2利用二重积分计算概率积分 dx e x 2 0-+∞? 例3将极坐标系下的二次积分化为直角坐标系下的二次积分 例4利用极坐标计算二重积分 二、教学要求和注意点 1、掌握二重积分(直角坐标、极坐标)的计算方法 2、将重积分化为累次积分计算时,积分限的确定要保持每个单积分的下限小于上限,因此在交换二次积分次序时应注意符号问题。 3、在二重积分的计算时应尽量利用区域和被积函数的对称性以简化计算。 第四节 三重积分 一、内容要点 1、三重积分的概念,存在性及性质 2、三重积分在直角坐标系下的计算 ①先单积分后二重积分 ②先二重积分后单积分 3、更换积分次序 例1将三重积分化为三次积分 例2更换积分次序 例3先二重积分后单积分 4、柱面坐标系下三重积分的计算。 5、何时选用柱面坐标——当Ω是柱形,锥形或旋转体且在坐标面上的投影是圆域或其部分,或者被积函数含有式子)(22y x +?等时,常用柱面坐标计算。 6、球面坐标系下三重积分的计算。 7、何时选用球面坐标——当Ω是球体或其部分,或被积函数含有式子)(222z y x ++?

二重积分的概念及性质

二重积分的概念及性质 前面我们已经知道了,定积分与曲边梯形的面积有关。下面我们通过曲顶柱体的体积来引出二重积分的概念,在此我们不作详述,请大家参考有关书籍。 二重积分的定义 设z=f(x,y)为有界闭区域(σ)上的有界函数: (1)把区域(σ)任意划分成n个子域(△σk)(k=1,2,3,…,n),其面积记作△σk(k=1,2,3,…,n); (2)在每一个子域(△σk)上任取一点,作乘积; (3)把所有这些乘积相加,即作出和数 (4)记子域的最大直径d.如果不论子域怎样划分以及怎样选取,上述和数当n→+∞且d→0时的极限存在,那末称此极限为函数f(x,y)在区域(σ)上的二重积分.记作: 即:= 其中x与y称为积分变量,函数f(x,y)称为被积函数,f(x,y)dσ称为被积表达式,(σ)称为积分区域. 关于二重积分的问题 对于二重积分的定义,我们并没有f(x,y)≥0的限.容易看出,当f(x,y)≥0时,二重积分在几何上就是以z=f(x,y)为曲顶,以(σ)为底且母线平行于z轴的曲顶柱体的体积。 上述就是二重积分的几何意义。

如果被积函数f(x,y)在积分区域(σ)上连续,那末二重积分必定存在。 二重积分的性质 (1).被积函数中的常数因子可以提到二重积分符号外面去. (2).有限个函数代数和的二重积分等于各函数二重积分的代数和. (3).如果把积分区域(σ)分成两个子域(σ1)与(σ2),即(σ)=(σ1)+(σ2),那末: (4).如果在(σ)上有f(x,y)≤g(x,y),那末: ≤ (5).设f(x,y)在闭域(σ)上连续,则在(σ)上至少存在一点(ξ,η),使 其中σ是区域(σ)的面积. 二重积分的计算法 直角坐标系中的计算方法 这里我们采取的方法是累次积分法。也就是先把x看成常量,对y进行积分,然后在对x进行积分,或者是先把y看成常量,对x进行积分,然后在对y进行积分。为此我们有积分公式,如下:

定积分的概念和性质公式

1.曲边梯形的面积 设在区间*I上:;--L ,则由直线工’=■<、応匚、V 1及曲线■V °/W所围成的图形称为曲边梯形,下面求这个曲边梯形的面积 分割求近似:在区间-八「中任意插入若干个分点将宀…-分成n个小区间 兀5 5 <…,小区间的长度&广呜一為」(T三12… 在每个小区间- :-一I〕上任取一点-■■作乘积 求和取极限:则面积取极限

J=1 其中;'1 ; J L厂V '…,即小区间长度最大者趋于零。 2.变速直线运动的路程 设某物体作变速直线运动,速度| I「是上*的连续函数,且1■求在这段时间内物体所经过的路程。 分割求近似:在「〔[内插入若干分点■- _ "将其分成 n 个小区间「—,小区间长度■- _■'.-1, ■1丄。任取? _ _ 做 求和取极限:则路程一取极限 将分成n个小区间-,其长度为2 - —,在每个小区间 上任取一点「:,作乘积■- ' ■',并求和 r , 记1■r 1,如果不论对怎样分法,也不论小区间[:■ 上的 点「怎样取法,只要当「「I;时,和总趋于确定的极限,则称这个极限 为函数-—I在区间上的定积分,记作J ',即 定义设函数」?、在L?二上有界,在-亠二中任意插入若干个分点

其中叫被积函数,一’,八叫被积表达式,'‘叫积分变量,二叫积分下限, 「叫积分上限,-’」叫积分区间。■叫积分和式。 说明: 1.如果(*)式右边极限存在,称-’’」在区间-仁丄可积,下面两类函数在区间 上…-可积,(1)」在区间-LL■- - 上连续,则■' J'-在可积。(2)-’八在区间-‘丄-上有界且只有有限个间断点,则在--"-■ 上可积。 2.由定义可知,定积分的值只与被积函数和积分区间有关,而与积分变量无关,所 3.

定积分的概念和性质公式

1. 曲边梯形的面积 设在区间上,则由直线、、及曲线所围成的图形称为曲边梯形,下面求这个曲边梯形的面积 分割求近似:在区间中任意插入若干个分点将分成 n 个小区间 ,小区间的长度 在每个小区间上任取一点作乘积, 求和取极限:则面积取极限

其中,即小区间长度最大者趋于零。 2.变速直线运动的路程 设某物体作变速直线运动,速度是上的连续函数,且,求在这段时间内物体所经过的路程。 分割求近似:在内插入若干分点将其分成 n 个小区间,小区间长度,。任取, 做 求和取极限:则路程取极限 定义设函数在上有界,在中任意插入若干个分点 将分成 n 个小区间,其长度为,在每个小区间 上任取一点,作乘积,并求和, 记,如果不论对怎样分法,也不论小区间上的点

怎样取法,只要当时,和总趋于确定的极限,则称这个极限 为函数在区间上的定积分,记作,即 ,(*) 其中叫被积函数,叫被积表达式,叫积分变量,叫积分下限,叫积分上限,叫积分区间。叫积分和式。 说明: 1.如果(*)式右边极限存在,称在区间可积,下面两类函数在区间 可积,(1)在区间上连续,则在可积。(2)在区间 上有界且只有有限个间断点,则在上可积。 2.由定义可知,定积分的值只与被积函数和积分区间有关,而与积分变量无关,所以 3.规定 时, 在上时, 表示曲线、两条直线、 与轴所围成的曲边梯形的面积;

在上时, 表示曲线、两条直线、与轴所围成的曲边梯形的面积(此时,曲边梯形在轴的下方); 例1 利用定积分的几何意义写出下列积分值 (1)(三角形面积)(2)(半圆面积)

设可积 性质1 性质2 性质3 (定积分对区间的可加性)对任何三个不同的数,有 性质4 性质5 如果在区间上,,则 推论 性质6 (定积分的估值)设 M 及 m 分别是函数在区间上的最大值及最小值,则 性质7 (定积分中值定理) 如果函数在区间上连续,则在上至少有一点, 使成立

二重积分学习总结

高等数学论文 《二重积分学习总结》 姓名:徐琛豪 班级:安全工程02班 学号:1201050221 完成时间:2013年6月2日

二重积分 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 1 二重积分的概念与性质 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。 在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ???L 的分法要任意,二是在每个小区域i σ?上的点(,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以 (,)f x y 为曲顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ ??表示平面区域D 的面积。

5.1 定积分的概念与性质-习题

1.利用定积分的定义计算下列积分: ⑴ b a xdx ? (a b <); 【解】第一步:分割 在区间[,]a b 中插入1n -个等分点:k b a x k n -=,(1,2,,1k n =-),将区间[,]a b 分为n 个等长的小区间[(1),]b a b a a k a k n n --+-+, (1,2,,k n =),每个小区间的长度均为k b a n -?=, 取每个小区间的右端点k b a x a k n -=+, (1,2,,k n =), 第二步:求和 对于函数()f x x =,构造和式 1 ()n n k k k S f x ==??∑1 n k k k x ==??∑1 ()n k b a b a a k n n =--=+ ?∑ 1()n k b a b a a k n n =--=+∑1 ()n k b a b a na k n n =--=+∑ 1()n k b a b a na k n n =--=+∑(1) []2 b a b a n n na n n ---=+? ^ 1()[(1)]2b a b a a n -=-+ ?-1 ()()22b a b a b a a n --=-+-? 1 ()()22b a b a b a n +-=--? 第三步:取极限 令n →∞求极限 1 lim lim ()n n k k n n k S f x →∞ →∞ ==??∑1 lim()( )22n b a b a b a n →∞ +-=--? ()(0)22 b a b a b a +-=--?()2b a b a +=-222b a -=, 即得 b a xdx ? 22 2 b a -=。

二重积分的概念与性质教案

7.1二重积分的基本概念(教案) 主讲人:孙杰华 教学目的:理解二重积分的概念、性质 教学重难点:二重积分的概念、二重积分的几何意义. 教学方法:讲授为主 教学内容: 一、二重积分的概念 1.曲顶柱体的体积 设有一空间立体Ω,它的底是xoy 面上的有界区域D ,它的侧面是以D 的边界曲线为准线,而母线平行于z 轴的柱面,它的顶是曲面(.)z f x y =,称这种立体为曲顶柱体. 与求曲边梯形的面积的方法类似,我们可以这样来求曲顶柱体的体积V : (1)用任意一组曲线网将区域D 分成n 个小区域1σ?,2σ?, ,n σ?,以这些小区 域的边界曲线为准线,作母线平行于z 轴的柱面,这些柱面将原来的曲顶柱体Ω分划成n 个小曲顶柱体1?Ω,2?Ω, ,n ?Ω. (假设i σ?所对应的小曲顶柱体为i ?Ω,这里i σ?既代表第i 个小区域,又表示它的面积值, i ?Ω既代表第i 个小曲顶柱体,又代表它的体积值.),从而1 n i i V ==?Ω∑. 图7.1 (2)由于(,)f x y 连续,对于同一个小区域来说,函数值的变化不大.因此,可以将小曲顶柱体近似地看作小平顶柱体,于是

(,),((,))i i i i i i i f ξησξησ?Ω≈??∈?. (3)整个曲顶柱体的体积近似值为 1 (,)n i i i i V f ξησ=≈?∑. (4)为得到的精确值,只需让这个小区域越来越小,即让每个小区域向某点收缩.为此,我们引入区域直径的概念: 一个闭区域的直径是指区域上任意两点距离的最大者. 所谓让区域向一点收缩性地变小,意指让区域的直径趋向于零. 设n 个小区域直径中的最大者为λ,则 1 lim (,),(,)n i i i i i i i V f λξησξησ→==??∈?∑. 2.二重积分的定义 设(),f x y 是闭区域D 上的有界函数, 将区域D 分成个小区域 12,,,,n σσσ??? 其中,i σ?既表示第i 个小区域,也表示它的面积, i λ表示它的直径. 1max{}(,)i i i i i n λλξησ≤≤=?∈?, 作乘积(,)(1,2 ,)i i i f i n ξησ?=, 作和式 1 (,)n i i i i f ξησ =?∑, 若极限()0 1 lim ,n i i i i f λξησ →=?∑存在,则称此极限值为函数(),f x y 在区域D 上的二重积分,记 作 (),D f x y d σ??.即 (),D f x y d σ=??()0 1 lim ,n i i i i f λξησ →=?∑. 其中:(),f x y 称之为被积函数,(),f x y d σ称之为被积表达式,d σ称之为面积元素, ,x y 称之为积分变量,D 称之为积分区域. V n

定积分的概念与性质练习

第一节 定积分的概念与性质 一、选择题 1. A ; 2. C . 二、填空题 1. (1)1; (2)0; (3)4 π. 2. (1)1 2 x dx ? > 1 30 x dx ? , (2)2 1ln xdx ? > () 2 2 1ln x dx ?, (3) 20 xdx π ? < 20 sin xdx π ? , (4)4 3 ln xdx ? < () 4 2 3ln x dx ?. 三、 解 由于()3f x x =在[]0,1上连续,故积分2 21 x dx -? 是存在的,且它与分法无关,同 时也与点的取法无关. 将区间[]0,1n 等分,得1 i x n = ,取() 1,2,, i i i n n ξ== 作和 ()2 3 2 1 1 13 344 0001114 n n n n i i i i i n n i S x i n n n n ξ---===+??==== ???∑∑∑ 于是 1 lim 4n n S →∞= 即 13 014 x dx =?. 四、 细棒的质量()0 l x dx ρ?. 五、 1 13 x e dx -+? 311 x e dx +-=-?. 设()()1 1,0x x f x e f x e ++'==>,所以()f x 在[]1,3-内单调增加, 从而 ()()()13f f x f -≤≤,即1 41x e e +≤≤. 于是 3 141 44x e dx e +-≤≤? 从而 1 4 13 44x e e dx -+-≤ ≤-? . 六、 设()()2 21,41f x x x f x x '=-+=-,令()0,f x '=得驻点1 4 x = . ()17101,,1482f f f ???? === ? ????? .所以 min ()f x =1, max ()f x =78. 1≤≤ 由定积分性质,得 1 2012≤≤ ?.

第一节二重积分的概念及性质教案

第九章 重积分 第一节 二重积分的概念及性质 一.二重积分的概念 1.引例 引例1 曲顶柱体的体积 设有一立体的底是xy 面上的有界闭区域D ,侧面是以D 的边界曲线为准线、母线平行于z 轴的柱面,顶是有二元非负连续函数),(y x f z = 所表示的曲面, 如图9—1所示, 这个立体称为D 上的曲顶柱体,试求该曲顶柱体的体积。 图9—1 图9—2 图9—3 解 对于平柱体的体积底面积高?=V ,然而,曲顶柱体不是平顶柱体,那么具体作法如下 (1)分割 把区域D 任意划分成n 个小闭区域n σσσ???,,,2 1 ,其中i σ?表示第i 个小闭区域, 也表示它的面积。在每个小闭区域内,以它的边界曲线为准线、母线平行于z 轴的柱面,如图9—2所示。这些柱面就那原来的曲顶柱体分割成n 个小曲顶柱体。 (2)近似 在每一个小闭区域i σ?上任取一点),(i i ηξ,以),(i i f ηξ为高,i σ?为底的平顶柱体 的体积i i i f σηξ?),(近似代替第i 个小曲顶柱体的体积。

i i i f V σηξ?≈?),( (3)求和 这n 个小平顶柱体的体积之和即为曲顶柱体体积的近似值 ∑=?≈?=n i i i i f V V 1),(σηξ (4)取极限 将区域D 无限细分,且每个小闭区域趋向于或说缩成一点,这个近似值趋近于曲顶柱体的体积。即 ∑=→?=n i i i i f V 10 ),(lim σηξλ 其中λ表示这n 个小闭区域i σ?直径中最大值的直径(有界闭区域的直径是指区 域中任意两点间的距离)。 引例2 平面薄片的质量 设有一平面薄片占有xy 面上的有界闭区域D ,它的密度为D 上的连续函数 ),(y x z ρ=,试求平面薄片的质量。 解 对于均匀平面薄片的质量薄片面积密度?=m ,然而,平面薄片并非均匀,那么具体作法如下 (1)分割 将薄片(即区域D )任意划分成n 个小薄片n σσσ???,,,2 1 ,其中i σ?表示第i 个 小小薄片,也表示它的面积,如图9—3所示。 (2)近似 在每一个小薄片i σ?上任取一点),(i i ηξ,以),(i i ηξρ为其密度,当i σ?很小时,认 为小薄片是均匀的,则i i i σηξρ?),(近似代替第i 个小薄片的质量。即 i i i m σηξρ?≈?),( (3)求和 这n 个小薄片的质量之和即为薄片的质量的近似值

二重积分的概念及计算法(一)

习题9-1,9-2 二重积分的概念及计算法(一) 1.填空题: (1)由二重积分的几何意义得 ∫∫≤+=??122221y x d y x σ . (2)根据二重积分的性质,比较下列积分的大小: ① ,其中是三角形区域,三顶点为(1,0),(1,1),(2,0),则 ∫∫+=D d y x I σ)ln(1∫∫ +=D d y x I σ22)][ln(D 1I 2I . ②,,其中是由∫∫++=D d y x I σ21)1(∫∫ ++=D d y x I σ32)1(D x 轴与直线围成的区域,则 1,0?==+x y x 1I 2I . (3)化二重积分为两种不同次序下的二次积分,其中是直线D 2,==x x y 及双曲线)0(1f x x y =所围成的闭区域,= ∫∫d y x f σ),(D = (4)①交换积分次序: ∫∫??=22221),(x x x dy y x f dx ②交换积分次序: ∫∫∫∫?=+y y dx y x f dy dx y x f dy 20313010),(),( 2.利用二重积分的性质,估计积分的值: ∫∫++=D d y x I σ)94(22,其中是圆形闭区域:. D 422≤+y x 3.计算下列二重积分: (1)∫∫+= D d x x y I σ2)1(cos ,其中是顶点分别为(0,0),(1,0),(1,2)和(0,1)的梯形闭区域. D (2),其中是由∫∫+=D y x d e I σD 1≤+y x 所确定的闭区域. 4.计算二次积分∫∫101dx e dy y x y . 5.交换积分次序,证明: ∫∫∫???=a y a x a m x a m dx x f e x a dx x f e dy 000)()()()()(. 6.设平面薄片所占的闭区域是由直线D x y y x ==+,2和x 轴所围成,它的面密度

二重积分的概念与性质 习题

第十章 重积分 第一节 二重积分的概念与性质 一、填空题 1. 二重积分的定义是对 有界闭 区域上的 有界 函数而说的,当和式的极限0lim λ→()1,n i i i i f ξησ=Δ∑存在时,二重积分存在,对于 闭 区域上的 连续 _函数, 二重积分一定存在. 2. 设曲顶柱体的顶部曲面函数(,)z f x y =,它的底部区域为,则曲顶柱体的体积表示 D 为(,)d σ∫∫D f x y . 3. 设{}22(,)1D x y x y =+≤,则d D σ=∫∫π. 4. 由二重积分几何意义,d D x y =3π6a .(为D 222x y a +≤,). 0,0,0x y a ≥≥≥提示:当时, (,)0f x y ≥(,)d D f x y σ∫∫表示以为底,以曲面D (,)z f x y =为顶的曲顶柱 体的体积 5. 设一平面薄片在xoy 面内占的区域为,且其密度函数D 221(,)()2u x y x y = +,则此薄 片的质量表示为221()d 2D x y σ+∫∫ 二、单项选择题 1.()01(,)d lim ,n i i i i D f x y f λσξησ→==Δ∑∫∫中λ是 D . A. 最大小区间长 B. 小区域最大面积 C. 小区域直径 D. 小区域最大直径 61

三、解答题 1. 利用二重积分性质估计积分()222d d D I x y x = ++∫∫y 的值,其中1x y +≤. 解:∵01x y ≤+≤,∴2221x y xy ++≤,即2212x y x +≤?y , ∴2222323 x y xy ≤++≤?≤,2242 2d 3d 36D D I σσ==≤≤==∫∫∫∫, ∴即 46I ≤≤. 2. 根据二重积分的性质,比较2()d D x y σ+∫∫与3()d D x y σ+∫∫的大小,其中由圆周 D 22(2)(1)x y ?+?=22)围成. 解:,即22(2)(1)x y ?+?≤∵22 (1)22(x y x ?++≤+y , ∴22(1)11()2x y x y ?+≤+≤23()+,()y x y +≤+,故23()d ()d D D x y x y σσ+≤+∫∫∫∫. x 62

6.7 二重积分的概念与性质

1.利用二重积分定义证明: (,)(,)D D kf x y d k f x y d σσ=????。 【证明】由二重积分定义 1 (,)lim (,)n i i i i D f x y d f λ σξησ→==?∑??,得 1 (,)lim (,)n i i i i D kf x y d kf λ σξησ→==?∑??0 1 lim (,)n i i i i k f λξησ→==?∑ 1 lim (,)n i i i i k f λξησ→==?∑(,)D k f x y d σ=??, 证毕。 2.利用二重积分的几何意义说明:D kd k σσ=?? (k R ∈为常数,σ为积分区域D 的面积)。 【说明】二重积分的几何意义,就是说,二重积分(,)D f x y d σ??就是以(,)z f x y =为曲顶 的柱体体积, 于是知,二重积分 D kd σ??表示以平面z k =为顶的柱体体积, 而以平面z k =为顶的柱体体积,等于其底面积乘上其高z k =, 但该柱体的底面积就是积分区域D 的面积σ, 从而得, D kd k σσ=??。 3.利用二重积分的性质估计下列积分的值: ⑴ ()D xy x y d σ+??,其中积分区域{}(,)01,01D x y x y =≤≤≤≤; 【解】由于区域{} (,)01,01D x y x y =≤≤≤≤,可知区域D 的面积为 111D d σ=?=??, 而由于01x ≤≤,01y ≤≤,可得01xy ≤≤,02x y ≤+≤, 从而有0()2xy x y ≤+≤, 由二重积分性质6.7.5(估值不等式)即得 0()2D D D d xy x y d d σσσ≤+≤?????? 亦即为 0()2D xy x y d σ≤+≤??。 ⑵ (1)D x y d σ++??,其中积分区域{}(,)01,02D x y x y =≤≤≤≤; 【解】由于区域{} (,)01,02D x y x y =≤≤≤≤,可知区域D 的面积为 122D d σ=?=??,

最新定积分的概念与性质

定积分的概念与性质

第五章定积分 第一节定积分的概念与性质 教学目的:理解定积分的定义,掌握定积分的性质,特别是中值定理. 教学重点:连续变量的累积,熟练运用性质. 教学难点:连续变量的累积,中值定理. 教学内容: 一、定积分的定义 1.曲边梯形的面积 设?Skip Record If...?在?Skip Record If...?上非负,连续,由直线?Skip Record If...?,?Skip Record If...?,?Skip Record If...?及曲线?Skip Record If...? 所围成的图形,称为曲边梯形. 求面积: 在区间?Skip Record If...?中任意插入若干个分点 ?Skip Record If...?, 把?Skip Record If...?分成?Skip Record If...?个小区间[?Skip Record If...?],[?Skip Record If...?], … [?Skip Record If...?],它们的长度依次为: ?Skip Record If...? 经过每一个分点作平行于?Skip Record If...?轴的直线段,把曲边梯形分成?Skip Record If...?个窄曲边梯形,在每个小区间[?Skip Record If...?]上任取一点?Skip Record If...?,以[?Skip Record If...?]为底,?Skip Record If...?为高的窄边矩形近似替代第?Skip Record If...?个窄边梯形?Skip Record If...?,把这样得到的

第一节二重积分的概念及性质教案

第九章重积分 第一节二重积分的概念及性质 重积分的概念 1 ?引例 引例1曲顶柱体的体积 设有一立体的底是xy面上的有界闭区域D,侧面是以D的边界曲线为准线、母线 平行于z轴的柱面,顶是有二元非负连续函数z f(x,y)所表示的曲面,如图9—1所示, 这个立体称为D上的曲顶柱体,试求该曲顶柱体的体积。 图9—1 图9—2 图9 —3 解对于平柱体的体积V高底面积,然而,曲顶柱体不是平顶柱体,那么具体作法如下 (1)分割 把区域D任意划分成n个小闭区域,,,,其中表示第i个小闭区域, 1 2 n i 也表示它的面积。在每个小闭区域内,以它的边界曲线为准线、母线平行于z轴的柱面,如图9—2所示。这些柱面就那原来的曲顶柱体分割成n个小曲顶柱体。 ⑵近似 在每一个小闭区域上任取一点(,),以f ( i , i)为高,为底的平顶柱体 i I / i 的体积f( i, i) i近似代替第i个小曲顶柱体的体积

V f ( i, i) (3) 求和这n 个小平顶柱体的体积之和即为曲顶柱体体积的近似值n V V f ( i, i) i i1 (4) 取极限 将区域D无限细分,且每个小闭区域趋向于或说缩成一点,这个近似值趋近于曲 顶柱体的体积。即 n V lim0 f ( i, i ) i i1 其中表示这n 个小闭区域直径中最大值的直径(有界闭区域的直径是指区 i 域中任意两点间的距离) 。 引例2 平面薄片的质量 设有一平面薄片占有 xy面上的有界闭区域D,它的密度为D上的连续函数 z (x, y) ,试求平面薄片的质量。 解对于均匀平面薄片的质量m 密度薄片面积,然而,平面薄片并非均匀,那么具体作法如下 (1)分割 将薄片(即区域D )任意划分成n个小薄片,其中表示第i个 1 2 n i 小小薄片,也表示它的面积,如图9—3 所示。 (2)近似 在每一个小薄片」上任取一点(「丿,以(i, J为其密度,当i很小时,认 为小薄片是均匀的,则(i, i) i近似代替第i个小薄片的质量。即 m ( i , i) i (3)求和 这n个小薄片的质量之和即为薄片的质量的近似值

二重积分的概念与性质word资料6页

第 1 页 第九章 重积分 Chapter 9 Multiple Integrals 9.1 二重积分的概念与性质 (The Concept of Double Integrals and Its Properties) 一、二重积分的概念 (Double Integrals) 定义 ( 二重积分的定义 ) 设 D 是xy 平面的有界闭区域 ,f 是定义在 D 上的函数。将 D 任意分成 n 个小区域i σ,它们的面 积用 (1,2,)i i n σ?=L 表示。在每个(1,2,)i i n σ=L 上任取一点(,)i i ξη,并作和1(,)n i i i i f ξησ=?∑。假设存在一个确定的数I 满足:任给0ε>,存在0δ>,使得当各小区域i σ的直径中的最大值λ小于δ时,就有 1(,)n i i i i f I ξησε=?-<∑ 不管区域D 的分法如何,(,)i i ξη的取法如何。这样就称f 在D 上可积, I 称为f 在D 上的二重积分,记作(,)D f x y d I σ=??或01(,)lim (,)λσξησ→==?∑??n i i i i D f x y d f Definition (The Double Integral) Let D be a bounded closed region in the 巧 1 plane and f a function defined on D. Partition D arbitrarily into nsubregions i σ,whose area is denoted by (1,2,)i i n σ?=L Choose arbitrarily a point (,)i i ξη in (1,2,)i i n σ=L and then form the sum 1(,)n i i i i f ξησ=?∑。Suppose that there exists a fixed number I such that for any 0ε>, there exists a 0δ>such that if the length λ of the longest diameter of those subregions i σ in a partition of D is less than δ, then 1(,)n i i i i f I ξησε=?-<∑, no matter how the partition is and how those points (,)i i ξηare chosen from (1,2,)i i n σ=L Then f is said to be integrable over D and I is the double integral of f over D ,written (,)D f x y d I σ=??,or 01(,)lim (,)λσξησ→==?∑?? n i i i i D f x y d f 二、二重积分的性质 (Properties of Double Integrals) 性质 1 两个函数和 ( 或差 ) 的二重积分等于它们二重积分的和 ( 或差 ), 即 ((,)(,))(,)(,)D D D f x y g x y d f x y d g x y d σσσ±=±??????. Property 1 The double integral of the sum(or difference) of two functions is equal to the sum( or difference) of their double integrals, that is ((,)(,))(,)(,)D D D f x y g x y d f x y d g x y d σσσ±=±?????? 性质 2 被积函数前面的常数因子可以提到积分号前面 , 即 (,)(,)D D kf x y d k f x y d σσ=????,若k 为常数。 Property 2 The constant factor in the integrand function can

归纳二重积分的计算方法

归纳二重积分的计算方法 摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 前言 二重积分的概念和计算是多元函数微积分学的重要部分,在几何\物理\力学等方面有着重要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧. 1. 预备知识 1.1二重积分的定义]1[ 设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数 ε,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和 都有 ()1 ,n i i i i f J ξησ ε=?-<∑, 则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作 (),D J f x y d σ=??, 其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域. 1.2二重积分的若干性质 1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),D kf x y d σ??(),D k f x y d σ=??.

1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且 ()()[,,]D f x y g x y d σ±??()(),,D D f x y d g x y d σσ=±????. 1.23 若(),f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(),f x y 在12D D U 上也可积,且 ()12 ,D D f x y d σ??U ()()1 2 ,,D D f x y d f x y d σσ=±???? 1.3在矩形区域上二重积分的计算定理 设(),f x y 在矩形区域D [][],,a b c d =?上可积,且对每个[],x a b ∈,积分(),d c f x y dy ?存 在,则累次积分(),b d a c dx f x y dy ? ?也存在,且 (),D f x y d σ?? (),b d a c dx f x y dy =??. 同理若对每个[],y c d ∈,积分(),b a f x y dx ?存在,在上述条件上可得 (),D f x y d σ?? (),d b c a dy f x y dx =?? 2.求的二重积分的几类理论依据 二重积分类似定积分,可看成一个函数在有界区域内的积分,它计算的主要思路是把重积分化为我们学过的累次积分的计算,在这思想下如何化为更容易求的累次积分成为问题关键,下文介绍了把区域化为简单的X -型\Y -型区域及把复杂的函数通过变量变换化为简单函数的几种计算技巧,另外还列举几类特殊二重积分的简单求法. 2.1在直角坐标系下,对一般区域二重积分的计算 X -型区域: ()()(){}1 2 ,,D x y y x y y x a x b =≤≤≤≤ Y -型区域: ()()(){}1 2 ,,D x y x y x x y c y d = ≤≤≤≤ 定理:若(),f x y 在X -区域D 上连续,其中()1y x ,()2y x 在[],a b 上连续,则 (),D f x y d σ??()() () 21,b y x a y x dx f x y dy =?? 即二重积分可化为先对y ,后对x 的累次积分. 同理在上述条件下,若区域为Y -型,有

第一节 二重积分的概念与性质

第一节二重积分的概念与性质 学习指导 1.教学目的:使读者理解二重积分的概念与性质。 2.基本练习:熟悉二重积分的几何、物理背景。熟悉二重积分的性质。 3.应注意的事项: 二重积分是二元函数乘积和式的极限,是定积分的推广,因此从引例到研究方法,从定义到性质都是类似的,读者要善于比较,触类旁通,温故而知新。 第一节二重积分的概念与性质 一、二重积分的概念 1. 曲顶柱体的体积 (1)曲顶柱体 (2)曲顶柱体的体积 现在我们来讨论如何定义并计算上述曲顶柱体的体积V。 平顶柱体的体积 2. 平面薄片的质量 (1) 问题的提出 (2) 均匀薄片的质量

(3) 非均匀薄片质量的计算方法 (4) 二重积分的定义 上面两个问题的实际意义虽然不同,但所求量都归结为同一形式的和的极限。在物理、力学、几何和工程技术中,有许多物理量或几何量都可以归结为这一形式的和的极限。因此我们要一般的研究这种和的极限,并抽象出下述二重积分的定义。 定义设是有界闭区域上的有界函数.将闭区域任意分成个小闭区域 。 其中 表示第个小闭区域,也表示它的面积。再每个上任取一点,作乘积 ,并作和。如果当个小闭区域的直径中最大值 趋于零时,这和的极限总存在。则称此极限为函数在闭区域上的二重积分,记 作,即 。(1) 叫做被积函数,叫做被积表达式,叫做面积元素,与叫 其中 积分变量,叫做积分区域,叫做积分和。 (5) 直角坐标系中的面积元素 在二重积分的定义中对闭区域的划分是任意的,如果在直角坐标系中用平行于坐标轴的 直线网来划分,那么除了包含边界点的一些小闭区域外,其余的小闭区域都是矩形闭区域。 设矩形闭区域的边长为和,则。因此在直角坐标系中,有 时也把面积元素记作。而把二重积分记作 。 其中叫做直角坐标系中的面积元素。

相关文档
相关文档 最新文档