文档库 最新最全的文档下载
当前位置:文档库 › 流量测量实验报告

流量测量实验报告

流量测量实验报告
流量测量实验报告

课程实验报告

学年学期 2012—2013学年第二学期课程名称工程水文学

实验名称河道测深测速实验

实验室北校区灌溉实验站

专业年级热动113 学生姓名白治朋

学生学号 2011012106 任课教师向友珍李志军

水利与建筑工程学院

1 实验目的

(1)了解流速仪的主要构造及其作用、仪器的性能。

(2)掌握流速仪的装配步骤与保养方法。

(3)了解流速仪测流的基本方法。

2 实验内容

LS25-3C型旋浆流速仪是一种新改型仪器,采用磁电转换原理,无触点式测量,信号采集数多,灵敏度高,防水,防沙性能好,仪器结构紧凑,是一种大量程的流速仪。适用于一般河流,水库、湖泊、河口、水电站、溢港道等高、中、低流速测量。配用HR型流速测算仪。

2.1 主要技术指标

(1)测速范围: V=0.04-10 m/s

(2)仪器的起转速: Vo≤0.035 m/s

(3)临界速度: Vk≤0.12m/s

(4)每转四个信号

(5)旋浆水力螺距: K=250mm(理论)

(6)检定公式全线均方差:M≤1.5%

(7)信号接收处理:HR型流速仪测算仪(适应线性关系)

(8)测流历时: 20s、50s、l00s或1~999s任意设置

(9)测量数位:四位有效数

(10)显示查询方式:显示内容有时间、K值、C值、历时T、流速V、信号数等。

(11)参数设置及保存:可调校时间及设置K、C、T值等参数,设置后参数在掉电状态能长期

2.2仪器结构

本仪器按工作原理可分为:感应,传信,测算,尾翼部份。仪器测流时的安装方式有悬杆,转轴和测杆等几种。

(1)感应部份为一个双叶螺旋浆,安装于支承系统上灵敏地感应水流速度的变化。旋浆的转速与水流速度之间的函数关系由流速仪检定水槽实验得出。

(2)传信部份由磁钢,接收电子器件一霍尔传感器构成,浆叶旋转带动磁钢转动。

(3)HR型流速测算仪控制板由89CXX系列单片机及有关电路组成,液晶显示采用的是二线式串行

接口方式的显示模块。

(4)尾翼部件为一个十字形,供仪器在水平和垂直方向定向。

(5)仪器悬挂附件(按水流条件和测验设备选用)

转轴部件:与悬索安装仪器,适用于测船测量较低的流速,可使仪器迎合流向。

十悬杆部件:与悬索安装仪器,适用于测船测量较高的流速:可使仪器在垂直方向对准水流方向。

测杆部件:(CG20型)供浅水河道,涉水测流安装仪器,并兼测水深用。

2.3工作原理及计算方法

当水流作用到仪器的感应元件一-浆叶时,浆叶即产生旋转带动转动部份中的磁钢转动。接收电子器件一霍尔传感器,在外磁场作用下,电压不断变化,根据磁电转换原理,转换成电脉冲信号。经由导线传递到计数器,浆叶每转1/4转发出一个脉冲信号,仪器发计一次信号,HR型流速测算仪将信号数直接转换成流速。实践表明其转率“n”与流速“V”之间存在一定函数关系V=f(n)。在临界速度V k 以下至起转速V o之间,函数呈曲线关系。而临界流速V k以上则为一线性关系。每架仪器检定结果,均附有曲线图和如下检定公式。

V=K n+C

式中:V一流速(m/s)

n一浆转率(等于旋浆总转数N与相应的测速历时“T之比,即n=N/T(1/s)

K一水力螺距(m)

C一常数(m/s)

注:系数K、C值与浆叶和支承系统的摩擦阻力等因素有关。

水流速度的测定,实际上是测量在预定时间内流速仪旋浆的转数(N)。仪器旋浆每转发出四个信号,因此信号数乘1/4即为总转数。

如果流速小于临界流速V k,则可在放大的曲线图上根据旋浆的转率“n”查得相应流速.

2.4仪器的安装与使用

(1)安装流速仪

1)用测杆工作时,先把测杆装配成套,把仪器套在预定水深位置上,并用固杆螺丝固紧.测杆的上部安装与仪器轴向一致的方向标。

2)用悬杆工作时与悬索配用安装仪器.适用于测船测量较高的流速,可使仪器在垂直方向对准水流方向回摆角为300。

3)联接电路:把仪器上的传输线固紧在测杆或钢丝绳上,将三芯插头插入HR测算仪即可工作(特别注意:插拔插头应在断电时进行)。

4)仪器工作完毕,用干毛巾擦干水分,一般应及时拆洗,以备下次使用。

(2)HR型流速测算仪使用方法

1)面板操作键介绍(见图一)

a)电源开关(有点的一端按下为开)

b)液晶显示器窗口。

c)信号接口插座。

d)K值指示灯(此灯亮时显示器显示的数据为K值)。

e)C值指示灯(此灯亮时显示器显示的数据为C值)。

f)T值指示灯(此灯亮时显示器显示的数据为T值)。

K值、C值、T值及流速等参数。

(将闪烁)

i)

l)电池盒:手指压在背后电池盒盖,同时往下滑动,即可将其打开。

2)直接使用:(本仪器出厂前已将流速仪的 K、C值输入,时间T设定为50秒.)

a)打开申池盒,装上电池(注意盒内正负极性)

b)(必须在流速仪接入并开始旋转后,如未接入流速仪,则显示两个零),显示器窗左边显示的是时间,右边显示的是信号数。测流历时一到,HR型流速测算仪自动计算

出流速一一显示器显示为[U=X.XXX],单位为m/s

3)查询、设置修改参数

a)查询参数

(a)操作每按一下该键,时间、K值、C值、T值及流速等参数将依此出现在显示器窗口。

(b)

b)设置修改参数

(a)修改时间:

[t—XX.XX.XX]

[三—XX.XX.XX]

行修改,修改完成后,下一数位又将出现闪烁,

直到最后一位()。

(b)设置K值:

[=0.XXXX],K值状态(此时K值指示灯亮)

显示:[三=0.XXXX]

数点后第二位将闪烁,再操作置数键,置入第二位所需数值。重复这一过程,直到最后一位数置入,最

K值。如发现显示的K

(c)设置C值:

[C—0.XXXX]C值状态(此时,C值指示灯亮)

显示:[三C—0.XXXX],并且小数点后第一位数闪烁,以下置数过程与上述设置K值置数过程相同。

(d)设置测流历时T

[-t-XXX]T值状态(此时T值指示灯亮)

[三-t-XXX],并且T值的首位数闪烁进入T[三

-t-XXX][三-t-100][三

-t-100]。若想设置此种历时T(20s,50s,100s)之一时,可在显示到该历时T

使显示器上闪烁位移出设置状态即可。例如:要将T值设置为50s

[-t-XXX][三-t-XXX][三

-t-050]

若需要设置任意历时T值,则置数方法是:按上述操作到当显示器显示[三-t-100]时,百位数1

T值状态,百位数将加1,变成2

直加到9、0后,又重1

历时T值成功。

以上设置后的参数在掉电状态下能长期保存。

2.5仪器的使用注意事项

(1)仪器结构上的改进,在高速测流作用下其旋转部分也不易脱落。正确拆卸方法是拧下身架上的密封螺母,松开止紧螺钉,(注意牛皮垫圈脱落)松开轴座支部件,从身架上取出仪器旋转部件,然后将旋转部件的磁钢支部件取下,取出并套支部件,把轴套和旋浆轴分开,一切零件洗净后,旋浆孔内注入仪器油,并按拆卸的相反顺序装好。

(2)球轴承是仪器的关键元件,其工作条件要求十分清洁和充分润滑,它关系到仪器的测量精度,特别是低速部份。

(3)仪器清洗后,回装应注意旋转部分,与静止部份应有0.2mm 间隙。

(4)仪器清洗剂为120#汽油.润滑油为8#仪表油.不得改用其它油类。

(5)在含沙量较大或水深,流急时的河道测流时,为了避免仪器进水进沙,在安装仪器时应在并套支部表面和丝扣外涂一层黄油。

(6)HR 型流速测算仪与流速仪之间插头连线,使用中如有损坏,在重新连接时,不能错接.并应特别注意各线之间不能短路,以免造成信号电路损坏。

(7)如果HR 型流速测算仪在末接入信号插头时能正常工作,但接上信号插头后工作异常(如显示器不显示等),则应及时取下信号插头进行检查否则将损坏仪器。

(8)间。如复位后仍不能正常工作,此时应检查电池电压,若电压低于5.1V ,则需更换电池。

(9)如果长期不使用,将电池取出,以防电池漏液腐蚀器件。

仪器结构

1.外隔套

2.内隔套

3.球轴承

4.浆轴支部件

5.轴座支部件

6.并套支部件

7.磁纲座支部件 8.密封螺母 9.止紧螺钉 10.牛皮垫圈 11.身架 12.浆叶

13.浆套 14.轴承圈 15.弹簧垫圈 16.并紧螺钉 17.防水垫圈 18.信号支部件

19.连接螺钉 20.防松螺钉 21.锥头螺钉

3. 实验步骤及流程

1) 用连杆测出水深并确定流速仪位置。由于实验测的水渠截面是较为规则的等腰梯形。所以

确定四处测速位置第一、四条测速线在坡面的1/2处,第三、四条

测速线在底部。确定测点深。如图一所示:

2) 用米尺量出H 1,H 2,H 3,H 4距离(起点距)。

第一、四条测速线用一点法测出流速,

第三、四条测速线用两点法测流速。

3) 在屏幕上读出各点的流速。

4) 计算出部分流量。

5) 算出流量Q 。

6) 实验设备:流速仪、秒表、计算器,联杆、电线,测深测速记载及流量计算表。

4. 数据记录及处理(见下页表格)

5.实验总结及感想

本次实验是我关于水利专业方面的第一个实验。所以对我来说既新奇又感到兴趣十足。中午,

我们放弃休息的时间早早来到学校北面的实验基地。老师已经在水渠里放了水。接下来是测水流速的实验。老师先给我们介绍了LS45A 型测速仪的使用,然后有具体示范了水渠截面流速的测量方法。接下来,我们分成三组,分别测量不同截面的流速。

我们组对本次实验进行了分工,有专门读HR 测算仪的;有拿着侧杆的;有组装测速仪的;有记录数据的;有负责读取实验数据的。实验自始至终进行的井然有序,对于实验数据我们也得到了老师的认可。

做完测深测速的实验,我们又在老师带领下参观了气象要素观测站。据老师介绍,这里的气象观测站数据每十分钟自动传给国家气象观测站,所以别看这里的气象站规模小,但对于杨凌甚至整个西北地区的天气预报以及气象观测都具有比较重要的作用。在老师的讲解下,我们认识了虹吸式雨量计、雨量器及量杯、蒸发器以及温度湿度计。通过老师的讲解,我们对这些仪器都有了简单的了解和认识。

虽然实验比较简单,但是我还是受益匪浅,想到这些东西可能与我们以后的就业有关,我们更

应该好好的学习,最后感谢老师牺牲自己的午睡时间而对我们辛勤的指导。

. .

天然河流在线流量监测系统方案

天然河流在线流量监测系统方案 1. 在线监测系统概述 1.1 基本情况 流量站实时测流系统的建立。 随着国家工业发展水资源越来越紧,同时水污染加重可利用水源越发稀缺。中小河流在线流量监测重要性更显突出。 河流在线流量监测,可实时掌握可用水资源。 河流在线流量监测,可通过水闸等调配县市级流域水量。 河流在线流量监测,可了解污水走向,提供决策依据。 河流在线流量监测,在山洪和台风期间掌握各河道流量防范“天灾”。 省市县镇交界河道流量在线流量监测,可为相互“水权”提供依据。 1.2 设计目标 流量站新建全自动的流量实时在线监测方式,实现对河段断面流量流速的实时在线监测,并且将流量计算的水位信息等数据通过无线传输方式传送到水文站房。 1.3 设计原则 (1)实时性、容错性 实时采集现场中的流速、水文等信息,会同断面数据能及时获得流量信息,并将其存在业务数据库中。具有较强的实时性和较高的处理效率,对访问的响应时间要短;采集接口的实时性好,能满足其应用的需要;采集接口的采集周期在5秒到5分钟之间(可根据需要进行设定);采集接口的实时性不能影响控制系统的性能。采集通信方式在具备条件的场合,实现冗余;采集软件要有容错处理机制;实时数据库系统具有容错能力,根据具体的硬件条件实现冗余。 (3)完整性、标准化 信息的传输与处理遵循标准化的协议,以保证信息的相对完整性与一致性。对采集方式、采集设备尽量采用统一标准和型号, 坚持系统的开放性和可扩展性。建立一个开放的、标准的、可扩充、易管理、升级的实时数据库系统。不仅仅要做到配置上的先进,更主要的是开发上和应用上的先进。

(5)安全性、可靠性 在操作上严格权限管理。系统应提供审计跟踪功能,记录所有用户操作过程,对出现的系统安全问题提供调查的依据和手段;系统应具备事务日志功能。保证在恶劣天气条件下能正常运行,确保采集通信信道畅通。 1.4 系统功能 (1)能对断面流速、水温、流向、水位等进行24小时连续在线监测。 (2)能根据实时采集的流速、水位,计算断面流量。 (3)能实现水量数据采集、流量计算、存储、传输的功能。 (4)能将采集的水位、流速、流量和测站状态信息通过通讯网络传输到接收中心。 (5)可人工设定和修改断面平均流速关系线。 2. 流量方案比选 监测方法 主要断面流量监测方法 2.1 主要断面流量 目前进行流量自动测量的方式有以下6种:缆道测流、声学多普勒流速(ADCP)、超声波时差法测流、水工建筑物(涵闸)推算流量、水位比降法推算流量、雷达水表面波流速测量再推算流量。 缆道自动测流 1、缆道自动测流 缆道测流是适合我国国情的一种测流方式,经 50多年发展,技术设备较为成熟,其中全自动缆道测流系统测流精度可达到95~98%。该方法由人工一次性启动缆道测流装置后,可自动测量全断面测点流速和垂线水深,并自动计算出断面面积和流量。由于缆道测流的测量精度较高,且不需要进行率定,在系统工程中主要是用于不规则断面的流量测量,实现对主要测流断面的流量控制。 超声波时差法测流 2、超声波时差法测流 超声波时差法测量流速国内外均有定型产品用于管道和渠道,但国内没有定型生产用于天然河流的产品。本方法能方便地解决断面不同水层的平均流速测量,充分利用电脑技术将超声波时差法测流、超声或压力水位计和预置河床断面等技术集于一体后,可构建实时在线的流量测量系统,该方法适用于断面较稳定,

文丘里流量计实验实验报告

文丘里流量计实验实验报告 实验日期:2011.12.22 一、实验目的: 1、学会使用测压管与U 型压差计的测量原理; 2、掌握文丘里流量计测量流量的方法和原理; 3、掌握文丘里流量计测定流量系数的方法。 二、实验原理: 流体流径文丘里管时,根据连续性方程和伯努利方程 Q vA =(常数) H g v p z =++22 γ(常数) 得不计阻力作用时的文丘里管过水能力关系式(1、2断面) h K p z p z g d d d Q ?=?????????? ??+-???? ? ?+???? ??-=γγπ221141222214 1 由于阻力的存在,实际通过的流量Q '恒小于Q 。引入一无量纲系数Q Q '=μ(μ称为流量系数),对计算所得的流量值进行修正。 h K Q Q ?=='μμ h K Q ?' =μ 在实验中,测得流量Q '和测压管水头差h ?,即可求得流量系数μ,μ一般在0.92~0.99之间。 上式中 K —仪器常数 g d d d K 214 141222???? ??-=π h ?—两断面测压管水头差 ??? ? ??+-???? ??+=?γγ2211p z p z h h ?用气—水多管压差计或电测仪测得,气—水多管压差计测量原理如下图所示。

1h ? 2h ? H 3 1H 2H 1z 2z 气—水多管压差计原理图 根据流体静力学方程 γγ22231311 p H h H h H H p = +?-+?--- 得 221121H h h H p p -?+?++=γγ 则 )()(222211212211γγγγp z H h h H p z p z p z +--?+?+++=??? ? ??+-???? ?? + 212211)()(h h H z H z ?+?++-+= 由图可知 )()(4321h h h h h -+-=? 式中,1h 、2h 、3h 、4h 分别为各测压管的液面读数。 三、实验数据记录及整理计算(附表) 文丘里流量计实验装置台号:2 d1=1.4cm d2=0.7cm 水温t=13.1℃ v=0.01226cm 2/s 水箱液面标尺值▽0=38cm 管轴线高程标尺值▽=35.7cm 实验数据记录表见附表 四、成果分析及小结: 经计算 K=17.60cm 2.5/s u=1.064 由实验计算结果看各组数据的相差较大,可以判断实验的精密度不高,实验 与理论值有偏差。误差来源主要有实验测量值的不准确,人为造成的主管因素较大。 五、问题讨论: 为什么计算流量Q 理论与实际流量Q 实际不相等? 答:因为实际流体在流动过程中受到阻力作用、有能量损失(或水头损失),而计算流量是假设流体没有阻力时计算得到的,所以计算流量恒大于实际流量。

基于单片机气体流量测量仪设计

目录 引言 (1) 1总体方案设计 (2) 1.1 本设计的任务 (2) 1.2总体设计框图 (2) 2 系统的硬件电路设计 (3) 2.1 硬件模块介绍 (3) 2.1.1 CPU (AT89S51) (3) 2.1.3电源设计 (8) 2.1.4键盘设计 (9) 2.1.5复位电路设计 (10) 2.1.6 A/D转换电路 (10) 2.1.7 步进电机控制接口电路 (14) 2.1.8 气体流量采集原理 (16) 2.2总原理图 (18) 2.3 PCB图 (19) 3 系统软件设计 (19) 3.1 主程序设计 (20) 3.2 流量控制子程序 (20) 3.3 中断服务子程序 (25) 3.3.1 设定值输入程序 ................................ 错误!未定义书签。3.3.2 定时器中断子程序 . (27) 3.3.3 数码管显示子程序 (28) 3.3.4 步进电机控制程序 (29) 4结论 (30) 致谢 (31)

基于单片机气体流量测量仪设计 摘要:本设计电路是以AT89S51单片机为控制核心。它除了具备微机CPU的数值计算功能外,还具有灵活强大的控制功能,以便实时检测系统的输入量、控制系统的输出 量,实现自动控制。整个系统硬件部分包括气体流量测量,自激式A/D转换器,按 键电路,驱动电路,时序电路,和8段译码器,LED数码显示器。在配合用汇编语 言编制的程序使软件实现,实现气体流量智能转换的基本功能。本控制电路成本低 廉,功能实用,操作简便,有一定的实用价值。本文从3个方面展开论述,首先是 硬件电路的描述;接着软件部分的设计;最后实现功能。 关键词:AT89S51单片机流量控制数码管 LED数码显示 引言 目前单片机的应用已深入到国民经济的各个领域,对各行各业的技术改造和产品的更新换代起着推动作用,以前没有单片机时,气体流量测量仪也能做,但是只能使用复杂的模拟电路,然而这样做出来的产品不仅体积大,而且成本高,并且由于长期使用,元器件不断老化,控制的精度自然也会达不到标准。在单片机产生后,我们就将控制这些东西变为智能化了,我们只需要在单片机外围接一点简单的接口电路,核心部分只是由人为的写入程序来完成。这样产品的体积变小了,成本也降低了,长期使用也不会担心精度达不到了。 当今社会,随着科学技术的快速发展,自动控制在人们的生活中可以说“无孔不入”,小到遥控儿童玩具,大到冰箱空调的智能化,都体现了科学技术的进步。特别是单片机(Single-Chip Microcomputer SCM)技术的应用,不但降低了生产成本,同时也方便了消费者,使操作简洁、安全。单片机的应用使许多复杂的事情,都能够简单、方便的实现了。用单片机控制的器件,充分发挥单片机体积小,价格便宜,功耗低,可靠性好等特点,充分发挥了单片机的控制优势。本设计可用于气体流量控制,方便了广大用户。 本设计是一个具有自动控制气体输入的气体流量测量仪。由时钟电路、显示电路、驱动电路、控制电路四部分组成。现代机关企业以,特别是家庭对暖气、液化气等的需求逐渐增多,供暖、供气的自动控制为这些企业节省了大量的人力物力。本设计实现了这些功能,给供暖及其他相关企业带来方便,整体性好,人性化强、可靠性高,实现了对气体流量控制的智能化。

中国石油大学(华东)流量计实验报告

中国石油大学(华东)工程流体力学实验报告18-19-2 实验日期:成绩: 班级:学号:姓名:教师: 同组者: 实验三、流量计实验 一、实验目的(填空) 1 2 3 文丘利流量计、孔板流量计,其结构如图1-3-1示。 F1——文丘利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图1-3-1 管流综合实验装置流程图

说明:本实验装置可以做流量计、沿程阻力、局部阻力、流动状态、串并联等多种管流实验。其中V8为局部阻力实验专用阀门,V10为排气阀。除V10外,其它阀门用于调节流量。 另外,做管流实验还用到汞-水压差计(见附录A )。 三、实验原理 1.文丘利流量计 文丘利管是一种常用的量测有压管道 流量 的装置,见图1-3-2属压差式流量计。它1-12 图1-3-2 文丘利流量计示意图 图1-3-3 孔板流量计示意图 3),22 1 2 22 111212()()= 22p p v v h h h z z g g ααγ γ ?=-=+ -+ - 如果假设动能修正系数1210.αα==,则最终得到理论流量为: Q μ= =理

式中 K= μ=,A为孔板锐孔断面面积。 4.流量系数 (1)流量计流过实际液体时,由于两断面测压管水头差中还包括了因黏性造成的水头损失,流量应修正为: Qα = 实 其中 1.0 α<,称为流量计的流量系数。 数 1

2.实验数据记录及处理见表1-3-1。 表1-3-1 实验数据记录及处理表 (4)= 6867.01 cm3/s (5)流量系数:α== = 0.67

流量检测-装置系统设计课程设计

专业综合课程设计 课题:流量计检测装置设计 学院:城南学院 班级:机电0701班 指导老师:陈书涵 学号:2007 学生:邹娟 一检测系统背景介绍 流量计广泛应用于工业生产和人民生活当中,但大都存在体积大、精度低、价格贵等缺点.本文设计的电子巴(靶式)智能流量计,于六十年代开始应用于工业流量测量,主要用于解决高粘度、低雷诺数流体的流量测量,先后经历了气动表和电动表两大发展阶段,SBL系列智能靶式流量计是在原有应变片式靶式流量计测量原理的基础上,采用了最新型电容力传感器作为测量和敏感传递元件,同时利用了现代数字智能处理技术而研制的一种新式流量计量仪 表。其主要由测量管、受力元件(靶片)、感应元件(电容式力传感器,压力传感器,温度传感器)、传递部件、微控制器及其显示和输出部分组成.由于采用了压力工作温度补偿,大大提高了测量精度。

二检测系统设计方案 本作品是一款基于C8051F系列单片机为核心的流量计,给出了硬件组成和软件设计.设计以C8051F单片机为控制模块,选用电子靶式流量传感器,信号调理电路、通信电路、LCD显示等电路.在软件上进行了压力和温度补偿.设计的流量计精度高,抗干扰能力强,使用方便. 三检测系统硬件结构 系统的硬件电路以C8051F206单片机为控制核心,主要有信号的输入通道、微控制器及外围电路、红外通信接口和RS一485通信接口和人机交互界面等部分组成,如图1所示. 图1 以C8051F206单片机为核心的硬件框图 ① C8051F206的A/D转换模块 C8051F206的A/D转换模块是利用C8051F206的片内12位分 辨率的ADC转换模块和可编程增益放大器.当工作在100ksps 的最大采样速率时,提供真正的12位精度和±2 L SB的模数

节流式流量测量原理及系统总体设计

目录 引 言 .................................................................. 1 第一章 节流式流量测量原理及系统总体设计 .. (2) 1.1 节流件测量原理 ................................................. 2 1.2 系统总体设计 ................................................... 2 第二章 标准节流件差压计及取压装置 .. (4) 2.1 标准节流件 ..................................................... 4 2.2 差压计 ......................................................... 5 2.3 取压装置 ...................................... 错误!未定义书签。 第三章 关键参数计算及检验计算 (7) 3.1已知条件 ........................................................ 7 3.2 准备计算 . (7) 3.2.1 求介质密度1 ρ、介质动力粘度及η管道材料膨胀系数D λ (7) 3.2.3 计算正常流量Re Dch 和最小流量下的雷诺数Re DMIN (8) 3.2.4 确定差压计类型及量程范围 ................ 错误!未定义书签。 第四章 重要参数的计算及校验 (8) 4.1 确定β值及节流件开孔直径 (8) 4.1.1 常用流量下的差压值ch P ? ................................... 8 4.1.2 迭代计算β值和d 值 (9) 4.1.3 迭代计算 ................................................. 9 4.2 确定压损 ...................................................... 11 4.3 确定节流件的开孔直径20d ....................................... 12 4.4 确定直管段长度对管道粗糙度的要求: ............................. 12 4.5 标准节流装置流量结果不确定度 .................................. 12 第五章 系统的安装及使用说明 . (14) 5.1流量装置和差压计的安装连接系统图 ............................... 14 5.2 元件的安装 .................................................... 14 5.3 使用说明 ...................................................... 14 结 论 ................................................................ 15 参考文献 .. (16)

流量检测电路设计课程设计

流量检测电路设计课程设计

第一章 流量测量装置单元 1.1节流装置 节流变压降流量计的工作原理是,在管道内装入节流件,流体流过节流件的时候流束收缩,于是在节流件前后产生差压,对于一定的形状和尺寸的节流件,一定的测压位置和前后直管段情况,一定参数的流体,节流见前后的差压随流量的改变而改变俩者之间有确定的关系,因此可一通过差压来测量流量。 节流件常用的有孔板和喷嘴,本实验中采用孔板。节流式流量计通常由能将流体流量转换成差压信号的节流装置及测量差压并显示流量的差压计组成. 标准节流装置包括节流件及其取压装置、节流件上游侧第一个阻力件、第二个阻力件、下游侧第一个阻力件以及在它们之间的直管短段,节流装置如图1-1所示。 图1-1整套节流装置 示意 1.2 节流件安装 标准孔板的开口直径d 是一个重要的尺寸,应实际测量,孔板的安装要求如下: (1)节流件前后的直管段必须是直的,不得有肉眼可见的弯曲。 (2)安装节流件用得直管段应该是光滑的,如不光滑,流量系数应乘以粗糙度修正稀疏。 (3)为保证流体的流动在节流件前1D 出形成充分发展的紊流速度分布,而且使这种分布成均匀的轴对称形,所以

1)直管段必须是圆的,而且对节流件前2D范围,其圆度要求其甚为严格,并且有一定的圆度指标。具体衡量方法: (A)节流件前OD,D/2,D,2D4个垂直管截面上,以大至相等的角距离至少分别测量4个管道内径单测值,取平均值D。任意内径单测量值与平均值之差不得超过±0。3% (B)在节流件后,在OD和2D位置用上述方法测得8个内径单测值,任意单测值与D比较,其最大偏差不得超过±2% 2)节流件前后要求一段足够长的直管段,这段足够长的直管段和节流件前的局部阻力件形式有关和直径比β有关,见表1(β=d/D, d为孔板开孔直径,D为管道内径)。(4)节流件上游侧第一阻力件和第二阻力件之间的直管段长度可按第二阻力件的形式和β=0。7(不论实际β值是多少)取表一所列数值的1/2 (5)节流件上游侧为敞开空间或直径≥2D大容器时,则敞开空间或大容器与节流件之间的直管长不得小于30D(15D)若节流件和敞开空间或大容器之间尚有其它局部阻力件时,则除在节流件与局部阻力件之间设有附合表1上规定的最小直管段长1外,从敞开空间到节流件之间的直管段总长也不得小于30D(15D)。 1.3 取压方式 取压方式采用法兰取压装置,法兰取压装置如图1-2所示,孔板夹在俩个特质的法兰之间,其间加俩片垫片,厚度不超过1mm,上游取压中心线与节流装置的距离l=25.4mm下游取压中心线与节流装置的距离l=25.4mm,取压孔必须符合单独钻孔取压的全部要求,取压孔中心线必须与管道中心线垂直。 图1-2 法兰取压

流量计性能测定实验报告doc

流量计性能测定实验报告 篇一:孔板流量计性能测定实验数据记录及处理篇二:实验3 流量计性能测定实验 实验3 流量计性能测定实验 一、实验目的 ⒈了解几种常用流量计的构造、工作原理和主要特点。 ⒉掌握流量计的标定方法(例如标准流量计法)。 ⒊了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。 ⒋学习合理选择坐标系的方法。 二、实验内容 ⒈通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。 ⒉测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。 ⒊测定节流式流量计的雷诺数Re和流量系数C的关系。 三、实验原理 流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为: 式中: 被测流体(水)的体积流量,m3/s; 流量系数,无因次;

流量计节流孔截面积,m2; 流量计上、下游两取压口之间的压强差,Pa ; 被测流体(水)的密度,kg/m3 。 用涡轮流量计和转子流量计作为标准流量计来测量流量VS。每一 个流量在压差计上都有一对应的读数,将压差计读数△P和流量Vs绘制成一条曲线,即流量标定曲线。同时用上式整理数据可进一步得到C—Re关系曲线。 四、实验装置 该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。 ⒈本实验共有六套装置,流程为:A→B(C→D)→E→F→G→I 。 ⒉以精度0.5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。 ⒊压差测量:用第一路差压变送器直接读取。 图1 流动过程综合实验流程图 ⑴—离心泵;⑵—大流量调节阀;⑶—小流量调节阀; ⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—

第五章流量阀 作业

Exercises (Chapter 5 Pressure control valves) 1溢流阀为()压力控制,阀口常(),先导阀弹簧腔的泄漏油与阀的出口相通。定压减压阀为()压力控制,阀口常(),先导阀弹簧腔的泄漏油必须()。 2在减压回路中,减压阀调定压力为p j,溢流阀调定压力为p y,主油路暂不工作,二次回路的负载压力为p L。若p y>p j>p L,减压阀阀口状态为();若p y>p L>p j,减压阀阀口状态为()。 (A)阀口处于小开口的减压工作状态 (B)阀口处于完全关闭状态,不允许油流通过阀口 (C)阀口处于基本关闭状态,但仍允许少量的油流通过阀口流至先导阀 (D)阀口处于全开启状态,减压阀不起减压作用 3系统中采用了内控外泄顺序阀,顺序阀的调定压力为p x(阀口全开时损失不计),其出口负载压力为p L。当p L>p x时,顺序阀进、出口压力间的关系为();当p L

5如图所示,设溢流阀的调定压力为4.5MPa ,减压阀的调定压力为2.5MPa ,试问: 1)当液压缸活塞空载快速前进时,p l =? p 2=? 2)当活塞碰上死挡铁后,p l =? p 2=? 6如图示液压系统中,已知611105.1?=A F Pa ,62 2101?=A F Pa ,阀1、2、3的调定压力分别为4MPa 、3MPa 和2MPa 。初始状态液压缸活塞均处于左端死点,负载在活塞运动中出现。不计各种损失,试回答: 1) 两液压缸是同时动作还是先后动作?为什么? 2) 在液压缸1运动过程中,p p 、p A 、p B 为多少? 3) 缸、p 、p 各为多少? F 1 F 2 死 挡 铁

流量计实验报告

流量计实验报告

中国石油大学(华东)工程流体力学实验报告 实验日期:成绩: 班级:学号:姓名:教师:李成华 同组者: 实验三、流量计实验 一、实验目的(填空) 1.掌握孔板、文丘利节流式流量计的工作原理及用途; 2.测定孔板流量计的流量系数 ,绘制流量计的校正曲线; 3.了解两用式压差计的结构及工作原理,掌握其使用方法。 二、实验装置 1、在图1-3-1下方的横线上正确填写实验装置各部分的名称: 本实验采用管流综合实验装置。管流综合实验装置包括六根实验管路、电磁流量计、文丘利流量计、孔板流量计,其结构如图1-3-1示。

F1——文丘里流量计;F2——孔板流量计;F3——电磁流量计;C——量水箱;V——阀门;K——局部阻力实验管路 图1-3-1 管流综合实验装置流程图

说明:本实验装置可以做流量计、沿程阻力、局部阻力、流动状态、串并联等多种管流实验。其中V8为局部阻力实验专用阀门,V10为排气阀。除V10外,其它阀门用于调节流量。 另外,做管流实验还用到汞-水压差计(见附录A)。 三、实验原理 1.文丘利流量计 文丘利管是一种常用的量测有压管道流量的装置,见图1-3-2属压差式流量计。它包括收缩段、喉道和扩散段三部分,安装在需要测定流量的管道上。在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上比压计,通过量测两个断面的测压管水头差,就可计算管道的理论流量Q ,再经修正得到实际流量。 2.孔板流量计 如图1-3-3,在管道上设置孔板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面2-2上设测压孔,并接上比压计,通过量测两个断面的测压管水头差,可计算管道的理论流量

流量检测系统说明书(正式版)

《传感器技术及应用》课程设计说明书 课设题目流量检测系统班级 姓名 学号 指导教师 时间

摘要 流量是三大工业过程控制量之一,流量计量直接关系到国家利益和国计民生。电磁流量计因测量时不受被测介质的温度、粘度、密度等影响,应用领域非常广泛。因此,设计一个流量检测系统。 设计的流量检测系统以AT89C51单片机为核心,管道流量的检查采用电磁流量计,电磁流量计输入4~20mA的电流信号,通过I/A转为0~5V的电压信号,经AD转换送与单片机转换为流量数据,在液晶屏幕LCD1602中显示。 该流量检测系统可检测小口径管道流量,因不受流体材料的限制,常应用于食品工业。 关键词:电磁流量计,AT89C51单片机

目录 一、绪论 1.1课题开发的背景和现状 1.2课题开发的目的和意义 1.3课题技术性能指标 二、流量计种类选择方案 三、系统总体方案设计 四、主要器件的方案选择 4.1、HR-LDG系列电磁流量传感器 4.2、单片机的方案选择 五、模块电路的设计 5.1、MCU主控电路 5.2、LCD1602液晶显示电路 5.3、电流/电压转换电路 5.4、A/D转换电路 5.5、电源模块 六、电磁流量计安装时注意事项 七、系统软件开发流程及代码分析 八、设计总结 九、参考文献 附录 1、总电路图 2、元器件清单

一、绪论 1.1课题开发的背景和现状 工业生产中过程控制是流量测量和仪表应用的一大领域,流量与温度、压力和物位一起称为过程控制中的四大参数,人们通过这些参数对生产过程进行监视与控制。对流体流量进行正确测量和调节是保证生产过程安全经济运行、提高产品质量、降低物质消耗、提高经济效益、实现科学管理的基础。流量的检测与控制在化工、能源电力、冶金、石油等领域应用广泛。 例如:在天然气工业蓬勃发展的现在,天然气的计量收起了人们的特别关注,因为在天然气的采集、处理储存、运输和分配过程中,需要数以百万计的流量计,其中流量蠩涉及到的结算金额数字巨大,对测量和控制准确度和可靠性要求特别训。此外,在环境保护领域,流量测量仪表也分演着重要角色。人们为了控制大气的污染,必须对污染大气的烟气以及其分温室气体排放进行监测;废液和污水的排放,使地表水源和地下水源受到污染,人们必须对废液和污水进行处理,对排放量进行控制。于是数以百万计的烟气排放点和污水排放口都成了流量测理对象。同时在科学试验领域,需要大量的流量控制系统进行仿真与试验,流量计在现代家业、水利建设、生物工程、管道输送、航天航空、军事领域等也有广泛的应用。 1.2课题开发的目的和意义 在现代工业生产过程自动化中,流量是重要的过程参数之一。流量是衡量设备的效率和经济性的重要指标;流量是生产操作和控制的依据,因为在大多数工业生产中,常用测量和控制流量来确定物料的配比与耗量,实现生产过程自动化和最优控制。同时为了进行经济核算,也必须知道如一个班组流过的介质总量。所以,流量的测量与控制是实现工业生产过程自动化的一项重要任务。 例如:由于石油是重要的能源,无论上从节约能源的角度,还是从经济性角度来看,对于流量的精确控制都是十分必要的,所产生的经济效益也是十分明显的。在自来水的监测与流量控制中,应用高精度的流量计量与控制仪表也是必须的,所带来的经济效益是十分巨大且显而易见的。 开展石油化工过程流程模拟、先进控制与过程优化技术的研究与应用具有十分重要的现实意义,是当前国内外石油化工界广泛关注的一个话题。自动化技术可以提高计量准确度、数据可靠性和及时性,为优化生产运行、核算经济效益、

思科第四学期-第五章测试题及答案

思科第四学期-第五章测试题及答案 默认情况下,Cisco 路由器如何过滤IP 流量? 拦截进出所有接口的流量 拦截所有接口的入站流量,但允许所有接口的出站流量 允许进出所有接口的流量 拦截所有接口的出站流量,但允许所有接口的入站流量ACL 可使用哪三种参数来过滤流量?(选择三项。) 数据包大小 协议簇 源地址 目的地址 源路由器接口 目的路由器接口 Cisco 标准ACL 是如何过滤流量的? 通过目的UDP 端口 通过协议类型 通过源IP 地址 通过源UDP 端口 通过目的IP 地址 下列关于扩展ACL 的说法中哪两项正确?(选择两项。) 扩展ACL 使用1-99 的编号范围。 扩展ACL 以隐含permit 语句结尾。 扩展ACL 会检查源地址和目的地址。

可通过添加对端口号的检查进一步定义ACL。 可将多个相同方向的ACL 放置到同一个接口上。 标准访问控制列表应该放置在哪里? 靠近源地址 靠近目的地址 在以太网端口上 在串行端口上 下列关于ACL 处理数据包的说法中哪三项正确?(选择三项。) 隐含的deny any会拒绝不符合任何ACL 语句的所有数据包。 数据包可能被拒绝,也可能被转发,这取决于与该数据包相匹配的语句。 被一条语句拒绝的数据包可能被后续的语句允许。 默认情况下会转发不符合任何ACL 语句的数据包。 会检查每条语句,直到检测到匹配的语句或到达ACL 语句列表末尾为止。 会将每个数据包与ACL 中每条语句的条件相比较,然后才决定是否转发。 (选择两项。) 会忽略给定IP 地址的前29 位。 会忽略给定IP 地址的后3 位。 会检查给定IP 地址的前32 位。 会检查给定IP 地址的前29 位。 会检查给定IP 地址的后3 位。 access-list 101 deny tcp 172.16.3.0 0.0.0.255 any eq 20 access-list 101 deny tcp 172.16.3.0 0.0.0.255 any eq 21 access-list 101 permit ip any any

流量标定实验报告

实验报告——流量标定装置和流量计标定实验 实验人: 实验时间: 一、实验目的 1.了解流量标定装置;掌握钟罩式流量标定装置的工作原理和操作方法,流量计的标 定方法。 2.对被检流量计精度进行标定 二、实验原理 1.流量和累计流量的概念 2.流量计:了解浮子流量计的基本原理 3.钟罩式气体流量标定装置示意图 三、实验步骤 1.熟悉流量标定装置结构、开关、阀门、工作原理。 2.启动风机,观察钟罩工作是否正常。 3.掌握钟罩刻度读数和秒表计时方法;掌握流量计的读数和单位 4.通过加减砝码的方式可以使得进出气体加快或者减慢时间。 5.重复测量三组,比较差别,由此得出流量计误差。 四、数据处理 1.流量计示数:0.46m3/h 3 1

480 560 80 10.21 78 0.472 流量平均值:0.485m3/h 标准差:0.019m3/h 流量值:(0.485±0.019)m3/h 2.流量计示数:0.43m3/h 3 310 390 80 10.21 85 390 470 80 10.21 83 0.443 470 550 80 10.21 86 0.428 流量平均值:0.437m3/h 标准差:0.006m3/h 流量值:(0.437±0.006)m3/h 3.流量计示数:0.50m3/h 初始刻度/cm 终止刻度/cm 间隔/cm 体积/L 所用时间/s 流量/m3 330 410 80 10.21 72 410 490 80 10.21 73 0.504 490 570 80 10.21 73 0.504 流量平均值:0.508 m3/h 标准差:0.004m3/h 流量值:(0.508±0.004)m3/h 4.初始分析 流量计示数/m3/h实测示数/m3/h绝对误差/m3/h相对误差 0.46 0.485 0.025 5.25% 0.43 0.437 0.007 1.60% 0.50 0.508 0.008 1.57% 绝对误差平均值:0.013m3/h 绝对误差方差:0.008m3/h 标定结果:真实示数=(流量计示数+绝对误差平均值±0.008)m3/h 5.实验结果评定 首先,从三组数据来看,明显可以看出第一组第一次测量的数据的人为误差很大,这是因为第一次测量的时候,读数者和秒表计时者之间的配合出现了一些问题,导致第一次测量的随机误差比较大,对整个实验的结果产生了一定程度上的影响,不过从整体上来看,本次标定实验的结果还是很好的,除了第一组第一个数据之外的相对误差不超过2%,比较理想。 然后,从三次测量结果来看,实际示数和流量计示数之间只是相差一个常数,这也说明了流量计本身的度量是精确的,只是刻度标定的不是很准确,经过测量,我们给出了标定公式: 真实示数=(流量计示数+0.013±0.008)m3/h (不确定度由标准差给出,并非置信区间) 最后,谈一点实验感想,本次测量的主要误差来源,人为因素,当然系统误差我们并没有考虑,因为单凭本次实验无法发现系统误差,但是人为误差本是可以避免的,在以后的实验中要吸取教训。 2

基于单片机的流量检测系统毕业设计论文

某工程大学本科 毕业设计(论文) 专业:电子信息工程 题目:基于单片机的流量检测 系统的设计

某工程大学 本科毕业设计(论文)任务书 2012 届电气工程学院 电子信息工程专业 Ⅰ毕业设计(论文)题目 中文: 基于单片机的流量检测系统的设计 英文: The Design of Flow Detection System Based On MCU Ⅱ原始资料 [1] 谢维成、杨加国.单片机原理与应用及C51程序设计[M].北京:清华大学出版社,2006. [2] 梁国伟、蔡武昌.流量测量技术及仪表[M].北京:机械工业出版社,2002. [3] 徐晓光、潘伟;、徐康.基于单片机的涡轮流量检测仪设计[J].工业控制计算机,2008,08. [4] 魏颖.基于单片机的流量检测表设计[J].太原科技,2007,10. [5] 苏贝、周常柱、胡松.单片机在流量测量中的应用[J].微计算机信息杂志,2005,5. [6] 王玉巧、蔡晓艳.基于单片机的流量控制[J].科技信息,2010,9X.

Ⅲ毕业设计(论文)任务内容 1、课题研究的意义 流量的测量在工业领域具有广泛的应用,随着传感器技术,微电子技术、单片机技术的发展,为流量的精确测量提供了新的手段,对流量检测技术的研究具有现实意义。对本课题的研究与设计,训练综合运用已学课程的基本知识,独立进行单片机应用技术和开发工作,掌握单片机程序设计、调试和应用电路设计、分析及调试检测的能力。 2、本课题研究的主要内容: 由流量传感器采集流量信息,然后经过AD转换器将连续的模拟信号离散化后传给单片机。单片机在系统软件的控制作用下,对输入的数据进行分析,向外部输出控制信号,实现LED显示。LED数码管显示动态的流量,同时,若流量超过上下限范围,报警电路产生声光报警信号,提醒流量不在正常范围内,需采取相应控制。系统软件主要包括主程序,显示程序等供主程序调用的子程序。 3、提交的成果: (1)毕业设计(论文)正文; (2)硬件电路图; (3)程序源代码; (4)一篇引用的外文文献及其译文; (5)主要参考文献的题录及摘要。 指导教师(签字) 教研室主任(签字) 批准日期2012年01月 0日 接受任务书日期2012年01月 10日 完成日期2012年06月

单片机汇编水流量检测(测试)设计方案

单片机课程设计 题目水流量显示器 学院电子工程学院 专业自动化 班级 学号 姓名 组员 指导教师 2018年 5 月 引言2 1. 任务设计2 2. 系统硬件电路的设计3 2.1主芯片STC89C523 2.1.1主要性能3 2.1.2芯片功能特性简述:3 2.1.3引脚功能4 2.2时钟电路5

2.3复位电路5 2.4液晶显示电路6 2.4.1显示特性6 2.4.2引脚说明6 2.4.3接口时序8 2.4.4初始化指令:10 2.5水流量测量电路12 2.6按键控制电路13 3. 软件系统的设计13 3.1软件设计总流程13 3.2水流量程序模块14 3.2.1水流量的读取程序14 3.3显示程序16 4. 总结16 参考文献17 附件1. 原理图17 附件3 仿真图18 5. 程序19 引言 随着现代社会的进步,经济的发展,人们对精神领域的追求更高,对生活水平的要求更高。现代的家居生活是一种高品位、高质量、个性化、智能化的方式。本系统就是基于STC89C52单片机控制的智能家居系统,可以实际监控室内各种不同的家电设备,并能通过液晶屏动态显示当前工作状态。该系统与传统的智能家居系统相比,具有功能多样化、成本造价低等优点,且符合当今社会智能、节能、环保的发展观念,并在人们享受高品位、高质量、个性化、智能化生活的同时提高人们的节约意识。由于智能家居系统有众多模块,本课题只采取其中的水流量模块进行单独设计。 关键词:单片机水流量传感器 1.任务设计 当打开水龙头时,根据单片机STC89C52的指令、水流量计传感器采集水流量状态。当单片机STC89C52扫描到水流量计传感器的脉冲数,经过单片机STC89C52处理,计算出所采集的水流量后,通过液晶屏LCD1602能动态显示当前水流量。

车流量检测系统设计.(DOC)

车流量检测系统设计 随着我国经济的快速发展交通安全的有效保障显得尤其重要,并且对交通管理的要求越来越高。与此同时各种各样的道路监控设备也应运而生。雷达监控系统视频监控系统地表传感系统激光检测系统等相继应用。由此计算机科学与现代通信等高新技术运用于交通监控管理与车辆控制以保障交通顺畅及行车安全。而实时获取交通车流量的车辆检测技术是是进行交通管理必不可少的一个步骤。随着我国城市车辆使用的增多道路状况同时也变得复杂如何对道路车流量进行实时监控对统计、预测道路交通状况十分重要并且同时这也是对道路车辆运行情况高效调度的一项十分的重要参考依据。而且当前对道路监测多使用视频方法有事还可能采用人工计数方法此方法对每条公路在某个时间段车辆行驶情况不容易做到长时间、高效的统计。因此我们需要进行一种低成本、高准确率的智能识别装系统的设计由此促进对高速路口交通情况的检测水准。 本文设计了一种基于A T89C51单片机的车速检测系统。其主要原理是将红外传感器测得的电平信号传递到单片机中通过单片机判断处理、计数等功能实现车流量的检测。本系统传感电路采用的的是红外传感矩阵利用单片机实时对传感器的输出数据进行连续读取通过特定的算法处理数据然后送显示或者发出报警信号。本系统致力于为路口车流量的监控服务从而形成对路口行车的科学管理减少交通事故的发生。 1、工作原理及总体方案选择 1.1车流量监测系统的工作原理 红外线矩阵法是一种利用红外传感器组成的红外线矩阵检测设备检测道路上机动车流量和车速的方法。它是利用红外线发射和接收方向较强的特点在车辆经过的路面上安装密度适当的几排红外线发射接收电路由此组成红外线矩阵红外线检测矩阵由两排嵌入路面内的接收器和安装在其上方几米处的发射器组成两排接收器之间的距离为0.5到2米每排接收器由若干间隔0.2到0.9米的接收管和接收电路组成。接收管在没有遮挡的情况下可以接收发射器发出的信号接收电路中产生低电平接收管在受到遮蔽的状况下下收不到发射器发出的信号接收电路中出现高电平信号。因此根据车辆驶入、通过、驶出检测区域以及车辆行驶方向并排行驶车辆的流量等情况引起的矩阵内部各测试点高低电平信号的变化经过硬件电路设计和软件编程计算方法,最终统计计算出经过该测量区域内双向并排经过的多辆车的车流量测量。 1.1.1系统总体模块设计 本系统是利用单片机并且采用模块化设计来设计车流量检测系统只要有车辆经过就会挡住两个发射和接收红外线传感器之间的传感信号这样就能根据车量的流动情况对车流量进行检测。当然对于正常的情况下还会有并行的车量经过本系统也做了设计。系统的总体模块图如下图1

流体力学实验报告 流量计实验报告

中国石油大学(华东)流量计实验实验报告 实验日期:2011.4.18 成绩: 班级:石工09-13班学号:09021614 姓名:石海山教师: 同组者:尚斌宋玉良武希涛杜姗姗 实验三、流量计实验 一、实验目的 1、掌握孔板、文丘利节流式流量计的工作原理及用途; 2、测定孔板流量计的流量系数 ,绘制流量计的校正曲线; 3、了解两用式压差计的结构及工作原理,掌握两用式压差计的使用方法。 二、实验装置 本实验采用管流综合实验装置。管流综合实验装置包括六根实验管路、电磁流量计、文丘利流量计、孔板流量计,其结构如图3-1示。 F1——文丘里流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图3-1 管流综合实验装置流程图

三、实验原理 1、文丘利流量计 文丘利管是一种常用的两侧有管道流量的装置,属压差式流量计(见图3-2)。它包括收缩段、喉道和扩散段三部分,安装在需要测定流量的官道上。在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上压差计,通过测量两个断面的测压管水头差,可以计算管道的理论流量Q ,再经修正即可得到实际流量。 2、孔板流量计 如图3-3所示,在管道上设置空板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面2-2上设测压孔,并接上压差计,通过量测两个断面的测压管水头差,可以计算管道的理论流量Q ,再经修正即可得到实际流量。孔板流量计也属于压差式流量计,其特点是结构简单。 图3-2 文丘利流量计示意图 图3-3 孔板流量计示意图 3、理论流量 水流从1-1断面到达2-2断面,由于过水断面的收缩,流速增大,根据恒定总流能量方程,若不考虑水头损失,速度水头的增加等于测压管水头的减小(即压差计液面高差h ?),因此,通过量测到的h ?建立了两个断面平均流速1v 和2v 之间的关系: h ?=1h -2h =(1z + γ 1 p )-(2z + γ 2 p )= g v 22 2 2α- g v 22 1 1α (3-1) 如果假设动能修正系数1α=2α=1.0,则最终得到理论流量为: 理Q = ) ( 1 2 A A A A A -h g △2=h K △μ 其中:K =g A 2

相关文档
相关文档 最新文档