文档库 最新最全的文档下载
当前位置:文档库 › 光纤光栅

光纤光栅

一光纤光栅光谱特性测试系统的设计

实验一光纤光栅光谱特性测试系统的设计 一.实验目的和任务 1.熟悉PC光谱仪的使用方法 2.了解光环行器的工作原理和主要功能。并测量光环行器的插入损耗、隔离度、方向性、回波损耗参数。 3.了解光纤光栅的光谱特性 4.应用PC光谱仪、光环行器测量光纤光栅的光谱特性 二.PC光谱仪 PC光谱仪是用来测量光源或其它器件经光纤输出的光的波长和能量的关系图(即光谱特性)。 图1.1 PC光谱仪的软件界面 本实验用的PC光谱仪的硬件是插入计算机ISA槽的ISA2000卡。该卡有一个光输入孔。测试波长范围为紫外-可见光-近红外。 PC光谱仪的软件界面如图1.1所示。 界面中,主要工具栏按扭介绍: 1.数据光标左移按扭,每点击该按扭一次,数据光标左移一个像素的距离。连续点击该按扭,可以找到波峰位置。

2.数据光标右移按扭,每点击该按扭一次,数据光标右移一个像素的距离。连续点击该按扭,可以找到波峰位置。 3.开始/结束扫描波形按钮。第一次点击该按扭,开始扫描,显示出扫描波形,并且能感觉波形在动。再次点击该按扭,结束扫描,波形静止。 4.点击该按扭,增加波长显示范围,即水平方向缩小波形。如果要在水平方向放大波形,操作方法为:左击波形的左侧,拖动鼠标到波形的右侧,释放鼠标,即可。 5.纵坐标自动调整按钮,如果波形出现削顶或者波形太低,左击该按钮,可以自动调整波形高度。右击该按钮,取消自动调整纵坐标操作。 6.计算按钮,点击该按钮,显示波形的中心波长、峰值波长、半最大值全宽等参数。 使用该PC光谱仪测量光谱特性的步骤: 1.将待测光输入到ISA2000卡的光输入孔内,运行程序“Spectra Wiz”, 即可进入软件运行窗口。 2.点击开始/结束扫描波形按钮,开始扫描波形,再点击一次该按钮,结束扫描波形。 3.点击横坐标调整按钮,显示波形到界面适当位置。如果要在水平方向放大波形,就左击波形的左侧,拖动鼠标到波形的右侧,释放鼠标,即可。 4.点击纵坐标调整按钮,调整波形到适当高度。 5.点击计算按钮,显示相关参数数据。 三.光环行器 (一)光环行器的工作原理 光环行器是一种多端口输入输出的非互易器件,具有正向顺序导通而反向传输阻止的特性,可以完成正反向传输光的分离,在双向长途干线通信、密集波分复用器及光时域反射计(OTDR)中有广泛的应用。 制造光环行器的方法有几种,但所有的光环行器的工作原理是相同的,比如3端口的光环行器,在端口1输入的光信号只有在端口2输出;在端口2输入的光信号只有在端口3输出,而在端口3输入的光信号只能在端口1输出。但是在许多应用中,这最后一种状态是不必要的,因此,大多数商用环行器都被设计成“非理想”状态,即吸收从端口3输入的任何信号。3端光环行器的原理图如图1.2所示:

光纤光栅技术论文

光纤光栅及其技术在电力行业上的应用 摘要:分析光纤光栅解调的基本原理和常用解调方法的工作机理、性能和特点,从光纤传感 技术的优势出发,介绍了光纤光栅传感智能结构的优点,对波长解调方法如匹配解调法、可 调谐激光器法、干涉法、滤波法等做了详细的讨论,阐述了相应的系统设计方案,并对各 种方法的优、缺点进行了分析和讨论。提出光纤光栅传感器在实际应用中所面临的主要技术 难题,分析现有的解决方案,讨论光纤光栅传感器在进一步实用化中需要解决的难题及其未 来的发展趋势。 关键词:光纤光栅,传感解调,干涉,XPM

目录 第一章光纤光栅基本原理 1.1 前言 (1) 1.2 光纤光栅定义及分类 (1) 1.2.1光纤光栅的分类 (2) 1.3光纤光栅制作方法 (6) 1.3.1光敏光纤的制备 (6) 1.3.2成栅的紫外光源 (7) 1.3.3成栅方法 (7) 第二章光纤光栅技术应用 (10) 2.1 光纤光栅传感器的工作原理 (10) 2.1.1啁啾光纤光栅传感器的工作原理 (11) 2.1.2长周期光纤光栅(LPG)传感器的工作原理 (11) 2.2.4在电力工业中的应用 (12) 2.3 光纤光栅在光通信领域的应用 (12) 2.3.1.光纤光栅滤波器中的应用 (12) 2.3.2光纤光栅在光纤通信系统中的应用 (14) 第三章光纤光栅的应用前景 (20) 3.1 光栅技术及拉曼光纤放大器发展应用 (20) 3.2 波分复用/解复用器 (20) 3.3 光纤滤波器 (21) 第四章光纤光栅结论 (21) 致谢 (22) 参考文献 (23)

第一章光纤光栅基本原理 1.1 前言 1978年,加拿大通信研究中心的K.O.Hill及其合作者首次从光纤中观察到了光子诱导光栅。Hill的早期光纤是用488nm 可见光波长的氩离子激光器,通过增加或延长注入光纤芯中的光辐照时间而在纤芯中形成了光栅。后来梅尔茨等人利用高强度紫外光源所形成的干涉条纹对光纤进行侧面横向曝光在该光纤芯中产生折射率调制或相位光栅。1989年,第一支布拉格诺波长位于通信波段的光纤光栅研制成功。1993年hill等人提出了位相掩模技术,它主要是利用紫外光透过相位掩模板后的士1级衍射光形成的干涉光对光纤曝光,使纤芯折射率产生周期性变化写入光栅,此技术使光纤光栅的制作更加简单、灵活,便于批量生产。1993年Alkins等人采用了低温高压氢扩散工艺提高光纤的光敏特性。这一技术使大批量、高质量光纤光栅的制作成为现实。这种光纤增敏工艺打破了光纤光栅制作对光纤中锗含量的依赖,使得可选择的光纤种类扩展到了普通光纤,它还大大提高了光致折变量(由10-5最大提高到了10-2),这样可以在普通光纤上制作出高质量的光纤光栅。 1.2 光纤光栅定义及分类 光纤光栅是利用光纤材料的光敏性,在纤芯内形成空间相位光栅,其作用的实质是在纤芯内形成(利用空间相位光栅的布拉格散射的波长特性)一个窄带的(投射或反射)滤光器或反射镜。光纤光栅是利用光纤中的光敏性制成的。所谓光纤中的光敏性是指激光通过掺杂光纤时,光纤的折射率将随光强的空间分布发生

光纤光栅原理及应用

光纤光栅传感器原理及应用 (武汉理工大学) 1光纤光栅传感原理 光纤光栅就是利用紫外光曝光技术,在光纤中产生折射率的周期分布,这种光纤内部折射率分布的周期性结构就是光纤光栅。光纤布喇格光栅(Fiber Bragg grating ,FBG )在目前的应用和研究中最为广泛。光纤布喇格光栅,周期0.1微米数量级。FBG 是通过改变光纤芯区折射率,周期的折射率扰动仅会对很窄的一小段光谱产生影响,因此,如果宽带光波在光栅中传输时,入射光将在相应的波长上被反射回来,其余的透射光则不受影响,这样光纤光栅就起到了波长选择的作用,如图1。 图1 FBG 结构及其波长选择原理图 在外力作用下,光弹效应导致折射率变化,形变则使光栅常数发生变化;温度变化时,热光效应导致折射率变化,而热膨胀系数则使光栅常数发生变化。 (1)光纤光栅应变传感原理 光纤光栅反射光中心波长的变化反映了外界被测信号的变化情况,在外力作用下,光弹效应导致光纤光栅折射率变化,形变则使光栅栅格发生变化,同时弹光效应还使得介质折射率发生改变,光纤光栅波长为1300nm ,则每个με将导致1.01pm 的波长改变量。 (2)光纤光栅温度传感原理 光温度变化时,热光效应导致光纤光栅折射率变化,而热膨胀系数则使光栅栅格发生变化。光纤光栅中心波长为1300nm ,当温度变化1摄氏度时,波长改变量为9.1pm 。 反射光谱 入射光谱 投射光谱 入射光 反射光 投射光 包层 纤芯 光栅 光栅周期

2光纤光栅传感器特点 利用光敏元件或材料,将被测参量转换为相应光信号的新一代传感技术,最大特点就是一根光纤上能够刻多个光纤光栅,如图2所示。 光纤光栅传感器可测物理量: 温度、应力/应变、压力、流量、位移等。 图2 光纤光栅传感器分布式测量原理 光纤光栅的特点: ● 本质安全,抗电磁干扰 ● 一纤多点(20-30个点),动态多场:分布式、组网测量、远程监测 ● 尺寸小、重量轻; ● 寿命长: 寿命 20 年以上 3目前我校已经开展的工作(部分) 3.1 基于光纤光栅传感的旋转传动机械动态实时在线监测技术与系统 利用光纤光栅传感技术的特性,实现转子运行状态的非接触直接测量。 被测参量 宽带光源 光纤F-P 腔 测点1 测点2 测点3 测点n 波长 光 强 λ1 测点1 λ2 测点2 λ3 测点3 λn 测点n 光源波长

光纤光栅传感系统的详细介绍

光纤光栅传感系统的详细介绍 本文介绍了光纤光栅传感系统的构成,分析了光纤光栅传感系统所用的3种不同的光源LED,LD和掺铒光源的性能,阐述了光纤光栅传感器的工作原理和各种不同的温度和应力的区分测量方法,描述了滤波法、干涉法、可调窄带光源法等几种常用的信号解调技术,最后,提出适应未来的需要如何对光纤光栅传感系统的光源、光纤光栅传感器和信号解调进行优化。 自1978年,加拿大的Hill等人首次在掺锗石英光纤中发现光敏现象并采用驻波法制造出世界上第一根光纤光栅和1989年美国的Melt等人实现了光纤Bragg光栅(FBG)的UV激光侧面写入技术以来,光纤光栅的制造技术不断完善,人们对光纤光栅在光传感方面的研究变得更为广泛和深入。光纤光栅传感器具有一般传感器抗电磁干扰、灵敏度高、尺寸小、重量轻、成本低,适于在高温、腐蚀性等环境中使用的优点外,还具有本征自相干能力强和在一根光纤上利用复用技术实现多点复用、多参量分布式区分测量的独特优势。故光纤光栅传感器已成为当前传感器的研究热点。由光源、光纤光栅传感器和信号解调系统为主构成的光纤光栅系统如何能够在降低成本、提高测量精度、满足实时测量等方面的前提下,使各部分达到最优匹配,满足光纤光栅传感系统在现代化各个领域实用化的需要也是研究人员重点考虑的问题。 本文对光纤光栅传感系统进行了介绍,对光纤光栅系统的宽带光源进行了说明,重点分析了光纤光栅传感器的传感原理及如何区分测量技术,对信号常用的信号解调方法进行了总结,最后,提出为适应未来的需要对系统各部分的优化措施。 1、光纤光栅传感系统光纤光栅传感系统主要由宽带光源、光纤光栅传感器、信号解调等组成。宽带光源为系统提供光能量,光纤光栅传感器利用光源的光波感应外界被测量的信息,外界被测量的信息通过信号解调系统实时地反映出来。 1.1 光源 光源性能的好坏决定着整个系统所送光信号的好坏。在光纤光栅传感中,由于传感量是对

光纤光栅的特性

光纤光栅的特性 1.光纤布喇格光栅的理论模型: 假设光纤为理想的纤芯掺锗阶跃型光纤,并且折射率沿轴向均匀分布,包层为纯石英,此种光纤在紫外光的照射下,纤芯的折射率会发生永久性变化,对包层的折射率没有影响。 利用目前的光纤光栅制作技术:如全息相干法,分波面相干法及相位模板复制法等。生产的光纤光栅大多数为均匀周期正弦型光栅。纤芯中的折射率分布(如图1)所示。 )(1Z n 为纤芯的折射率,max n ?为光 致折射率微扰的最大值, )0(1n 为纤芯原折射率, Λ为折射率变化的周期(即栅距), L 为光栅的区长度。 若忽略光栅横截面上折射率分布的不均匀性,光栅区的折射率分布可表示为: )2cos( )0()(max 11Z n n z n Λ ?+=π …………………………………………………(1.1) 显而易见,其折射率沿纵向分布,属于非正规光波导中的迅变光波导,在考虑模式耦合的时候,只能使用矢量模耦合方程,其耦合主要发生在基模的正向传输导模与反向传输导模之间。 2.单模光纤的耦合方程 由于纤芯折射率非均匀分布,引起了纤芯中传输的本征模式间发生耦合。在弱导时, 忽 略偏振效应,吸收损耗和折射率非均匀分布引起了模式泄漏,则非均匀波导中的场Φ( x , y , z ) 满足标量波动方程:0),,(}),,({22 2 20 2=Φ??++?z y x z z y x n sk t …………………(2.1) 其中:λπ/20=k ,λ是自由空间的光波长。 2 22 2 1}{1? ??+?Φ???=Φ?Φ r r r r r t …………………………………………………(2.2) 由于折射率非均匀分布引起波导中模式耦合只发生在纤芯中,因此非均匀波导中的场 可以表示为均匀波导束缚模式),(y x φ之和: ),()}exp()exp()({),()(),,(y x z i a z i z a y x z A z y x l l l l l l l l l φββφ-+-∑=∑=Φ………(2.3)

(完整版)均匀光纤光栅光谱仿真研究毕业设计

摘要 全光通信是光纤通信的发展方向,自从1978年Hill等人制作出第一条光纤光栅之后,作为重要的全光网络器件之一,光纤光栅的研究和应用就一直受到人们的重视。光纤光栅这种新型的光纤器件由于其独特的光学特性和灵活的设计特点,在光通信系统中有着广泛的应用,包括滤波器、全光复用/ 解复用器、色散补偿器和激光器谐振腔等等。所谓光纤光栅即指光纤轴向上存在的折射率周期性变化。其制作原理是基于石英光纤的光敏效应。光纤中的光致折射率改变现象最初仅是一个科学问题,用来满足人们科学探索的好奇心,而正是因为光纤光栅在光通信与光传感领域的扮演的重要角色也使其成为光纤领域的一项基本技术。在光纤通信的应用中根据应用场合的不同,针对对光纤光栅的光谱方面和色散方面特性会提出相应的专门要求,为了给光纤光栅制作过程中的方法选择及参量控制提供理论性指导,对光纤光栅的理论与应用研究有重要的实际意义。在实际的光栅设计过程中,我们总是希望由所期望的光学特性来确定光栅的各个参数的值,因而对光纤光栅特性方面的数值模拟就具有非常重要意义。本论文以光纤通信发展为主线介绍了光纤光栅的历史及其在光通信领域的应用,概述了光纤光栅的光敏效应,以光波导为背景介绍了分析光纤光栅常用的耦合模理论以及传输矩阵理论。基于耦合模理论和传输矩阵理论对重要的两类光纤光栅:均匀光纤光栅和线性啁啾光纤光栅进行了分析推导。并对两类光纤光栅的光谱方面特性进行了仿真研究,绘制出了两类光纤光栅在不同参数下的反射光谱特性曲线,讨论了不同参数对光纤光栅频率选择特性和色散特性的影响, 所得结果可作为这类光纤光栅结构参数设计的参考依据,给光纤光栅制作过程中的方法选择及参量控制提供理论指导,为

光纤光栅发展现状

光纤光栅的发展状况 自1978年,加拿大的Hill等人首次在掺锗石英光纤中发现光敏现象并采用驻波法制造出世界上第一根光纤光栅和1989年美国的Melt等人实现了光纤Bragg光栅(FBG)的UV激光侧面写入技术以来,光纤光栅的制造技术不断完善,人们对光纤光栅在光传感方面的研究变得更为广泛和深入。光纤光栅传感器具有一般传感器抗电磁干扰、灵敏度高、尺寸小、重量轻、成本低,适于在高温、腐蚀性等环境中使用的优点外,还具有本征自相干能力强和在一根光纤上利用复用技术实现多点复用、多参量分布式区分测量的独特优势。故光纤光栅传感器已成为当前传感器的研究热点。由光源、光纤光栅传感器和信号解调系统为主构成的光纤光栅系统如何能够在降低成本、提高测量精度、满足实时测量等方面的前提下,使各部分达到最优匹配,满足光纤光栅传感系统在现代化各个领域实用化的需要也是研究人员重点考虑的问题。 本文对光纤光栅传感系统进行了介绍,对光纤光栅系统的宽带光源进行了说明,重点分析了光纤光栅传感器的传感原理及如何区分测量技术,对信号常用的信号解调方法进行了总结,最后,提出为适应未来的需要对系统各部分的优化措施。 1、光纤光栅传感系统 光纤光栅传感系统主要由宽带光源、光纤光栅传感器、信号解调等组成。宽带光源为系统提供光能量,光纤光栅传感器利用光源的光波感应外界被测量的信息,外界被测量的信息通过信号解调系统实时地反映出来。 1.1 光源 光源性能的好坏决定着整个系统所送光信号的好坏。在光纤光栅传感中,由于传感量是对波长编码,光源必须有较宽的带宽和较强的输出功率与稳定性,以满足分布式传感系统中多点多参量测量的需要。光纤光栅传感系统常用的光源的有LED,LD和掺杂不同浓度、不同种类的稀土离子的光源。LED光源有较宽的带宽,可达到几十个纳米,有较高的可靠性,但光源的输出功率较低,且很难与单模光纤耦合。LD光源具有单色性好、相干性强、功率高的特点。但LD光谱的稳定性差(4×10-4/℃)。因此,这2种光源自身的缺点制约了它们在光传感中的应用。掺杂不同种类、不同浓度的稀土离子的光源研究最广泛的是掺铒光源。

均匀光纤光栅光谱仿真研究

均匀光纤光栅光谱仿真研究

摘要 全光通信是光纤通信的发展方向,自从1978年Hill等人制作出第一条光纤光栅之后,作为重要的全光网络器件之一,光纤光栅的研究和应用就一直受到人们的重视。光纤光栅这种新型的光纤器件由于其独特的光学特性和灵活的设计特点,在光通信系统中有着广泛的应用,包括滤波器、全光复用/ 解复用器、色散补偿器和激光器谐振腔等等。所谓光纤光栅即指光纤轴向上存在的折射率周期性变化。其制作原理是基于石英光纤的光敏效应。光纤中的光致折射率改变现象最初仅是一个科学问题,用来满足人们科学探索的好奇心,而正是因为光纤光栅在光通信与光传感领域的扮演的重要角色也使其成为光纤领域的一项基本技术。在光纤通信的应用中根据应用场合的不同,针对对光纤光栅的光谱方面和色散方面特性会提出相应的专门要求,为了给光纤光栅制作过程中的方法选择及参量控制提供理论性指导,对光纤光栅的理论与应用研究有重要的实际意义。在实际的光栅设计过程中,我们总是希望由所期望的光学特性来确定光栅的各个参数的值,因而对光纤光栅特性方面的数值模拟就具有非常重要意义。本论文以光纤通信发展为主线介绍了光纤光栅的历史及其在光通信领域的应用,概述了光纤光栅的光敏效应,以光波导为背景介绍了分析光纤光栅常用的耦合模理论以及传输矩阵理论。基于耦合模理论和传输矩阵理论对重要的两类光纤光栅:均匀光纤光栅和线性啁啾光纤光栅进行了分析推导。并对两类光纤光栅的光谱方面特性进行了仿真研究,绘制出了两类光纤光栅在不同参数下的反射光谱特性曲线,讨论了不同参数对光纤光栅频率选择特性和色散特性的影响, 所得结果可作为这类光纤光栅结构参数设计的参考依据,给光纤光栅制作过程中的方法选择及参量控制提供理论指导,为光纤光栅这一重要器件的仿真软件的构建进行初步的探索。 关键词:光纤光栅耦合模理论传输矩阵法光通信器件数值仿真 第一章绪论 光纤通信技术是以光波为载波,以光导纤维为传输信道的一种现代有线通信 技术。人类已进入信息化时代,人类对通信的需求呈现加速增长的趋势,而光纤通信技术是构建信息高速公路的主要支柱。现代光纤通信技术涉及光纤光缆技术、传输技术、光有源器件、光无源器件以及光网络技术等。 1.1光纤通信历史及发展: 1880年,贝尔利用太阳光作为光源,以大气为传输信道,用硒晶体作为光接收器,进行了光电话的实验,实现了真正现代意义下的光通信,使通话距离最远达到了二百多米,但空间光传输易受到气候和周围环境等条件的影响,损耗也比较大。 1966年,英籍华人高锟博士和他的同事G. A. Hockham,在研究了光在石英玻璃纤维中传输的特性极

光纤光栅光学特性的测量

光纤光栅光学特性的测量 一、实验目的和内容 1. 了解光纤Bragg 光栅的原理及其主要光学特性。 2. 掌握Digtal lock-in Amplifier 工作原理和使用要领。 3. 掌握测量光纤Bragg 光纤反射光谱及其它光学特性的方法 二、实验基本原理 1. 光纤布拉格光栅的理论模型 光敏光纤布拉格光栅(FBG ,fiber Bragg grating )的原理是由于光纤芯折射率周期变化造成光纤波导条件的改变,导致一定波长的光波发生相应的模式耦合,使的其透射光谱和反射光谱对该波长出现奇异性,图1表示了其折射率分布模型。这只是一个简化图形,实际上光敏折射率改变的分布将由照射光的光强分布所决定。 对于整个光纤曝光区域,可以由下列表达式给出折射率分布较一般的描述: ? ?? ??≥≤≤≤+=2 32 1211)],,(1[),,(a r n a r a n a r z r F n z r n ?? 式中),,(z r F ?为光致折射率变化函数。具有如下特性: 1 ),,(),,(n z r n z r F ???= )(0 ),,() 0(),(1 max max L z z r F L z n n z r F >=<

光纤光栅传感系统的现状及发展趋势

光纤光栅传感系统的现状及发展趋势 自1978年,加拿大的Hill等人首次在掺锗石英光纤中发现光敏现象并采用驻波法制造出世界上第一根光纤光栅和1989年美国的Melt等人实现了光纤Bragg光栅(FBG)的UV激光侧面写入技术以来,光纤光栅的制造技术不断完善,人们对光纤光栅在光传感方面的研究变得更为广泛和深入。光纤光栅传感器具有一般传感器抗电磁干扰、灵敏度高、尺寸小、重量轻、成本低,适于在高温、腐蚀性等环境中使用的优点外,还具有本征自相干能力强和在一根光纤上利用复用技术实现多点复用、多参量分布式区分测量的独特优势。故光纤光栅传感器已成为当前传感器的研究热点。由光源、光纤光栅传感器和信号解调系统为主构成的光纤光栅系统如何能够在降低成本、提高测量精度、满足实时测量等方面的前提下,使各部分达到最优匹配,满足光纤光栅传感系统在现代化各个领域实用化的需要也是研究人员重点考虑的问题。 本文对光纤光栅传感系统进行了介绍,对光纤光栅系统的宽带光源进行了说明,重点分析了光纤光栅传感器的传感原理及如何区分测量技术,对信号常用的信号解调方法进行了总结,最后,提出为适应未来的需要对系统各部分的优化措施。 1 光纤光栅传感系统 光纤光栅传感系统主要由宽带光源、光纤光栅传感器、信号解调等组成。宽带光源为系统提供光能量,光纤光栅传感器利用光源的光波感应外界被测量的信息,外界被测量的信息通过信号解调系统实时地反映出来。 1.1 光源 光源性能的好坏决定着整个系统所送光信号的好坏。在光纤光栅传感中,由于传感量是对波长编码,光源必须有较宽的带宽和较强的输出功率与稳定性,以满足分布式传感系统中多点多参量测量的需要。光纤光栅传感系统常用的光源的有LED,LD和掺杂不同浓度、不同种类的稀土离子的光源。LED光源有较宽的带宽,可达到几十个纳米,有较高的可靠性,但光源的输出功率较低,且很难与单模光纤耦合。LD光源具有单色性好、相干性强、功率高的特点。但LD光谱的稳定性差(4×10-4/℃)。因此,这2种光源自身的缺点制约了它们在光传感中的应用。掺杂不同种类、不同浓度的稀土离子的光源研究最广泛的是掺铒光源。现在C波段掺铒光源已经研制成功并使用,随着光通信中对通信容量和速度的要

光纤光栅传感器及其发展趋势

【摘要】光纤光栅是现代光纤传感中应用最广泛的器件与技术。自1978年加拿大渥太华研究中心利用光纤的光敏效应成功制成第一根光纤光栅以来,光纤光栅传感器便因为体积小、重量轻、检测分辨率高、灵敏度高、测温范围宽、保密性好、抗电磁干扰能力强、抗腐蚀性强等特点及其具有本征自相干能力强和能在一根光纤上利用复用技术实现多点复用、多参量分布式区分测量的独特优势而被广泛应用于各行各业。本文先对光纤光栅传感器的工作原理及其分类进行论述,接着简述光纤光栅传感器的一些重要应用,然后对光纤光栅传感器的研究方向进行简单分析,最后是小结和展望。 【关键词】传感器;光纤光栅传感器;光纤光栅传感技术 一、光纤光栅传感器的工作原理及其分类 光纤光栅是利用光致折射率改变效应,使纤芯折射率沿轴向产生周期性变化,在纤芯内形成空间相位光栅。光纤光栅传感器目前研究的主要有三种类型:一是利用光纤布喇格光栅(FBG )背向反射特征制作的传感器;二是利用长周期光纤光栅(LPG )同向透射特征制作的传感器;三是利用啁啾光纤光栅色散补偿特征制作的传感器。下面将对这三种传感器的传感机理进行简单概述。 1.1 光纤布喇格光栅传感原理 光纤布喇格光栅纤芯轴向的折射率呈现周期性变化,其作用的实质相当于是在纤芯内形成一个窄带的滤波器或反射镜。如图1-1所示,当一束宽光谱光经过光纤光栅时,满足光纤光栅布喇格条件的波长将产生反射,其余的波长将透过光纤光栅继续往前传输。 图1-1 光纤布喇格光栅原理图 光纤布喇格光栅反射谱的中心波长B λ满足 Λ=eff n 2B λ 其中,eff n 为有效折射率,Λ为光纤光栅栅距。 光纤光栅的栅距是沿光纤轴向分布的,因此在外界条件诸如温度、压力等的作用下,光

光纤光栅

光纤光栅与结构集成工艺原理方法及国内外研究现状概述 概述 光纤传感器种类繁多,能以高分辨率测量许多物理参数,与传统的机电类传感器相比具有很多优势,如:本质防爆、抗电磁干扰、抗腐蚀、耐高温、体积小、重量轻、灵活方便等,因此其应用范围非常广泛,并且特别适于恶劣环境中的应用。但是因为裸光纤纤细、质脆、尤其是剪切能力差,直接将光纤光栅作为传感器在工程中遇到了铺设工艺上的难题。因此,对裸FBG 进行封装,是将FBG 传感器在实际应用中推广的一个重要环节,对于研制满足航空航天领域需要的体积小、质量轻FBG 传感器具有重要意义。 一、光纤光栅工作原理 光纤光栅的最基本原理是相位匹配条件: β1、β2是正、反向传输常数,Λ是光纤光栅的周期,在写入光栅的过程中确定下来。当一束宽谱带光波在光栅中传输时,入射光在相应的频率上被反射回来,其余的不受影响从光栅的另外一端透射出来。光纤光栅起到了光波选频的作用,反射的条件称为布拉格条件。由光纤光栅相位匹配条件得到反射中心波长(布拉格波长)表达式: 二、光纤光栅的写入 2.1 短周期光纤光栅的写制 内部写入法(又称驻波法) 将波长488nm 的基模氢离子激光从一个端面祸合到锗掺杂光纤中,经过光纤另一端面反射镜的反射,使光纤中的入射和反射激光相干涉形成驻波。由于纤芯材料具有光敏性,其折射率发生相应的周期变化,于是形成了与干涉周期一样的立体折射率光栅。此方法是早期使用的,该方法要求 122πββ-=Λ Λ =n B 2λ

锗含量很高,芯径很小,并且只能够制作布拉格波长与写入波长相同的光纤光栅,因此目前很少被采用。 全息成删法(又称外侧写入法) 1989年,Meltz等人首次用此方法制作了横向侧面曝光的光纤光栅。用两束相干紫外光束在掺锗光纤的侧面相干,形成干涉图,利用光纤材料的光敏性形成光纤光栅。写制设备装置如图2.1所示。通过改变入射光波长或两相干光束之间的夹角,可以得到不同栅格周期的光纤光栅。但是要得到高反射率的光栅,则对所用光源及周围环境有较高的要求。该方法采用多脉冲曝光技术,光栅性质可以精确控制,但是容易受震动或温度的影响,目前这种方法使用也不多。 单脉冲写入法由于准分子激光具有很高的单脉冲能量,聚焦后每次脉冲可达J/cm2,近年来又发展了用单个激光脉冲在光纤上形成高反射率光栅。英国南安普敦大学的Archambanlt等人对此方法进行了研究,他们认为这一过程与二阶和双光子吸收有关。由于光栅成栅时间短,因此环境因素影响较小。此外,此法可以在光纤拉制过程中实现,避免了光纤受到额外的损伤,保证了光栅的良好强度和完整性。但是形成光栅的短波长损耗严重,且不稳定。该方法对光源的要求不高,适用于低成本、大批量生产。 相位掩膜法将用电子束曝光刻好的图形掩膜置于裸光纤上,相位掩膜具有压制零级,增强一级衍射的功能。紫外光经过掩膜相位调制后衍射到光纤上形成干涉条纹,写入周期为掩膜周期一半的Bragg光栅。这种成栅方法不依赖于入射光波长,只与相位光栅的周期有关,因此对光源的相干性要求不高,简化了光栅的制造系统。这种方法的缺点是制作掩膜复杂。用低相干光源和相位掩膜版来制

光栅布拉格光栅及其传感特性研究

光栅布拉格光栅及其传感特性研究2 一光纤光栅概述2 1.1 光纤光栅的耦合模理论2 1.2 光纤光栅的类型3 1.2.1 均匀周期光纤布拉格光栅3 1.2.2 线性啁啾光纤光栅3 1.2.3 切趾光纤光栅3 1.2.4 闪耀光纤光栅4 1.2.5 相移光纤光栅4 1.2.6 超结构光纤光栅4 1.2.7 长周期光纤光栅4 二光纤布拉格光栅传感器5 2.1 光纤布拉格光栅应力传感器5 2.2 光纤布拉格光栅温度传感器6 2.3 光纤布拉格光栅压力传感器6 2.4 基于双折射效应的光纤布拉格光栅传感器7 三光纤光栅传感器的敏化与封装10 3.1 光纤光栅传感器的温度敏化10 3.2 光纤光栅传感器的应力敏化10 3.2 光纤光栅传感器的交叉敏感及其解决方法10 四光纤光栅传感网络与复用技术10 4.1 光纤光栅传感网络常用的波分复用技术11 4.1.1 基于波长扫描法的波分复用技术12 4.1.2 基于波长分离法的波分复用技术13 4.1.3 基于衍射光栅和CCD阵列的复用技术13 4.1.4 基于码分多址(CDMA)和密集波分复用(DWDM)技术14 4.2光纤光栅传感网络常用的空分复用技术14 4.3光纤光栅传感网络常用的时分复用技术16 4.4 光纤光栅传感网络的副载波频分复用技术18 4.4.1 光纤光栅传感副载波频分复用技术18 4.4.2 FBG传感网络的光频域反射复用技术18 4.5 光纤光栅传感网络的相干复用技术18 4.6 混合复用FBG传感网络18 4.6.1 WDM/TDM混合FBG网络18 4.6.2 SDM/WDM混合FBG网络18 4.6.3 SDM/TDM混合FBG网络18 4.6.4 SDM/WDM/TDM混和FBG网络18 4.6.5 光频域反射复用/波分复用混合FBG传感网络18 五光栅光栅传感信号的解调方法18 六激光传感器18

光纤光栅传感技术的发展及应用

光纤光栅传感技术的发展及应用 单嵩 北京工业大学应用数理学院 000612班 指导教师:王丽 摘要本文综述了当前国内外对光纤光栅传感器的研究历史和现状,论述了光纤光栅传感器的工作原理,介绍了传感器在响应压力方面的研究,并讨论了光纤光栅传感器所面临的问题。 关键词光纤,光栅,传感器 一、引言 光纤通信技术在过去二十年里有了惊人的发展,它的出现,使得全球电信网络上的传输需求以指数速率增长。而新一代光纤技术——光纤光栅将在光纤技术以及众多相关领域中引起一场新的技术革命。1978年加拿大渥太华通信研究中心的K.O.HILL等人在研究光纤非线性光学性质时偶尔地制成了最初的光纤光栅并发现掺锗石英光纤紫外光敏特性。所谓光敏性是指光纤材料在一定波长的强光照射下,其折射率会发生永久变化。而折射率沿光纤按一定规律变化就可形成各种光纤光栅。1989年G.Meltz等人首次利用244nm的紫外光采用全息干涉的方法制作了侧面写入的光纤光栅,使得制作各种波长的光纤光栅成为可能。光纤光栅作为一种全光器件,其主要优点是低损耗、易于与其他光纤耦合、偏振不敏感,温度系数低、容易封装。根据光纤周期的不同,光纤光栅可以被分为短周期光纤光栅(FBG)和长周期光纤光栅(LPFG)。短周期光栅又称为Bragg光栅,它的周期尺寸可以与工作波长相比拟,一般约为0.5μm 。Bragg光栅可以有很多种应用,从滤波器、光分插复用器到色散补偿器。长周期光栅又称为传输光栅,它的周期要比工作波长大得多,从几百微米直到几个豪米。长周期光纤光栅的工作原理与Bragg光栅有所不同。在光纤Bragg光栅中,对于适当的波长,纤芯中前向传播模式的能量会被耦合进入后向传播模式中。而在长周期光栅中,纤芯中前向传播模式的能量将会被耦合到包层中前向传播的其它模式中。这些包层中的模式都是极高损耗的,随着它们沿光纤的传播,其能量迅速衰减。目前长周期光栅主要被用作滤波器及在掺铒光纤放大器中补偿不平坦的增益谱。 目前,围绕光纤光栅技术的研究主要分为二个方向: 一是光纤光栅致光机理和写入成栅技术的研究;二是关于光纤光栅应用技术的研究,由于光纤光栅本质上是一个带阻滤波器,因此在光纤通信和光纤传感方面应用广泛。光纤传感是20世纪70年代伴随光纤通信技术的发展而迅速发展起来的,以光波为载体,光纤为媒质,感知和传输外界被测量信号的新型传感技术。作为被测量信号载体的光波和作为光波传播媒质的光纤,具有一系列独特的优点。光波不产生电磁干扰,也不怕电磁干扰,易被各种光探测器接受,可方便地进行光电或电光转换。光纤工作频带宽,动态范围大,是一种优良的低损耗传输线和优良的敏感元件。因此,光纤传感技术一问世就受到极大重视,成为传感技术的先导,在某些重要领域,如惯性导航、军用告警、智能材料结构、测试与控制、机器人及信息处理等方面得到了广泛的应用。 二、光纤光栅传感技术原理 1、光纤Bragg 光栅的应变响应机理

光纤光栅的特性

光纤光栅的特性

光纤光栅的特性 1.光纤布喇格光栅的理论模型: 假设光纤为理想的纤芯掺锗阶跃型光纤,并且折射率沿轴向均匀分布,包层为纯石英,此种光纤在紫外光的照射下,纤芯的折射率会发生永久性变化,对包层的折射率没有影响。 利用目前的光纤光栅制作技术:如全息相干法,分波面相干法及相位模板复制法等。生产的光纤光栅大多数为均匀周期正弦型光栅。纤芯中的折射率分布(如图1)所示。 ) (1Z n 为纤芯的折射 率,m ax n ?为光致折射 率微扰的最大值, ) 0(1n 为纤芯原折射 率, Λ 为折射率变化的周期(即栅距), L 为光栅的区长度。 若忽略光栅横截面上折射率分布的不均匀

性,光栅区的折射率分布可表示为: )2cos()0()(max 11Z n n z n Λ ?+=π ………………………………………………… (1.1) 显而易见,其折射率沿纵向分布,属于非正规光波导中的迅变光波导,在考虑模式耦合的时候,只能使用矢量模耦合方程,其耦合主要发生在基模的正向传输导模与反向传输导模之间。 2.单模光纤的耦合方程 由于纤芯折射率非均匀分布,引起了纤芯中传输的本征模式间发生耦合。在弱导时, 忽 略偏振效应,吸收损耗和折射率非均匀分布引起了模式泄漏,则非均匀波导中的场Φ( x , y , z ) 满足标量波动方程: ),,(}),,({22 220 2=Φ??++?z y x z z y x n sk t …………………(2.1) 其中:λ π/20 =k ,λ是自由空间的光波长。 2 22 2 1}{1???+?Φ???=Φ?Φ r r r r r t ………………………………… ………………(2.2) 由于折射率非均匀分布引起波导中模式耦合只发生在纤芯中,因此非均匀波导中的场

光纤光栅传感技术发展综述

Optoelectronics 光电子, 2018, 8(3), 98-105 Published Online September 2018 in Hans. https://www.wendangku.net/doc/2613315285.html,/journal/oe https://https://www.wendangku.net/doc/2613315285.html,/10.12677/oe.2018.83014 Development in Fiber Bragg Grating Sensing Technology Shanchao Jiang School of Electrical Engineering, Yancheng Institute of Technology, Yancheng Jiangsu Received: Aug. 21st, 2018; accepted: Sep. 6th, 2018; published: Sep. 13th, 2018 Abstract In order to promote the development of fiber Bragg grating (FBG) sensing technology, this paper introduces the development of fiber Bragg grating in its spectrum analysis, sensor parameters (such as strain, displacement, pressure, flow rate, anchor bolt, inclination, etc.) detection, multip-lexing technology and other aspects in detail. This provides basic support for further diversifica-tion and practicability of FBG sensing technology. Keywords FBG, Spectrum Analysis, Detection Sensor, Multiplexing Technology 光纤光栅传感技术发展综述 蒋善超 盐城工学院电气工程学院,江苏盐城 收稿日期:2018年8月21日;录用日期:2018年9月6日;发布日期:2018年9月13日 摘要 为促进光纤光栅传感技术的发展,本文较为详细的介绍了光纤光栅在其光谱分析、传感器参数(如应变、位移、压力、流速、锚索锚杆、倾斜等)检测、复用技术等方面的发展现状,为推动光纤光栅传感技术进一步的多样化、实用化提供基础支持。 关键词 光纤光栅,光谱分析,检测元件,复用技术

光纤光栅的特性

光纤光栅的特性 1光纤布喇格光栅的理论模型: 假设光纤为理想的纤芯掺锗阶跃型光纤,并且折射率沿轴向均匀分布,包层为纯石英, 此种光纤在紫外光的照射下,纤芯的折射率会发生永久性变化,对包层的折射率没有影响。 利用目前的光纤光栅制作技术: 如全息相干法,分波面相干法及相位模板复制法等。 生产的 光纤光栅大多数为均匀周期正弦型光栅。纤芯中的折射率分布(如图 1)所示。 n i (Z )为纤芯的折射率, n 吶为光 致折射率微扰的最大值, n i ( °)为纤芯原折射率, 上为折射率变化的周期(即栅距), L 为光栅的区长度。 若忽略光栅横截面上折射率分布的不均匀性,光栅区的折射率分布可表示为: 2兀 n i (z)二 n i (0) ............................... 'n max cos( Z) ( 行) A 显而易见,其折射率沿纵向分布, 属于非正规光波导中的迅变光波导, 在考虑模式耦合 的时候,只能使用矢量模耦合方程,其耦合主要发生在基模的正向传输导模与反向传输导模 之间。 2.单模光纤的耦合方程 由于纤芯折射率非均匀分布,引起了纤芯中传输的本征模式间发生耦合。在弱导时 ,忽 略偏振效应,吸收损耗和折射率非均匀分布引起了模式泄漏 ,则非均匀波导中的场 ①(x , y , z )满足标量波动方程:{'2 sk 2n 2(x, y,z) ? —三}门&, y,z) = 0 ............................... ( 2.1 ) 一z 其中:k 0 =2二八,■是自由空间的光波长。 由于折射率非均匀分布引起波导中模式耦合只发生在纤芯中 可以表示为均匀波导束缚模式 (x, y)之和: "(x,y,z)二卡 A(z) l (x,y)二卡{a l (z) exp(-i rz) a 4 exp(i :丨 z)} l (x, y) I- ,A 1 f 片㈣ ma x : 1 ■ t z (2.2) ,因此非均匀波导中的场 (2.3) 圈1均匀周期LE 弦型光纤光柵纤芯护射率

光纤光栅光谱特性研究

SHANDONGUNIVERSITYOFTECHNOLOGY 课程设计题目:光纤光栅光谱特性研究所属课程:应用光学 学院:理学院 专业:光电信息科学与工程 学生姓名:卢远 学号: 指导教师:郭立萍 2015 年 6 月

光纤光栅光谱特性研究 摘要 光纤光栅是一种通过一定方法使光纤纤芯的折射率发生轴向周期性调制而形成的衍射光栅,是一种无源滤波器件。由于光栅光纤具有体积小、熔接损耗小、全兼容于光纤、能埋入智能材料等优点,并且其谐振波长对温度、应变、折射率、浓度等外界环境的变化比较敏感,因此在光纤通信和传感领域得到了广泛的应用。 光纤光栅是利用光纤材料的光敏性,通过紫外光曝光的方法将入射光相干场图样写入纤芯,在纤芯内产生沿纤芯轴向的折射率周期性变化,从而形成永久性空间的相位光栅,其作用实质上是在纤芯内形成一个窄带的(透射或反射)滤波器或反射镜。当一束宽光谱光经过光纤光栅时,满足光纤光栅布拉格条件的波长将产生反射,其余的波长透过光纤光栅继续传输。 随着信息业务量快速增长,语音、数据和图像等业务综合在一起传输,从而对通信带宽容量提出了更高要求。全光通信是解决“电子瓶颈”最根本的途径,全光网通信可以极大地提高节点的吞吐容量,适应未来高速宽带通信的要求。基于光纤的光敏特性制作成的光纤光栅已成为光通信系统和光纤传感器中的关键器件。它有许多突出的优点,优良的性质,这使得它成为目前研究的热点。本文主要论述了光纤光栅的基本原理及其制作的方法,利用耦合理论分析光纤光栅光谱特性。本文中讨论了现在光纤光栅在各个领域的利用,并且探讨了光纤光栅现状的利用和未来的发展方向。本文利用matlab仿真,画出不同光栅的光谱图,观察各种参数的变化对光栅光谱特性的影响,并分析光纤光栅光谱图。 关键词:光纤光栅;耦合模理论;光谱特性

光纤光栅传感器的封装技术

光纤光栅传感器的封装技术

摘要 光纤布拉格光栅传感器是一种新型的光纤传感器,它利用的是布拉格波长对温度、应变敏感的原理。与传统的电学传感器相比,它还具有体积小、质量轻、抗电磁干扰、复用性强等优点。正因为这些独特的优点,光纤布拉格光栅越来越多的被应用到大型结构、电力、安防、石化、医学、矿井、军事等领域,其中,最引人瞩目的是光纤光栅温度传感器在长距离测温系统中的应用。随着中国物联网发展战略的实施,光纤传感领域的研究和产业化面临着巨大的机遇和挑战。 本文综述了光纤光栅温度传感器的传感原理,光纤光栅传感器封装技术分类,分为保护性封装,敏化封装,以及补偿性封装,列举了三个封装技术的实例,对他们的封装结构,封装中的技术工艺,以及封装后的一些参数进行了介绍。

目录 1、绪论 (4) 1.1 光纤光栅传感器封装技术概述 (4) 2、光纤光栅传感原理 (5) 2.1光纤光栅传感器的结构和原理 (5) 2.2光纤光栅传感技术的类型简介 (6) 3.光纤光栅传感器封装技术分类 (7) 3.1保护性封装 (7) 3.2 敏化封装 (8) 3.3补偿性封装 (8) 4.封装技术实例 (9) 4.1光纤光栅温度传感器抗应变串扰封装 (9) 4.2Polyimide(聚酰亚胺)光纤光栅温度传感器的封装 (12) 4.3镀铜光纤光栅的全金属封装 (13) 参考文献 (16)

1、绪论 1.1 光纤光栅传感器封装技术概述 光纤光栅是普通光纤经过特殊的光学工艺处理后,使纤芯折射率沿轴向,呈现周期性规律分布的物理结构,其实质就是在纤芯内形成一个窄带的(透射或反射)光滤波器或反射镜。通过人为改变光纤光栅结构的分布,我们可以主动控制光在光纤中的传播行为,光纤光栅结构的多样化可以使其光谱响应特显得非常丰富。同时,光纤光栅具有结构简单、器件微型化、带宽范围广、耦合性好、附加损耗小、可与其他光纤器件融成一体等特点,除此之外光纤本身具有轻质、电绝缘、柔韧、抗电磁干扰、径细、化学稳定等优点,使得光纤光栅在光纤传感、全光通信、光信息处理等领域具有巨大的应用前景。 光纤光栅传感器是以布拉格条件为基础,以光纤光栅为载体,发展起来的一种本征波长调制型传感器。光纤光栅传感器是利用透射或反射谱波长峰值的变化,进而实现对物理量的测量。透射(反射)谱波长与光栅纤芯的有效折射率及折射率调制周期密切相关。当外界应变与温度发生变化时,光纤光栅的纤芯折射率与折射率调制周期就随之变化,然后影响光纤光栅的透射(反射)谱峰值波长的移动,通过测量Bragg峰值波长的移动量,实现对外界物理量变化的测量,上述即是光纤光栅传感器的基本工作原理。光纤光栅传感器可以实现对应变、温度、压力、电流、振动等基本物理量测量。 利用光纤光栅进行传感,需要适当的封装技术,增加其敏感度,以利于检测解调。在某些情况下,我们不希望温度仁或应变、压力)对布拉格波长产生影响,就要对光栅进行减敏封装,降低它对温度仁或应变、压力)的灵敏度。这两种技术统称敏化技术。目前,一些敏化技术已经在实际中得到应用,但还有相当一部分停留在实验室阶段。 利用光纤光栅进行传感面临的又一难题是温度、应变交叉敏感问题。温度和应变都能引起布拉格波长的漂移,从单一的波长漂移量,我们无法区分其中哪些是温度变化引起的,哪些是应变引起的。这给我们出了很大的难题。要实现光纤光栅传感器的实用化,就必须采用各种封装技术,或者剔除温度的影响,或者实现温度、应变双参数及多参数的同时测量。 光纤光栅传感技术适合应用在很多恶劣的环境中,但由于光纤纤细柔软,容易被损坏,因此需要采用一些封装方法,保护光栅。在实用中对光纤光栅进行恰当的封装非常必要,封装工艺的好坏直接影响到光纤光栅传感器能否从实验室走向实用,对光纤光栅封装技术进行研究,设计更好的封装结构和工艺尤为重要。

相关文档