文档库 最新最全的文档下载
当前位置:文档库 › 多目标优化算法与求解策略

多目标优化算法与求解策略

多目标优化算法与求解策略
多目标优化算法与求解策略

多目标优化算法与求解策略

2多目标优化综述

2.1多目标优化的基本概念

多目标优化问题(Multi-objective Optimization Problem,MOP)起源于许多实际复杂系统的设计、建模和规划问题,这些系统所在的领域包括工业制造、城市运输、资本预算、森林管理、水库管理、新城市的布局和美化、能量分配等等。几乎每个重要的现实生活中的决策问题都要在考虑不同的约束的同时处理若干相互冲突的目标,这些问题都涉及多个目标的优化,这些目标并不是独立存在的,它们往往是祸合在一起的互相竞争的目标,每个目标具有不同的物理意义和量纲。它们的竞争性和复杂性使得对其优化变得困难。

多目标最优化是近20多年来迅速发展起来的应用数学的一门新兴学科。它研究向量目标函数满足一定约束条件时在某种意义下的最优化问题。由于现实世界的大量问题,都可归结为含有多个目标的最优化问题,自70年代以来,对于多目标最优化的研究,在国内和国际上都引起了人们极大的关注和重视。特别是近10多年来,理论探索不断深入,应用范围日益广泛,研究队伍迅速壮大,显示出勃勃生机。同时,随着对社会经济和工程设计中大型复杂系统研究的深入,多目标最优化的理论和方法也不断地受到严峻挑战并得到快速发展。近几年来,将遗传算法(Genetic Algorithm,GA)应用于多目标优化问题成为研究热点,这种算法通常称作多目标优化进化算法或多目标优化遗传算法。由于遗传算法的基本特点是多方向和全局搜索,这使得带有潜在解的种群能够一代一代地维持下来。从种群到种群的方法对于搜索Pareto解来说是十分有益的。

一般说来,科学研究与工程实践中许多优化问题大都是多目标优化问题。多目标优化问题中各目标之间通过决策变量相互制约,对其中一个目标优化必须以其它目标作为代价,而且各目标的单位又往往不一致,因此很难客观地评价多目标问题解的优劣性。与单目标优化问题的本质区别在于,多目标优化问题的解不是唯一的,而是存在一个最优解集合,集合中

元素称为Pareto最优或非劣最优。所谓Pareto最优就是,不存在比其中至少一个目标好而其它目标不劣的更好的解,也就是不可能通过优化其中部分目标而其它目标不至劣化。Pareto最优解集中的元素就所有目标而言是彼此不可比较的。

下面从严格的数学描述角度介绍多目标优化问题的含义。通常在多目标优化领域中广泛采用并普遍接受的别劝尸问题的数学定义如下:定义1.1(MOP):一般材MOP由n个决策变量参数、k个目标函数和m个约束条件组成,目标函数、约束条件与决策变量之间是函数关系。最优化目标如下:

Maximize y=f(x)=(f1(x),f2(x),…,f k(x))

S.t. e(x)=(e1(x),e2(x),…,e m(x))≤0 (2-1)其中x=(x1,x2,…,x n)∈X

Y=(y1,y2,…,y k)∈Y

这里x表示决策向量,y表示目标向量,X表示决策向量x形成的决策空间,Y表示目标向量y形成的目标空间,约束条件e(x)≤0确定决策向量的可行的取值范围。

当有多个目标函数存在的时候,“最优解”概念产生了新的变化。因为在解决多目标问题时,实际上是求一组均衡解,而不是单个的全局最优解。这个被普遍采用的最优解的概念是Francis Ysidro Edgeworth早在1881年提出来的。随后著名的法国经济学家和社会学家帕雷托(Vilfredo Pareto)在1896年推广了这个概念,他从经济学的角度将本质上不可比较的多个目标转化成单个指标进行优化求解,这里就涉及到多目标的概念。帕雷托首次提出向量优化的概念,即现在广泛使用的Pareto最优。

MOP的本质在于大多情况下各子目标可能是相互冲突的,某子目标的改善可能引起其它子目标性能的降低,即同时使多个子目标均达到最优一般是不可能的,否则就不属于多目标优化研究的范畴。解决MOP的最终手段只能是在各子目标之间进行协调权衡和折衷处理,使各子目标函数均尽可能达到最优。因此,MOP的最优解与单目标优化问题的最优解有

着本质上的区别,为了正确求解MOP ,必须对其解的概念进行定义。

定义1.2(可行解集):可行解集f X 定义为满足式(2-1)中的约束条件e(x)的决策向量x 的集合,即

}0)(|{≤∈=x e X x X f (2-2)

f X 的可行区域所对应的目标空间的表达式为:

)}({)(x f Y x f Y f X x f f ∈== (2-3)

对于式(2-3),表示可行解集f X 中的所有x ,经优化函数映射形成目标空间中的一个子空间,该子空间的决策向量均属于可行解集。 对于极小化问题,可以很容易转化为上述的最大化问题来进行求解。 单目标优化问题的可行解集能够通过它的唯一的目标函数f 来确定方案之间的优劣关系和程度。对于MOP 问题来说,情况则有所不同,因为一般来说,f X 中的决策向量是无法进行全部排序的,而只能对某个指标进行排序,即部分排序。

大多数情况下,类似于单目标优化的最优解在多目标优化问题中是不存在的,只存在Pareto 最优解。多目标优化问题的Pareto 最优解仅仅只是它的一个可以接受的非劣解或满意解,并且通常的多目标优化问题大多具有很多个Pareto 最优解。若一个多目标优化问题存在所谓的最优解,则该最优解必定是Pareto 最优解,并且Pareto 最优解也只由这些最优解组成,再不包含其它解。因此Pareto 最优解是多目标优化问题的合理的解集合。通常多目标优化问题的Pareto 最优解是一个集合。对于实际应用问题,必须根据对问题的了解程度和决策人员的个人偏好,从多目标优化问题的Pareto 最优解中挑选出一个或多个解作为所求多目标优化问题的最优解。因此求解多目标优化问题的首要步骤和关键是求出尽可能多的Pareto 最优解。

2.2传统的多目标优化方法

大多数传统的多目标优化方法将多个目标减少为一个,然后用数学规

划工具求解问题。为了用数学规划工具求解问题,首先需要用数字的形式来表明偏好。数字越大,偏好越强。这种需求促成了各种标量化方法的发展。采用这些方法将多目标优化问题转换为单目标或一系列单目标优化问题,然后可以求解变换后的问题。传统的多目标优化方法有多种,本文选取约束法、加权法、距离函数法、最小最大法这四种多目标优化方法来进行简单的介绍。

2.2.1约束法

在MOP 问题中,从k 个目标函数f 1(x),f 2(x),…,f k (x)中,若能够确定一个主要的目标,例如f 1(x),而对于其他的目标函数f 2(x),…,f k (x)只要求满足一定的条件即可,例如要求:

k i b x f a i ?=≤≤,3,2,)(

这样我们就可以把其他目标当做约束来处理,则MOP 问题可以转换为求解如下的单目标优化问题:

Maximize

)(1x f ..t S 0))(,),(),(()(21≤?=x e x e x e x e m

k i b x f a ,,3,2,)(1?=≤≤

2. 2.2加权法

加权法将为每个目标函数分配权重并将其组合成为一个目标函数,加权法的基本思想是由Zadeh 首先提出,加权方法可以表示如下:

Maximize ∑==k i i i x f x z 1)

()(ω

..t S f X x ∈

i ω称为权重,不失一般性,通常权重可以正则化使得∑==k

i 11,求解上述不同权重的优化问题则能够输出一组解。这种方法的最大缺点就是不能在非凸性的均衡曲面上得到所有的Pareto 最优解。

2.2.3距离函数法

距离函数法需要使用理想点,定义理想点如下:

定义1.3(理想点):理想点用

),,,(**2*1*k y y y y ?=来表示,其中 k i X x x f y f t ,,3,2},|)(sup{1*?=∈=。

点*y 称为理想点(ideal point )是因为通常该点无法达到。对于每个目标来说,寻找理想点*

y 是可能的。

距离函数法寻找与理想点最近的解,根据理想点*y 的定义,对于目标空间的每一个元素,我们无法得到比理想解更好的结果。给定Y y ∈,y 与*y 的距离函数来近似:

*

)(y y y r -= 其中*y y -是在某种特定范数意义上从y 到*y 的距离。由于p L 范数比较清晰,因此经常采用,对于一个给定的正数1≥p ,有:

p k j p j j p y y y y p y r /11*

*);(??????-=-=∑=

p L 范数意义下的最优解就是最小化);(p y r 的点。

距离函数);(p y r 对于每一个*

j j y y -的值的重视程度相同。如果具有不

同的重要性,可以指派一个权重向量),,,(21k ωωωω?=来表明不同的重要程度,在这种情况下,有下面的加权p L 范数:

p k j p j j p j p y y y y w p y r /11*,*

),;(??????-=-=∑=ωω

2. 2.4分层序列法

分层序列法是把MOP 问题的k 个目标函数,按其重要程度排一个次序。例如,不妨设MOP 问题的k 个目标函数已经排好次序:)(1x f 最重要,)(2x f 次之,)(3x f 再次之,……,最后一个目标为)(x f k 。先求出问题:

Maximize

)(1x f ..t S 0))(,),(),(()(21≤?=x e x e x e x e m

的最优解)1(x 及最优值*1f 。即:

)(1*11x f Max f R x ∈=

其中 f X R =1

再求解问题

Maximize

)(2x f ..t S 2R x ∈

问题的最优解)2(x 及最优值*2f 。即:

)(2*22x f Max f R x ∈=

其中

})(|{*1112f x f x R R ≥?= 继续求解问题

Maximize

)(3x f ..t S 3R x ∈

问题的最优解)3(x 及最优值*3f 。即:

)(3*33x f Max f R x ∈=

其中

})(|{*2223f x f x R R ≥?= ……如此继续下去,直到求出第k 个问题

Maximize

)(x f k ..t S k R x ∈

问题的最优解)(k x 及最优值*k f 。即:

)(*x f Max f k R x k k ∈=

其中

})(|{*111---≥?=k k k k f x f x R R 这样求得的)(k x 就是MOP 问题在分层序列意义下的最优解,即)(*k x x =,而

))(,),(),((**2*1*x f x f x f F k ?=

为MOP 问题的最优值。

2. 3传统优化方法的局限性

传统方法的优点在于它继承了求解单目标优化问题的一些成熟算法的机理。但是经典方法如加权法求解多目标优化问题时,对Pareto 最优前沿的形状很敏感,不能处理前沿的凹部,并且求解问题所需的与应用背景相关的启发式知识信息获得很少,导致无法正常实施优化或优化效果差,特别对于大规模问题,这些多目标优化方法很少真正能被使用。

前面介绍的传统的多目标优化方法存在一些局限性,主要包括一下几点:

(l)一些古典方法如加权法求解多目标优化问题时,对Pareto 最优前端的形状很敏感,不能处理前端的凹部。

(2)只能得到一个解。然而,在实际决策中决策者通常需要多种可供选择的方案。

(3)传统方法共同存在的一个关键问题就是为了获得Pareto 。最优集须运行多次优化过程,由于各次优化过程相互独立,往往得到的结果很不一致令决策者很难有效地决策,而且要花费巨额时间开销。

(4)多个目标函数之间量纲不同,难以统一。为了避免其中的一个目标函数支配其他目标函数,精确的给出所有目标函数的标量信息,就必须有每一个目标的全局先验知识,计算量巨大,很难实现。

(5)加权值的分配带有较强的主观性。由于是人为规定各个目标函数的权值,因此带有很大的主观性。

最近遗传算法己经作为一种多目标优化方法崭露头角。它的优点在于可处理大规模的搜索空间、在单轮优化期间产生多个均衡解,可有效克服古典方法的局限性,所以本文采用遗传算法对关系模型进行优化。

2.4遗传算法的基本原理和方法

达尔文的自然选择学说是一种被人们广泛接受的生物进化学说。这种学说认为,生物要生存下去,就必须进行生存斗争。生存斗争包括种内斗争、种间斗争以及生物跟无机环境之间的斗争三个方面。在生存斗争中,具有有利变异的个体容易存活下来,并且有更多的机会将有利变异传给后代;具有不利变异的个体就容易被淘汰,产生后代的机会也少的多。因此,凡是在生存斗争中获胜的个体都是对环境适应性比较强的。达尔文把这种在生存斗争中适者生存,不适者淘汰的过程叫做自然选择。它表明,遗传和变异是决定生物进化的内在因素。自然界中的多种生物之所以能够适应环境而得以生存进化,是和遗传和变异生命现象分不开的。正是生物的这种遗传特性,使生物界的物种能够保持相对的稳定;而生物的变异特性,使生物个体产生新的性状,以致于形成新的物种,推动了生物的进化和发展。

遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Hofland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,己被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术之本章主要介绍遗传算法的基本概念,遗传算法的数学理论基础和遗传算法的基本实现技术。

2.4.1遗传算法概述

模拟生物界中自然选择和群体遗传机制的遗传算法,采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。由于它采用种群的方式组织搜索,这使得它可以同时搜索解空间内的多个域,而且用种群组织搜索的方式使得它特别适合大规模并行。因此它能够解决许多常规方法

尚无法处理的复杂优化问题。

2.4.2遗传算法的特点

遗传算法具有如下优点:

(l)对可行解表示的广泛性。遗传算法处理的对象不是参数本身,而是针对那些通过参数集进行编码得到的基因个体。此编码操作使得遗传算法可以直接对结构对象进行操作。

(2)群体搜索特性。许多传统的搜索方法都是单点搜索,这种点对点的搜索方法,对于多峰分布的搜索空间常常会陷于局部的某个单峰的极值点。相反,遗传算法采用的是同时处理群体中多个个体的方法,即同时对搜索空间中的多个解进行评估。这一特点使遗传算法具有较好的全局搜索性能,也使得遗传算法本身易于并行化。

(3)不需要辅助信息。遗传算法仅用适应度函数的数值来评估基因个体,并在此基础上进行遗传操作。更重要的是,遗传算法的适应度函数不仅不受连续可微的约束,而且其定义域可以任意设定。对适应度函数的唯一要求是,编码必须与可行解空间对应,不能有死码。由于限制条件的缩小,使得遗传算法的应用范围大大扩展。

(4)内在的启发式随机搜索特征。遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导它的搜索方向。

(5)遗传算法在搜索过程中不容易陷入局部最优,即使在所定义的适应度函数是不连续的、非规则的或有噪声的情况下,也能以很大的概率找到全局最优解。

(6)遗传算法采用自然进化机制来表现复杂的现象,能够快速可靠的解决求解非常困难的问题。

(7)遗传算法具有固有的并行性和并行计算的能力。

(8)遗传算法具有可扩展的能力,易于同别的技术结合起来使用。

同时遗传算法也具有如下不足之处:

(l)编码不规范及编码存在表示的不准确性。

(2)单一的遗传算法编码不能全面的将优化问题的约束表示出来。考虑

约束的一个方法就是对不可行解采用闲值,这样,计算的时间必然增加。

(3)遗传算法通常的效率比其他传统的优化方法低。

(4)遗传算法容易出现过早收敛。

(5)遗传算法对算法的精度、可信度、计算复杂性等方面还没有有效的定量分析方法。

2.4.3遗传算法的运算流程

遗传算法模拟了自然选择和遗传中发生的复制。交叉和变异等现象,从任一初始种群(Population)出发,通过随机选择。交叉和变异操作,产生一群更适应环境的个体,使群体进化到搜索空间中越来越好的区域,这样一代一代地不断繁衍进化,最后收敛到一群最适应环境的个体(Individuai),求得问题的最优解。

遗传算法的运算流程包括编码、初始群体生成、适应度值评价检测、选择、交叉、变异六部分,下面分别做简要的介绍。

(l)编码:解空间的解数据x,作为遗传算法的表现型形式。从表现型到基因型的映射称为编码。遗传算法在进行搜索之前先将解空间的解数据表示成遗传空间的基因型串结构数据,这些串结构数据的不同组合就构成了不同的点。

(2)初始群体的生成:随机生成N个串结构数据,每个串结构数据称为一个个体,N个个体构成一个群体。遗传算法以这N个串结构作为初始点开始迭代。设臵进化代数计数器t=0;设臵最大进化代数T;随机生成N个个体作为初始群体尸(0);

(3)适应度值评价检测:适应度函数表明个体或解的优劣性。对于不同的问题,适应度函数定义的方式不同。根据具体的问题,计算群体p(t)中各个个体的适应度。

(4)选择:将选择算子作用于群体,根据适应度函数值的大小,选取适应度高的个体进行下一步的操作。

(5)交叉:将交叉算子作用于群体,交叉操作以交叉概率此随机选取群体中的个体在随机生成的位臵进行交叉。

(6)变异:将变异算子作用于群体,变异操作以变异概率凡随机选取个体中的基于位进行变异,得到新的个体。

根据上述的流程,可以观察得出遗传算法存在初始种群个数N,交叉概率Pc和变异概率Pm这三个关键参数,这三个关键参数有如下的确定规则:

(l)初始群体规模N

群体规模影响遗传优化的最终结果以及遗传算法的执行效率。当群体规模N太小时,遗传算法的优化性能一般不会太好,而采用较大的群体规模则可减少遗传算法陷入局部最优解的机会,但较大的群体规模意味着计算复杂度高。一般取N从10到160之间。

(2)交叉概率Pc

交叉概率凡控制着交叉操作被使用的频度。较大的交叉概率可增强遗传算法开辟新的搜索区域的能力,但高性能的模式遭到破坏的可能性增大;若交叉概率太低,遗传算法搜索可能陷入迟钝状态。一般取只从0.25到1.00之间。

(3)变异概率Pm

变异在遗传算法中属于辅助性的搜索操作,它的主要目的是维持解群体的多样性。一般,低频度的变异可防止群体中重要的、单一基因的可能丢失,高频度的变异将使遗传算法趋于纯粹的随机搜索。通常取变异概率凡为0.001左右。

2.4.4遗传算法的基本操作

遗传算法具有三个基本操作:选择(Selection),交叉(Crossover)和变异(Mutation)。

(l)选择。选择的目的是为了从当前的群体中选出优良的个体,使它们有机会作为父代为下一代繁衍子孙。根据个体的适应度值,按照一定的规则或方法从上一代群体中选择出一些优良的个体遗传到下一代群体中。遗传算法通过选择运算体现这一思想,进行选择的原则是适应性强的个体为下一代贡献一个和多个后代的概率大。这样就体现了达尔文的适者生存原

则。

(2)交叉。交叉操作是遗传算法中最主要的操作。通过交叉操作可以得到新一代个体,新个体组合了父辈个体的特征。将群体内的各个个体随机搭配成对,对每一个个体,以交叉概率(crossoverRate)尺交换它们之间的部分染色体。交叉体现了信息交换的思想。

(3)变异。变异操作首先在群体中选择一个个体,对于选中的个体以变异概率凡随机改变串结构数据中某个串的值,即对群体中的每一个个体以变异概率(MutationRate)凡改变某一个或某一些基因座上的基因值为其他的等位基因。同生物界一样,遗传算法中变异发生的概率很低。变异为新个体的产生提供了机会。

2.4.5标准遗传算法

标准遗传算法(也称为基本遗传算法或简单遗传算法,Simple Genetic Algorithm ,简称SGA)是一种群体型操作,该操作以群体中的所有个体为对象,只使用基本的遗传算子(Genetic Operator):选择算子(Sdection Operator),交叉算子(Crossover Operator)和变异算子(Mutation Operator)。其遗传进化操作过程简单,容易理解,是其他遗传算法的基础,它不仅给其他遗传算法提供了一个基本框架,同时也具有一定的应用价值。选择、交叉和变异是遗传算法的3个主要操作算子,他们构成了遗传操作,使遗传算法具有了其他算法没有的特点。

下面描述SGA 的数学模型。

SGA 可表示为:

),,,,,,,(0T N P E C SGA ψΓΦ=

其中:C ——个体的编码方法;

E ——个体适应度评价函数;

0P ——初始种群;

N ——种群大小;

Φ——选择算子;

Γ——交叉算子;

ψ——变异算子;

T ——遗传算法迭代终止条件。

下图为SGA 的流程图:

图2.4-1 SGA 流程图

2.4.6多目标优化及Pareto 最优解

多目标优化问题可以描述如下:

)](,),(),(min[21x f x f x f m ?

?????≤*=*≤≤b x A beq

x Aeq ub x lb t s ..

其中,)(x f i 为待优化的目标函数;x 为待优化的变量;lb 和ub 分别为变量x 的下限和上限约束;beq x Aeq =*为变量x 的线性等式约束;b x A ≤*为变量x 的线性不等式约束。

在图所示的优化问题中,目标函数1f 和2f 是相互矛盾的。因为A1B2,也就是说,某一个目标函数的提高需要以另一个目标函数的降低作为代价,称这样的解A 和解B 是非劣解(noninferiority solutions ),或者说是Pareto 最优解(Pareto optima )。多目标优化算法的目的就是要寻

找这些Pareto最优解。

2.4-2多目标优化问题

基于优化问题的多目标布谷鸟搜索算法

基于优化问题的多目标布谷鸟搜索算法

基于优化问题的多目标布谷鸟搜索算法 关键字:布谷鸟搜索、元启发式算法、多目标、最优化 摘要:在工程设计方面,很多问题都是典型的多目标问题,而且,都是复杂的非线性问题。现在我们研究的优化算法就是为了解决多目标化的问题,使得与单一目标问题的解决有明显的区别,计算结果和函数值有可能会增加多目标问题的特性。此时,元启发式算法开始显示出自己在解决多目标优化问题中的优越性。在本篇文章中,我们构造了一个新的用于解决多目标优化问题的算法——布谷鸟搜索算法。我们通过一系列的多目标检验函数对其的有效性已经做出来检验,发现它可以应用于解决结构设计等问题中去,例如:光路设计、制动器设计等。另外,我么还对该算法的主要特性和应用做了相关的分析。 1.简介 在设计问题中经常会考虑到很多多重的复杂问题,而且这些问题往往都具有很高的非线性性。在实际中,不同的目标之间往往会有分歧和冲突,有时候,实际的最优化解决方案往往不存在,而一些折中的和近似的方案往往也可以使用。除了这些挑战性和复杂性以外,设计问题还会受到不同设计目标的约束,而且还会被设计代码、设计标准、材料适应性、和可用资源的选择,以及

设计花费等所限制,甚至是关于单一目标的全局最优问题也是如此,如果设计函数有着高度的非线性性,那么全局最优解是很难达到的,而且,很多现实世界中的问题经常是NP-hard的,这就意味着没有一个行之有效的算法可以解决我们提出的问题,因此,对于一个已经提出的问题,启发式算法和科学技术与具体的学科交叉知识经常被用于其中,用来作为解决问题的向导。 另一方面,元启发算法在解决此类优化问题方面是非常有效的,而且已经在很多刊物和书籍中得以运用,与单一目标的优化问题相反的是,多目标优化问题具有典型的复杂性和困难性,在单一目标的优化问题中我们必须去找出一个最优化的解决方法,此方法在问题的解决中存在着一个单一的点,并且在此问题中不包括那些多重的、平均优化的点,对于一个多目标的优化问题,存在着名为Pareto-front的多重的复杂的优化问题,为了了解我们所不熟悉的Pareto-front问题,我们需要收集并整理很多不同的方法,从而,此计算结果将会随着近似解的变化、问题的复杂度和解决方法的多样性而有所变化甚至增加。在理论上,此类解决方法应包括问题并且应相对的有一致无分歧的分布情况,然而,还没有科学的方法可以证明这种解决方法可以在实际中得以应用。 从问题的出发点我们可以得知,算法可以在单一目标优化问题中运行的很好,但是却不能在多目标的优化问题中直接的运用,除非是在特殊的环境与条件下才可以应用。例如,使用一些

浅析多目标优化问题

浅析多目标优化问题 【摘要】本文介绍了多目标优化问题的问题定义。通过对多目标优化算法、评估方法和测试用例的研究,分析了多目标优化问题所面临的挑战和困难。 【关键词】多目标优化问题;多目标优化算法;评估方法;测试用例 多目标优化问题MOPs (Multiobjective Optimization Problems)是工程实践和科学研究中的主要问题形式之一,广泛存在于优化控制、机械设计、数据挖掘、移动网络规划和逻辑电路设计等问题中。MOPs有多个目标,且各目标相互冲突。对于MOPs,通常存在一个折衷的解集(即Pareto最优解集),解集中的各个解在多目标之间进行权衡。获取具有良好收敛性及分布性的解集是求解MOPs的关键。 1 问题定义 最小化MOPs的一般描述如下: 2 多目标优化算法 目前,大量算法用于求解MOPs。通常,可以将求解MOPs的算法分为两类。 第一类算法,将MOPs转化为单目标优化问题。算法为每个目标设置权值,通过加权的方式将多目标转化为单目标。经过改变权值大小,多次求解MOPs 可以得到多个最优解,构成非支配解集[1]。 第二类算法,直接求解MOPs。这类算法主要依靠进化算法。进化算法这种面向种群的全局搜索法,对于直接得到非支配解集是非常有效的。基于进化算法的多目标优化算法被称为多目标进化算法。根据其特性,多目标进化算法可以划分为两代[2]。 (1)第一代算法:以适应度共享机制为分布性策略,并利用Pareto支配关系设计适应度函数。代表算法如下。VEGA将种群划分为若干子种群,每个子种群相对于一个目标进行优化,最终将子种群合并。MOGA根据解的支配关系,为每个解分配等级,算法按照等级为解设置适应度函数。NSGA采用非支配排序的思想为每个解分配虚拟适应度值,在进化过程中,算法根据虚拟适应度值采用比例选择法选择下一代。NPGA根据支配关系采用锦标赛选择法,当解的支配关系相同时,算法使用小生境技术选择最优的解进入下一代。 (2)第二代算法:以精英解保留机制为特征,并提出了多种较好的分布性策略。代表算法如下。NSGA-II降低了非支配排序的复杂度,并提出了基于拥挤距离的分布性策略。SPEA2提出了新的适应度分配策略和基于环境选择的分布性策略。PESA-II根据网络超格选择个体并使用了基于拥挤系数的分布性策略。

多目标优化问题

多目标优化方法 基本概述 几个概念 优化方法 一、多目标优化基本概述 现今,多目标优化问题应用越来越广,涉及诸多领域。在日常生活与工程中,经常要求不只一项指标达到最优,往往要求多项指标同时达到最优,大量的问题都可以归结为一类在某种约束条件下使多个目标同时达到最优的多目标优化问题。例如:在机械加工时,在进给切削中,为选择合适的切削速度与进给量,提出目标:1)机械加工成本最低2)生产率低3)刀具寿命最长;同时还要满足进给量小于加工余量、刀具强度等约束条件。 多目标优化的数学模型可以表示为: X=[x1,x2,…,x n ]T----------n维向量 min F(X)=[f1(X),f2(X),…,f n(X)]T----------向量形式的目标函数s、t、g i(X)≤0,(i=1,2,…,m) h j(X)=0,(j=1,2,…,k)--------设计变量应满足的约束条件多目标优化问题就是一个比较复杂的问题,相比于单目标优化问题,在多目标优化问题中,约束要求就是各自独立的,所以无法直接比较任意两个解的优劣。 二、多目标优化中几个概念:最优解,劣解,非劣解。 最优解X*:就就是在X*所在的区间D中其函数值比其她任何点的函数

值要小即f(X*)≤f(X),则X*为优化问题的最优解。 劣解X*:在D中存在X使其函数值小于解的函数值,即f(x)≤f(X*), 即存在比解更优的点。 非劣解X*:在区间D中不存在X使f(X)全部小于解的函数值f(X*)、 如图:在[0,1]中 X*=1为最优解 在[0,2]中 X*=a为劣解 在[1,2]中 X*=b为非劣解 多目标优化 问题中绝对最优 解存在可能性一般很小,而劣解没有意义,所以通常去求其非劣解来解决问题。 三、多目标优化方法 多目标优化方法主要有两大类: 1)直接法:直接求出非劣解,然后再选择较好的解 将多目标优化问题转化为单目标优化问题。 2)间接法如:主要目标法、统一目标法、功效系数法等。 将多目标优化问题转化为一系列单目标优化问题。 如:分层系列法等。

多目标优化实例和matlab程序

NSGA-II 算法实例 目前的多目标优化算法有很多, Kalyanmoy Deb 的带精英策略的快速非支配排序遗传算法(NSGA-II) 无疑是其中应用最为广泛也是最为成功的一种。本文用的算法是MATLAB 自带的函数gamultiobj ,该函数是基于NSGA-II 改进的一种多目标优化算法。 一、 数值例子 多目标优化问题 424221********* 4224212212112 12min (,)10min (,)55..55 f x x x x x x x x x f x x x x x x x x x s t x =-++-=-++-≤≤??-≤≤? 二、 Matlab 文件 1. 适应值函数m 文件: function y=f(x) y(1)=x(1)^4-10*x(1)^2+x(1)*x(2)+x(2)^4-x(1)^2*x(2)^2; y(2)=x(2)^4-x(1)^2*x(2)^2+x(1)^4+x(1)*x(2); 2. 调用gamultiobj 函数,及参数设置: clear clc fitnessfcn=@f; %适应度函数句柄 nvars=2; %变量个数 lb=[-5,-5]; %下限 ub=[5,5]; %上限 A=[];b=[]; %线性不等式约束 Aeq=[];beq=[]; %线性等式约束 options=gaoptimset('paretoFraction',0.3,'populationsize',100,'generations', 200,'stallGenLimit',200,'TolFun',1e-100,'PlotFcns',@gaplotpareto); % 最优个体系数paretoFraction 为0.3;种群大小populationsize 为100,最大进化代数generations 为200, % 停止代数stallGenLimit 为200, 适应度函数偏差TolFun 设为1e-100,函数gaplotpareto :绘制Pareto 前端 [x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)

用粒子群算法求解多目标优化问题的Pareto解

粒子群算法程序 tic D=10;%粒子群中粒子的个数 %w=0.729;%w为惯性因子 wmin=1.2; wmax=1.4; c1=1.49445;%正常数,成为加速因子 c2=1.49445;%正常数,成为加速因子 Loop_max=50;%最大迭代次数 %初始化粒子群 for i=1:D X(i)=rand(1)*(-5-7)+7; V(i)=1; f1(i)=X(i)^2; f2(i)=(X(i)-2)^2; end Loop=1;%迭代计数器 while Loop<=Loop_max%循环终止条件 %对粒子群中的每个粒子进行评价 for i=1:D k1=find(1==Xv(i,:));%找出第一辆车配送的城市编号 nb1=size(k1,2);%计算第一辆车配送城市的个数 if nb1>0%判断第一辆车配送城市个数是否大于0,如果大于0则 a1=[Xr(i,k1(:))];%找出第一辆车配送城市顺序号 b1=sort(a1);%对找出第一辆车的顺序号进行排序 G1(i)=0;%初始化第一辆车的配送量 k51=[]; am=[]; for j1=1:nb1 am=find(b1(j1)==Xr(i,:)); k51(j1)=intersect(k1,am);%计算第一辆车配送城市的顺序号 G1(i)=G1(i)+g(k51(j1)+1);%计算第一辆车的配送量 end k61=[]; k61=[0,k51,0];%定义第一辆车的配送路径 L1(i)=0;%初始化第一辆车的配送路径长度 for k11=1:nb1+1 L1(i)=L1(i)+Distance(k61(k11)+1,k61(k11+1)+1);%计算第一辆车的配送路径长度end else%如果第一辆车配送的城市个数不大于0则 G1(i)=0;%第一辆车的配送量设为0 L1(i)=0;%第一辆车的配送路径长度设为0 end

多目标优化算法与求解策略

多目标优化算法与求解策略 2多目标优化综述 2.1多目标优化的基本概念 多目标优化问题(Multi-objective Optimization Problem,MOP)起源于许多实际复杂系统的设计、建模和规划问题,这些系统所在的领域包括工业制造、城市运输、资本预算、森林管理、水库管理、新城市的布局和美化、能量分配等等。几乎每个重要的现实生活中的决策问题都要在考虑不同的约束的同时处理若干相互冲突的目标,这些问题都涉及多个目标的优化,这些目标并不是独立存在的,它们往往是祸合在一起的互相竞争的目标,每个目标具有不同的物理意义和量纲。它们的竞争性和复杂性使得对其优化变得困难。 多目标最优化是近20多年来迅速发展起来的应用数学的一门新兴学科。它研究向量目标函数满足一定约束条件时在某种意义下的最优化问题。由于现实世界的大量问题,都可归结为含有多个目标的最优化问题,自70年代以来,对于多目标最优化的研究,在国内和国际上都引起了人们极大的关注和重视。特别是近10多年来,理论探索不断深入,应用范围日益广泛,研究队伍迅速壮大,显示出勃勃生机。同时,随着对社会经济和工程设计中大型复杂系统研究的深入,多目标最优化的理论和方法也不断地受到严峻挑战并得到快速发展。近几年来,将遗传算法(Genetic Algorithm,GA)应用于多目标优化问题成为研究热点,这种算法通常称作多目标优化进化算法或多目标优化遗传算法。由于遗传算法的基本特点是多方向和全局搜索,这使得带有潜在解的种群能够一代一代地维持下来。从种群到种群的方法对于搜索Pareto解来说是十分有益的。 一般说来,科学研究与工程实践中许多优化问题大都是多目标优化问题。多目标优化问题中各目标之间通过决策变量相互制约,对其中一个目标优化必须以其它目标作为代价,而且各目标的单位又往往不一致,因此很难客观地评价多目标问题解的优劣性。与单目标优化问题的本质区别在于,多目标优化问题的解不是唯一的,而是存在一个最优解集合,集合中

多目标优化的求解方法

多目标优化的求解方法 多目标优化(MOP)就是数学规划的一个重要分支,就是多于一个的数值目标函数在给定区域上的最优化问题。 多目标优化问题的数学形式可以描述为如下: 多目标优化方法本质就是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。目前主要有以下方法: (1)评价函数法。常用的方法有:线性加权与法、极大极小法、理想点法。评价函数法的实质就是通过构造评价函数式把多目标转化为单目标。 (2)交互规划法。不直接使用评价函数的表达式,而就是使决策者参与到求解过程,控制优化的进行过程,使分析与决策交替进行,这种方法称为交互规划法。常用的方法有:逐步宽容法、权衡比替代法,逐次线性加权与法等。 (3)分层求解法。按目标函数的重要程度进行排序,然后按这个排序依次进行单目标的优化求解,以最终得到的解作为多目标优化的最优解。 而这些主要就是通过算法来实现的, 一直以来很多专家学者采用不同算法解决多目标优化问题, 如多目标进化算法、多目标粒子群算法与蚁群算法、模拟退火算法及人工免疫系统等。 在工程应用、生产管理以及国防建设等实际问题中很多优化问题都就是多目标优化问题, 它的应用很广泛。 1)物资调运车辆路径问题 某部门要将几个仓库里的物资调拨到其她若干个销售点去, 在制定调拨计划时一般就要考虑两个目标, 即在运输过程中所要走的公里数最少与总的运输费用最低, 这就是含有两个目标的优化问题。利用首次适配递减算法与标准蚁群算法对救灾物资运输问题求解, 求得完成运输任务的最少时间, 将所得结果进行了比较。 2)设计 如工厂在设计某种新产品的生产工艺过程时, 通常都要求产量高、质量好、成本低、消耗少及利润高等, 这就就是一个含有五个目标的最优化问题; 国防部门在设计导弹时, 要考虑导弹的射程要远、精度要最高、重量要最轻以及消耗燃料要最省等,这就就是一个含有四个目标的最优化问题。Jo等人将遗传算法与有限元模拟软件结合

多目标最优化模型

第六章 最优化数学模型 §1 最优化问题 1.1 最优化问题概念 1.2 最优化问题分类 1.3 最优化问题数学模型 §2 经典最优化方法 2.1 无约束条件极值 2.2 等式约束条件极值 2.3 不等式约束条件极值 §3 线性规划 3.1 线性规划 3.2 整数规划 §4 最优化问题数值算法 4.1 直接搜索法 4.2 梯度法 4.3 罚函数法 §5 多目标优化问题 5.1 多目标优化问题 5.2 单目标化解法 5.3 多重优化解法 5.4 目标关联函数解法 5.5 投资收益风险问题 第六章 最优化问题数学模型 §1 最优化问题 1.1 最优化问题概念 (1)最优化问题 在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。而求解最优化问题的数学方法被称为最优化方法。它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。 最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值;②求出取得极值时变量的取值。 最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。 (2)变量 变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。 设问题中涉及的变量为n x x x ,,,21 ;我们常常也用),,,(21n x x x X 表示。 (3)约束条件 在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件。 例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设

多目标最优化模型

第六章最优化数学模型 §1最优化问题 1.1最优化问题概念 1.2最优化问题分类 1.3最优化问题数学模型 §2经典最优化方法 2.1无约束条件极值 2.2等式约束条件极值 2.3不等式约束条件极值 §3线性规划 3.1线性规划 3.2整数规划 §4最优化问题数值算法 4.1直接搜索法 4.2梯度法 4.3罚函数法 §5多目标优化问题 5.1多目标优化问题 5.2单目标化解法 5.3多重优化解法 5.4目标关联函数解法 5.5投资收益风险问题 第六章最优化问题数学模 §1最优化问题 1.1最优化问题概念 (1)最优化问题在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。而求解最优化问题的数学方法被称为最优化方法。它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。 最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值; ②求出取得极值时变量的取值。 最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。 (2)变量变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。 一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。 设问题中涉及的变量为x1,x2, , x n ;我们常常也用X (x1,x2, ,x n)表示。 3)约束条件 在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设

多目标优化进化算法比较综述

龙源期刊网 https://www.wendangku.net/doc/268672426.html, 多目标优化进化算法比较综述 作者:刘玲源 来源:《决策与信息·下旬刊》2013年第07期 摘要多目标优化是最优化领域的一个重要研究方向,本文简要介绍了多目标优化的模型和几种多目标优化的进化算法,并对算法进行了简要比较。 关键词多目标优化粒子群遗传算法蚁群算法人工免疫系统 中图分类号:TP391 文献标识码:A 一、背景 多目标优化(Multiobjective OptimizaTionProblem,MOP)是最优化的一个重要分支,多目标问题中的各目标往往是有着冲突性的,其解不唯一,如何获得最优解成为多目标优化的一个难点,目前还没有绝对成熟与实用性好的理论。近年来,粒子群算法、遗传算法、蚁群算法、人工免疫系统、等现代技术也被应用到多目标优化中,使多目标优化方法取得很大进步。本文将其中四种多目标优化的进化算法进行一个简单的介绍和比较。 二、不同算法介绍 (一)多目标遗传算法。 假定各目标的期望目标值与优先顺序已给定,从优先级最高的子目标向量开始比较两目标向量的优劣性,从目标未满足的子目标元素部分开始每一级子目标向量的优劣性比较,最后一级子目标向量中的各目标分量要全部参与比较。给定一个不可实现的期望目标向量时,向量比较退化至原始的Pareto排序,所有目标元素都必须参与比较。算法运行过程中,适应值图景可由不断改变的期望目标值改变,种群可由此被引导并集中至某一特定折中区域。当前种群中(基于Pareto最优概念)优于该解的其他解的个数决定种群中每一个向量解的排序。 (二)人工免疫系统。 人工免疫算法是自然免疫系统在进化计算中的一个应用,将抗体定义为解,抗原定义为优化问题,抗原个数即为优化子目标的个数。免疫算法具有保持个体多样性、搜索效率高、群体优化、避免过早收敛等优点。其通用的框架是:将优化问题的可行解对应抗体,优化问题的目标函数对应抗原,Pareto最优解被保存在记忆细胞集中,并采取某种机制对记忆集进行不断更新,进而获得分布均匀的Pareto最优解。 (三)多目标PSO约束算法。

多目标最优化数学模型

第六章最优化数学模型 §1 最优化问题 1.1 最优化问题概念 1.2 最优化问题分类 1.3 最优化问题数学模型 §2 经典最优化方法 2.1 无约束条件极值 2.2 等式约束条件极值2.3 不等式约束条件极值 §3 线性规划 3.1 线性规划 3.2 整数规划 §4 最优化问题数值算法4.1 直接搜索法 4.2 梯度法 4.3 罚函数法 §5 多目标优化问题 5.1 多目标优化问题 5.2 单目标化解法 5.3 多重优化解法 5.4 目标关联函数解法5.5 投资收益风险问题

第六章 最优化问题数学模型 §1 最优化问题 1.1 最优化问题概念 (1)最优化问题 在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。而求解最优化问题的数学方法被称为最优化方法。它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。 最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值;②求出取得极值时变量的取值。 最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。 (2)变量 变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。 设问题中涉及的变量为n x x x ,,,21 ;我们常常也用),,,(21n x x x X =表示。 (3)约束条件 在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件。 例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设计问题时,变量必须服从电路基本定律,这也是一种限制等等。在研究问题时,这些限制我们必须用数学表达式准确地描述它们。 用数学语言描述约束条件一般来说有两种: 等式约束条件 m i X g i ,,2,1,0)( == 不等式约束条件 r i X h i ,,2,1, 0)( =≥ 或 r i X h i ,,2,1, 0)( =≤ 注:在最优化问题研究中,由于解的存在性十分复杂,一般来说,我们不考虑不等式约束条件0)(>X h 或0)(

多目标优化问题

多目标优化方法 基本概述几个概念优化方法 一、多目标优化基本概述 现今,多目标优化问题应用越来越广,涉及诸多领域。在日常生活和工程中,经常要求不只一项指标达到最优,往往要求多项指标同时达到最优,大量的问题都可以归结为一类在某种约束条件下使多个目标同时达到最优的多目标优化问题。例如:在机械加工时,在进给切削中,为选择合适的切削速度和进给量,提出目标:1)机械加工 成本最低2)生产率低3)刀具寿命最长;同时还要满足进给量小于加工余量、刀具强度等约束条件。 多目标优化的数学模型可以表示为: X=[x i,x 2,…,x n ] T ---------------------------------- n 维向量 min F(X)=[f i(X),f 2(X),…,f n(X)] T- --------- 向量形式的目标 函数 s.t. g i(X) < 0,(i=1,2,…,m) h j (X)=0,(j=1,2,…,k) ------ 设计变量应满足的约 束条件 多目标优化问题是一个比较复杂的问题,相比于单目标优化问题,在 多目标优化问题中,约束要求是各自独立的,所以无法直接比较任意两个解的优劣。 二、多目标优化中几个概念:最优解,劣解,非劣解。 最优解X*:就是在乂所在的区间D中其函数值比其他任何点的函数值要小即f(X *)

如图:在[0,1] 中 X*=1为最优解 在[0,2] 中X*=a为劣解 在[1,2] 中X*=b为非劣解 多目标优化问 题中绝对最优解存 在可能性一般很 小,而劣解没有 意义,所以通常去 求其非劣解来解决 问题。 三、多目标优化方法 多目标优化方法主要有两大类: 1)直接法:直接求出非劣解,然后再选择较好的解 将多目标优化问题转化为单目标优化问题。 2)间接法女口:主要目标法、统一目标法、功效系数法等。 将多目标优化问题转化为一系列单目标优化问题。女口:分层系列法等。 1、主要目标法 求解时从多目标中选择一个目标作为主要目标,而其他目标只需满足一定要求即可,因此可将这些目标转化成约束条件,也就是用约束条件的形式保证其他目标不致太差,这样就变成单目标处理方法。 例如:多目标函数f 1(X),f 2(X),.?…,f n(X)中选择f k(X)作为主 要目标,这时问题变为求min f k(x) D={x|f min < f i(X)< f ma》,D为解所对应的其他目标函数应满足上下限。 2、统一目标法 通过某种方法将原来多目标函数构造成一个新的目标函数,从而将多目标函数转变为单目标函数求解。 ①线性加权和法 根据各目标函数的重要程度给予相应的权数,然后各目标函数与

09第九章 多目标优化算法

第九章多目标优化算法习题与答案 1. 填空题 (1)多目标优化问题由于存在目标,使得同时优化的对象增多。由于目标之间往往相互冲突,某一目标性能的提高会引起其他目标性能的,因此只能通过的方法使所有目标尽可能达到最优。 (2)多目标优化问题需要求解一个由不同程度折中的组成的解集,并且需要保证解集的和,这就导致多目标优化问题的求解难度远远大于单目标优化问题。 解释: 本题考查多目标优化算法的基础知识。 具体内容请参考课堂视频“第9章多目标优化算法”及其课件。 答案: (1)多个,降低,权衡折中 (2)最优解,收敛性,均匀性 2.如何理解多目标优化问题? 解释: 本题考查多目标优化问题的形式和实质。 内容请参考课堂视频“第9章多目标优化算法”及其课件。 答案: 多目标优化问题由于存在多个目标,优化对象增多,且目标之间往往是相互冲突的,某一目标性能的提高会引起其他目标性能的降低,因此只能通过权衡折中的方法使所有目标尽可能达到最优。不同于单目标优化只需求得一个最优解,多目标优化需要求解一个由不同程度折中的最优解组成的解集,且需同时保证解集的收敛性和均匀性。例如,购买汽车时考虑到汽车性能和价格两个方面,往往

当性能较好时性能优良且价格昂贵,而性能较差时价格低廉,人们总是想得到价格便宜同时性能又好的汽车,但这两方面往往不能同时兼优,只能在某一方面有所偏重,这就形成了一个以汽车性能(比如百米加速时间)和价格为两个冲突目标的多目标优化问题。 3. 试举例说明Pareto 支配关系具有传递性。 解释: 本题考查Pareto 支配关系的性质。 内容请参考课堂视频“第9章多目标优化算法”及其课件。 答案: 假设两目标最小优化的三个个体,123=(2,2)=(3,3)=(4,4)C C C ,,,则1 2C C , 2 3C C ,又因为1 3C C ,所以Pareto 支配关系具有传递性。 4. 考虑一个具有两个目标最小化问题,20个个体的进化群体,进行Pareto 非支配排序分层。20个个体定义如下:C 1=(9,1),C 2=(7,2),C 3= (5,4),C 4=(4,5),C 5=(3,6),C 6=(2,7),C 7=(1,9),C 8=(10,1),C 9=(8,5),C 10=(7,6),C 11=(5,7),C 12=(4,8),C 13=(3,9),C 14=(10,5),C 15=(9,6),C 16=(8,7),C 17=(7,9),C 18=(10,6),C 19=(9,7),C 20=(8,9) 解释: 本题考查基于Pareto 支配的排序方法。 内容请参考课堂视频“第9章多目标优化算法”及其课件。 答案: 由于{}18C C ;{}2349,,C C C C ;{}234510,,,C C C C C ;{}345611,,,C C C C C ; {} 45612 ,,C C C C ; {} 56713 ,,C C C C ; {} 12348914 ,,,,,C C C C C C C ;{} 1234591015 ,,,,,,C C C C C C C C ; {} 234569101116 ,,,,,,,C C C C C C C C C ;

多目标优化的求解方法

多目标优化的求解方法 多目标优化(MOP)是数学规划的一个重要分支,是多于一个的数值目标函数在给定区域上的最优化问题。 多目标优化问题的数学形式可以描述为如下: 多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。目前主要有以下方法: (1)评价函数法。常用的方法有:线性加权和法、极大极小法、理想点法。评价函数法的实质是通过构造评价函数式把多目标转化为单目标。 (2)交互规划法。不直接使用评价函数的表达式,而是使决策者参与到求解过程,控制优化的进行过程,使分析和决策交替进行,这种方法称为交互规划法。常用的方法有:逐步宽容法、权衡比替代法,逐次线性加权和法等。 (3)分层求解法。按目标函数的重要程度进行排序,然后按这个排序依次进行单目标的优化求解,以最终得到的解作为多目标优化的最优解。 而这些主要是通过算法来实现的, 一直以来很多专家学者采用不同算法解决多目标优化问题, 如多目标进化算法、多目标粒子群算法和蚁群算法、模拟退火算法及人工免疫系统等。

在工程应用、生产管理以及国防建设等实际问题中很多优化问题都是多目标优化问题, 它的应用很广泛。 1)物资调运车辆路径问题 某部门要将几个仓库里的物资调拨到其他若干个销售点去, 在制定调拨计划时一般就要考虑两个目标, 即在运输过程中所要走的公里数最少和总的运输费用最低, 这是含有两个目标的优化问题。利用首次适配递减算法和标准蚁群算法对救灾物资运输问题求解, 求得完成运输任务的最少时间, 将所得结果进行了比较。 2)设计 如工厂在设计某种新产品的生产工艺过程时, 通常都要求产量高、质量好、成本低、消耗少及利润高等, 这就是一个含有五个目标的最优化问题; 国防部门在设计导弹时, 要考虑导弹的射程要远、精度要最高、重量要最轻以及消耗燃料要最省等,这就是一个含有四个目标的最优化问题。Jo等人将遗传算法与有限元模拟软件结合应用于汽车零件多工序冷挤压工艺的优化。Chung等人也成功应用遗传算法对锻件工艺进行了优化。 3)投资 假设某决策部门有一笔资金要分配给若干个建设项目, 在确定投资方案时, 决策者总希望做到投资少收益大。Branke等人采用基于信封的多目标进化算法成功地解决了计划投资地选择问题。 4)模拟移动床过程优化与控制 一个工业化模拟移动床正常运行时, 一般有七股物料进、出吸附塔, 其中起关键作用的物料口将作为决策量引起目标值的变化。根据实际生产要求通常包括生产率、产品纯度、吸附剂消耗量等多个目标。模拟移动床分离过程由于其过程操作变量的强耦合性、工艺机理的复杂性及分离性能的影响因素繁多性, 需要众多学者对其操作优化和过程控制进行深入的研究。Huang等人利用TPS 算法解决了模拟移动床多个冲突目标的最大最小的问题, 并与NSGA2 算法的结果进行了比较。吴献东等人运用粒子群算法开发出一种非线性模拟移动床( SMB )色谱分离过程的优化策略。 5)生产调度 在离散制造生产系统中, 一个工件一般经过一系列的工序加工完成, 每道工序需要特定机器和其他资源共同完成, 各工件在各机器上的加工顺序(称技术约束条件)通常是事先给定的。车间调度的作用

多目标优化问题(over)

第七章多目标优化问题的求解 优化问题按照目标函数的数量,可以分为单目标优化问题和多目标优化问题,前面我们讲过的线性优化就是一个单目标优化问题,对单目标优化问题进一步突破,将目标函数扩展为向量函数后,问题就转化为多目标优化问题。本节将简要介绍多目标最优化问题的建模与求解方法。 1、多目标优化模型 多目标优化问题一般表示为 ..()min () s t J ≤= x G x 0 x F 其中121()[(),(),,()]T f f f =F x x x x ,下面将通过例子演示多目标优化问题的建模。 例1 设某商店有123,,A A A 三种糖果,单价分别为4,2.8和2.4元/kg ,现在 要举办一次茶话会,要求买糖果的钱不超过20元,但糖果的总重量不少于6kg , 1A 和2A 两种糖果的总重量不低于3kg ,应该如何确定最好的买糖方案。 分析:首先应该确定目标函数如何选择的问题,本例中,好的方案意味着少花钱多办事,这应该是对应两个目标函数,一个是花钱最少,一个是买的糖果最重,其他的可以认为是约束条件。当然,这两个目标函数有些矛盾,下面考虑如何将这个问题用数学描述。 设123,,A A A 三种糖果的购买重量分别为123,,x x x kg ,这时两个目标函数分别为花钱:1123min ()4 2.8 2.4f x x x =++x ,糖果总重量:2123max ()f x x x =++x ,如果统一用最小值问题表示,则有约束的多目标优化问题可以表示为 123123123123121234 2.8 2.4min -4 2.8 2.4206.. +3,,0 x x x x x x x x x x x x s t x x x x x ++?? ??++??++≤??++≥?? ≥??≥?()模型建立以后,可以考虑用后面的方法进行求解。

相关文档