文档库 最新最全的文档下载
当前位置:文档库 › 操作系统磁盘管理

操作系统磁盘管理

操作系统磁盘管理
操作系统磁盘管理

1.需求分析

(1)设计内容和要求(包括原始数据、技术参数、条件、设计要求等)设计内容:

1)采用空白文件目录结构管理磁盘空间,实现磁盘空间的分配和回收;

2)采用空白块成组链接结构实现磁盘空间的分配和回收;

3)采用位示图结构实现磁盘空间的分配和回收。

基本要求:

1)具有创建文件、空间分配、删除文件、释放空间等基本功能;

2)把文件目录、磁盘空间管理的数据结构变化情况显示出来。

(2)需求分析内容

1)空白文件目录是管理磁盘空间的一种方法,该方法将文件存储设备上的每个连续空闲区看作一个空白文件,系统为所有空白文件单独建立一个目录,每个空白文件在这个目录中占一个表目.表目的内容至少包括第一个空白块的地址(物理块号),空白块的数目。

2)位示图是另一种常用的管理磁盘空间的方法,该方法通过建立一张位示图来表示为l时表示该块已分配,当某位为0时表示该块空闲。

3)位示图是利用二进制的一位来表示磁盘中的一个盘块的使用情况。当其值为“0”时,表示对应的盘块空闲;为“1”时,表示已经分配。有的系统把“0”作为盘块已分配的标记,把“1”作为空闲标志(它们的本质上是相同的,都是用一位的两种状态标志空闲和已分配两种情况)磁盘上的所有盘块都有一个二进制位与之对应,这样,由所有盘块所对应的位构成一个集合,称为位示图。

1.1小组分工

温庭栋任务为:采用空白文件目录结构管理磁盘空间;

魏子育任务为:采用空白块成组链接结构实现磁盘空间的分配和回收;

卫虹任务为:采用位示图结构实现磁盘空间的分配和回收;

2.总体设计

(1)磁盘存储空间管理是文件系统的重要内容

采用空白文件目录结构管理磁盘空间,实现磁盘空间的分配和回收空白文件目录法进行空间分配时,需要建立相关的数据结构,记录目前空白区域和已使用区域,假设开始时全部区域空闲。当有文件需要存储时,先检查空白文件目录,找到适合区域立即分配,并修改空

白文件目录表和已使用区域分配表。为此需建立两张表格,分别记录相关数据。

插入文件程序流图如图2-1;

图2-1

删除文件流程图如图2-2

图2-2

(2)采用空白块成组链接结构实现磁盘空间的分配和回收

对于要求将磁盘存储空间的空闲块成组链接,我们可以设计几个相应的一维数组,分别表示磁盘的各个磁盘,数组中的元素表示每个磁盘的分块,分配时,通过查空闲表MA,从中找出空闲块号,当一组的空闲块只剩第一块时,应把该块中指出的下一组的空闲块数和块号复制到专用块这,然后把该块分配给申请者,当一组的空闲块分配完后则把专用块内容(下一组链接情况)复制到内存,再为申请者分配。回收时,输入待回收的块号,查找该块是否已被分配,若未分配,退出,否则,当前组不满规定块数时,将归还块登记入该组,若当前组已满,则另建一新组,这时归还块作为新一组的第一块,应把内存中登记的一组链接情况MA复制到归还块中,然后在MA这重新登记一个新组。

1)假定磁盘存储空间已被划分成长度为n的等长块,共有M块可供使用。UNIX系统采用空闲块成组链接的方法来管理磁盘存储空间,将磁盘中的每N个空闲块(N

块数和块号登记在专用块中,登记的格式如下:

表2-3

当第一项内容为“0”时,则第二项起指出的空闲块是最后一组。

2)开始时,空闲块号是顺序排列的,但经若干次的分配和归还操作后,空闲块的链接就未必按序排列了。用二维数组A:array [0…M-1] of array [0…n-1]来模拟管理磁盘空间,用A[i]表示第I块,第0块A[0]作为专用块。

3) 成组链接的分组情况记录在磁盘物理块中,为了查找链接情况,必须把它们读入主存,故当磁盘初始化后,系统先将专用块内容复制到主存中。定义一个数组MA存放专用块内容,即MA =A[0]。申请一块磁盘空间时,查MA,从中找出空闲块号,当一组的空闲块只剩第一块时,则应把该块中指出的下一组的空闲块数和块号复制到专用块中,然后把该块分配给申请者。当一组的空闲块分配完后则把专用块内容(下一组链接情况)复制到主存,再为申请者分配。

4) 归还一块时给出归还的块号,若当前组不满规定块数时,将归还块登记入该组;若当前组已满,则另建一新组,这时归还块作为新一组的第一块,应把主存中登记的一组链接情况MA复制到归还块中,然后在MA重新登记一个新组。

(3)采用位示图结构实现磁盘空间的分配和回收

磁盘存储空间的分配有两种方式,一种是分配连续的存储空间,另一种是可以分配不连续的存储空间。为了表示哪些磁盘空间已被占用,哪些磁盘空间是空闲的,可用位示图来指出。位示图由若干字节构成,每一位与磁盘上的一块对应,“1”状态表示相应块已占用,“0”状态表示该块为空闲。

算法流程图如下:

分配流程图如下图2-4:

图2-4

(2)释放流程图如图:2-4

图2-4

3.详细设计

1.采用空白文件目录结构管理磁盘空间,实现磁盘空间的分配和回收

文件存储空间管理是文件系统的重要内容。常用的管理思想有空白文件目录法、空白块链法和位示图法。本实验采用前两种方法进行空间分配。空白文件目录法进行空间分配时,需要建立相关的数据结构,记录目前空白区域和已使用区域,假设开始时全部区域空闲。当有文件需要存储时,先检查空白文件目录,找到适合区域立即分配,并修改空白文件目录表和已使用区域分配表。为此需建立两张表格,分别记录相关数据。

表3-1;空白文件目录表(初始)

表3-2;空白文件目录(中间)

核心代码

int alloc(int applyarea)///为文件分配存储块的函数,磁盘空间的分配

{

int i,tag=0,j=0,flag=1;

for( i=0 ; i< N ; i++ )

if(freeblock[i].state==1 && freeblock[i].size > applyarea && flag==1

&&freeblock[i].name[wtd]==NULL)

{

freeblock[i].startaddress = freeblock[i].startaddress + applyarea;

freeblock[i].size=freeblock[i].size-applyarea;

tag=1;/*有满足条件的空闲区时,tag置1*/

flag=0;

freeblock[i].name[wtd]=fname;

printf("$ %c/n",freeblock[i].name);

return freeblock[i].startaddress-applyarea;

}

else

if(freeblock[i].state==1 && freeblock[i].size==applyarea && flag==1 && freeblock[i].name[wtd]==NULL)

{ freeblock[i].startaddress = freeblock[i].startaddress + applyarea;

freeblock[i].size=freeblock[i].size-applyarea;

freeblock[i].state=0;

flag=0;

tag=1;/*有满足条件的空闲区时,tag置1*

freeblock[i].name[wtd]=fname

}

if(tag==0)

return -1;

}

void setfree()///实现磁盘空间的回收

{

int i,j,k;

char s;

printf("输入要删除的文件名: /n");

getchar();

scanf("%c",&s);

for(j=0;j<100 ;j++)

if(FMenu[j].Fname==s)

{ break; }

for(i=0;i

{

for(k=0;k<100;k++)

printf("$ %c %d/n",freeblock[i].name,i);

if(freeblock[i].name[k]==s)

{ freeblock[i].state=1;

freeblock[i].startaddress=freeblock[i].startaddress -

((int)ceil(FMenu[j].size*1.0/100)) ;

freeblock[i].size=freeblock[i].size + ((int)ceil(FMenu[j].size*1.0/100)) ;

}

}

}

void print()//打印输出表

{

int i;

printf("\n");

printf(" |序号.......第一个空白块......连续空闲块个数......状态.....|"); printf("\n");

printf(" |..........................................................|"); printf("\n");

for(i=0;i

{

printf("

|%3d...........%3d....................%3d.......%3d........|",

i,freeblock[i].startaddress,freeblock[i].size,freeblock[i].state); printf("\n");

printf("

|..........................................................|"); printf("\n");

}

}

图3-3;初始化格式

图3-4;分配磁盘

图3-5;回收磁盘

2.采用空白块成组链接结构实现磁盘空间的分配和回收;

(1) 假定磁盘存储空间已被划分成长度为n的等长块,共有M块可供使用。UNIX系统中采用空闲块成组链接的方法来管理磁盘存储空间,将磁盘中的每N个空闲块(N

表3-6;空闲块

1

2

K

当第一项内容为“0”时,则第二项起指出的空闲块是最后一组。

(2)现模拟UNIX系统的空闲块成组链接,假定共有8块可供使用,每3块为一组,则空闲块成组链接的初始状态为:

表3-7;初始化空闲快

开始时,空闲块号是顺序排列的,但经若干次的分配和归还操作后,空闲块的链接就未必按序排列了。用二维数组A:array [0…M-1] of array [0…n-1]来模拟管理磁盘空间,用A[i]表示第I块,第0块A[0]作为专用块。

(3) 成组链接的分组情况记录在磁盘物理块中,为了查找链接情况,必须把它们读入主存,故当磁盘初始化后,系统先将专用块内容复制到主存中。定义一个数组MA存放专用块内容,即MA: =A[0]。申请一块磁盘空间时,查MA,从中找出空闲块号,当一组的空闲块只剩第一块时,则应把该块中指出的下一组的空闲块数和块号复制到专用块中,然后把该块分配给申请者。当一组的空闲块分配完后则把专用块内容(下一组链接情况)复制到主存,再者分配。

(4) 归还一块时给出归还的块号,且当前组不满规定块数时,将归还块登记入该组;若当前组已满,则另建一新组,这时归还块作为新一组的第一块,应把主存中登记的一组链接情况MA复制到归还块中,然后在MA重新登记一个新组。

(5) 设计分配和归还磁盘空间的程序,能显示或打印分配的磁盘空间的块号,在完成一次分配或归还后能显示或打印各空闲块组的情况(各组的空闲块数和块号)。本实验省去了块号与物理地址之间的转换工作,而在实际的系统中必须进行块号与物理地址的转换工作。

(6) 运行你所设计的程序,假定空闲块链接的初始状态如提示(2),现先分配4块,再依次归还第2块和第6块。把执行后分配到的块号依次显示或打印出来,且显示或打印空闲块组的情况。在上次执行的基础上继续分配3块,然后归还第1块,再申请5块,显示或打印依次分配到的块号及空闲块组情况。

核心代码

IntA[9][4]={{3,1,2,3},{3,4,5,6},{0,0,0,0},{0,0,0,0},{3,0,7,8},{0,0,0,0},{0,0 ,0,0},{0,0,0,0},{0,0,0,0}}; /*磁盘空间*/

int mark[9]; /*存放已分配的块*/

int No=0; /*已分配的块数*/

void display1()//打印显示结构

{ int i,j,temp,count;

No=0;

if(MA[1]!=0)

{ i=MA[0];

printf("\n组1:\t");

for(j=1;j<=i;j++)

{ printf("%d ",MA[j]);

mark[++No]=MA[j];

}

temp=MA[1];

count=2;

while(A[temp][1]!=0)

{ printf("\n组%d:\t",count);

i=A[temp][0];

for(j=1;j<=i;j++)

{ printf("%d ",A[temp][j]);

mark[++No]=A[temp][j];

}

count++;

temp=A[temp][1];

}

printf("\n组%d:\t",count);

i=A[temp][0];

for(j=2;j<=i+1;j++)

if(A[temp][j]>0)

{ printf("%d ",A[temp][j]); mark[++No]=A[temp][j];

}

}

else

{ i=MA[0];

if(i==1)

printf("\n所有的快都已被分配!"); else

{ printf("\n组1:");

for(j=2;j<=i;j++)

{ printf("%d ",MA[j]); mark[++No]=MA[j];

}

}

}

}

void display() /*显示分组情况*/

{ int i,j;

if(MA[0]!=0)

display1();

else

{ i=MA[1];

for(j=0;j<=3;j++)

MA[j]=A[i][j];

display1();

}

}

void assign() /*分配空闲块*/

{ int s,i;

if(MA[0]>1) /*若该组不止一个空闲块*/

{ i=MA[0];

s=MA[i];

MA[0]--;

printf("\n被分配的块号:\n%d\n",s);

}

else if(MA[0]==1) /*只剩一个空闲块*/

{ if(MA[1]!=0) /*还有其它空闲块组*/ { s=MA[1];

for(i=0;i<=3;i++)

A[0][i]=A[s][i];

MA[0]--;

printf("\n被分配的块号:\n%d\n",s); }

else /*没有其它空闲块组*/ { printf("\n没有空闲空间!");

return;

}

}

else /*当前组已分配完*/

{ for(i=0;i<=3;i++)

MA[i]=A[0][i];

assign();

}

display(); /*显示分组情况*/

}

void callback() /*回收空闲块*/

{ int i,j,temp;

printf("\n请输入你想回收的块号:\n");

scanf("%d",&j);

getchar(); /*得到待回收的空闲块号*/ for(temp=1;temp<=No;temp++)

{ if(mark[temp]==j)

break;

}

if(temp

return;

}

if(MA[0]<3) /*当前组不满3块*/

{ i=MA[0];

MA[i+1]=j;

MA[0]++;

}

else /*已有3块*/

{ for(i=0;i<=3;i++)

A[j][i]=MA[i];

MA[0]=1;

MA[1]=j;

}

display(); /*显示*/

}

图3-8:初始化视图

图3-9:分配块

图3-11:分配块

图3-12:回收块

3.采用位示图结构实现磁盘空间的分配和回收

(1)为了提高磁盘存储空间的利用率,可在磁盘上组织成链接文件、索引文件,这类文件可以把逻辑记录存放在不连续的存储空间。为了表示哪些磁盘空间已被占用,哪些磁盘空间是空闲的,可用位示图来指出。位示图由若干字节构成,每一位与磁盘上的一块对应,“1”状态表示相应块已占用,“0”状态表示该块为空闲。但要注意,对于主存储空间和磁盘存储空间应该用不同的位示图来管理,绝不可混用。

(2)申请一块磁盘空间时,由分配程序查位示图,找出一个为“0”的位,计算出这一位对应块的磁盘物理地址,且把该位置成占用状态“1”。假设现在有一个盘组共8个柱面,每个柱面有两个磁道,每个磁道分成4个物理记录。那么,当在位示图中找到某一字节的某一位为“0”时,这个空闲块对应的磁盘物理地址为:

物理记录号= 位数mod4

(3)归还一块磁盘空间时,由回收程序根据归还的磁盘物理地址计算出归还块在位示图中的对应位,把该位置成“0”。按照(2)中假设的盘组,归还块在位示图中的位置计算如下:字节号=柱面号

位数=磁道号 4+物理记录号

(4)设计申请一块磁盘空间和归还一块磁盘空间的程序。要求能显示或打印程序运行前运行后的位示图;分配时把分配到的磁盘空间的物理地址显示或打印出来,归还时把归还块对应于位示图的字节号和位数显示或打印出来。

源代码

void showbitmap(void) //showbitmap函数,功能打印位示图信息

{

printf("当前系统磁盘位示图(0表示块可用):\n"); //用来和位示图bitmap相与得到某位的状态

printf(" 第一磁道第二磁道\n");

printf(" 0扇区 1扇区 2扇区 3扇区 0扇区 1扇区 2扇区 3扇区") ;

for( int i = 0 ;i

{

if( 0==i%8)

{

printf("\n");

printf("%d柱面",(i+1)/8);

}

printf(" %d\t",bitinfo->bitmap[i]);

}

printf("\n");

system("pause");

}

void diskallocate(void) //diskallocate函数,分配物理块给

{

//由用户输入需要的物理块数:

int neednum;

int i ;

int busy = 0;

char filestor[32]; //用户名

printf("输入需要分配的块数:\n");

scanf("%d",&neednum);

printf("输入文件名:\n");

scanf("%s",filestor);

for( i=0;i

{

busy =busy + bitinfo->bitmap[i];

}

if( 64-busy

{

printf("没有足够的空闲磁盘,分配失败!");

}

else

{

printf("开始分配...\n");

for(i=0 ; i

{

if( 0==bitinfo->bitmap[i])

{

// printf("分配块物理地址为:第%d个柱面,\t第%d个磁道,\t第%d个扇区\n",i/8+1,i%8/4,(i%8)%4);

bitinfo->bitmap[i] = 1;

strcpy(bitinfo->filename[i] , filestor);

neednum--;

}

if( 0==neednum)

{

break;

操作系统作业参考答案及其知识点

操作系统作业参考答案及其知识点 第一章 思考题: 10、试叙述系统调用与过程调用的主要区别? 答: (一)、调用形式不同 (二)、被调用代码的位置不同 (三)、提供方式不同 (四)、调用的实现不同 提示:每个都需要进一步解释,否则不是完全答案 13、为什么对作业进程批处理可以提高系统效率? 答:批处理时提交程序、数据和作业说明书,由系统操作员把作业按照调度策略,整理为一批,按照作业说明书来运行程序,没有用户与计算机系统的交互;采用多道程序设计,可以使CPU和外设并行工作,当一个运行完毕时系统自动装载下一个作业,减少操作员人工干预时间,提高了系统的效率。 18、什么是实时操作系统?叙述实时操作系统的分类。 答:实时操作系统(Real Time Operating System)指当外界事件或数据产生时,能接收并以足够快的速度予以处理,处理的结果又能在规定时间内来控制监控的生产过程或对处理系统做出快速响应,并控制所有实时任务协调一致运行的操作系统。 有三种典型的实时系统: 1、过程控制系统(生产过程控制) 2、信息查询系统(情报检索) 3、事务处理系统(银行业务) 19、分时系统中,什么是响应时间?它与哪些因素有关? 答:响应时间是用户提交的请求后得到系统响应的时间(系统运行或者运行完毕)。它与计算机CPU的处理速度、用户的多少、时间片的长短有关系。 应用题: 1、有一台计算机,具有1MB内存,操作系统占用200KB,每个用户进程占用200KB。如果用户进程等待I/0的时间为80%,若增加1MB内存,则CPU的利用率提高多少? 答:CPU的利用率=1-P n,其中P为程序等待I/O操作的时间占其运行时间的比例1MB内存时,系统中存放4道程序,CPU的利用率=1-(0.8)4=59% 2MB内存时,系统中存放9道程序,CPU的利用率=1-(0.8)9=87% 所以系统CPU的利用率提高了28% 2、一个计算机系统,有一台输入机和一台打印机,现有两道程序投入运行,且程序A先开始做,程序B后开始运行。程序A的运行轨迹为:计算50ms,打印100ms,再计算50ms,打印100ms,结束。程序B的运行轨迹为:计算50ms,输入80ms,再计算100ms,结束。

操作系统内存管理复习过程

操作系统内存管理

操作系统内存管理 1. 内存管理方法 内存管理主要包括虚地址、地址变换、内存分配和回收、内存扩充、内存共享和保护等功能。 2. 连续分配存储管理方式 连续分配是指为一个用户程序分配连续的内存空间。连续分配有单一连续存储管理和分区式储管理两种方式。 2.1 单一连续存储管理 在这种管理方式中,内存被分为两个区域:系统区和用户区。应用程序装入到用户区,可使用用户区全部空间。其特点是,最简单,适用于单用户、单任务的操作系统。CP/M和 DOS 2.0以下就是采用此种方式。这种方式的最大优点就是易于管理。但也存在着一些问题和不足之处,例如对要求内

存空间少的程序,造成内存浪费;程序全部装入,使得很少使用的程序部分也占用—定数量的内存。 2.2 分区式存储管理 为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。分区式存储管理是把内存分为一些大小相等或不等的分区,操作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。分区式存储管理虽然可以支持并发,但难以进行内存分区的共享。 分区式存储管理引人了两个新的问题:内碎片和外碎片。 内碎片是占用分区内未被利用的空间,外碎片是占用分区之间难以利用的空闲分区(通常是小空闲分区)。 为实现分区式存储管理,操作系统应维护的数据结构为分区表或分区链表。表中各表项一般包括每个分区的起始地址、大小及状态(是否已分配)。

分区式存储管理常采用的一项技术就是内存紧缩(compaction)。 2.2.1 固定分区(nxedpartitioning)。 固定式分区的特点是把内存划分为若干个固定大小的连续分区。分区大小可以相等:这种作法只适合于多个相同程序的并发执行(处理多个类型相同的对象)。分区大小也可以不等:有多个小分区、适量的中等分区以及少量的大分区。根据程序的大小,分配当前空闲的、适当大小的分区。 优点:易于实现,开销小。 缺点主要有两个:内碎片造成浪费;分区总数固定,限制了并发执行的程序数目。 2.2.2动态分区(dynamic partitioning)。 动态分区的特点是动态创建分区:在装入程序时按其初始要求分配,或在其执行过程中通过系统调用进行分配或改变分区大小。与固定分区相比较其优点是:没有内碎

计算机操作系统作业

一、单项选择题 二、CADCA CADCC CBDBC DDADB DCAD 1.联想存储器在计算机系统中是用于__C____的。 A.存储文件信息B.与主存交换信息 C.内存地址变换D.内存管理信息 2.作业在执行中发生了缺页中断,经操作系统处理后,应该执行的指令是___D___。 A.被中断的前一条B.被中断的后一条 C.作业的第一条D.被中断的指令 在请求分页存储管理中,当指令的执行所需要的内容不在内存中时,发生缺页中断,当缺页调入内存后,应执行被中断指令。另:缺页中断作为中断与其它中断一样要经历如保护CPU环境,分析中断原因,转入缺页中断处理程序进行处理,恢复CPU环境等几个步骤,但缺页中断又是一种特殊的中断,它与一般中断相比,有着明显的区别,主要表现在下面两个方面:(1)缺页中断是在指令执行期间产生和处理中断信号的。(2)一条指令的执行期间,可能产生多次缺页中断。 3.实现虚拟存储器的目的是__D____。 A.实现存储保护B.实现程序浮动 C.扩充外存容量D.扩充内存容量 4.在段页式存储系统中,一个作业对应___C__。 A.多个段表B.一个段表,一个页表 C.一个段表,多个页表D.多个段表,多个页表 5.在虚拟页式存储管理方案中,完成将页面调入内存的工作的是___A___。 A.缺页中断处理B.页面淘汰过程C.工作集模型应用D.紧缩技术利用 6.采用分页式内存管理时,重定位的工作是由___C___完成的。 A.操作系统B.用户C.地址转换机构D.内存空间分配程序 7.在分页式内存管理系统中可能出现的问题是__B____。 A.颠簸B.不能共享C.外部碎片D.动态链接 8.在下列有关分页式内存管理的叙述中正确的是___D___。 A.程序和数据是在开始执行前一次性和装入的 B.产生缺页中断一定要淘汰一个页面 C.一个被淘汰的页面一定要写回外存 D.在页面中有“访问位”和“修改位”等消息 9. 在可变式分配方案中,最佳适应算法是将空白区在空白区表中按___C___次序排列。 A.地址递增B.地址递减C.容量递增D.容量递减 10. 在可变分区分配方案中,将空白分区按地址递增次序排列是要采用___C___。 A.最佳适应算法B.最差适应算法 C.首次适应算法D.最迟适应算法

计算机操作系统知识点总结一

第一章 ★1.操作系统的概念:通常把操作系统定义为用以控制和管理计算机系统资源方便用户使用的程序和数据结构的集合。★2.操作系统的基本类型:批处理操作系统、分时操作系统、实时操作系统、个人计算机操作系统、网络操作系统、分布式操作系统。 ①批处理操作系统 特点: 用户脱机使用计算机 成批处理 多道程序运行 优点: 由于系统资源为多个作业所共享,其工作方式是作业之间自动调度执行。并在运行过程中用户不干预自己的作业,从而大大提高了系统资源的利用率和作业吞吐量。 缺点: 无交互性,用户一旦提交作业就失去了对其运行的控制能力;而且是批处理的,作业周转时间长,用户使用不方便。 批处理系统中作业处理及状态 ②分时操作系统(Time Sharing OS) 分时操作系统是一个联机的多用户交互式的操作系统,如UNIX是多用户分时操作系统。 分时计算机系统:由于中断技术的使用,使得一台计算机能连接多个用户终端,用户可通过各自的终端使用和控制计算机,我们把一台计算机连接多个终端的计算机系统称为分时计算机系统,或称分时系统。 分时技术:把处理机的响应时间分成若于个大小相等(或不相等)的时间单位,称为时间片(如100毫秒),每个终端用户获得CPU,就等于获得一个时间片,该用户程序开始运行,当时间片到(用完),用户程序暂停运行,等待下一次运行。 特点: 人机交互性好:在调试和运行程序时由用户自己操作。 共享主机:多个用户同时使用。 用户独立性:对每个用户而言好象独占主机。 ③实时操作系统(real-time OS) 实时操作系统是一种联机的操作系统,对外部的请求,实时操作系统能够在规定的时间内处理完毕。 特点: 有限等待时间 有限响应时间 用户控制 可靠性高 系统出错处理能力强 设计实时操作系统要考虑的一些因素: (1)实时时钟管理 (2)连续的人—机对话 (3)过载 (4) 高度可靠性和安全性需要采取冗余措施。 ④通用操作系统 同时兼有多道批处理、分时、实时处理的功能,或其中两种以上的功能。 ⑤个人计算机上的操作系统

操作系统实验之内存管理实验报告

学生学号 实验课成绩 武汉理工大学 学生实验报告书 实验课程名称 计算机操作系统 开 课 学 院 计算机科学与技术学院 指导老师姓名 学 生 姓 名 学生专业班级 2016 — 2017 学年第一学期

实验三 内存管理 一、设计目的、功能与要求 1、实验目的 掌握内存管理的相关内容,对内存的分配和回收有深入的理解。 2、实现功能 模拟实现内存管理机制 3、具体要求 任选一种计算机高级语言编程实现 选择一种内存管理方案:动态分区式、请求页式、段式、段页式等 能够输入给定的内存大小,进程的个数,每个进程所需内存空间的大小等 能够选择分配、回收操作 内购显示进程在内存的储存地址、大小等 显示每次完成内存分配或回收后内存空间的使用情况 二、问题描述 所谓分区,是把内存分为一些大小相等或不等的分区,除操作系统占用一个分区外,其余分区用来存放进程的程序和数据。本次实验中才用动态分区法,也就是在作业的处理过程中划分内存的区域,根据需要确定大小。 动态分区的分配算法:首先从可用表/自由链中找到一个足以容纳该作业的可用空白区,如果这个空白区比需求大,则将它分为两个部分,一部分成为已分配区,剩下部分仍为空白区。最后修改可用表或自由链,并回送一个所分配区的序号或该分区的起始地址。 最先适应法:按分区的起始地址的递增次序,从头查找,找到符合要求的第一个分区。

最佳适应法:按照分区大小的递增次序,查找,找到符合要求的第一个分区。 最坏适应法:按分区大小的递减次序,从头查找,找到符合要求的第一个分区。 三、数据结构及功能设计 1、数据结构 定义空闲分区结构体,用来保存内存中空闲分区的情况。其中size属性表示空闲分区的大小,start_addr表示空闲分区首地址,next指针指向下一个空闲分区。 //空闲分区 typedef struct Free_Block { int size; int start_addr; struct Free_Block *next; } Free_Block; Free_Block *free_block; 定义已分配的内存空间的结构体,用来保存已经被进程占用了内存空间的情况。其中pid作为该被分配分区的编号,用于在释放该内存空间时便于查找。size表示分区的大小,start_addr表示分区的起始地址,process_name存放进程名称,next指针指向下一个分区。 //已分配分区的结构体 typedef struct Allocate_Block { int pid; int size; int start_addr; char process_name[PROCESS_NAME_LEN]; struct Allocate_Block *next; } Allocate_Block; 2、模块说明 2.1 初始化模块 对内存空间进行初始化,初始情况内存空间为空,但是要设置内存的最大容量,该内存空间的首地址,以便之后新建进程的过程中使用。当空闲分区初始化

计算机操作系统(第四版)

第三章处理机调度与死锁 1,高级调度与低级调度的主要任务是什么?为什么要引入中级调度? 【解】(1)高级调度主要任务是用于决定把外存上处于后备队列中的那些作业调入内存,并为它们创建进程,分配必要的资源,然后再将新创建的进程排在就绪队列上,准备执行。(2)低级调度主要任务是决定就绪队列中的哪个进程将获得处理机,然后由分派程序执行把处理机分配给该进程的操作。(3)引入中级调度的主要目的是为了提高内存的利用率和系统吞吐量。为此,应使那些暂时不能运行的进程不再占用宝贵的内存空间,而将它们调至外存上去等待,称此时的进程状态为就绪驻外存状态或挂起状态。当这些进程重又具备运行条件,且内存又稍有空闲时,由中级调度决定,将外存上的那些重又具备运行条件的就绪进程重新调入内存,并修改其状态为就绪状态,挂在就绪队列上,等待进程调度。 3、何谓作业、作业步和作业流? 【解】作业包含通常的程序和数据,还配有作业说明书。系统根据该说明书对程序的运行进行控制。批处理系统中是以作业为基本单位从外存调入内存。 作业步是指每个作业运行期间都必须经过若干个相对独立相互关联的顺序加工的步骤。 作业流是指若干个作业进入系统后依次存放在外存上形成的输入作业流;在操作系统的控制下,逐个作业进程处理,于是形成了处理作业流。 4、在什么情冴下需要使用作业控制块JCB?其中包含了哪些内容? 【解】每当作业进入系统时,系统便为每个作业建立一个作业控制块JCB,根据作业类型将它插入到相应的后备队列中。 JCB 包含的内容通常有:1) 作业标识2)用户名称3)用户账户4)作业类型(CPU繁忙型、I/O芳名型、批量型、终端型)5)作业状态6)调度信息(优先级、作业已运行)7)资源要求8)进入系统时间9) 开始处理时间10) 作业完成时间11) 作业退出时间12) 资源使用情况等 5.在作业调度中应如何确定接纳多少个作业和接纳哪些作业? 【解】作业调度每次接纳进入内存的作业数,取决于多道程序度。应将哪些作业从外存调入

第四章 操作系统存储管理(练习题)

第四章存储管理 1. C存储管理支持多道程序设计,算法简单,但存储碎片多。 A. 段式 B. 页式 C. 固定分区 D. 段页式 2.虚拟存储技术是 B 。 A. 补充内存物理空间的技术 B. 补充相对地址空间的技术 C. 扩充外存空间的技术 D. 扩充输入输出缓冲区的技术 3.虚拟内存的容量只受 D 的限制。 A. 物理内存的大小 B. 磁盘空间的大小 C. 数据存放的实际地址 D. 计算机地址位数 4.动态页式管理中的 C 是:当内存中没有空闲页时,如何将已占据的页释放。 A. 调入策略 B. 地址变换 C. 替换策略 D. 调度算法 5.多重分区管理要求对每一个作业都分配 B 的内存单元。 A. 地址连续 B. 若干地址不连续 C. 若干连续的帧 D. 若干不连续的帧 6.段页式管理每取一数据,要访问 C 次内存。 A. 1 B. 2 C. 3 D. 4 7.分段管理提供 B 维的地址结构。 A. 1 B. 2 C. 3 D. 4 8.系统抖动是指 B。 A. 使用计算机时,屏幕闪烁的现象 B. 刚被调出内存的页又立刻被调入所形成的频繁调入调出的现象 C. 系统盘不干净,操作系统不稳定的现象 D. 由于内存分配不当,造成内存不够的现象 9.在 A中,不可能产生系统抖动现象。 A. 静态分区管理 B. 请求分页式管理 C. 段式存储管理 D. 段页式存储管理 10.在分段管理中 A 。 A. 以段为单元分配,每段是一个连续存储区 B. 段与段之间必定不连续 C. 段与段之间必定连续 D. 每段是等长的 11.请求分页式管理常用的替换策略之一有 A 。 A. LRU B. BF C. SCBF D. FPF 12.可由CPU调用执行的程序所对应的地址空间为 D 。 A. 名称空间 B. 虚拟地址空间 C. 相对地址空间 D. 物理地址空间 13. C 存储管理方式提供二维地址结构。 A. 固定分区 B. 分页

操作系统实验 设备管理汇总

操作系统实验 名称实验六设备管理 姓名 专业 学号 日期 2015年12月01日指导老师

一、实验目的 1.理解设备管理的概念和任务。 2.掌握独占设备的分配、回收等主要算法的原理并编程实现。 二、实验内容与要求 1.在Windows系统中,编写程序实现对独占设备的分配和回收的模拟,该程序中包括:建立设备类表和设备表、分配设备和回收设备的函数。 三、实验原理 1.独占设备的分配、回收等主要算法的原理。 为了提高操作系统的可适应性和可扩展性,现代操作系统中都毫无例外地实现了设备独立性,又叫做设备无关性。设备独立性的含义是:应用程序独立于具体使用的物理设备。 为了实现独占设备的分配,系统设置数据表格的方式也不相同,在实验中只要设计合理即可。这里仅仅是一种方案,采用设备类表和设备表。 (1)数据结构 操作系统设置“设备分配表”,用来记录计算机系统所配置的独占设备类型、台数以及分配情况。设备分配表可由“设备类表”和“设备表”两部分组成,如下 设备类表设备表 控制器表通道表 设备队列队首指针。凡因请求本设备而未得到满足的进程,其PCB都应按照一定的策略排成一个队列,称该队列为设备请求队列或简称设备队列。其队首指针指向队首PCB。在有的系统中还设置了队尾指针。 设备状态。当设备自身正处于使用状态时,应将设备的忙/闲标志置“1”。若与该设备相连接的控制器或通道正忙,也不能启动该设备,此时则应将设备的等待标志置“1”。

与设备连接的控制器表指针。该指针指向该设备所连接的控制器的控制表。在设备到主机之间具有多条通路的情况下,一个设备将与多个控制器相连接。此时,在DCT中还应设置多个控制器表指针。 (2)设备分配 1)当进程申请某类设备时,系统先查“设备类表”。 2)如果该类设备的现存台数可以满足申请要求,则从该类设备的“设备表”始址开始依次查该类设备在设备表中的登记项,找出“未分配”的设备分配给进程。 3)分配后要修改设备类表中的现存台数,把分配给进程的设备标志改为“已分配”且填上占用设备的进程名。 4)然后,把设备的绝对号与相对号的对应关系通知用户,以便用户在分配到的设备上装上存储介质。 (3)设备回收 当进程执行结束撤离时应归还所占设备,系统根据进程名查设备表,找出进程占用设备的登记栏,把标志修改为“未分配”,清除进程名。同时把回收的设备台数加到设备类表中的现存台数中。 设备分配程序的改进 增加设备的独立性:为了获得设备的独立性,进程应使用逻辑设备名I/O。这样,系统首先从SDT中找出第一个该类设备的DCT。若该设备忙,又查找第二个该类设备的DCT,仅当所有该类设备都忙时,才把进程挂在该类设备的等待队列上,而只要有一个该类设备可用,系统便进一歩计算分配该设备的安全性。 四、程序流程图

《操作系统》课程形成性考核作业册参考答案

作业1 第一章 一、1 (C)2(D) 3(A)4(B)5(C)6(C)7(B)8(C) 9(A) 10(C)。 二、1.系统软件。 2.批处理操作系统、分时操作系统、实时操作系统、网络操作系统、分布式操作系统。 3.作业管理、文件管理、存储管理、设备管理、进程管理。 三、1(对) 2(错)3(对)4(错)5(错) 四、1 操作系统相当于计算机的“管家”,它负责管理计算机的硬软资源,在整个计算机系统中起极其重要的作用。 2.分时系统通用性强,交互能力强、响应速度要求一般,追求的是尽量为更多的用户服务;实时系统是一种专用系统,它的交互能力要求一般,追求的是非常快的响应速度和非常高的可靠性。 3.DOS具有良好的兼容性;较好的开放性;使用方便;功能丰富。Windows具有优良的图形界面;多任务操作环境;有效地利用主存;支持多媒体技术。UNIX/Linux内核和核外程序的有机结合;移植性好;多用户多任务;较好的用户界面。 第二章 一、 1(D) 2(A) 3(B)4(C) 5(A) 6(C)7(B)8(A) 9(B) 10(A) 二、 1程序、数据、作业说明书 2脱机、联机加脱机 3操作命令、系统调用 三、 1 (错)2(错)3(对)4(错) 5 (错) 四、 1作业调度也称高级调度进程调度也称低级调度。一个作业被调度,那么这个作业有资格获得CPU;而一个进程被调度,说明这个进程已经分配了CPU。作业调度的次数少频率低,作业只调度一次就可以完成;而进程调度的次数多频率高,一个进程反复被调度多次才完成。 2运行的状态不同。一般过程调用其调用的过程核被调用的过程都是用户的程序,CPU一直在用户态下运行。系统调用其调用的过程是用户程序,被调用的程序是操作系统的核心程序,执行调用过程CPU处于用户态,执行被调用的系统核心程序时CPU处于核心态。 进入方式不同。一般过程调用可以通过过程调用语句调用用户过程。系统调用必须通过系统调用指令(访管指令)调用系统的核心程序。 五、 第1题: 先来先服务(FIFO): 作业1 作业2 作业3 作业4 时间:10 12 13 13.5 13.8 作业1的周转时间=12-10 =2 (周转时间=完成时间-提交时间) 作业2的周转时间=13-10.2=2.8 作业3的周转时间=13.5-10.4=3.1 作业4的周转时间=13.8-10.5=3.3 平均周转时间(2+2.8+3.1+3.3)/4=2.8

操作系统课程设计内存管理

内存管理模拟 实验目标: 本实验的目的是从不同侧面了解Windows 2000/XP 对用户进程的虚拟内存空间的管理、分配方法。同时需要了解跟踪程序的编写方法(与被跟踪程序保持同步,使用Windows提供的信号量)。对Windows分配虚拟内存、改变内存状态,以及对物理内存(physical memory)和页面文件(pagefile)状态查询的API 函数的功能、参数限制、使用规则要进一步了解。 默认情况下,32 位Windows 2000/XP 上每个用户进程可以占有2GB 的私有地址空间,操作系统占有剩下的2GB。Windows 2000/XP 在X86 体系结构上利用二级页表结构来实现虚拟地址向物理地址的变换。一个32 位虚拟地址被解释为三个独立的分量——页目录索引、页表索引和字节索引——它们用于找出描述页面映射结构的索引。页面大小及页表项的宽度决定了页目录和页表索引的宽度。 实验要求: 使用Windows 2000/XP 的API 函数,编写一个包含两个线程的进程,一个线程用于模拟内存分配活动,一个线程用于跟踪第一个线程的内存行为,而且要求两个线程之间通过信号量实现同步。模拟内存活动的线程可以从一个文件中读出要进行的内存操作,每个内存操作包括如下内容: 时间:操作等待时间。 块数:分配内存的粒度。 操作:包括保留(reserve)一个区域、提交(commit)一个区域、释放(release)一个区域、回收(decommit)一个区域和加锁(lock)与解锁(unlock)一个区域,可以将这些操作编号存放于文件。保留是指保留进程的虚拟地址空间,而不分配物理 存储空间。提交在内存中分配物理存储空间。回收是指释放物理内存空间,但在虚拟地址空间仍然保留,它与提交相对应,即可以回收已经提交的内存块。释放是指将物理存储和虚拟地址空间全部释放,它与保留(reserve)相对应,即可以释放已经保留的内存块。 大小:块的大小。 访问权限:共五种,分别为PAGE_READONLY,PAGE_READWRITE ,PAGE_EXECUTE,PAGE_EXECUTE_READ 和PAGE EXETUTE_READWRITE。可以将这些权限编号存放于文件中跟踪线程将页面大小、已使用的地址范围、物理内存总量,以及虚拟内存总量等信息显示出来。

操作系统文件管理_答案

第六部分文件管理 1、文件系统的主要目的就是( )。 A、实现对文件的按名存取 B、实现虚拟存储 C、提供外存的读写速度 D、用于存储系统文件 2、文件系统就是指( )。 A、文件的集合 B、文件的目录集合 C、实现文件管理的一组软件 D、文件、管理文件的软件及数据结构的总体 3、文件管理实际上就是管理( )。 A、主存空间 B、辅助存储空间 C、逻辑地址空间 D、物理地址空间 4、下列文件的物理结构中,不利于文件长度动态增长的文件物理结构就是( )。 A、顺序文件 B、链接文件 C、索引文件 D、系统文件 5、下列描述不就是文件系统功能的就是( )。 A、建立文件目录 B、提供一组文件操作 C、实现对磁盘的驱动调度 D、实现从逻辑文件到物理文件间的转换 6、文件系统在创建一个文件时,为它建立一个( )。 A、文件目录 B、目录文件 C、逻辑结构 D、逻辑空间 7、索引式(随机)文件组织的一个主要优点就是( )。 A、不需要链接指针 B、能实现物理块的动态分配 C、回收实现比较简单 D、用户存取方便 8、面向用户的文件组织机构属于( )。 A、虚拟结构 B、实际结构 C、逻辑结构 D、物理结构 9、按文件用途来分,编译程序就是( )。 A、用户文件 B、档案文件 C、系统文件 D、库文件 10、将信息加工形成具有保留价值的文件就是( )。 A、库文件 B、档案文件 C、系统文件 D、临时文件 11、文件目录的主要作用就是( )。 A、按名存取 B、提高速度 C、节省空间 D、提高外存利用率 12、如果文件系统中有两个文件重名,不应采用( )。 A、一级目录结构 B、树型目录结构 C、二级目录结构 D、A与C 13、文件系统采用树型目录结构后,对于不同用户的文件,其文件名( )。 A、应该相同 B、应该不同 C、可以不同,也可以相同 D、受系统约束 14、文件系统采用二级文件目录可以( )。 A、缩短访问存储器的时间 B、实现文件共享 C、节省内存空间 D、解决不同用户间的文件命名冲突

计算机操作系统(第四版)1-8章 课后答案(全)

第一章操作系统引论 1.设计现代OS的主要目标是什么?答:方便性,开放性,有效性,可扩充性 2.OS的作用可表现在哪几个方面?答:OS作为用户与计算机硬件系统之间的接口;OS作为计算机系统资的管理者;OS实现了对计算机资源的抽象。 3.为什么说操作系统实现了对计算机资源的抽象?答:OS首先在裸机上覆盖一层1/0设备管理软件,实现了对计算机硬件操作的第一层次抽象;在第一层软件上再覆盖文件管理软件,实现了对硬件资源操作的第二层次抽象。0s通过在计算机硬件上安装多层系统软件,增强了系统功能,隐藏了对硬件操作的细节,由它们共同实现了对计算机资源的抽象。 4·说明推动分时系统形成和发展的主要动力是什么?答:主要动力是提高资源利用率和系统吞吐里,为了满足用户对人一机交互的需求和共享主机。 5.何谓脱机I/O和联机I/O?答:脱机1/0是指事先将装有用户程序和数据的纸带或卡片装入纸带输入机或卡片机,在外围机的控制下,把纸带或一片上的数据或程序输入到殖带上。该方式下的输入输出由外围机控制完成,是在脱离主机的情况下进行的。而耽机1/0方式是指程序和数据的輸入输出都是在主机的直接控制下进行的。 6.试说明推动分时系统形成和发展的主要动力是什么?答:推动分时系统形成和发展的主要动力是更好地满足用户的需要。主要表现在:CPU的分时使用缩短了作业的平均周转时间;人机交互能力使用户能直接控制自己的作业;主机的共享使多用户能同时使用同一台计算机,独立地处理自己的作业。 7.实现分时系统的关键问题是什么?应如何解决?答:关键问题是当用户在自己的终端上键入命令时,系统应能及寸接收并及时处理该命令,在用户能接受的时采内将结果返回给用户。解决方法:针对及时接收问题,可以在系统中设路多路卡,健主机能同时接收用户从各个终端上轮入的数据;为每个终端配路缓冲区,暂存用户捷入的命令或教据。针对反时处理问题,应便所有的用户作业都直接进入内存,并且为每个作业分配一个时间片,允许作业只在自己的时间片内运行,这样在不长的时间内,能使每个作业都运行一次。 8.为什么要引入实时OS?答:实时操作系统是指系统能及时响应外部事件的请求,在规定的时间内完成对该事件的处理,并控制所有实时任务协调一致地运行。引入实时OS是为了满足应用的需求,熏好地满足实时控制领域和实时信息处涯领域的需要。 9.什么是硬实时任务和款实时任务?试举例说明。答:硬实时任务是指系统必须满足任务对截止时间的要求,否则可能出现难以预测的结是。举例来说,运载火箭的控制等。软实时任务是指它的截止时间并不严格,偶尔错过了任务的截止时间,对系统产生的影响不大。举例:网页内容的更新、火车售票系统。 10.试从交互性、及时性以及可靠性方面,将分时系统与实时系统进行比较。答:(1)及时性:实时信息处理系统对实时性的要求与分时系统类似,都是以人所能受的等待时间来确定;而实时控制系统的及时性,是以控制对象所要求的开始截止时间或完成截止时间来确定的,一般为秒级到毫秒级,甚至有的要低于100微妙。(2)交互性:实时信息处理系统具有交互性,但人与系统的交互仅限于访问系统中某些特定的专用服务程序。不像分时系统那样能向终端用户提供数据和资源共享等服务。(3)可靠性:分时系统也要求系统可靠,但相比之下,实时系统则要求系统具有高度的可靠性。因为任何差错都可能带未巨大的经济损失,甚至是灾难性后,,所以在实时系统中,往往都采取了

操作系统内存管理原理

内存分段和请求式分页 在深入i386架构的技术细节之前,让我们先返回1978年,那一年Intel 发布了PC处理器之母:8086。我想将讨论限制到这个有重大意义的里程碑上。如果你打算知道更多,阅读Robert L.的80486程序员参考(Hummel 1992)将是一个很棒的开始。现在看来这有些过时了,因为它没有涵盖Pentium处理器家族的新特性;不过,该参考手册中仍保留了大量i386架构的基本信息。尽管8086能够访问1MB RAM的地址空间,但应用程序还是无法“看到”整个的物理地址空间,这是因为CPU寄存器的地址仅有16位。这就意味着应用程序可访问的连续线性地址空间仅有64KB,但是通过16位段寄存器的帮助,这个64KB大小的内存窗口就可以在整个物理空间中上下移动,64KB逻辑空间中的线性地址作为偏移量和基地址(由16位的段寄存器给处)相加,从而构成有效的20位地址。这种古老的内存模型仍然被最新的Pentium CPU支持,它被称为:实地址模式,通常叫做:实模式。 80286 CPU引入了另一种模式,称为:受保护的虚拟地址模式,或者简单的称之为:保护模式。该模式提供的内存模型中使用的物理地址不再是简单的将线性地址和段基址相加。为了保持与8086和80186的向后兼容,80286仍然使用段寄存器,但是在切换到保护模式后,它们将不再包含物理段的地址。替代的是,它们提供了一个选择器(selector),该选择器由一个描述符表的索引构成。描述符表中的每一项都定义了一个24位的物理基址,允许访问16MB RAM,在当时这是一个很不可思议的数量。不过,80286仍然是16位CPU,因此线性地址空间仍然被限制在64KB。 1985年的80386 CPU突破了这一限制。该芯片最终砍断了16位寻址的锁链,将线性地址空间推到了4GB,并在引入32位线性地址的同时保留了基本的选择器/描述符架构。幸运的是,80286的描述符结构中还有一些剩余的位可以拿来使用。从16位迁移到32位地址后,CPU的数据寄存器的大小也相应的增加了两倍,并同时增加了一个新的强大的寻址模型。真正的32位的数据和地址为程序员带了实际的便利。事实上,在微软的Windows平台真正完全支持32位模型是在好几年之后。Windows NT的第一个版本在1993年7月26日发布,实现了真正意义上的Win32 API。但是Windows 3.x程序员仍然要处理由独立的代码和数据段构成的64KB内存片,Windows NT提供了平坦的4GB地址空间,在那儿可以使用简单的32位指针来寻址所有的代码和数据,而不需要分段。在内部,当然,分段仍然在起作用,就像我在前面提及的那样。不过管理段的所有责任都被移给了操作系统。

操作系统实验六设备管理

操作系统课程报告 实验六设备管理 学号 姓名 班级 教师 华侨大学电子工程系

实验目的 1、理解设备管理的概念和任务。 2、掌握独占设备的分配、回收等主要算法的原理并编程实现。 实验内容与基本要求 1、在Windows系统中,编写程序实现对独占设备的分配和回收的模拟,该程序中包括: 建立设备类表和设备表、分配设备和回收设备的函数。 实验报告内容 1、独占设备的分配、回收等主要算法的原理。 为了提高操作系统的可适应性和可扩展性,现代操作系统中都毫无例外地实现了设备独立性,又叫做设备无关性。设备独立性的含义是:应用程序独立于具体使用的物理设备。为了实现独占设备的分配,系统设置数据表格的方式也不相同,在实验中只要设计合理即可。这里仅仅是一种方案,采用设备类表和设备表。 (1)数据结构 操作系统设置“设备分配表”,用来记录计算机系统所配置的独占设备类型、台数以及分配情况。设备分配表可由“设备类表”和“设备表”两部分组成,如下图:(2)设备分配 当进程申请某类设备时,系统先查“设备类表”如果该类设备的现存台数可以满足申请要求,则从该类设备的“设备表”始址开始依次查该类设备在设备表中的登记项,找出“未

分配”的设备分配给进程。分配后要修改设备类表中的现存台数,把分配给进程的设备标志改为“已分配”且填上占用设备的进程名。然后,把设备的绝对号与相对号的对应关系通知用户,以便用户在分配到的设备上装上存储介质。 (3)设备回收 当进程执行结束撤离时应归还所占设备,系统根据进程名查设备表,找出进程占用设备的登记栏,把标志修改为“未分配”,清除进程名。同时把回收的设备台数加到设备类表中的现存台数中。 2、程序流程图。 主程序流程图: 设备分配: 设备回收: 3、程序及注释。 #include #include #include #define false 0 #define true 1

操作系统 作业带答案

操作系统是一种()。 a. 通用软件 b. 软件包 c. 应用软件 d. 系统软件正确 题目2 从用户的观点看,操作系统是()。 a. 控制和管理计算机资源的软件 b. 合理地组织计算机工作流程的软件 c. 由若干层次的程序按一定的结构组成的有机体 d. 用户与计算机之间的接口正确 题目3 操作系统的功能是进行处理器管理、()管理、设备管理和信息管理。 a. 硬件 b. 软件 c. 存储器正确 d. 进程 题目4 所谓()是指将一个以上的作业放入主存,并且同时处于运行状态,这些作业共享处理机的时间和外围设备等其他资源。 a. 共行执行 b. 多重处理 c. 多道程序设计正确 d. 实时处理 题目5 ()操作系统允许在一台主机上同时连接多台终端,多个用户可以通过各自的终端同时交互地使用计算机。 a. 实时 b. 分布式 c. 分时正确 d. 网络 题目6 若把操作系统看作计算机系统资源的管理者,下列的()不属于操作系统所管理的资源。 a. 程序 b. CPU c. 内存 d. 中断正确 题目7 在下列操作系统的各个功能组成部分中,()不需要硬件的支持。 a. 中断系统 b. 地址映射 c. 进程调度正确 d. 时钟管理

在进程管理中,当()时,进程从阻塞状态变为就绪状态。 a. 等待的事件发生正确 b. 等待某一事件 c. 进程被进程调度程序选中 d. 时间片用完 题目9 对进程的管理和控制使用()。 a. 指令 b. 信箱通信 c. 原语正确 d. 信号量 题目10 进程控制就是对系统中的进程实施有效的管理,通过使用()、进程撤销、进程阻塞、进程唤醒等进程控制原语实现。 a. 进程管理 b. 进程创建正确 c. 进程同步 d. 进程运行 题目11 操作系统通过()对进程进行管理。 a. 进程启动程序 b. 进程控制区 c. 进程控制块正确 d. 进程 题目12 通常,用户进程被建立后,()。 a. 随着进程的阻塞或唤醒而撤销与建立 b. 随着作业运行正常或不正常结束而撤销正确 c. 便一直存在于系统中,直到被操作人员撤销 d. 随着时间片轮转而撤销与建立 题目13 一个进程被唤醒意味着()。 a. 该进程重新占有了CPU b. 其PCB移至等待队列队首 c. 它的优先权变为最大 d. 进程变为就绪状态正确 题目14 下面所述步骤中,()不是创建进程所必需的。 a. 将进程控制块链入就绪队列 b. 为进程分配内存 c. 建立一个进程控制块 d. 由调度程序为进程分配CPU 正确 题目15

计算机操作系统

计算机操作系统复习题 (课程代码252250) 一、单项选择题(本大题共42小题) 1、下面设备中,一次只能让一个作业独占使用的设备是( B )。 A、磁盘机 B、打印机 C、光驱 D、硬盘驱动器 2、操作系统提供给程序员的接口是( B )。 A、进程 B、系统调用 C、库函数 D、B和C 3、若记录型信号量S的初值为2,当前值为-1,则表示有( B )等待进程。 A、0个 B、1个 C、2个 D、3个 4、段式存储管理中,分段是由用户决定的,因此( B )。 A、段内地址和段间的地址都是连续的 B、段内地址是连续的,而段间的地址是不连续的 C、段内地址是不连续的,而段间的地址是连续的 D、段内地址和段间的地址都是不连续的 5、请求分页管理中,页面的大小与可能产生的缺页中断次数(B )。 A、成正比 B、成反比 C、无关 D、成固定比值 6、当CPU执行操作系统代码时,称处理机处于( C)。 A、执行态 B、目态 C、管态 D、就绪态 7、在固定分区分配中,每个分区的大小是( C )。 A、随作业长度变化 B、相同 C、可以不同但预先固定 D、可以不同但根据作业长度固定 8、CPU输出数据的速度远远高于打印机的打印速度,为解决这一矛盾,可采用( C )。 A、并行技术 B、通道技术 C、缓冲技术 D、虚存技术 9、操作系统的基本类型主要有(C)。 A、批处理系统、分时系统和多任务系统 B、单用户系统、多用户系统和批处理系统 C、批处理操作系统、分时操作系统及实时操作系统 D、实时系统、分时系统和多用户系统 10、可变分区存储管理采用的地址变换公式是( C )。 A、绝对地址 = 上界寄存器值 + 逻辑地址 B、绝对地址 = 下界寄存器值 + 逻辑地址 C、绝对地址 = 重定位寄存器值 + 逻辑地址 D、绝对地址 = 块号×块长 + 页内地址 11、实际操作系统,要兼顾资源的使用效率和安全可靠,对资源的分配策略,往往采用( D )策略。 A、预防死锁 B、避免死锁 C、检测死锁 D、三者的混合 12、存储管理主要管理的是( D )。 A、外存存储器用户区 B、外存存储器系统区 C、主存储器用户区 D、主存储器系统区 13、临界段是指并发进程中访问临界资源的( D )段。 A、管理信息 B、信息存储 C、数据 D、程序

操作系统 内存管理实验报告

同组同学学号: 同组同学姓名: 实验日期:交报告日期: 实验(No. 4 )题目:编程与调试:内存管理 实验目的及要求: 实验目的: 操作系统的发展使得系统完成了大部分的内存管理工作,对于程序员而言,这些内存管理的过程是完全透明不可见的。因此,程序员开发时从不关心系统如何为自己分配内存,而且永远认为系统可以分配给程序所需的内存。在程序开发时,程序员真正需要做的就是:申请内存、使用内存、释放内存。其它一概无需过问。本章的3个实验程序帮助同学们更好地理解从程序员的角度应如何使用内存。 实验要求: 练习一:用vim编辑创建下列文件,用GCC编译工具,生成可调试的可执行文件,记录并分析执行结果,分析遇到的问题和解决方法。 练习二:用vim编辑创建下列文件,用GCC编译工具,生成可调试的可执行文件,记录并分析执行结果。 练习三:用vim编辑创建下列文件,用GCC编译工具,生成可调试的可执行文件,记录并分析执行结果。 改编实验中的程序,并运行出结果。 实验设备:多媒体电脑 实验内容以及步骤: 在虚拟机中编写好以下程序: #include #include #include int main(void) { char *str; /* 为字符串申请分配一块内存*/ if ((str = (char *) malloc(10)) == NULL) { printf("Not enough memory to allocate buffer\n"); return(1); /* 若失败则结束程序*/ } /* 拷贝字符串“Hello”到已分配的内存空间*/ strcpy(str, "Hello"); /* 显示该字符串*/ printf("String is %s\n", str); /* 内存使用完毕,释放它*/ free(str); return 0; } 调试过后得出的结果截图如下:(由图可看出我将此程序以aa.c为文件名保存,调试后出现aa1文件,调试结果出现语句“String is Hello”)

计算机操作系统(第三版_汤小丹等)课后习题答案(全)整理后

第一章操作系统引论 1.设计现代OS的主要目标是什么? 答:(1)有效性 (2)方便性 (3)可扩充性 (4)开放性 2.OS的作用可表现在哪几个方面? 答:(1)OS作为用户与计算机硬件系统之间的接口;(2)OS作为计算机系统资源的管理者;(3)OS实现了对计算机资源的抽象。 3.为什么说OS实现了对计算机资源的抽象? 答:OS首先在裸机上覆盖一层I/O设备管理软件,实现了对计算机硬件操作的第一层次抽象;在第一层软件上再覆盖文件管理软件,实现了对硬件资源操作的第二层次抽象。OS 通过在计算机硬件上安装多层系统软件,增强了系统功能,隐藏了对硬件操作的细节,由它们共同实现了对计算机资源的抽象。 4.试说明推动多道批处理系统形成和发展的主要动力是什么? 答:主要动力来源于四个方面的社会需求与技术发展:(1)不断提高计算机资源的利用率;(2)方便用户; (3)器件的不断更新换代;(4)计算机体系结构的不断发展。 5.何谓脱机I/O和联机I/O? 答:脱机I/O 是指事先将装有用户程序和数据的纸带或卡片装入纸带输入机或卡片机,在外围机的控制下,把纸带或卡片上的数据或程序输入到磁带上。该方式下的输入输出由外围机控制完成,是在脱离主机的情况下进行的。而联机I/O方式是指程序和数据的输入输出都是在主机的直接控制下进行的。 6.试说明推动分时系统形成和发展的主要动力是什么? 答:推动分时系统形成和发展的主要动力是更好地满足用户的需要。主要表现在:CPU 的分时使用缩短了作业的平均周转时间;人机交互能力使用户能直接控制自己的作业;主机的共享使多用户能同时使用同一台计算机,独立地处理自己的作业。 7.实现分时系统的关键问题是什么?应如何解决? 答:关键问题是当用户在自己的终端上键入命令时,系统应能及时接收并及时处理该命令,在用户能接受的时延内将结果返回给用户。解决方法:针对及时接收问题,可以在系统中设置多路卡,使主机能同时接收用户从各个终端上输入的数据;为每个终端配置缓冲区,暂存用户键入的命令或数据。针对及时处理问题,应使所有的用户作业都直接进入内存,并且为每个作业分配一个时间片,允许作业只在自己的时间片内运行,这样在不长的时间内,能使每个作业都运行一次。 8.为什么要引入实时OS? 答:实时操作系统是指系统能及时响应外部事件的请求,在规定的时间内完成对该事件的处 理,并控制所有实时任务协调一致地运行。引入实时OS 是为了满足应用的需求,更好地满 足实时控制领域和实时信息处理领域的需要。 9.什么是硬实时任务和软实时任务?试举例说明。 答:硬实时任务是指系统必须满足任务对截止时间的要求,否则可能出现难以预测的结果。 举例来说,运载火箭的控制等。软实时任务是指它的截止时间并不严格,偶尔错过了任务的截止时间,对系统产生的影响不大。举例:网页内容的更新、火车售票系统。 10.在8位微机和16位微机中,占据了统治地位的是什么操作系统? 答:单用户单任务操作系统,其中最具代表性的是CP/M和MS-DOS。 11.试列出Windows OS 中五个主要版本,并说明它们分别较之前一个版本有何改进。 答:(1)Microsoft Windows 1.0是微软公司在个人电脑上开发图形界面的首次尝试。(2)Windows 95是混合的16位/32位系统,第一个支持32位。带来了更强大、更稳定、更实用的桌面图形用户界面,结束了桌面操作系统间的竞争。(3)Windows 98是微软公司的混合16位/32位Windows 操作系统,改良了硬件标准的支持,革新了内存管理,是多进程操作系统。(4)Windows XP是基于Windows 2000的产品,拥有新用户图形界面月神Luna。简化了用户安全特性,整合了防火墙。(5)Windows Vista 包含了上百种新功能;特别是新版图形用户界面和Windows Aero全新界面风格、加强的搜寻功能(Windows Indexing Service)、新媒体创作工具

相关文档
相关文档 最新文档