文档库 最新最全的文档下载
当前位置:文档库 › 二次函数考点和题型归纳

二次函数考点和题型归纳

二次函数考点和题型归纳
二次函数考点和题型归纳

二次函数考点和题型归纳

一、基础知识

1.二次函数解析式的三种形式 一般式:f (x )=ax 2+bx +c (a ≠0); 顶点式:f (x )=a (x -h )2+k (a ≠0); 两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 2.二次函数的图象与性质

二次函数系数的特征

(1)二次函数y =ax 2+bx +c (a ≠0)中,系数a 的正负决定图象的开口方向及开口大小; (2)-

b

2a

的值决定图象对称轴的位置; (3)c 的取值决定图象与y 轴的交点;

(4)b 2-4ac 的正负决定图象与x 轴的交点个数. 解析式

f (x )=ax 2+bx +c (a >0)

f (x )=ax 2+bx +c (a <0)

图象

定义域 (-∞,+∞)

(-∞,+∞)

值域

???

?4ac -b 24a ,+∞ ?

???-∞,4ac -b 24a

单调性

在???

?-b

2a ,+∞上单调递增;在????-∞,-b 2a 上单调递减

在?

???-∞,-b

2a 上单调递增;在???

?-b 2a ,+∞上单调递减

奇偶性 当b =0时为偶函数,当b ≠0时为非奇非偶函数

顶点 ????-b 2a

,4ac -b 24a 对称性 图象关于直线x =-b

2a

成轴对称图形

二、常用结论

1.一元二次不等式恒成立的条件

(1)“ax 2+bx +c >0(a ≠0)恒成立”的充要条件是“a >0,且Δ<0”. (2)“ax 2+bx +c <0(a ≠0)恒成立”的充要条件是“a <0,且Δ<0”. 2.二次函数在闭区间上的最值

设二次函数f (x )=ax 2+bx +c (a >0),闭区间为[m ,n ]. (1)当-b

2a

≤m 时,最小值为f (m ),最大值为f (n );

(2)当m <-b 2a ≤m +n

2时,最小值为f ????-b 2a ,最大值为f (n ); (3)当

m +n 2<-b

2a

≤n 时,最小值为f ????-b 2a ,最大值为f (m ); (4)当-b

2a >n 时,最小值为f (n ),最大值为f (m ).

考点一 求二次函数的解析式

求二次函数的解析式常利用待定系数法,但由于条件不同,则所选用的解析式不同,其方法也不同.

[典例] 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.

[解] 法一:利用二次函数的一般式 设f (x )=ax 2+bx +c (a ≠0).

由题意得??

? 4a +2b +c =-1,

a -

b +

c =-1,

4ac -b

2

4a =8,

解得?????

a =-4,

b =4,

c =7.

故所求二次函数为f (x )=-4x 2+4x +7. 法二:利用二次函数的顶点式 设f (x )=a (x -m )2+n .

∵f (2)=f (-1),∴抛物线对称轴为x =2+(-1)2=1

2.

∴m =1

2,又根据题意函数有最大值8,∴n =8,

∴y =f (x )=a ???

?x -1

22+8. ∵f (2)=-1,∴a ????2-1

22+8=-1,解得a =-4, ∴f (x )=-4????x -1

22+8=-4x 2+4x +7. 法三:利用零点式

由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1.

又函数有最大值y max =8,即4a (-2a -1)-a 2

4a =8.

解得a =-4或a =0(舍去),

故所求函数解析式为f (x )=-4x 2+4x +7.

[题组训练]

1.已知二次函数f (x )的图象的顶点坐标是(-2,-1),且图象经过点(1,0),则函数的解析式为f (x )=________.

解析:法一:设所求解析式为f (x )=ax 2+bx +c (a ≠0).

由已知得????? -b

2a

=-2,4ac -b

2

4a =-1,

a +

b +

c =0,

解得?????

a =19

,b =49,

c =-59,

所以所求解析式为f (x )=19x 2+49x -5

9

.

法二:设所求解析式为f (x )=ax 2+bx +c (a ≠0).

依题意得????

?

-b

2a

=-2,4a -2b +c =-1,

a +

b +

c =0,

解得?????

a =19

,b =49,

c =-59,

所以所求解析式为f (x )=19x 2+49x -5

9.

法三:设所求解析式为f (x )=a (x -h )2+k . 由已知得f (x )=a (x +2)2-1, 将点(1,0)代入,得a =1

9,

所以f (x )=1

9(x +2)2-1,

即f (x )=19x 2+49x -5

9.

答案:19x 2+49x -5

9

2.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则函数的解析式f (x )=____________.

解析:∵f (2-x )=f (2+x )对x ∈R 恒成立, ∴f (x )的对称轴为x =2.

又∵f (x )的图象被x 轴截得的线段长为2, ∴f (x )=0的两根为1和3.

设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0). 又∵f (x )的图象经过点(4,3), ∴3a =3,a =1.

∴所求f (x )的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3. 答案:x 2-4x +3

考点二 二次函数的图象与性质

考法(一) 二次函数图象的识别

[典例]若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是()

[解析]因为一次函数y=ax+b的图象经过第二、三、四象限,所以a<0,b<0,所以

二次函数的图象开口向下,对称轴方程x=-b

2a<0,只有选项C适合.

[答案]C

考法(二)二次函数的单调性与最值问题

[典例](1)已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时,有最大值2,则a的值为________.

(2)设二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,且f(m)≤f(0),则实数m的取值范围是________.

[解析](1)函数f(x)=-x2+2ax+1-a=-(x-a)2+a2-a+1,对称轴方程为x=a.

当a<0时,f(x)max=f(0)=1-a,

所以1-a=2,所以a=-1.

当0≤a≤1时,f(x)max=a2-a+1,

所以a2-a+1=2,所以a2-a-1=0,

所以a=1±5

2(舍去).

当a>1时,f(x)max=f(1)=a,所以a=2.

综上可知,a=-1或a=2.

(2)依题意a≠0,二次函数f(x)=ax2-2ax+c图象的对称轴是直线x=1,因为函数f(x)在区间[0,1]上单调递减,所以a>0,即函数图象的开口向上,所以f(0)=f(2),则当f(m)≤f(0)时,有0≤m≤2.

[答案](1)-1或2(2)[0,2]

[解题技法]

1.二次函数最值问题的类型及解题思路 (1)类型:

①对称轴、区间都是给定的; ②对称轴动、区间固定; ③对称轴定、区间变动.

(2)解决这类问题的思路:抓住“三点一轴”数形结合,“三点”是指区间两个端点和中点,“一轴”指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想解决问题.

2.二次函数单调性问题的求解策略

(1)对于二次函数的单调性,关键是开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解.

(2)利用二次函数的单调性比较大小,一定要将待比较的两数通过二次函数的对称性转化到同一单调区间上比较.

考法(三) 与二次函数有关的恒成立问题

[典例] (1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________;

(2)已知函数f (x )=x 2+2x +1,f (x )>x +k 在区间[-3,-1]上恒成立,则k 的取值范围为________.

[解析] (1)作出二次函数f (x )的草图如图所示,对于任意x ∈[m ,m +1],都有f (x )<0,

则有?????

f (m )<0,f (m +1)<0,

即?????

m 2+m 2-1<0,(m +1)2

+m (m +1)-1<0,

解得-

2

2

k 在区间[-3,-1]上恒成立. 设g (x )=x 2+x +1,x ∈[-3,-1], 则g (x )在[-3,-1]上递减. ∴g (x )min =g (-1)=1.

∴k <1.故k 的取值范围为(-∞,1). [答案] (1)?

??

?

22,0 (2)(-∞,1)

[解题技法]

由不等式恒成立求参数取值范围的思路及关键

(1)一般有两个解题思路:一是分离参数;二是不分离参数.

(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立?a ≥f (x )max ,a ≤f (x )恒成立?a ≤f (x )min .

[题组训练]

1.(2019·杭州模拟)已知f (x )=-4x 2+4ax -4a -a 2在[0,1]内的最大值为-5,则a 的值为( )

A.5

4 B .1或54

C .-1或5

4

D .-5或5

4

解析:选D f (x )=-4????x -a 22-4a ,对称轴为直线x =a 2. ①当a

2≥1,即a ≥2时,f (x )在[0,1]上单调递增,

∴f (x )max =f (1)=-4-a 2.

令-4-a 2=-5,得a =±1(舍去).

②当0

2<1,即0

.

③当a

2≤0,即a ≤0时,f (x )在[0,1]上单调递减,

∴f (x )max =f (0)=-4a -a 2.

令-4a -a 2=-5,得a =-5或a =1(舍去). 综上所述,a =5

4

或-5.

2.若函数y =x 2-3x +4的定义域为[0,m ],值域为????

74,4,则m 的取值范围为( ) A .(0,4] B.????

32,4 C.????32,3

D.????32,+∞

解析:选C y =x 2-3x +4=????x -322+7

4的定义域为[0,m ],显然,在x =0时,y =4,又值域为????74,4,根据二次函数图象的对称性知3

2

≤m ≤3,故选C. 3.已知函数f (x )=a 2x +3a x -2(a >1),若在区间[-1,1]上f (x )≤8恒成立,则a 的最大值为________.

解析:令a x =t ,因为a >1,x ∈[-1,1],所以1

a ≤t ≤a ,原函数化为g (t )=t 2+3t -2,显

然g (t )在????1a ,a 上单调递增,所以f (x )≤8恒成立,即g (t )max =g (a )≤8恒成立,所以有a 2

+3a -2≤8,解得-5≤a ≤2,又a >1,所以a 的最大值为2.

答案:2

[课时跟踪检测]

A 级

1.(2019·重庆三校联考)已知二次函数y =ax 2+bx +1的图象的对称轴方程是x =1,并且过点P (-1,7),则a ,b 的值分别是( )

A .2,4

B .-2,4

C .2,-4

D .-2,-4

解析:选C ∵y =ax 2+bx +1的图象的对称轴是x =1,∴-b

2a =1. ①

又图象过点P (-1,7),∴a -b +1=7,即a -b =6. ② 由①②可得a =2,b =-4.

2.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则a 的值为( ) A .-1 B .0 C .1

D .-2

解析:选D 函数f (x )=-x 2+4x +a 的对称轴为直线x =2,开口向下,f (x )=-x 2+4x +a 在[0,1]上单调递增,则当x =0时,f (x )的最小值为f (0)=a =-2.

3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )

解析:选C 若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的图象

开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 的图象开口向下,故可排除D ;对于选项B ,看直线可知a >0,b >0,从而-b

2a <0,而二次函

数的对称轴在y 轴的右侧,故可排除B.故选C.

4.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c ,若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0

D .a <0,2a +b =0

解析:选A 由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-b

2a =2,∴4a +b =

0,又f (0)>f (1),f (4)>f (1),∴f (x )先减后增,于是a >0,故选A.

5.若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( ) A .(-∞,-2) B .(-2,+∞) C .(-6,+∞)

D .(-∞,-6)

解析:选A 不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max , 令f (x )=x 2-4x -2,x ∈(1,4), 所以f (x )

6.已知函数f (x )=x 2+2ax +3,若y =f (x )在区间[-4,6]上是单调函数,则实数a 的取值范围为________.

解析:由于函数f (x )的图象开口向上,对称轴是x =-a , 所以要使f (x )在[-4,6]上是单调函数, 应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4. 答案:(-∞,-6]∪[4,+∞)

7.已知二次函数y =f (x )的顶点坐标为????-3

2,49,且方程f (x )=0的两个实根之差等于7,则此二次函数的解析式是________.

解析:设f (x )=a ???

?x +3

22+49(a ≠0), 方程a ????x +3

22+49=0的两个实根分别为x 1,x 2, 则|x 1-x 2|=2

-49

a

=7, 所以a =-4,所以f (x )=-4x 2-12x +40. 答案:f (x )=-4x 2-12x +40

8.(2018·浙江名校协作体考试)y =2ax 2+4x +a -

1的值域为[0,+∞),则a 的取值范围是________.

解析:当a =0时,y =

4x -1,值域为[0,+∞),满足条件;当a ≠0时,要使y =

2ax 2

+4x +a -1的值域为[0,+∞),只需?

????

2a >0,

Δ=16-8a (a -1)≥0,解得0

0≤a ≤2.

答案:[0,2]

9.求函数f (x )=-x (x -a )在x ∈[-1,1]上的最大值.

解:函数f (x )=-????x -a 22+a 2

4的图象的对称轴为x =a 2,应分a 2<-1,-1≤a 2≤1,a

2

>1,即a <-2,-2≤a ≤2和a >2三种情形讨论.

(1)当a <-2时,由图①可知f (x )在[-1,1]上的最大值为f (-1)=-1-a =-(a +1). (2)当-2≤a ≤2时,由图②可知f (x )在[-1,1]上的最大值为f ????a 2=a

2

4.

(3)当a >2时,由图③可知f (x )在[-1,1]上的最大值为f (1)=a -1.

综上可知,f (x )max

=?????

-(a +1),a <-2,

a

2

4,-2≤a ≤2,a -1,a >2.

10.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;

(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.

解:(1)设f (x )=ax 2+bx +1(a ≠0), 由f (x +1)-f (x )=2x ,得2ax +a +b =2x . 所以,2a =2且a +b =0,解得a =1,b =-1,

因此f (x )的解析式为f (x )=x 2-x +1.

(2)因为当x ∈[-1,1]时,y =f (x )的图象恒在y =2x +m 的图象上方, 所以在[-1,1]上,x 2-x +1>2x +m 恒成立; 即x 2-3x +1>m 在区间[-1,1]上恒成立. 所以令g (x )=x 2-3x +1=????x -322-54, 因为g (x )在[-1,1]上的最小值为g (1)=-1, 所以m <-1.故实数m 的取值范围为(-∞,-1).

B 级

1.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:

①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a

D .①③

解析:选B 因为图象与x 轴交于两点,所以b 2-4ac >0,即b 2>4ac ,①正确; 对称轴为x =-1,即-b

2a =-1,2a -b =0,②错误;

结合图象,当x =-1时,y >0,即a -b +c >0,③错误; 由对称轴为x =-1知,b =2a .

又函数图象开口向下,所以a <0,所以5a <2a ,即5a

2.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈????-2,-1

2时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )

A.1

3 B.1

2

C.34 D .1

解析:选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2,因为x ∈????-2,-1

2,所以f (x )min =f (-1)=0,f (x )max =f (-2)=1,所以m ≥1,n ≤0,m -n ≥1.所以m -n 的最小值是1.

3.已知函数f (x )=x 2+(2a -1)x -3.

(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;

(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. 解:(1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3], 对称轴为x =-3

2∈[-2,3],

∴f (x )min =f ????-32=94-92-3=-214, f (x )max =f (3)=15,

∴函数f (x )的值域为????-21

4,15. (2)∵函数f (x )的对称轴为x =-2a -1

2.

①当-2a -12≤1,即a ≥-12时,

f (x )max =f (3)=6a +3,

∴6a +3=1,即a =-1

3,满足题意;

②当-2a -12>1,即a <-12时,

f (x )max =f (-1)=-2a -1,

∴-2a -1=1,即a =-1,满足题意. 综上可知,a =-1

3

或-1.

4.求函数y =x 2-2x -1在区间[t ,t +1](t ∈R)上的最大值. 解:函数y =x 2-2x -1=(x -1)2-2的图象的对称轴是直线x =1,顶点坐标是(1,-2),函数图象如图所示,对t 进行讨论如下:

(1)当对称轴在闭区间右边,即当t +1<1,即t <0时,函数在区间[t ,t +1]上单调递减,f (x )max =f (t )=t 2-2t -1.

(2)当对称轴在闭区间内时,0≤t ≤1,有两种情况: ①当t +1-1≤1-t ,即0≤t ≤1

2时,

f (x )max =f (t )=t 2-2t -1;

②当t +1-1>1-t ,即1

2

f (x )max =f (t +1)=(t +1)2-2(t +1)-1=t 2-2.

(3)当对称轴在闭区间左侧,即当t >1时,函数在区间[t ,t +1]上单调递增, f (x )max =f (t +1)=(t +1)2-2(t +1)-1=t 2-2.

综上所述,t ≤12时,所求最大值为t 2-2t -1;t >1

2时,所求最大值为t 2-2.

二次函数知识点总结及典型例题和练习(极好)

二次函数知识点总结及典型例题和练习(极好) 知识点一:二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a不为零,那么y叫做x 的二次函数。)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法--------五点作图法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C,再找到点C 的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B,然后顺次连接五点,画出二次函数的图像。 【例1】 已知函数y=x 2-2x-3, (1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。然后画出函数图象的草图; (2)求图象与坐标轴交点构成的三角形的面积: (3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y <0;③ y>0

知识点二:二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2) 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程 02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果 没有交点,则不能这样表示。 (3)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, 当题目中告诉我们抛物线的顶点时,我们最好设顶点式,这样最简洁。 【例1】 抛物线c bx ax y ++=2与x 轴交于A (1,0),B(3,0)两点,且过(-1,16),求抛物线的解析式。 【例2】 如图,抛物线c bx ax y ++=2与x 轴的一个交点A 在点(-2,0)和(-1,0)之间(包括这两点),顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,则: (1)abc 0 (>或<或=) (2)a 的取值范围是 ? 【例3】 下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( ) A.y = (x ? 2)2 + 1 B .y = (x + 2)2 + 1 C .y = (x ? 2)2 ? 3 D.y = (x + 2)2 – 3

二次函数专项复习经典试题集锦(含答案)

二次函数专项复习经典试题集锦(含答案) 一、选择题: 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2=x 2. 二次函数c bx ax y ++=2的图象如右图,则点 ),(a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式 是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 下面所示各图是在同一直角坐标系,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( ) B D 6. 抛物线322+-=x x y 的对称轴是直线( ) A. 2-=x B. 2=x C. 1-=x D. 1=x

7. 二次函数2)1(2+-=x y 的最小值是( ) A. 2- B. 2 C. 1- D. 1 8. 二次函数c bx ax y ++=2的图象如图所示,若 c b a M ++=24c b a N +-=,b a P -=4,则( ) A. 0>M ,0>N ,0>P B. 0N ,0>P C. 0>M ,0P D. 0N ,0

x 时,求使y ≥2的x 的取值围.

二次函数与几何综合压轴题题型归纳88728

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此 抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下:

已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解? ?? ?==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。 (3)如图,B A 、是直线l 同旁的两个定点,线段a ,在直线l 上确定两点E 、F (E 在F 的左侧 ),使得四边形AEFB 的周长最小。 8、在平面直角坐标系中求面积的方法:直接用公式、割补法 三角形的面积求解常用方法:如右图,S △PAB =1/2 ·PM ·△x=1/2 ·AN ·△y 9、函数的交点问题:二次函数(c bx ax y ++=2 )与一次函数(h kx y +=) (1)解方程组???h kx y c bx ax y +=++= 2可求出两个图象交点的坐标。 (2)解方程组???h kx y c bx ax y +=++= 2,即()02 =-+-+h c x k b ax ,通过?可判断两个图象的交点 的个数 有两个交点 ? 0>?

二次函数综合题经典习题(含答案及基本讲解)

二次函数综合题训练题型集合 1、如图1,已知二次函数图象的顶点坐标为C(1,0),直线m x y+ =与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上. (1)求m的值及这个二次函数的关系式; (2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x,求h与x之间 的函数关系式,并写出自变量x的取值范围; (3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说 明理由. 2、如图2,已知二次函数24 y ax x c =-+的图像经过点A和点B.(1)求该二次函数的表达式; (2)写出该抛物线的对称轴及顶点坐标; (3)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q 到x轴的距离 E B A C P 图1 O x y D x y O 3 -9 -1 -1 A B 图2

P B A C O x y Q 图3 3、如图3,已知抛物线c x b x a y ++=2经过O(0,0),A(4,0),B(3,3)三点,连结AB ,过点B 作BC ∥x 轴交该抛物线于点C. (1) 求这条抛物线的函数关系式. (2) 两个动点P 、Q 分别从O 、A 两点同时出发,以每秒1个单位长度的速度运动. 其中,点P 沿着线段0A 向A 点运动,点Q 沿着折线A →B →C 的路线向C 点运动. 设这两个动点运动的时间为t (秒) (0<t <4),△PQA 的面积记为S. ① 求S 与t 的函数关系式; ② 当t 为何值时,S 有最大值,最大值是多少?并指出此时△PQA 的形状; ③ 是否存在这样的t 值,使得△PQA 是直角三角形?若存在,请直接写出此时P 、Q 两点的坐标;若不存在,请说明理由. 7、(07海南中考)如图7,直线43 4 +- =x y 与x 轴交于点A ,与y 轴交于点C ,已知二次函数的图象经过点A 、C 和点()0,1-B . (1)求该二次函数的关系式; (2)设该二次函数的图象的顶点为M ,求四边形AOCM 的面积; (3)有两动点D 、E 同时从点O 出发,其中点D 以每秒 2 3 个单位长度的速度沿折线OAC 按O →A →C 的路线运动,点E 以每秒4个单位长度的速度沿折线OCA 按O →C → A 的路线运动, 当D 、E 两点相遇时,它们都停止运动.设D 、E 同时从点O 出发t 秒时,ODE ?的面积为S . ①请问D 、E 两点在运动过程中,是否存在DE ∥OC ,若存在,请求出此时t 的值;若不存在,请说明理由; ②请求出S 关于t 的函数关系式,并写出自变量t 的取值范围; ③设0S 是②中函数S 的最大值,那么0S = . C A M y B O x C A M y B O x C A M y B O x

二次函数基本知识点梳理及训练(最新)

① 二次函数 考点一 一般地,如果y =ax 2+bx +c(a 、b 、c 是常数,a ≠0),那么y 叫做x 的二次函数. 1.结构特征:①等号左边是函数,右边是关于自变量x 的二次式;②x 的最高次数是2;③二次项系数a ≠0. 2.二次函数的三种基本形式 一般形式:y =ax 2+bx +c(a 、b 、c 是常数,且a ≠0); 顶点式:y =a(x -h)2+k(a ≠0),它直接显示二次函数的顶点坐标是(h ,k); 交点式:y =a(x -x 1)(x -x 2)(a ≠0),其中x 1 、x 2 是图象与x 轴交点的横坐标. 考 点二 二次函数的图象和性质

考点三 二次函数y=ax2+bx+c的图象特征与a、b、c及b2-4ac的符号之间的关系 考点四 任意抛物线y=a(x-h)2+k可以由抛物线y=ax2经过平移得到,具体平移方法如下: 考点五 1.设一般式:y=ax2+bx+c(a≠0). 若已知条件是图象上三个点的坐标.则设一般式y=ax2+bx+c(a≠0),将已知条件代入,求出a、b、c的值.2.设交点式:y=a(x-x1)(x-x2)(a≠0). 若已知二次函数图象与x轴的两个交点的坐标,则设交点式:y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a,最后将解析式化为一般式. 3.设顶点式:y=a(x-h)2+k(a≠0). 若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y=a(x-h)2+k(a≠0),将已知条件代入,求出待定系数化为一般式 考点六 二次函数的应用包括两个方法 ①用二次函数表示实际问题变量之间关系. ②用二次函数解决最大化问题(即最值问题),用二次函数的性质求解,同时注意自变量的取值范围. (1)二次函数y=-3x2-6x+5的图象的顶点坐标是() A.(-1,8) B.(1,8) C.(-1,2)D.(1,-4) (2)将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为() A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D.y=(x-1)2+2 (3)函数y=x2-2x-2的图象如下图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是() ②

(完整版)初三数学二次函数所有经典题型

初三数学二次函数经典题型 二次函数单元检测 (A) 姓名___ ____ 一、填空题: 1、函数2 1 (1)21m y m x mx +=--+是抛物线,则m = . 2、抛物线2 23y x x =--+与x 轴交点为 ,与y 轴交点为 . 3、二次函数2 y ax =的图象过点(-1,2),则它的解析式是 , 当x 时,y 随x 的增大而增大. 4.抛物线2)1(62 -+=x y 可由抛物线262 -=x y 向 平移 个单位得到. 5.抛物线342 ++=x x y 在x 轴上截得的线段长度是 . 6.抛物线() 422 2-++=m x x y 的图象经过原点,则=m . 7.抛物线m x x y +-=2 ,若其顶点在x 轴上,则=m . 8. 如果抛物线c bx ax y ++=2 的对称轴是x =-2,且开口方向与形状与抛物线 相同,又过原点,那么a = ,b = ,c = . 9、二次函数2 y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值0y <时, 对应x 的取值范围是 . 10、已知二次函数2 1(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点 A (-2,4)和 B (8,2),如上右图所示,则能使1y 2y >成立的x 的取值范围 . 二、选择题: 11.下列各式中,y 是x 的二次函数的是 ( ) A .2 1xy x += B . 2 20x y +-= C . 2 2y ax -=- D .2 2 10x y -+= 2 2 3x y -=

12.在同一坐标系中,作2 2y x =、2 2y x =-、2 12 y x = 的图象,它们共同特点是 ( ) A . 都是关于x 轴对称,抛物线开口向上 B .都是关于y 轴对称,抛物线开口向下 B . 都是关于原点对称,顶点都是原点 D .都是关于y 轴对称,顶点都是原点 13.抛物线12 2+--=m mx x y 的图象过原点,则m 为( ) A .0 B .1 C .-1 D .±1 14.把二次函数122 --=x x y 配方成为( ) A .2 )1(-=x y B . 2)1(2--=x y C .1)1(2 ++=x y D .2)1(2 -+=x y 15.已知原点是抛物线2 (1)y m x =+的最高点,则m 的范围是( ) A . 1-m D . 2->m 16、函数2 21y x x =--的图象经过点( ) A 、(-1,1) B 、(1 ,1) C 、(0 , 1) D 、(1 , 0 ) 17、抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A 、2 3(1)2y x =-- B 、23(1)2y x =+-C 、23(1)2y x =++ D 、2 3(1)2y x =-+ 18、已知h 关于t 的函数关系式2 12 h gt = ( g 为正常数,t 为时间)如图,则函数图象为 ( ) 19、下列四个函数中, 图象的顶点在y 轴上的函数是( ) A 、2 32y x x =-+ B 、25y x =- C 、2 2y x x = -+ D 、2 44y x x =-+ 20、已知二次函数2 y ax bx c =++,若0a <,0c >,那么它的图象大致是( ) 21、根据所给条件求抛物线的解析式: (1)、抛物线过点(0,2)、(1,1)、(3,5) (2)、抛物线关于y 轴对称,且过点(1,-2)和(-2,0) 22.已知二次函数c bx x y ++=2 的图像经过A (0,1),B (2,-1)两点. (1)求b 和c 的值; (2)试判断点P (-1,2)是否在此函数图像上? 23、某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边

中考复习:二次函数题型分类总结

【二次函数的定义】 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①y=x2-4x+1;②y=2x2;③y=2x2+4x;④y=-3x; ⑤y=-2x-1;⑥y=mx2+nx+p;⑦y =(4,x) ;⑧y=-5x。 2、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则t=4 秒时,该物体所经过的路程为。 3、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围为。 4、若函数y=(m-2)x m -2+5x+1是关于x的二次函数,则m的值为。 6、已知函数y=(m-1)x m2 +1+5x-3是二次函数,求m的值。 【二次函数的对称轴、顶点、最值】 (技法:如果解析式为顶点式y=a(x-h)2+k,则最值为k; 如果解析式为一般式y=ax2+bx+c,则最值为4ac-b2 4a 1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为。 2.抛物y=x2+bx+c线的顶点坐标为(1,3),则b=,c= . 3.抛物线y=x2+3x的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y=ax2-6x经过点(2,0),则抛物线顶点到坐标原点的距离为( ) B. 5.若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( ) A.开口向上,对称轴是y轴 B.开口向下,对称轴是y轴 C.开口向下,对称轴平行于y轴 D.开口向上,对称轴平行于y轴 6.已知抛物线y=x2+(m-1)x-1 4 的顶点的横坐标是2,则m的值是_ . 7.抛物线y=x2+2x-3的对称轴是。 8.若二次函数y=3x2+mx-3的对称轴是直线x=1,则m=。 9.当n=______,m=______时,函数y=(m+n)x n+(m-n)x的图象是抛物线,且其顶点在原点,此抛物线的开口________. 10.已知二次函数y=x2-2ax+2a+3,当a= 时,该函数y的最小值为0.

初三数学中考二次函数数型结合综合题中考数学最后一题难有详细答案

二次函数综合题(共30题) 1.(2011?遵义)已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C. (1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标; (2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由; (3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标. 2.(2011?淄博)抛物线y=ax2+bx+c与y轴交于点C(0,﹣2),与直线y=x交于点A(﹣2,﹣2),B(2,2).(1)求抛物线的解析式; (2)如图,线段MN在线段AB上移动(点M与点A不重合,点N与点B不重合),且MN=,若M点的横坐标为m,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以点P,M,Q,N为顶点的四边形能否为平行四边形?若能,请求出m的值;若不能,请说明理由. 3.(2011?资阳)已知抛物线C:y=ax2+bx+c(a<0)过原点,与x轴的另一个交点为B(4,0),A为抛物线C的顶点. (1)如图1,若∠AOB=60°,求抛物线C的解析式; (2)如图2,若直线OA的解析式为y=x,将抛物线C绕原点O旋转180°得到抛物线C′,求抛物线C、C′的解析式; (3)在(2)的条件下,设A′为抛物线C′的顶点,求抛物线C或C′上使得PB=PA'的点P的坐标.

4.(2011?株洲)孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线y=ax2(a<0)的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O,两直角边与该抛物线交于A、B两点,请解答以下问题:(1)若测得(如图1),求a的值; (2)对同一条抛物线,孔明将三角板绕点O旋转到如图2所示位置时,过B作BF⊥x轴于点F,测得OF=1,写出此时点B的坐标,并求点A的横坐标_________; (3)对该抛物线,孔明将三角板绕点O旋转任意角度时惊奇地发现,交点A、B的连线段总经过一个固定的点,试说明理由并求出该点的坐标. 5.(2011?漳州)如图1,抛物线y=mx2﹣11mx+24m (m<0)与x轴交于B、C两点(点B在点C的左侧),抛物线另有一点A在第一象限内,且∠BAC=90°. (1)填空:OB=_________,OC=_________; (2)连接OA,将△OAC沿x轴翻折后得△ODC,当四边形OACD是菱形时,求此时抛物线的解析式; (3)如图2,设垂直于x轴的直线l:x=n与(2)中所求的抛物线交于点M,与CD交于点N,若直线l沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值. 6.(2011?湛江)如图,抛物线y=x2+bx+c的顶点为D(﹣1,﹣4),与y轴交于点C(0,﹣3),与x轴交于A,B 两点(点A在点B的左侧). (1)求抛物线的解析式; (2)连接AC,CD,AD,试证明△ACD为直角三角形; (3)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F为顶点的四边形为平行四边形?若存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.

二次函数考点归纳

二次函数 一、课标解读 二、知识清单 知识点1:二次函数定义 1、一般地,形如 (a 、b 、c 是常数,a 0)的函数,叫做二次函数。 2、二次函数的三种形式 一般式: 顶点式: 交点式: 知识点2:二次函数的图象与性质 1、二次函数的图象是一条 。 2、二次函数的性质 (1)a >0时,抛物线开口向 ,在对称轴 的左侧y 随着x 的增大而 ,在对称轴右侧y 随着x 的增大而 ,抛物线有最 点,当x= 时,y 有最小值 。 (2)a <0时,抛物线开口向 ,在对称轴 的左侧y 随着x 的增大而 ,在对称轴右侧y 随着x 的增大而 ,抛物线有最 点,当x= 时,y 有最大值 。 (3)a 的符号与开口方向; b 和a 的符号与对称轴:b=0,对称轴是 ;b 和a 同号,对称轴在y 轴 侧;b 和a 异号,对称轴在y 轴 侧; c 与y 轴交点:c=0,交点是 ;c>0,交点在y 轴的 半轴上;c<0,交点在y 轴 的 半轴上; ac b 42 -与x 轴交点个数:042 >-ac b ,与x 轴有 个交点;042 =-ac b , 与x 轴有 个交点;042 <-ac b 与x 轴 交点。 (4)抛物线的平移:抛物线k h x a y +-=2 )(可以由2 ax y =经过平移得到,把抛物线 2ax y =向右或者向左平移|h|个单位,得到2)(h x a y -=,规律是 ;把抛 物线向上或者向下平移|k|个单位,得到抛物线k ax y +=2 ,规律是 ;把抛

物线

2ax y =先向右或者向左平移|h|个单位再向上或者向下平移|k|个单位,得到 k h x a y +-=2)(。 知识点3:用待定系数法求二次函数的解析式 已知三点坐标,选用 ;已知顶点坐标或者对称轴,选用 ;已知与x 轴的交点,选用 。 知识点4:二次函数与一元二次方程之间的关系 (1) 抛物线)0(2 ≠++=a c bx ax y 与x 轴有两个交点,则一元二次方程0 2 =++c bx ax 有 实数根;抛物线)0(2 ≠++=a c bx ax y 与x 轴有一个交点,则一元二次方程 02=++c bx ax 有 实数根;抛物线)0(2≠++=a c bx ax y 与x 轴无交点,则 一元二次方程02 =++c bx ax 实数根; (2)、)0(2 ≠++=a c bx ax y 的图象与x 轴有交点时,交点的横坐标就是 一元二次方程 的解。 知识点5:实际问题与二次函数 利用二次函数解决实际问题,首先要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的等量关系,求出解析式,然后利用函数解析式去解决问题 三、典型例题 知识点1:二次函数定义 例1(2014安徽安庆)下列函数中,一定是二次函数的是( ) A 、)0(≠+=k b kx y B 、242 ++=x ax y C 、2 21x y = D 、2 21x y -= 知识点2:二次函数的图象与性质 例2、已知二次函数c ax y +=2 ,当x 分别取)(212,1x x x x ≠时,函数值相等,则当x 取 2,1x x +时,函数值为 ( ) A 、c a + B 、c a - C 、c D 、c - 点拨:抛物线是轴对称图形,纵坐标相同的两点,横坐标互为相反数。 例3、(2014?莱芜)已知二次函数y=ax 2+bx+c 的图象如图所示.下列结论: ①abc>0;②2a﹣b <0;③4a﹣2b+c <0;④(a+c )2<b 2 其中正确的个数有( ) A . 1 B . 2 C . 3 D . 4 点拨:二次函数的图象与系数的关系 知识点3:用待定系数法求二次函数的解析式

二次函数经典例题及答案

二次函数经典例题及答案 1.已知抛物线的顶点为P (- 4,—2),与x轴交于A B两点,与y轴交于点C,其中B点坐标为(1 , 0)。 (1) 求这条抛物线的函数关系式; (2) 若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ ADQ 1 2 9 . 135 y=2 x +4x - 2;存在点Q (-1 , -4 ) , Q (2^5-9,-%'5 ) , Q (--^, -4) ?析 一2 25 试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a ( x+4) - 2,然后把点B的坐 标代入解析式求出a的值,即可得解; (2)先根据顶点坐标求出点D 的坐标,再根据抛物线解析式求出点A、C的坐标,从而得 到OA OC AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出/ OAC勺正弦值与余弦值,再分① AD=QD时,过Q作QE1丄x轴于点E,根据等腰三角形三线合一的性质求出AQ,再利用/ OAC勺正弦求出QE的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;②AD=AQ时,过Q作QE2丄x轴于点E>,利用/ OAC勺正弦求出QE2的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;③AQ=DQ时,过Q作QE3丄x轴于点已,根据等腰三角形三线合一的性质求出AE 的长度,然后求出OE,再由相似三角形对应边成比例列式求出QE3的长度,从而得到点Q 的坐标. 试题解析:(1 )???抛物线顶点坐标为( 25 -4 , - 2), ???设抛物线解析式为 2 25 y=a (x+4) - 2 为等腰三角形?若存在,请求出符合条件的点

全初三数学二次函数知识点归纳总结

二次函数知识点归纳及相关典型题 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

二次函数和几何综合压轴题题型归纳

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 课 题 函数的综合压轴题型归类 教学目标 1、 要学会利用特殊图形的性质去分析二次函数与特殊图形的关系 2、 掌握特殊图形面积的各种求法 重点、难点 1、 利用图形的性质找点 2、 分解图形求面积 教学内容

5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。

人教版数学九年级上册《二次函数》综合练习题及答案

二次函数综合练习题附答案 ●基础巩固 1.如果抛物线y =-2x 2+mx -3的顶点在x 轴正半轴上,则m =______. 2.二次函数y =-2x 2+x - 2 1,当x =______时,y 有最______值,为______.它的图象与x 轴______交点(填“有”或“没有”). 3.已知二次函数y =ax 2+bx +c 的图象如图1所示. ①这个二次函数的表达式是y =______;②当x =______时,y =3;③根据图象回答:当x ______时,y >0. 4.某一元二次方程的两个根分别为x 1=-2,x 2=5,请写出一个经过点(-2,0),(5,0)两点二次函数的表达式:______.(写出一个符合要求的即可) 5.不论自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是______,此时关于一元二次方程2x 2-6x +m =0的解的情况是______(填“有解”或“无解”). 6.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为______(只写一个),此类函数都有______值(填“最大”“最小”). 7.如图2,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m). 8.若抛物线y=x 2-(2k+1)x+k 2+2,与x 轴有两个交点,则整数 k 的最小值是______. 9.已知二次函数y=ax 2+bx+c(a ≠0)的图象如图1所示,由抛物线的特征你能得到含有a 、b 、c 三个字母的等式或不等式为______(写出一个即可). 10.等腰梯形的周长为60 cm ,底角为60°,当梯形腰x=______

二次函数知识点汇总(全)

二次函数知识点(第一讲) 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质:(上加下减)

3. ()2 y a x h =-的性质:(左加右减) 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数() 2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到 前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方 向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为: 顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有

相关文档 最新文档