文档库 最新最全的文档下载
当前位置:文档库 › 线性代数模拟试题及答案1

线性代数模拟试题及答案1

线性代数模拟试题及答案1
线性代数模拟试题及答案1

一、判断题(本题共5小题,每小题3分, 共15分.下列叙述中正确的打√,错误的打×.) 1. 图解法与单纯形法,虽然求解的形式不同,但从几何上理解,两者是一致的. ( ) 2. 若线性规划的原问题有多重最优解,则其对偶问题也一定具有多重最优解. ( ) 3. 如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数k ,最优调运方

案将不会发生变化. ( )

4. 对于极大化问题max Z =

ij

n i n

j ij

x c

∑∑==11

,令

{}ij

ij ij c c b c c -==,max 转化为极小化问题

ij

n i n

j ij x b W ∑∑===11

min ,则利用匈牙利法求解时,极大化问题的最优解就是极小化问题

的最优解,但目标函数相差: n+c. ( ) 5. 影子价格是对偶最优解,其经济意义为约束资源的供应限制. ( ) 二、填空题(本题共8小题, 每空3分, 共36分.把答案填在题中横线上.)

1、在线性规划问题的约束方程,0m n A X b X ?=≥中,对于选定的基B ,令非基变量X N =0,得到的解X= ;若 ,则称此基本解为基本可行解.

2、线性规划试题中,如果在约束条件中出现等式约束,我们通常用增加 的方法来产生初始可行基。

3、用单纯形法求解线性规划问题的迭代步骤中,根据k λ= 确定k x 为进基变量;根据最小比值法则θ= ,确定r x 为出基变量。

4、原问题有可行解且无界时,其对偶问题 ,反之,当对偶问题无可行解时,原问题 。

5、对于Max 型整数规划问题,若其松弛问题的最优单纯形表中有一行数据为:

则对应的割平面方程为 。6、原问题的第1个约束方程是“=”型,则对偶问题相应的变量是 __________ 变量。 7、用LINGO 软件求解整数规划时,要说明变量X 是只可以取0或1的整数变量,则要用___________命令函数。

8、用匈牙利法解分配问题时,当 则找到了分配问题的最优解;称此时独

立零元素对应的效益矩阵为 。

三、解答题 (本题共6小题,共49分)

1、已知线性规划问题123

123123123max 34236

347,,0

z x x x x x x x x x x x x =++-++≤??-+-≤??≥?

,利用对偶理论证明其目标函数值无界。(8分)

2、试用大M 法解下列线性规划问题。(8分)

12121212max 35463218,0

z x x x x x x x x =+≤?

?≤??

+=??≥?

3、福安商场是个中型的百货商场,它对售货人员的需求经过统计分析如下表所示,为了保证售货人员充分休息,售货人员每周工作五天,休息两天,并要求休息的两天是连续的,问该如何安排售货人员的休息,既满足了工作需要,又使配备的售货人员的人数最少,请列出此问题的数学模型。 (8分)

4、建立模型题(10分)

在高校篮球联赛中,我校男子篮球队要从8名队员中选择平均身高最高的出场阵容,队员的号码、身高及擅长的位置如下表:

同时,要求出场阵容满足以下条件: ⑴ 中锋最多只能上场一个。 ⑵ 至少有一名后卫 。

⑶ 如果1号队员和4号队员都上场,则6号队员不能出场 ⑷ 2号队员和6号队员必须保留一个不出场。

问应当选择哪5名队员上场,才能使出场队员平均身高最高? (1)建立该问题的数学模型;

(2)写出用LINGO 软件求解它时的源程序。

5、从甲, 乙, 丙, 丁, 戊五人中挑选四人去完成四项工作,已知每人完成各项工作的时间如下表所示。规定每项工作只能由一个人去单独完成,每个人最多承担一项工作,假定甲必须保证分配到工作,丁因某种原因不同意承担第四项工作。在满足上述条件下,如何分配工作,使完成四项工作总的花费时间最少。(8分)

6、用割平面法求解下面的纯整数规划问题:(7分)

12

1212max 26..4520z x x x x s t x x =++≤??+≤?

参考答案

一、判断题(本题共5小题,每小题3分, 共15分. 下列叙述中正确的打√,错误的打×.) ××√×√

二、填空题(本题共8小题, 每空3分, 共36分.把答案填在题中横线上.)

1、10B b -?? ???,1

0B b -≥ 2、人工变量 3、max{}j λ,00min{|0}i r ij

rj

b b b bij b >= 4、无可行解,或有无界解或无可行解 5、345313

444

x x x -

-+=- 6、无非负限制 7、@bin (x ) 8、得到n 个独立零元素,最优解矩阵 三、解答题(本题共6小题,共49分) 1、证明:原问题的对偶问题是

12121212123min 6733

24341,,0

w y y y y y y y y y y y =+--≥??+≥??

-≥??≥?

由于第一个约束条件不成立,所以对偶问题无可行解,由此可知原问题无最优解。又容易知

()100T

X =是原问题的可行解,所以原问题具有无界解,即目标值无界。

2、加入人工变量,化原问题为标准形

1234512132412512345max 3500(33)(52)1842123218,,,,0

z x x x x Mx M x M x M x x x x x x x x x x x x =+++-=+++-+=?

?+=??

++=??≥?

单纯形表如下:

迭代一次后

再迭代一次后

再迭代一次后

所以最优解为*

(2,6,2,0,0),36X z ==

3、解:设i x 为从星期(1,2,,7)i i =……开始休息的人数。则

7

1

5

1

6

2

7

3456715671267123

71234min 281524251931280(1,2,,7)i

i i i i i i i i

z x x x x x x x x x x x x x x x x x x x x x x x x x i =====?

≥?

?

?

≥?

?

?≥?

?

?++++≥?

++++≥??++++≥?++++≥??≥=?∑∑∑∑……

4、解:设0i 1i i x ?=?

?第个队员入选

第个队员不入选

1234567812678

146268

1

1

max (1.92 1.90 1.88 1.86 1.85 1.83 1.80 1.78)

5

1121501

i i i z x x x x x x x x x x x x x x x x x x x x ==++++++++≤??++≥??++≤?

+=???=???

∑取或 Modle :

max (1.92*1 1.90*2 1.88*3 1.86*4 1.85*5 1.83*6 1.80*7 1.78*8)/5;121;

6781;1462;261;

123456785;

x x x x x x x x x x x x x x x x x x x x x x x x x x =++++++++<++>++<+=+++++++=

@bin (X1); @bin (X2); @bin (X3); @bin (X4); @bin (X5); @bin (X6); @bin (X7); @bin (X8);

End 5、 解:

10 5 15 20 M 8 3 10 12 M 5 0 7 9 M-3

2 10 5 15 0 0 8 0 7 0 0 8 0 7 0

3 15 1

4 13 0 ~ 1 13 9

5 0 ~ 1 13 9 5 0 ~ 15 2 7 M 0 13 0 2 M-8 0 13 0 2 M-8 0 9 4 15 8 0 7 2 10 0 0 7 2 10 0 0

4 0 6 8 M-3 0 9 0 7 1 0 13 8 4 0 12 0 1 M-9 0 7 3 10 0 1

此时,费用最小,218553*

=++=Z

其中,丙 一, 甲 二, 乙 三, 戌 四 6、解:

运用单纯形法得松弛问题的最优解为125813

,,max x x z =

== 。对应最优单纯形表如下

由第一个约束条件得134515x x x +

-= 则得到割平面方程为345552

x x x --+=-代入上表得

迭代一次得

由第一个约束条件得24541655x x x +-

= 则得到割平面方程为5611

55

x x -+=-代入上表迭代得 120,4,max 4x x z ===

线性代数测试试卷及答案

线性代数(A 卷) 一﹑选择题(每小题3分,共15分) 1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+ 2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( ) (A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶方阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8-- 4. 设实二次型11212222(,)(,)41x f x x x x x ?? ??= ? ?-???? 的矩阵为A ,那么( ) (A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ? -?? (D) 1001A ?? = ??? 5. 若方阵A 的行列式0A =,则( ) (A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关 (C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分) 1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ; 2. 设100210341A -?? ? =- ? ?-?? ,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5. 设A 为正交矩阵,则A = ;

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算221 1231223131 5 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ?

3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A 4.设矩阵210120001A ?? ??=?? ????,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+

线性代数试题及答案

2011-2012-2线性代数46学时期末试卷(A) 考试方式:闭卷 考试时间: 一、单项选择题(每小题 3分,共15分) 1.设A 为m n ?矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。 (A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222 123123 (,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型. (A ) 1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥. 4.初等矩阵(A ); (A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,, ,n ααα线性无关,则(C ) A. 12231,, ,n n αααααα-+++必线性无关; B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关; C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关; D. 以上都不对。 二、填空题(每小题3分,共15分) 6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t 7.设矩阵020003400A ?? ? = ? ??? ,则1A -=

线性代数考试题库及答案(六)

线性代数考试题库及答案 第一部分 客观题(共30分) 一、单项选择题(共 10小题,每小题2分,共20分) 1. 若行列式11 121321 222331 32 33 a a a a a a d a a a =,则212223 11 121331 32 33 232323a a a a a a a a a 等于 ( ) (A) 2d (B) 3d (C) 6d (D) 6d - 2. 设123010111A ?? ? =- ? ??? ,ij M 是A 中元素ij a 的余子式,则313233M M M -+=( ) (A) 0 (B) 1 (C) 2 (D) 3 3. 设A 为n 阶可逆矩阵,则下列各式恒成立的是( ) (A) |2|2||T A A = (B) 11(2)2A A --= (C) *1A A -= (D) 11[()][()]T T T T A A --= 4. 初等矩阵满足( ) (A) 任两个之乘积仍是初等矩阵 (B) 任两个之和仍是初等矩阵 (C) 都是可逆矩阵 (D) 所对应的行列式的值为1 5. 下列不是..n 阶矩阵A 可逆的充要条件为( ) (A) 0≠A (B) A 可以表示成有限个初等阵的乘积 (C) 伴随矩阵存在 (D) A 的等价标准型为单位矩阵 6. 设A 为m n ?矩阵,C 为n 阶可逆矩阵,B AC =,则 ( )。 (A) 秩(A )> 秩(B ) (B) 秩(A )= 秩(B )

(C) 秩(A )< 秩(B ) (D) 秩(A )与秩(B )的关系依C 而定 7. 如果向量β可由向量组12,, ,s ααα线性表示,则下列结论中正确的是( ) (A) 存在一组不全为零的数12,,s k k k ,使得1122s s k k k βααα=+++ 成立 (B) 存在一组全为零的数12,,s k k k ,使得1122s s k k k βααα=++ + 成立 (C) 存在一组数12,, s k k k ,使得1122s s k k k βααα=+++ 成立 (D) 对β的线性表达式唯一 8. 设12,ξξ是齐次线性方程组0AX =的解,12,ηη是非齐次线性方程组AX b =的解,则( ) (A) 112ξη+为0AX =的解 (B) 12ηη+为AX b =的解 (C) 12ξξ+为0AX =的解 (D) 12ηη-为AX b =的解 9. 设110101011A ?? ? = ? ??? ,则A 的特征值是( )。 (A) 0,1,1 (B) 1,1,2 (C) 1,1,2- (D) 1,1,1- 10. 若n 阶方阵A 与某对角阵相似,则 ( )。 (A) ()r A n = (B) A 有n 个互不相同的特征值 (C) A 有n 个线性无关的特征向量 (D) A 必为对称矩阵 二、判断题(共 10小题,每小题1分,共10分 )注:正确选择A,错误选择B. 11. 设A 和B 为n 阶方阵,则有22()()A B A B A B +-=-。( ) 12. 当n 为奇数时,n 阶反对称矩阵A 是奇异矩阵。( )

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

(完整版)线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有 一个是符合题目要求の,请将其代码填在题后の括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵Aの秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误の是() A.η1+η2是Ax=0の一个解 B.1 2 η1+ 1 2 η2是Ax=bの一个解

2010-2011-2线性代数试卷及答案

东 北 大 学 考 试 试 卷(A 卷) 2010 — 2011学年 第二学期 课程名称:线性代数 (共2页) ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ (15分) 设三阶矩阵()321,,ααα=A , ()3323214,3,32αααααα+-+=B , 且A 的行列式1||=A ,求矩阵B 的行列式||B . 解 因为()3323214,3,32αααααα+-+=B =? ???? ??-413031002),,(321ααα, 所以,24413031002||||=-=A B 分) 设向量组????? ??-=2111α,????? ??=1122α,????? ??=a 213α线性相关,向量 ???? ? ??=b 13β可由向量组321,,ααα线性表示,求b a ,的值。 解 由于 ????? ??-=b a 1212113121),,,(321βααα????? ??---→62304330312 1b a ? ???? ??-+→210043303121b a 所以,.2,1=-=b a 三分) 证明所有二阶实对称矩阵组成的集合V 是R 2? 2 的子空间,试在 V 上定义内积运算,使V 成为欧几里得空间,并给出V 的一组正交基. 解 由于任意两个二阶实对称矩阵的和还是二阶实对称矩阵,数乘二阶实对称矩阵还是 二阶实对称矩阵,即V 对线性运算封闭,所以V 是R 2? 2 的子空间。 对任意V b b b b B a a a a A ∈??? ? ??=???? ??=2212121122121211,,定义内积:[A,B]=222212121111b a b a b a ++, 显然满足:[A,B]=[B,A], [kA,B]=k[A,B], [A,A]≥0且[A,A]=0当且仅当A=0. ???? ??=00011A ,???? ??=01102A ,???? ??=10003A 就是V 的一组正交基. 注:内积和正交基都是不唯一的. 2-1

《线性代数》模拟试卷B及答案

《线性代数》模拟试卷B 及答案 一、选择题(每小题3分,共30分) (1)若A 为4阶矩阵,则3A =( ) (A) 4A (B) 43A (C) 34A (D)3A (2)设A ,B 为n 阶方阵,0A ≠且0AB =,则( ) (A)0B = (B)0BA = (C)222()A B A B +=+ (D)00A B ==或 (3)A ,B ,C 均为n 阶方阵,则下列命题正确的是( ) (A) AB BA = (B)0,00A B AB ≠≠≠则 (C) AB A B = (D) ,AB AC B C ==若则 (4)222()2A B A AB B +=++成立的充要条件是( ) (A)AB BA = (B) A E = (C)B E = (D)A B = (5)线性方程组(1)22(1)k x y a x k y b -+=??+-=?有唯一解,则k 为( ) (A)任意实数 (B) 不等于 (C) 等于 (D) 不等于0 (6)若A 为可逆阵,则1()A *-=( ) (A)A A (B)A A * (C)1 A A - (D)1 A A -* (7)含有4个未知数的齐次方程组0AX =,如果()1R A =,则它的每个基础解系中解向量的个数为( ) (A) 0 (B) 1 (C) 2 (D) 3

(8)设A 为m n ?矩阵,齐次方程组0AX =仅有零解的充要条件是A 的( ) (A) 列向量线性无关 (B) 列向量线性相关 (C) 行向量线性无关 (D) 行向量线性相关 (9)已知矩阵A=3111?? ?-?? ,下列向量是A 的特征向量的是( ) (A)10?? ??? (B)12?? ??? (C)12-?? ??? (D) 11-?? ??? (10)二次型222123123121323(,,)44224f x x x x x x x x x x x x λ=+++-+为正定二次型,则λ 的取值范围是( ) (A)21λ-<< (B)12λ<< (C)32λ-<<- (D)2λ> 二、计算题(第1、2小题每题5分,第3、4小题每题10分,共30分) 1、计算行列式 4x a a a a x a a D a a x a a a a x = 。(5分) 2、设321A=315323?? ? ? ??? ,求A 的逆-1A 。(5分)

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ? ? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2η1+1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

线性代数模拟试题(4套)

模拟试题一 一、判断题:(正确:√,错误:×)(每小题2分,共10分) 1、若B A ,为n 阶方阵,则B A B A +=+.……………………() 2、可逆方阵A 的转置矩阵T A 必可逆.……………………………() 3、n 元非齐次线性方程组b Ax =有解的充分必要条件n A R =)(.…() 4、A 为正交矩阵的充分必要条件1-=A A T .…………………………() 5、设A 是n 阶方阵,且0=A ,则矩阵A 中必有一列向量是其余列向量的线性组合1、23456. 7、(R 8、若9、设10、方阵A 的特征值为λ,方阵E A A B 342+-=,则B 的特征值为. 三、计算:(每小题8分,共16分) 1、已知4阶行列式1 6 11221212 112401---= D ,求4131211132A A A A +-+.

2、设矩阵A 和B 满足B A E AB +=+2,其中??? ? ? ??=101020101A ,求矩阵B . 四、(10分)求齐次线性方程组???????=++-=-++=--+-=++-024********* 432143214 3214321x x x x x x x x x x x x x x x x 的基础解系和它的通解. 五、(10分)设三元非齐次线性方程组b Ax =的增广矩阵为 2六、(10(1(2(3(41. 2、(单 (1)做矩阵53?A 表示2011年工厂i a 产矿石j b 的数量)5,4,3,2,1;3,2,1(==j i ;

(2)通过矩阵运算计算三个工厂在2011年的生产总值. 模拟试题二 一、 判断题(正确的打√,不正确的打?)(每小题2分,共10分) ()1、设,A B 为n 阶方阵,则A B A B +=+; ()2、可逆矩阵A 总可以只经若干次初等行变换化为单位矩阵E ; ()3、设矩阵A 的秩为r ,则A 中所有1-r 阶子式必不是零; ()4、若12,x x ξξ==是非齐次线性方程组Ax b =的解,则12x ξξ=+也是该方程组的解. ()5、n 阶对称矩阵一定有n 个线性无关的特征向量。 123、设4、(33α5一; 67、设向量(1,2,1)T α=--,β=()T 2,,2λ-正交,则λ=; 8、设3阶矩阵A 的行列式|A |=8,已知A 有2个特征值-1和4,则另一特征值为。 三、计算题(每小题8分,共16分) 1、设矩阵??? ? ??=???? ??--=1201,1141B A ,求矩阵AB 和BA 。

《经济数学》线性代数学习辅导与典型例题解析

《经济数学》线性代数学习辅导及典型例题解析 第1-2章行列式和矩阵 ⒈了解矩阵的概念,熟练掌握矩阵的运算。 矩阵的运算满足以下性质 ⒉了解矩阵行列式的递归定义,掌握计算行列式(三、四阶)的方法;掌握方阵乘积行列式定理。 是同阶方阵,则有: 若是阶行列式,为常数,则有: ⒊了解零矩阵,单位矩阵,数量矩阵,对角矩阵,上(下)三角矩阵,对称矩阵,初等矩阵的定义及性质。

⒋理解可逆矩阵和逆矩阵的概念及性质,掌握矩阵可逆的充分必要条件。 若为阶方阵,则下列结论等价 可逆满秩存在阶方阵使得 ⒌熟练掌握求逆矩阵的初等行变换法,会用伴随矩阵法求逆矩阵,会解简单的矩阵方程。 用初等行变换法求逆矩阵: 用伴随矩阵法求逆矩阵:(其中是的伴随矩阵) 可逆矩阵具有以下性质: ⒍了解矩阵秩的概念,会求矩阵的秩。 将矩阵用初等行变换化为阶梯形后,所含有的非零行的个数称为矩阵的秩。 典型例题解析 例1 设均为3阶矩阵,且,则。 解:答案:72 因为,且

所以 例2设为矩阵,为矩阵,则矩阵运算()有意义。 解:答案:A 因为,所以A可进行。 关于B,因为矩阵的列数不等于矩阵的行数,所以错误。 关于C,因为矩阵与矩阵不是同形矩阵,所以错误。 关于D,因为矩阵与矩阵不是同形矩阵,所以错误。 例3 已知 求。 分析:利用矩阵相乘和矩阵相等求解。 解:因为 得。

例4 设矩阵 求。 解:方法一:伴随矩阵法 可逆。 且由 得伴随矩阵 则=

方法二:初等行变换法 注意:矩阵的逆矩阵是唯一的,若两种结果不相同,则必有一个结果是错误的或两个都是错误的。 例4 设矩阵 求的秩。 分析:利用矩阵初等行变换求矩阵的秩。 解: 。

线性代数试卷及答案

《 线性代数A 》试题(A 卷) 试卷类别:闭卷 考试时间:120分钟 考试科目:线性代数 考试时间: 学号: 姓名: 题号 一 二 三 四 五 六 七 总 分 得分 阅卷人 一.单项选择题(每小题3分,共30分) 1.设A 经过初等行变换变为B ,则( ).(下面的(),()r A r B 分别表示矩阵,A B 的秩)。 () A ()()r A r B <; () B ()()r A r B =; ()C ()()r A r B >; () D 无法判定()r A 与()r B 之间的关系。 2.设A 为 (2)n n ≥阶方阵且||0A =,则( )。 () A A 中有一行元素全为零; () B A 有两行(列)元素对应成比例; () C A 中必有一行为其余行的线性组合; () D A 的任一行为其余行的线性组合。 3. 设,A B 是n 阶矩阵(2n ≥), AB O =,则下列结论一定正确的是: ( ) () ;A A O B O ==或 ()AX B B 的每个行向量都是齐次线性方程组=O 的解. ();C BA O = ()()().D R A R B n +≤ 4.下列不是n 维向量组12,,...,s ααα线性无关的充分必要条件是( ) () A 存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++≠;

() B 不存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++= 12(),,...,s C ααα的秩等于s ; 12(),,...,s D ααα中任意一个向量都不能用其余向量线性表示 5.设n 阶矩阵(3)n ≥1...1................1a a a a a a A a a a ?? ? ? ?= ? ? ???,若矩阵A 的秩为1n -,则a 必为( )。 ()A 1; () B 11n -; () C 1-; () D 11 n -. 6.四阶行列式 1 1 2 2334 4 0000 000 a b a b b a b a 的值等于( )。 ()A 12341234a a a a b b b b -; ()B 12341234a a a a b b b b +; () C 12123434()()a a b b a a b b --; () D 23231414()()a a b b a a b b --. 7.设A 为四阶矩阵且A b =,则A 的伴随矩阵* A 的行列式为( )。 ()A b ; () B 2b ; () C 3b ; () D 4b 8.设A 为n 阶矩阵满足23n A A I O ++=,n I 为n 阶单位矩阵,则1 A -=( ) () n A I ; ()3n B A I +; ()3n C A I --; ()D 3n A I + 9.设A ,B 是两个相似的矩阵,则下列结论不正确的是( )。 ()A A 与B 的秩相同; ()B A 与B 的特征值相同; () C A 与B 的特征矩阵相同; () D A 与B 的行列式相同;

大学线性代数模拟题

第一套线性代数模拟试题解答 一、填空题(每小题4分,共24分) 1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12 i j = =。 令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。(知识点:行列式的逆序数) 2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D = (1)n D - 。 即行列式D 的每一行都有一个(-1)的公因子,所以D =(1)n D -。 3、设1101A ??= ? ?? , 则100A =110001?? ???。 23111112121113,,010*********A A ????????????==== ??? ? ??? ????????????? 可得 4、设A 为5 阶方阵,5A =,则5A = 1 5n +。 由矩阵的行列式运算法则可知:1 555 n n A A +==。答案应该为5的n 次方 5、A 为n 阶方阵,T AA E =且=+

线性代数行列式经典例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

线性代数习题及解答

线性代数习题一 说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT 表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设行列式11 121321 222331 3233a a a a a a a a a =2,则1112 13 31323321312232 2333 333a a a a a a a a a a a a ------=( ) A .-6 B .-3 C .3 D .6 2.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =( ) A .E +A -1 B .E -A C .E +A D . E -A -1 3.设矩阵A ,B 均为可逆方阵,则以下结论正确的是( ) A .?? ???A B 可逆,且其逆为-1-1 ?? ???A B B .?? ??? A B 不可逆 C .?? ? ??A B 可逆,且其逆为-1-1?? ??? B A D .?? ???A B 可逆,且其逆为-1-1?? ?? ? A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是 ( ) A .向量组α1,α2,…,αk 中任意两个向量线性无关 B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0 C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示 D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示 5.已知向量2(1,2,2,1),32(1,4,3,0),T T +=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)T B .(-2,0,-1,1)T C .(1,-1,-2,0)T D .(2,-6,-5,-1)T 6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( )

线性代数模拟试卷一

2018—2019学年第二学期期末考试 课程名称:线性代数(模拟试卷一) 闭卷 A 卷 120分钟 一、选择填空题:(每题2 分,共14分) 1)行列式3 15 4 12231---中,元素4的代数余子式为 。 2)设行列式11 121321222331 32 33 3a a a a a a a a a =,则313233 2131 2232 233311 12 13 222222222222a a a a a a a a a a a a +++= 。 3)设112311131111A --?? ??=--????--?? ,则A 的秩()r A = 。 4)设向量组 123,,ααα线性无关,则当t =_____ 时,向量组21α-α,32t α-α,13α+α 线性相关。 5)线性方程组121232 343414 1 x x a x x a x x a x x a -=-??-=??-=??-=?有解的充要条件是 。 6)若A 的特征值为1,0,2-,则2 A 的特征值为 。 7) 已知12,ββ是非齐次线性方程组Ax b =的两个不同的解,12,αα是对应齐次线性方程组0Ax =的基础解系,12,k k 是任意常数,则方程组Ax b =的通解为 。 二)计算下列行列式(10分) 1110110110110111 ;

三)(12分)设矩阵A 和B 满足关系式2AB A B =+,且已知301110014A ????=?????? ,求矩阵B 。 四)已知向量组[ ]1132 0α=,[]270143α=,[]32101α=-, []45162α=,求该向量组的秩和一个最大无关组,并将剩余向量用该最大无关 组线性表示。(12分) 五)设有线性方程组12312312336 32334x x x x x x x x ax b ++=?? ++=-??-++=? ,问a b 、为何值时,方程组①有唯一解?② 无解?③有无穷多解?在有无穷多解时求通解(用基础解系表示)。(12分) 六)(14分) 1、求一正交变换X PY =,将二次型222 123121233322(,,)f x x x x x x x x =+-+化为标 准形。(线性代数A 的同学选做) 2)已知矩阵310130002A -?? ??=-?????? 求一正交矩阵p ,使得T P AP 为对角矩阵。(线性代数 B 的同学选做) 七)设向量组123120347110 ,,,011234b a αααβ???????? ? ? ? ? ? ? ? ?==== ? ? ? ?- ? ? ? ????????? 。 (1) 当,a b 取何值时,β不能由123,,ααα线性表示? (2) 当,a b 取何值时,β可由123,,ααα线性表示?并写出此表示式。(12分) 八)若矩阵0102040a A b ?? ? = ? ??? 有三个线性无关的特征向量,问a 与b 应满足什么条件?(10 分) 九)已知A 为降秩矩阵,证明:矩阵A 至少有一个特征值为零。(4分)

相关文档